AGILE: A Multi-task Contrastive Learning
Framework with Adversarial Gradient Iterative
Learning for Bio-signal Anonymization

Tamonash Bhattacharyya*, Farshad Firouzi*, Amir M. Rahmanif,
Sanaz Rahimi Mousavit, Krishnendu Chakrabarty*
* Arizona State University, AZ, USA
T University of California, Irvine, CA, USA
¥ California State University, Dominguez Hills, CA, USA

Abstract—Bio-signals have become a de-facto method for
identity verification and subject re-identification, while providing
crucial clinically relevant information for telediagnosis, thereby
raising significant privacy concerns. Existing anonymization
methods often operate on limited modalities leaving parts of the
spatio-temporal signal space exposed to re-identification attacks
while degrading signal fidelity through indiscriminate noise.
Thus, we proposes a multi-task contrastive learning framework
that jointly suppresses biometric features while preserving clini-
cally relevant characteristics. The framework iteratively perturbs
the signal using a novel adversarial fast gradient sign method (A-
FGSM) for targeted noise injection that maximizes identity loss
while minimizing diagnostic loss. Evaluated on PTB, CODE-15%,
and MIMIC-IV-ECG datasets, our method reduces biometric
identification to 15.74% while maintaining a clinical classification
accuracy of 94.7%, establishing a new benchmark for bio-signal
anonymization.

Index Terms—Bio-signal Anonymization, ECG, Healthcare
Systems, Telediagnosis

I. INTRODUCTION

Healthcare has been significantly transformed by deep
learning, enabling automated disease diagnosis, enhanced risk
stratification, and the rapid expansion of telemedicine. These
advances have also driven major progress in signal-space esti-
mation tasks such as semantic segmentation, classification, and
anonymization [1]. This is aided by the increasing availability
of remotely acquired physiological bio-signals, crucial for
early diagnosis and predictive health analytics. However, bio-
signals like electrocardiograms (ECGs) contain both diagnostic
information and sensitive biometric traits such as age, sex,
and individual-specific patterns. This duality creates privacy
and security concerns for data sharing and distributed com-
putation in clinical settings. Thus, anonymizing bio-signals
by suppressing biometric identifiers while retaining diagnostic
utility [2] is crucial for ethical Al-driven healthcare.

Recent efforts in ECG anonymization have explored
privacy-preserving techniques such as differential privacy and
federated learning [3]. However, these approaches often
introduce indiscriminate noise, degrading signal fidelity and
compromising clinical utility. Moreover, they do not effec-
tively prevent identity leakage from raw signals, which can
still be used to extract biometric templates [4]. These templates

capture a holistic and identity-specific representation of the
signal, unlike prior methods that focus on protecting isolated
demographic attributes (modalities) such as age or sex. GAN-
based anonymization methods [5] typically target specific
attributes and fail to generalize across more complex identity
representations. Additionally, signal-space perturbations such
as Gaussian noise can distort clinically relevant regions, limit-
ing diagnostic interpretability. To address these challenges, we
propose AGILE (Adversarial Gradient Iterative Learning for
Echocardiograms), an anonymization framework that operates
directly on the raw signal space. The core idea behind AGILE
is to perform targeted noise injection using a contrastive,
gradient-sensitive adversarial strategy that distinguishes be-
tween biometric and clinically relevant signal components.
It leverages a convolution-transformer hybrid (CTH) architec-
ture, trained using a multi-task contrastive learning (MTCL)
framework, which jointly models local morphological patterns
and long-range dependencies. The proposed method adheres
to the AAMI EC57 standard [6]for ECG signal classification
ensuring clinical relevance and reusability. In summary, this
paper makes the following contributions:

¢« We propose a novel bio-signal anonymization method
called AGILE. Contrary to existing methods that operate
over a singular modality for anonymization, this method
operates on the raw signal space that learns contrastive
distributions over the signal space for biometric and
characteristic regions-of-interest and adversarially injects
noise for anonymization.

e We design a unified CTH backbone that jointly learns
shared representations through multi-task learning, lever-
aging task-specific heads to distinguish characteristic and
biometric features.

o We validate the proposed approach on multiple ECG
datasets, achieving a clinical classification accuracy of
94.8%, thereby demonstrating generalizability and robust-
ness across varying data distributions. Additionally, our
method attains an equal error rate (EER) of 0.125, in-
dicating improved anonymization performance compared
to baseline methods.
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Fig. 1: System architecture of the AGILE framework with A-FGSM noise injection.

II. PROPOSED METHODOLOGY

A. Network Architecture

The architecture of the proposed AGILE framework is
composed of four major modules as shown in Fig. 1:

1) Bio-signal Preprocessing: Our model operates on single-
beat visual representations of ECG signals, extracted from
single-lead records using the Pan-Tompkins algorithm [7] for
R-peak detection. Around each R-peak, a fixed-length window
is segmented to capture key morphological components (P,
QRS, T waves), and converted into standardized 200 x 200
grayscale images.

2) Feature Extractor I': In feature extractor, we implement
a CTH encoder to map input signals to a high-dimensional
latent representation. The convolution layers extract localized
spatial patterns in the signal, while the transformer layers
model long-range dependencies to construct a global repre-
sentation over the extracted features. The transformations of
T" can be formalized as:

¢i = o(BN(Conv(c;-1)))
Hj = Flatten(Adaptive(c,,))wy, + by,
Hyw; - w%HE)) (D
HoW;
F, = LN (FEN(H,) + H;)

H, =LN (Softmax (

where the c;_; is the input to the current convolution block
from the previous convolution block (cy is the input from
the pre-processing block to the first convolution layer and
i € [0,n]), BN is batch normaization and o is the sigmoid

activation function. LN and FFN corresponds to layer nor-
malization and feed-forward network operations respectively,
corresponding to the various transformations.

3) Feature Perturbator N: We introduce a novel adver-
sarial fast gradient sign method (A-FGSM), based on the
standard FGSM. A-FGSM introduces targeted perturbations
by injecting noise aligned with the gradient of the biometric
classification loss, thereby maximizing identity obfuscation.
Simultaneously, it constrains perturbations along the gradient
direction of the characteristic classification loss to preserve
diagnostic fidelity. Noise injection is performed at a pixel-level
granularity which ensures minimal perturbation while ensuring
biometric obfuscation:

n = €-sign(VyLyio — AVaLehar) 2)

where, € denotes the perturbation budget , and A is a trade-off
coefficient that balances the opposing objectives of biometric
obfuscation and clinical preservation. The term VL, and
VuLechar represents the gradient of the biometric loss and
clinical classification loss respectively.

4) Learning Heads ©: The learning heads © are a pair of
fully connected layers that estimate over a given distribution,
the probability of the biometric and characteristic objectives.
For the feature vector F € R? extracted by T, predicted class
probabilities over a closed-set of cardiovascular diseases C,
is given by:

exp (W - F+ i)

325 exp (Wfﬂ;) F+ b%))

P(ym:C|F): (3)



Algorithm 1 Adversarial Training for ECG Anonymization

Require: Training set & = {(X, Yined, Yoio) }-

Require: Untrained modules: Feature extractor I', perturba-
tion function N, multi-task heads © = {M,B}. > M is
the clinical head while B refers to the biometric head

1: Initialize parameters: encoder ¢, medical head ¢, biometric
head .

2: Initialize scaling factors: perturbation strength e, perturba-
tion mix factor «, adversarial weight A.

3: for each epoch e =1 to N do

4 for each mini-batch (X, Yied, Yoio) ~ £ do

5: X'« NC(FG»M@BwaXa Ymedvyi)io)

6: F + Ty(X")

7

8

9

Ymed — M¢(F)

Lieq < — Z iy Yngﬁd Yn(lg()i

: Ny = —A- VNLbIO (1-X)-R
10: Yoio Bw(Nrev)
11 Lyio = — Ecm Yb(lg) log }/b(l(c))
12: L + Lyed — ALpio
13: Update parameters: (6, ¢, ) < (6,¢,¢) —n-VL
14: end for
15: end for

where ¥, is the disease label and W,(nc), bgﬁ) are the class
parameters. Similarly over a closed-set of C} identity-classes
with Wr(nc ), bsﬁ) as the identity class parameters, the probability
distribution learned by the biometric-head is given by:

exp (Wl()c) -F+ bl()c)>

Plyy=c|F) = : :
S exp (W F o+ 50)

“4)

B. Training Framework

During the training phase of AGILE, as shown in Algo-
rithm 1, the MTCL framework enforces learning over a closed-
set distribution of multi-class characteristic C,,, and biometric
labels CY. The learned distribution of the probabilistic network
is approximated over a sequence of FFN learning heads ©.
This constructs the mapping of the gradients for O:

VaLchar = =V log Pchar(ychar I X5 9)

5
VaLvio = —Vz 1og Poio(Yio | ;5 6) ©)

During training, the model minimizes a weighted sum of
Lypio and Lep,. The biometric loss is computed as categorical
cross-entropy: Lbio = —log P(yvio | f‘), while Lopar 1S
estimated via cross-entropy over predicted and ground truth
cardiovascular disease (CVD) labels. The A-FSGM defined
in Eq. 2, implements the feedback channel from these losses

thereby introducing perturbations in the signal space.

III. EXPERIMENTAL RESULTS
A. Experimental Setup

We train our proposed framework using single-lead
ECG, time-series data from four benchmark datasets: the

Physikalisch-Technischen Bundesanstalt (PTB) [8], the MIT-
BIH Arrhythmia [9], the MIMIC-IV-ECG [10], and the
CODE-15% dataset [11]. To asses anonymization effective-
ness and utility preservation, we compare AGILE against
several SOTA generative anonymization baselines, including
PrivECG-GAN [12], REACT [13], and ODE-GAN [14].
These methods typically leverage conditional GAN archi-
tectures to synthesize realistic ECG signals while targeting
specific modalities for biometric obfuscation. To evaluate the
anonymization performance during inference, we assess both
privacy preservation and diagnostic fidelity using task-specific
networks trained independently of the anonymization pipeline.
Privacy is measured using a simulated adversarial identifi-
cation model by computing the Kullback-Leibler divergence
between identity distributions before and after anonymization
while we assess characteristic preservation by employing a
diagnostic classifier trained to predict clinical labels from the
anonymized signals:

Moprivacy = Bz [DxL (Poio (Un | ) || Poio(ys | 7))]
fchar - Emw& [CE(ymv PChﬂI(ym | ‘%))]

B. Evaluation Metrics

(6)

The performance of the AGILE framework is assessed along
two primary dimensions: biometric obfuscation and clinical
fidelity, corresponding to the dual objectives of anonymiza-
tion. In evaluating biometric identifiability, we use: 1) EER,
which corresponds to the point on the receiver operating
characteristic (ROC) curve where the false acceptance rate
(FAR) equals the false rejection rate (FRR). An increase in
EER after anonymization indicates enhanced privacy preser-
vation by reducing identifiability, 2) Accuracy of the biometric
classifier for evaluating baselines involving non-convergent or
adversarial training dynamics. To assess the clinical fidelity
of anonymized signals, we evaluate performance on disease
classification tasks. Specifically, we compute the classification
accuracy and F1-score using models trained on the original
signal distribution and tested on anonymized data.

C. Performance Evaluation

1) Biometric Evaluation: We evaluate the anonymization
strength of AGILE by applying identification networks trained
on original ECG signals and testing them on anonymized
outputs. As shown in Table I, AGILE reduces the identification
accuracy from 95.00% (pre-anonymization) to 15.74% (post-
anonymization), indicating a significant drop in subject trace-
ability. Here we present performance metrics across varying
sample sizes (e.g., 20, 40, 60) and subject categories, includ-
ing both healthy controls (samples from individuals without
CVDs) and mixed samples (individuals with varying CVD
classes). This evaluation offers a more comprehensive and
generalizable assessment of the framework’s anonymization
effectiveness. These results are further validated through com-
parisons with SOTA GAN-based anonymization baselines, as
shown in Table II. Each baseline targets a different attribute
or modality for identity inference (e.g., age, sex) serving as a



TABLE I: Attacker accuracy measure over pre- and post- anonymization samples using SOTA biometric systems. The siamese
twin network relies on a CNN-based approach hence the model performance is unreliable at lower sample sizes.

Model Healthy Control Mixture Sample
20 40 60 80 50 100 150 268
Un-anonymized | SVD [4] 0.9545 | 0.9323 | 0.9310 | 0.9267 | 0.9565 | 0.9189 | 0.9001 | 0.5268
Samples Siamese Twinet al. [15] | - - - - - - - 0.9500
Anonymized SVD [4] 0.2333 | 0.2134 | 0.2465 | 0.9323 | 0.2500 | 0.1974 | 0.2091 | 0.1765
Samples Siamese Twin [15] - - - - - - - 0.1574

TABLE II: Comparison of characteristic and identification performance on the PTB dataset for various SOTA models.

Model Characteristic Analysis | Identification (Biometrics)

Accuracy | F1 Score Accuracy | EER Modality/Attribute
Priv-ECG GAN [12] 0.8850 0.8425 0.5290 0.098 + 0.005 Sex-prediction
ODE-based GAN [14] | 0.9608 - 0.5403 - Age
REACT [13] 0.8946 - 0.4125 Non-convergent | Age and Sex
AGILE 0.9480 0.9672 0.1574 0.125 Template

proxy for re-identification risk. In contrast, AGILE evaluates
identifiability based on a biometric template, approximatiing
identity leakage in a real-world scenario. Despite this, AG-
ILE consistently outperforms all baselines across evaluation
scenarios.

2) Clinical Evaluation: As shown in Table II, to validate
clinical utility, we measure the performance of diagnostic clas-
sification for the models trained on original data and evaluated
on anonymized signals. This assesses the degree to which
clinically salient features are retained post-anonymization.
AGILE achieves a classification accuracy of 94.80% across a
diverse sample set spanning four ECG datasets, demonstrating
strong generalizability and robustness. Compared to original
classification accuracy of 97.40% on non-anonymized data,
samples anonymized through AGILE show minimal drop in
accuracy to 94.8%. This highlights AGILE’s ability to preserve
clinical fidelity while effectively obfuscating re-identifiable
components of the signal space.

IV. CONCLUSION

In this work, we proposed a methodology for anonymizing
bio-signals, with a focus on ECG-specific anonymization.
Unlike prior approaches that target isolated attributes such as
age or sex, our framework obfuscates the underlying biometric
template, which captures a comprehensive and identity-rich
representation of the signal space. We achieve a clinical clas-
sification of 94.7% over anonymized samples while degrading
the biometric identification accuracy to 15.74%. The method
demonstrates strong generalization across diverse subjects and
cardiac conditions, offering a robust foundation for privacy-
preserving biomedical analytics.
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