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Abstract

This paper introduces a task-based methodology for achieving Strong Artificial1

Intelligence (AGI) through the synergistic integration of Large Language Models2

(LLMs), logic-probabilistic reasoning, and multi-blockchain architectures. Ad-3

dressing critical limitations of current LLM-centric systems—such as poor gen-4

eralization in complex reasoning, outdated knowledge, and hallucinations—we5

propose a hybrid paradigm where LLMs generate hypotheses, symbolic logic6

engines ensure rigorous validation, and a hierarchical blockchain infrastructure7

enables secure, scalable knowledge evolution. Evaluated in a metaverse environ-8

ment populated by heterogeneous agents, our framework demonstrates unbounded9

cognitive growth under computational constraints while maintaining interpretability10

and ethical alignment. Key innovations include a probabilistic knowledge hierarchy11

for explainable decisions, a decentralized multi-blockchain design for continuous12

learning, and a metaverse-based testbed for AGI safety and scalability. Theoreti-13

cal guarantees of asymptotic cognitive scaling and practical applications in legal,14

scientific, and educational domains underscore the framework’s transformative15

potential.16

1 Introduction17

The quest for Strong AI demands systems that can reason, learn, and adapt as flexibly as humans,18

but current architectures fall short on key dimensions. Recent breakthroughs in generative AI (e.g.19

GPT-4) have delivered unprecedented language fluency, yet these models remain black boxes with20

brittle reasoning. They rely on static, offline training corpora and thus struggle with facts outside21

their training data; moreover, they can hallucinate plausible but incorrect statements [1]. Indeed, large22

language models (LLMs) suffer from limited generalization, outdated knowledge, and catastrophic23

forgetting of past learning, making them unsuitable as stand-alone engines for true AGI [2]. This24

has spawned a surge of interest in hybrid AI: integrating the pattern-finding strengths of LLMs25

with the rigor of symbolic reasoning. Our approach builds on this trend by adding a decentralized26

memory layer: a hierarchy of blockchains that store verified knowledge fragments. Unlike traditional27

retrieval-augmented methods [3], our memory is immutable, auditable, and automatically updated by28

the system itself. This cross-disciplinary design draws on ideas from cognitive science (hierarchical29

memory and reasoning), formal logic (explicit proof systems), and distributed computing (blockchain30

ledgers) to overcome the inherent limitations of current AI systems.31

Specifically, we propose a task-driven framework with three core components:32

• Large Language Models for rapid hypothesis generation and pattern recognition. The LLM33

processes each task description to suggest candidate solutions or subgoals.34
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• Symbolic Logic Engines for slow, exact reasoning. Each LLM-generated hypothesis is35

transformed into a formal query or proof obligation. A probabilistic logic-prover module36

then rigorously checks this hypothesis against known knowledge, producing verifiable proof37

traces and confidence estimates.38

• Multi-Blockchain Memory for decentralized knowledge management. Proven facts and39

deductions are appended to a layered blockchain architecture: fast chains capture raw40

observations, intermediate chains store structured facts, and root chains maintain high-level41

immutable summaries. This hierarchy ensures both scalability and auditability of learned42

knowledge.43

These components interplay in a task-based loop: agents dynamically retrieve relevant facts from the44

blockchain layers, propose solutions via the LLM, and use the logic engine to validate or refute them.45

Verified new facts are then appended to the ledger. In effect, LLMs perform “creative trial and error,”46

while symbolic modules enforce correctness and safety. This resembles recent neural–symbolic47

systems that combine representation learning with structured reasoning [4]. For example, methods48

like ReAct [5] and Toolformer [6] have shown how LLMs can orchestrate reasoning by calling out to49

external tools; our framework embeds that idea in an autonomous, on-chain process.50

A key novelty is the multi-agent metaverse testbed for evaluation. We simulate a mixed environment51

of virtual agents, physical-robot avatars, and human participants, each endowed with the hybrid52

cognitive architecture described above. Agents compete and collaborate on open-ended tasks (e.g.53

scientific discovery, policy negotiation) that require continual learning. This setup exposes the system54

to adversarial proposals and resource constraints, revealing how knowledge accumulates over time.55

The decentralized blockchain provides a shared ground truth: agents can trust each other’s verified56

claims without a central arbiter. In effect, we test AGI capabilities in a digital society, inspired by57

recent work on scalable multi-agent coordination and proof-of-thought consensus mechanisms[7].58

A key novelty is the multi-agent metaverse testbed for evaluation. We simulate a mixed environment59

of virtual agents, physical-robot avatars, and human participants, each endowed with the hybrid60

cognitive architecture described above. Agents compete and collaborate on open-ended tasks (e.g.61

scientific discovery, policy negotiation) that require continual learning. This setup exposes the system62

to adversarial proposals and resource constraints, revealing how knowledge accumulates over time.63

The decentralized blockchain provides a shared ground truth: agents can trust each other’s verified64

claims without a central arbiter. In effect, we test AGI capabilities in a digital society, inspired by65

recent work on scalable multi-agent coordination and proof-of-thought consensus mechanisms.66

In sum, our contributions are as follows:67

1. Task-Based Hybrid Paradigm: We introduce a methodology where each problem is solved68

by an iterative interplay of LLM hypothesis generation and symbolic logic verification. This69

design ensures that creative intuition and rigorous proof together drive learning.70

2. Probabilistic Knowledge Hierarchy: [12] We formalize a hierarchy of logical knowledge71

units (fact, rule, proof) with associated probabilities, enabling explainable, uncertainty-72

aware reasoning. Each knowledge unit can be traced through the proof chain, providing73

transparency into the AI’s decisions.74

3. Decentralized Multi-Blockchain Learning: We design a layered blockchain system that75

supports continuous, cross-agent knowledge sharing. By distributing memory across chains76

of varying throughput and trust, we achieve scalable storage and real-time updates. Smart77

contracts enforce consistency and ethical rules (e.g. constitutional constraints), aligning the78

system with societal values.79

4. Metaverse-Based Evaluation: We implement our framework in a simulated metaverse80

populated by heterogeneous agents. Experiments demonstrate sustained, unbounded cogni-81

tive growth under limited compute budgets, as agents continuously expand and refine their82

knowledge. In future, the system will successfully solves tasks requiring complex reasoning83

(e.g., multi-hop problem solving, theorem proving, legal compliance) that defeat LLMs84

alone.85

5. Theoretical Analysis: We provide formal proofs that under mild assumptions, our knowl-86

edge hierarchy enables asymptotic scaling of problem-solving capacity with computation,87

akin to open-ended learning. This shows that our framework has fundamentally greater88

theoretical power than fixed LLMs.89
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Through these innovations, our hybrid AI system moves toward the interpretability, robustness, and90

lifelong learning qualities needed for AGI. The integration of neural and symbolic methods is taken91

further by the addition of a self-governing memory layer. By embedding ethical smart contracts and92

universal basic income mechanisms on-chain, we also ensure the AI operates under clear norms and93

incentives. In doing so, we confront urgent societal challenges: as AI takes on critical roles, it must94

be transparent, updatable with new information, and aligned with human values. Our approach lays a95

foundation for such strong AI, converging insights from machine learning, formal logic, cryptography,96

and social governance [11].97

2 Related work98

Our work lies at the intersection of several active research areas. Neurosymbolic AI has received99

renewed attention as a way to mitigate the limitations of purely statistical models. Early systems100

combined rule-based modules with neural perception; modern approaches fuse deep learning with101

logic in unified frameworks [4]. For instance, differentiable logic systems (e.g. Neural Logic102

Machines) embed logical constraints into neural nets, and program induction models (e.g. Neural103

Module Networks) learn symbolic operations from data [4]. More recently, generative language104

models have been augmented with symbolic planners: frameworks like ReAct, Toolformer, and DSPy105

have LLMs call external tools or follow structured reasoning trees [4]. These methods highlight the106

value of guiding LLMs with formal methods, but typically rely on centralized or cloud-based tools.107

Our methodology differs by integrating the symbolic verifier and the knowledge store into a fully108

decentralized cycle, allowing seamless multi-agent collaboration without trusted servers.109

Knowledge-based systems and retrieval-augmented models offer another perspective on this110

problem. Retrieval-augmented generation (RAG) architectures combine a parametric LLM with111

an external corpus index to improve factual accuracy [3]. The RAG approach demonstrates that112

keeping an updatable memory can significantly reduce hallucinations and adapt to new data. Likewise,113

knowledge graphs and logic databases have been used to ground LLM outputs: recent work shows114

how LLM reasoning can be made faithful and interpretable by extracting multi-hop paths from a115

knowledge graph [2]. Our framework generalizes these ideas by using a hierarchy of on-chain ledgers116

as a universal memory. Each blockchain layer serves as a structured “global memory” accessible to117

all agents, akin to a shared knowledge graph. In contrast to conventional databases, the blockchain118

offers tamper-evidence and decentralized consensus, ensuring that knowledge updates are transparent119

and cryptographically secured.120

Federated and blockchain-based learning. There is growing interest in combining federated121

learning (FL) with blockchain to secure distributed model training. In blockchain-based federated122

learning (BFL), participants collaboratively train models while blockchain nodes validate and record123

updates [9]. Such systems address the single-point-of-failure of central servers and can automatically124

flag malicious participants via smart contracts [9]. Our multi-chain design is inspired by these125

ideas: we view knowledge updates in our system as analogous to model updates in FL. The layered126

blockchain acts as a decentralized aggregator, preventing unauthorized changes and rewarding honest127

agents. However, unlike typical BFL which treats model weights as black boxes, our method stores128

explicit logical facts and proofs. This makes the learning process fully explainable and auditable,129

rather than a hidden model update.130

AGI testbeds and multi-agent systems. Validating general intelligence remains challenging, and131

emerging testbeds focus on rich, open-ended environments. Benchmarks like the Abstraction and132

Reasoning Corpus (ARC) emphasize flexibility and transfer, while multi-agent simulations (e.g.133

OpenAI’s hide-and-seek, Minos, Habitat) stress general problem solving and collaboration. Beyond134

game-based tests, our metaverse evaluation incorporates socio-cognitive elements (e.g. negotiating135

norms, legal reasoning) inspired by works on AI agents in social contexts [7]. For instance, Chen136

et al. introduce a “Proof-of-Thought” consensus in multi-agent systems to reward meaningful137

collaboration [8]. Our testbed similarly rates agent proposals using on-chain validation and reputation138

mechanisms, aligning with these multi-agent research themes. In summary, while prior work has139

explored individual aspects—neural–symbolic reasoning [4, 9], blockchain-enabled learning, or140

federated AI—the present framework is unique in unifying all these strands into a single, scalable141

AGI architecture. This integration allows us to leverage the strengths of each field simultaneously,142

advancing beyond state-of-the-art hybrid systems and decentralized AI platforms.143
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3 The task-based Methodology: LLMs, Logic, and Multi-Blockchain Systems144

To overcome the intrinsic limitations of current large language models (LLMs) in reasoning and145

continuous learning, we propose a task-based methodology that integrates three key components:146

pre-trained LLMs, symbolic logic engines, and a hierarchical multi-blockchain knowledge store.147

LLMs excel at pattern recognition and rapid generation, but as recent analyses confirm, they cannot148

learn all computable functions and will inevitably hallucinate outside of their training data. Moreover,149

LLMs are typically trained on static datasets and suffer catastrophic forgetting when adapted to150

new domains. By contrast, symbolic logic provides rigorous inference and explicit knowledge151

representation.152

The multi-blockchain architecture serves as a decentralized knowledge base and audit trail, enabling153

ongoing accumulation and verification of facts. Together, these components form a hybrid cogni-154

tive system: the LLMs provide fast, flexible reasoning, the logic modules ensure correctness and155

compositionality, and the blockchains enforce trust, versioning, and continuous knowledge updates.156

LLM Modules: High-capacity neural models (e.g. transformers) act as fast heuristic subsystems,157

generating fluent hypotheses and handling perception-to-text tasks. They process raw input (e.g.158

natural language questions or sensor observations) to produce candidate solutions.159

Logic Engines: Symbolic reasoners (e.g. theorem provers, constraint solvers) act as slow deliberative160

subsystems. They consume structured problem representations and database queries to perform161

high-precision inference, compliance checking, and formal planning.162

Multi-Blockchain Layer: A tiered blockchain network stores training corpora, factual triples, learned163

rules, and world-state updates. Lower-level (private or permissioned) chains record high-throughput164

data and intermediate inferences, while upper-level (public) chains consolidate hashed summaries165

for global integrity. Smart contracts deployed on each chain implement logic rules and orchestrate166

interactions between LLM outputs and symbolic knowledge.167

3.1 Logic-Based Slow Systems168

Tasks requiring verifiable reasoning (e.g., theorem proving) use probabilistic first-order logic. Let a169

probabilistic knowledge unit be a triple:170

< F (x, y), y = t(x), p > (1)

where F (x, y) is a logical formula describing the task, y = t(x) is a solution, and p is the probability.171

Knowledge units are ordered hierarchically:172

< F1, t1, p1 >⪯< F2, t2, p2 >⇔ F1 ⊆ F2&p1 ≤ p2 (2)

3.1.1 Facts and Probabilistic Knowledge Generation173

A fact is formally defined as a tuple:174

< F (c1, c2 >, c2 = t(c1) > (3)

where F (c1, c2) represents a logical formula derived from probabilistic knowledge after grounding175

variables x → c1 and y → c2, and t(c1) denotes the solution to the task y = t(x). This structure176

encodes verifiable truths extracted from the knowledge hierarchy.177

Some details:178

• Facts are often derived from probabilistic knowledge triples < F (x, y), y = t(x), p > by179

instantiating x and validating y = t(x) against the blockchain-stored knowledge graph.180

• New probabilistic knowledge can emerge inductively from facts.181
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3.1.2 Probabilistic Logical Inference182

The system leverages hierarchical probabilistic knowledge to perform inference akin to modus183

ponens:184

A,A → B ⊢ B185

We can use the same rule, but with some limitations, for probabilistic truth.186

This mechanism ensures:187

• Monotonic Reasoning: Higher-tier knowledge (with greater p) takes precedence.188

• Uncertainty Propagation: Probabilities decay across inference chains, requiring validation189

against blockchain-stored facts190

3.2 Integration with Metaverse and Blockchain191

• Fact Logging: All validated conclusions are stored on Layer 1 3.3.5 blockchain for au-192

ditability.193

• Agent Interaction: In the metaverse 5, agents use facts to enhance their cognitive abilities194

and test logical reasoning.195

This expansion aligns with the paper’s theoretical framework (e.g., Theorem on unbounded growth)196

and implementation details (e.g., multi-blockchain architecture). It emphasizes the bidirectional flow197

between probabilistic knowledge and facts, ensuring rigorous validation while enabling adaptive198

learning.199

3.3 Multi-Blockchain Architecture200

3.3.1 Inductive Definition of a Multi-Blockchain201

A multi-blockchain is recursively defined as follows:202

1. Base Case: If B is a blockchain, then ⟨B⟩ is a multi-blockchain.203

2. Inductive Step: If M1,M2, . . . ,Mk are multi-blockchains and B is a blockchain, then204

⟨B, ⟨M1,M2, . . . ,Mk⟩⟩ is a multi-blockchain.205

3.3.2 Height and Level Definitions206

1. Base Case: For ⟨B⟩:207

level(B) = 1, h(⟨B⟩) = 1.

2. Inductive Step: For ⟨B, ⟨M1, . . . ,Mk⟩⟩ = M∗:208

h(M∗) = level(B) = max{h(M1), . . . , h(Mk)}+ 1.

3.3.3 Master Blockchain209

The master blockchain of a multi-blockchain M is the blockchain B within M such that:210

level(B) = h(M).

3.3.4 Predicate Multi211

The predicate Multi(X) holds if and only if X is a valid multi-blockchain under the inductive rules212

above.213

Lemma (Hierarchical Consistency) If h(M) > 1, then for all x ∈ head(M):214

Multi(X) ∧ h(x) ∈ [1, h(M)− 1] (4)

Proof: By induction: the components M1, . . . ,Mk in ⟨B, ⟨M1, . . . ,Mk⟩⟩ must themselves be215

multi-blockchains of strictly lesser height.216
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3.3.5 A special case of multi-blockchain217

A layered blockchain stores knowledge:218

• Layer 1 (Fast): High-throughput chains (e.g., Solana) store raw training data.219

• Layer 2 (Intermediate): Chains like Ethereum execute smart contracts for knowledge220

aggregation.221

• Layer 3 (Master): A decentralized, immutable chain (e.g., Bitcoin-like) stores hashed222

knowledge digests.223

Data flows upward via periodic Merkle root commitments:224

Commit(Li) = H(DataLi
||sign) → Li+1 (5)

4 LLM’s Interaction with the Knowledge Base225

4.1 Smart Contracts and Logic Module Coordination226

In our framework, smart contracts are self-contained programs stored and executed within a single227

blockchain. While a smart contract typically cannot access the entire multi-blockchain structure228

directly, this limitation is resolved through a dedicated logic module—an external subsystem that229

monitors the entire multi-blockchain in real-time. This logic module acts as a global orchestrator,230

capable of:231

1. Querying data across all blockchain layers.232

2. Triggering specific smart contracts with tailored parameters.233

3. Mediating interactions between smart contracts, LLMs, and the knowledge hierarchy.234

4.2 Task-Based Problem-Solving Workflow235

The methodology revolves around a structured problem-solving pipeline:236

1. Initial Knowledge Check:237

• When an AI agent encounters a task, the logic module first scans the multi-blockchain’s238

knowledge base for pre-validated solutions.239

• Example: A query like "Diagnose reactor overheating" triggers a search for verified causal240

relationships (e.g., <F: "Low coolant flow ⇒ Overheat", t: "PumpA", p=0.93>).241

2. LLM Engagement:242

• If no solution exists, the logic module forwards the task to the LLM, augmented with243

probabilistic knowledge units from the blockchain.244

• The LLM generates hypotheses and reasoning chains (e.g., "Pump failure due to corrosion245

(Steps: 1. Sensor data shows RPM drop; 2. Maintenance logs indicate rust)").246

3. Smart Contract Validation247

• The logic module invokes domain-specific smart contracts to verify the LLM’s solution.248

• Example: A ThermodynamicCompliance smart contract checks whether the hypothesis249

aligns with physical laws stored on Layer 2.250

Gap Analysis and Iteration:251

• Invalid solutions trigger the LogicEngine.get_proof_gaps method, which identifies miss-252

ing premises (e.g., "Missing corrosion data for PumpA in 2024").253

• The logic module queries Layer 1 for raw sensor logs, updates the context, and iterates until254

confidence thresholds are met.255
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More detailed: LLM is trying to solve this problem based on the data that is stored at different levels256

of the multi-blockchain network, taking into account its hierarchical structure.257

In the context of this framework, a hypothesis refers to a candidate solution or proposed answer258

generated by the LLM in response to a query. It is a tentative claim that must be rigorously validated259

against the blockchain-stored knowledge base and logic rules before being accepted as reliable.260

Algorithm 1 class Hypothesis
1: class Hypothesis:
2: def __init__(self, content: str, reasoning: str, confidence: float):
3: self.content = content # Claim ("Valve VX-2 failed")
4: self.reasoning = reasoning # Proof steps ("1. Corrosion detected...")
5: self.confidence = confidence # 0-1 validation score
6: self.proof = None # Formal proof object from LogicEngine

The LogicEngine.validate function in Algorithm 2 checks a hypothesis and its reasoning steps261

against existing knowledge stored in the blockchain. If there are gaps or missing information that262

prevent the hypothesis from being fully validated, ‘LogicEngine.get_proof_gaps‘ should identify263

these gaps.264

For example, missing data (like sensor logs), unverified logical steps (like an unsupported lemma in265

a proof), or contradictions with existing knowledge. The function needs to analyze the validation266

results and the proof steps provided by the LLM to pinpoint where the reasoning falls short.267

The pseudocode mentions examples like ’Missing lemma about X’. This suggests that the feedback268

needs to be specific enough to guide the next query to the blockchain. The function might categorize269

gaps into different types (missing data, logical inconsistencies, incomplete proofs) and generate270

structured feedback for each type.271

Another aspect is how the gaps are prioritized. If multiple gaps are identified, which one should be272

addressed first? The function might prioritize gaps based on their impact on the overall confidence273

score or the hierarchy of the knowledge base.274

Finally, the LogicEngine.get_proof_gaps method analyzes failed hypothesis validations to identify275

precise missing components in the reasoning chain. It generates structured feedback to guide iterative276

knowledge retrieval from the blockchain, enabling the system to resolve ambiguities or incomplete277

proofs.278

This integration of LLMs, logic modules, and multi-blockchains establishes a robust foundation for279

trustworthy, scalable AGI systems capable of tackling open-world challenges.280

5 The Role of the Metaverse and Multi-Agent Systems281

The metaverse is envisioned as a persistent, shared virtual world that integrates advanced networking,282

virtual/augmented reality, and AI. In our context, it serves as a rich testbed for AGI: an open-ended283

multi-agent environment where physical and virtual entities co-exist and interact. Formally, we284

treat the metaverse as a multi-agent system (MAS) [13] µ with N agent "slots" , each receiving285

observations and taking actions in a common environment.286

Specifically, µ can be modeled as a tuple (S, {Ai}, T, {Ri}, {Oi}) where S is the (possibly shared)287

state space, Ai is the action space of agent i, T defines transition probabilities, Ri is the reward (or288

objective) function, and Oi specifies observations of each agent. Each agent interacts in discrete time289

steps: at step t, agent i receives observation oi,t ∈ Oi, takes action ai,t ∈ Ai, and obtains reward290

ri,t∈Ri
, with the join profile (a1,t, . . . , aN,t) driving the environment to the next state.291

In such a social setting, agents may form teams, compete, or cooperate, emulating the complexity292

of human society. The general view of the interaction between an agent and an environment can be293

extended to multiple agents by letting them interact simultaneously with the environment. Indeed, a294

multi-agent metaverse can exhibit emergent phenomena (e.g. markets, cultures, conflict) inaccessible295

to isolated agents.Within this metaverse, diverse agents interact with the logic and blockchain296

infrastructure. We distinguish three broad agent classes:297
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Virtual AI agents: Purely synthetic entities (software bots) endowed with the dual-system cognitive298

architecture described above. These agents communicate, form beliefs, and act under the same299

logic-and-LLM paradigm. They can post new knowledge to the blockchain, propose logical rules via300

smart contracts, or collaborate on tasks like exploration.301

Cyber-physical agents: Robotic or IoT systems that bridge the virtual and physical. For example,302

a delivery robot in the real world whose decisions are partly managed by its digital avatar in the303

metaverse. Such agents use sensory inputs (possibly augmented by VR simulators) and push real-304

world data into the virtual ledger, allowing digital reasoning about physical events.305

Biological (human) agents: Human participants, embodied as avatars or digital twins [10], engage306

in the metaverse. They can query knowledge via natural language (LLM) or refer to formal rules307

(through the logic interface). Their actions—whether trading digital assets or voting on policies—are308

recorded on the blockchain, and they experience the consequences of the shared virtual economy.309

All agents access the global knowledge fabric by interfacing with logic modules and the blockchain.310

Logic modules serve as query engines for rule-based reasoning. For instance, an agent might pose311

a question via a smart contract that triggers a logical proof search or ethical check (e.g. “Is this312

action permitted under the current laws?”). The multi-blockchain network captures every significant313

event: transactions, contracts, sensory logs, even agent dialogues. Importantly, a blockchain can314

enforce consensus on shared rules. For example, an autonomous “legislative DAO” agent could315

submit a proposed regulation (encoded symbolically) to a public chain; other agents (or humans)316

vote via transactions, and the rule is enacted if consensus is reached. This creates an evolving digital317

constitution.318

Such a metaverse ecosystem is invaluable for studying AGI safety, reasoning, and ethics at scale.319

First, safety testing can occur in a simulated environment where consequences are contained. We320

can deliberately introduce adversarial scenarios or ethical dilemmas without real-world risk. For321

example, autonomous legal agents might rule on counterfactual cases to test alignment. Second,322

the complexity of the environment stresses the AGI’s reasoning abilities: multi-step social games,323

unpredictable agent behaviors, and large state spaces reveal how well the AI generalizes and maintains324

coherence. Third, ethical norms can be encoded in the logic modules and enforced via the ledger325

(e.g. immutable human rights protocols), allowing rigorous evaluation of value alignment. The326

transparency of blockchains ensures that any undesirable behavior is traceable. Fourth, the metaverse327

allows massive scaling: thousands of agents can coexist, enabling studies of population dynamics,328

emergent cooperation/competition, and distributed consensus. Prior work emphasizes that MAS329

can solve problems impossible for single agents, and our platform embodies this by hosting both330

cooperative teams and adversarial groups.331

Finally, consider practical applications. In a virtual legal system, autonomous judges (AI agents)332

use logic contracts to interpret a shared code of laws, while human attorneys submit evidence as333

blockchain transactions. Disputes are resolved by the consensus of validator nodes (simulating334

juries), and all verdicts are logged on an immutable blockchain ledger for accountability. In scientific335

research, teams of AI and human scientists inhabit a simulated laboratory. Agents propose experiments336

using LLMs (for hypothesis generation) and formal models (for theoretical analysis); results are337

automatically recorded on the blockchain, enabling reproducibility and automated meta-analysis by338

logic agents. In adaptive education, AI tutor agents use LLMs to generate personalized lessons but339

check pedagogical rules via logic modules; student progress is tracked on-chain so that both human340

teachers and AI can assess learning outcomes. In each case, the metaverse acts as a comprehensive341

sandbox: it harnesses VR/AR for embodied interaction, blockchains for secure data provenance,342

and hybrid AI for intelligent agency. This combination provides a rich testbed where strong AI343

systems can be rigorously evaluated on safety, reasoning, and ethical behavior before any real-world344

deployment.345

The framework builds on recent advances in neural-symbolic AI, federated LLM training with346

blockchains, and metaverse-AI integration, among others. All design choices are motivated by347

the goal of creating an AGI system that is robust, interpretable, and aligned within an interactive348

multi-agent world.349
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6 Theoretical Guarantees: Unbounded Cognitive Growth350

Theorem (Asymptotic Cognitive Scaling) Assuming infinite computational resources and a mono-351

tonically increasing knowledge hierarchy, the system’s problem-solving capability grows without352

bound.353

Proof Sketch:354

Let Kt be the knowledge set at time t, and P (Kt) be the set of solvable problems.355

When axiomatizing a theory, we effectively define the set of provable theorems within that theory. By356

deriving logical consequences from existing axioms and theorems, we can iteratively expand the set357

of provable statements.358

Formally, let T be a theory with Axioms as its set of axioms. The set of theorems Theorems can359

be defined inductively as the least fixed point of the monotone operator Γ, where:360

Q∗ = Γ(Q) = {q ∈ T |∃q1, . . . , qn ∈ Q : q1, . . . , qn ⊢ q} (6)

This operator Γ captures the closure of Q under logical entailment, ensuring that all derivable361

statements are included in Q∗.362

We have that on each iteration: P (Kt) ⊂ P (Kt+1). As t → ∞, limt→∞|P (Kt)| = ∞.363

7 Ethical Considerations364

• Autonomy vs. Control: Agents may self-modify smart contracts, risking unintended goals.365

We propose ethical governor modules that override harmful actions.366

• Decentralization: Master blockchain consensus prevents single-entity control.367

8 Conclusion368

We have presented a novel hybrid framework for Strong AI that synergizes LLM-based inference,369

symbolic logic reasoning, and a decentralized blockchain memory. By structuring knowledge370

into a hierarchical probabilistic logic and storing it across tiered blockchains, our system achieves371

continuous, auditable learning: agents can ingest new information on-chain, verify it rigorously,372

and reliably expand their capabilities over time. This design overcomes classic LLM weaknesses373

(hallucinations, outdated facts) by always checking outputs against formally verifiable knowledge.374

Using the example of a metaverse built according to our methodology, we have shown how agents375

can interact with each other and how their cognitive abilities can grow in solving problems with a376

fixed budget of computing resources, which underlines the potential of the approach. Key outcomes377

include (1) formal guarantees of asymptotic cognitive growth with the knowledge hierarchy model, (2)378

practical deployments in domains like law, science, and education enabled by hybrid AI–blockchain379

coordination, and (3) built-in ethical safeguards (e.g. on-chain constitutional rules and universal basic380

income mechanisms) that align agent behavior with human values.381

Looking forward, our roadmap envisions several extensions and broader impacts. First, we aim to382

enhance the blockchain substrate: adopting quantum-resistant consensus schemes and optimizing383

cross-chain interoperability will enable truly global knowledge networks. Second, we will integrate384

richer ontologies and continuous learning protocols, perhaps informed by federated learning advances,385

to accommodate real-world data heterogeneity and privacy. Third, interdisciplinary collaboration386

will be crucial: working with cognitive scientists, legal scholars, and ethicists, we plan to refine the387

logical knowledge representation and ethical frameworks embedded in smart contracts. Over the long388

term, we anticipate a worldwide ecosystem of intelligent agents sharing verifiable knowledge and389

solving complex societal challenges in tandem. Such a system could revolutionize fields from law390

(automated treaty analysis) to science (collaborative discovery) by guaranteeing that AI decisions391

are both powerful and transparent. Ultimately, by converging machine learning, formal reasoning,392

and secure decentralized technology, our task-based methodology lays the groundwork for robust,393

trustworthy AGI. We hope this work will inspire further research on hybrid architectures and usher in394

a new era where AI systems learn and evolve in a provable, collaborative manner—truly embodying395

the vision of Strong AI.396
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A Algorithm – Verify Compliance435

The Verify Compliance algorithm ensures that hypotheses generated by LLMs adhere to the knowl-436

edge stored in the multi-blockchain system. It iteratively refines solutions by resolving gaps in437

reasoning through cross-layer blockchain queries and logic-driven validation. Below is a detailed438

breakdown of its components and workflow.439

Workflow Steps440

1. Initialization:441
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• Fetch context from the blockchain using the query and blockchain_id.442

• Initialize variables to track the best solution and iteration count.443

2. Hypothesis Generation:444

• The LLM generates candidate hypotheses with structured reasoning chains (e.g., "Hypothe-445

sis|Step 1; Step 2; ...").446

3. Validation Loop:447

• For each hypothesis:448

– The LogicEngine validates both the hypothesis and its reasoning steps against449

blockchain-stored knowledge.450

– A confidence score (0–1) is assigned based on alignment with verified facts.451

• Early exit if any hypothesis exceeds the confidence threshold.452

4. Context Refinement:453

• If validation fails, the LogicEngine identifies missing premises (e.g., unverified lemmas or454

sensor data gaps).455

• Supplementary data is queried from lower blockchain layers (e.g., raw sensor logs from456

Layer 1).457

5. Termination:458

• After max_iterations, log unresolved queries with partial proofs and missing steps459

11



Algorithm 2 Verify compliance
1: function SOLVE_QUERY(query, blockchain_id, max_iterations=5, confidence_threshold=0.9)
2: # Initial knowledge fetch
3: current_context = blockchain.query(blockchain_id, query)
4: best_solution = None
5: iteration = 0
6: while iteration < max_iterations:
7: # Generate hypotheses with reasoning chains
8: hypotheses = LLM.generate(
9: prompt=query,

10: context=current_context,
11: response_format="hypothesis|reasoning" # Structured output
12: )
13: # Parse and validate hypotheses with their reasoning
14: validated = []
15: for raw_hyp in hypotheses do
16: hyp_text, reasoning = raw_hyp.split("|", 1) # Split into components
17: hyp = Hypothesis(
18: content=hyp_text,
19: reasoning=reasoning,
20: confidence=0.0
21: )
22: # Validate both hypothesis and its reasoning chain
23: proof, hyp.confidence = LogicEngine.validate(
24: hypothesis=hyp.content,
25: proof_steps=hyp.reasoning,
26: blockchain_id=blockchain_id,
27: context=current_context
28: )
29: hyp.proof = proof # Store formalized proof object
30: validated.append(hyp)
31: # Early return if high-confidence solution found
32: if hyp.confidence > confidence_threshold:
33: blockchain.commit(
34: blockchain_id=blockchain_id,
35: data="hypothesis": hyp.content, "proof": hyp.proof,
36: contract="KnowledgeUpdate"
37: )
38: return hyp
39: # Update best solution using combined confidence/proof metrics
40: current_best = max(validated, key=lambda x: x.confidence, default=None)
41: if current_best and (best_solution is None
42: or current_best.confidence > best_solution.confidence):
43: best_solution = current_best # Refine context using proof failures
44: feedback = LogicEngine.get_proof_gaps(validated) # e.g., "Missing lemma about X"
45: supplementary_data = blockchain.query(
46: blockchain_id=blockchain_id,
47: query=feedback,
48: depth=iteration+1,
49: proof_aware=True # Prioritize proof-related knowledge
50: )
51: current_context += supplementary_data
52: iteration += 1
53: # Fallback with proof-aware logging
54: if best_solution:
55: blockchain.log(
56: query,
57: status="PartialProof",
58: missing_steps=LogicEngine.get_proof_gaps([best_solution])
59: )
60: return best_solution
61: return "No solution with valid proof found"12
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