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Abstract

This paper introduces a task-based methodology for achieving Strong Artificial
Intelligence (AGI) through the synergistic integration of Large Language Models
(LLMs), logic-probabilistic reasoning, and multi-blockchain architectures. Ad-
dressing critical limitations of current LLM-centric systems—such as poor gen-
eralization in complex reasoning, outdated knowledge, and hallucinations—we
propose a hybrid paradigm where LLLMs generate hypotheses, symbolic logic
engines ensure rigorous validation, and a hierarchical blockchain infrastructure
enables secure, scalable knowledge evolution. Evaluated in a metaverse environ-
ment populated by heterogeneous agents, our framework demonstrates unbounded
cognitive growth under computational constraints while maintaining interpretability
and ethical alignment. Key innovations include a probabilistic knowledge hierarchy
for explainable decisions, a decentralized multi-blockchain design for continuous
learning, and a metaverse-based testbed for AGI safety and scalability. Theoreti-
cal guarantees of asymptotic cognitive scaling and practical applications in legal,
scientific, and educational domains underscore the framework’s transformative
potential.

1 Introduction

The quest for Strong Al demands systems that can reason, learn, and adapt as flexibly as humans,
but current architectures fall short on key dimensions. Recent breakthroughs in generative Al (e.g.
GPT-4) have delivered unprecedented language fluency, yet these models remain black boxes with
brittle reasoning. They rely on static, offline training corpora and thus struggle with facts outside
their training data; moreover, they can hallucinate plausible but incorrect statements [1]]. Indeed, large
language models (LLMs) suffer from limited generalization, outdated knowledge, and catastrophic
forgetting of past learning, making them unsuitable as stand-alone engines for true AGI [2]]. This
has spawned a surge of interest in hybrid Al: integrating the pattern-finding strengths of LLMs
with the rigor of symbolic reasoning. Our approach builds on this trend by adding a decentralized
memory layer: a hierarchy of blockchains that store verified knowledge fragments. Unlike traditional
retrieval-augmented methods [3]], our memory is immutable, auditable, and automatically updated by
the system itself. This cross-disciplinary design draws on ideas from cognitive science (hierarchical
memory and reasoning), formal logic (explicit proof systems), and distributed computing (blockchain
ledgers) to overcome the inherent limitations of current Al systems.

Specifically, we propose a task-driven framework with three core components:

* Large Language Models for rapid hypothesis generation and pattern recognition. The LLM
processes each task description to suggest candidate solutions or subgoals.
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* Symbolic Logic Engines for slow, exact reasoning. Each LLM-generated hypothesis is
transformed into a formal query or proof obligation. A probabilistic logic-prover module
then rigorously checks this hypothesis against known knowledge, producing verifiable proof
traces and confidence estimates.

* Multi-Blockchain Memory for decentralized knowledge management. Proven facts and
deductions are appended to a layered blockchain architecture: fast chains capture raw
observations, intermediate chains store structured facts, and root chains maintain high-level
immutable summaries. This hierarchy ensures both scalability and auditability of learned
knowledge.

These components interplay in a task-based loop: agents dynamically retrieve relevant facts from the
blockchain layers, propose solutions via the LLM, and use the logic engine to validate or refute them.
Verified new facts are then appended to the ledger. In effect, LLMs perform “creative trial and error,”
while symbolic modules enforce correctness and safety. This resembles recent neural-symbolic
systems that combine representation learning with structured reasoning [4]]. For example, methods
like ReAct [5] and Toolformer [[6] have shown how LLMs can orchestrate reasoning by calling out to
external tools; our framework embeds that idea in an autonomous, on-chain process.

A key novelty is the multi-agent metaverse testbed for evaluation. We simulate a mixed environment
of virtual agents, physical-robot avatars, and human participants, each endowed with the hybrid
cognitive architecture described above. Agents compete and collaborate on open-ended tasks (e.g.
scientific discovery, policy negotiation) that require continual learning. This setup exposes the system
to adversarial proposals and resource constraints, revealing how knowledge accumulates over time.
The decentralized blockchain provides a shared ground truth: agents can trust each other’s verified
claims without a central arbiter. In effect, we test AGI capabilities in a digital society, inspired by
recent work on scalable multi-agent coordination and proof-of-thought consensus mechanisms|[7].

A key novelty is the multi-agent metaverse testbed for evaluation. We simulate a mixed environment
of virtual agents, physical-robot avatars, and human participants, each endowed with the hybrid
cognitive architecture described above. Agents compete and collaborate on open-ended tasks (e.g.
scientific discovery, policy negotiation) that require continual learning. This setup exposes the system
to adversarial proposals and resource constraints, revealing how knowledge accumulates over time.
The decentralized blockchain provides a shared ground truth: agents can trust each other’s verified
claims without a central arbiter. In effect, we test AGI capabilities in a digital society, inspired by
recent work on scalable multi-agent coordination and proof-of-thought consensus mechanisms.

In sum, our contributions are as follows:

1. Task-Based Hybrid Paradigm: We introduce a methodology where each problem is solved
by an iterative interplay of LLM hypothesis generation and symbolic logic verification. This
design ensures that creative intuition and rigorous proof together drive learning.

2. Probabilistic Knowledge Hierarchy: [[12] We formalize a hierarchy of logical knowledge
units (fact, rule, proof) with associated probabilities, enabling explainable, uncertainty-
aware reasoning. Each knowledge unit can be traced through the proof chain, providing
transparency into the AI’s decisions.

3. Decentralized Multi-Blockchain Learning: We design a layered blockchain system that
supports continuous, cross-agent knowledge sharing. By distributing memory across chains
of varying throughput and trust, we achieve scalable storage and real-time updates. Smart
contracts enforce consistency and ethical rules (e.g. constitutional constraints), aligning the
system with societal values.

4. Metaverse-Based Evaluation: We implement our framework in a simulated metaverse
populated by heterogeneous agents. Experiments demonstrate sustained, unbounded cogni-
tive growth under limited compute budgets, as agents continuously expand and refine their
knowledge. In future, the system will successfully solves tasks requiring complex reasoning
(e.g., multi-hop problem solving, theorem proving, legal compliance) that defeat LLMs
alone.

5. Theoretical Analysis: We provide formal proofs that under mild assumptions, our knowl-
edge hierarchy enables asymptotic scaling of problem-solving capacity with computation,
akin to open-ended learning. This shows that our framework has fundamentally greater
theoretical power than fixed LLMs.
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Through these innovations, our hybrid Al system moves toward the interpretability, robustness, and
lifelong learning qualities needed for AGI. The integration of neural and symbolic methods is taken
further by the addition of a self-governing memory layer. By embedding ethical smart contracts and
universal basic income mechanisms on-chain, we also ensure the Al operates under clear norms and
incentives. In doing so, we confront urgent societal challenges: as Al takes on critical roles, it must
be transparent, updatable with new information, and aligned with human values. Our approach lays a
foundation for such strong Al, converging insights from machine learning, formal logic, cryptography,
and social governance [11].

2 Related work

Our work lies at the intersection of several active research areas. Neurosymbolic AI has received
renewed attention as a way to mitigate the limitations of purely statistical models. Early systems
combined rule-based modules with neural perception; modern approaches fuse deep learning with
logic in unified frameworks [4]. For instance, differentiable logic systems (e.g. Neural Logic
Machines) embed logical constraints into neural nets, and program induction models (e.g. Neural
Module Networks) learn symbolic operations from data [4]. More recently, generative language
models have been augmented with symbolic planners: frameworks like ReAct, Toolformer, and DSPy
have LLMs call external tools or follow structured reasoning trees [4]. These methods highlight the
value of guiding LLMs with formal methods, but typically rely on centralized or cloud-based tools.
Our methodology differs by integrating the symbolic verifier and the knowledge store into a fully
decentralized cycle, allowing seamless multi-agent collaboration without trusted servers.

Knowledge-based systems and retrieval-augmented models offer another perspective on this
problem. Retrieval-augmented generation (RAG) architectures combine a parametric LLM with
an external corpus index to improve factual accuracy [3]]. The RAG approach demonstrates that
keeping an updatable memory can significantly reduce hallucinations and adapt to new data. Likewise,
knowledge graphs and logic databases have been used to ground LLM outputs: recent work shows
how LLM reasoning can be made faithful and interpretable by extracting multi-hop paths from a
knowledge graph [2]. Our framework generalizes these ideas by using a hierarchy of on-chain ledgers
as a universal memory. Each blockchain layer serves as a structured “global memory” accessible to
all agents, akin to a shared knowledge graph. In contrast to conventional databases, the blockchain
offers tamper-evidence and decentralized consensus, ensuring that knowledge updates are transparent
and cryptographically secured.

Federated and blockchain-based learning. There is growing interest in combining federated
learning (FL) with blockchain to secure distributed model training. In blockchain-based federated
learning (BFL), participants collaboratively train models while blockchain nodes validate and record
updates [9]]. Such systems address the single-point-of-failure of central servers and can automatically
flag malicious participants via smart contracts [9]. Our multi-chain design is inspired by these
ideas: we view knowledge updates in our system as analogous to model updates in FL. The layered
blockchain acts as a decentralized aggregator, preventing unauthorized changes and rewarding honest
agents. However, unlike typical BFL which treats model weights as black boxes, our method stores
explicit logical facts and proofs. This makes the learning process fully explainable and auditable,
rather than a hidden model update.

AGI testbeds and multi-agent systems. Validating general intelligence remains challenging, and
emerging testbeds focus on rich, open-ended environments. Benchmarks like the Abstraction and
Reasoning Corpus (ARC) emphasize flexibility and transfer, while multi-agent simulations (e.g.
OpenAl’s hide-and-seek, Minos, Habitat) stress general problem solving and collaboration. Beyond
game-based tests, our metaverse evaluation incorporates socio-cognitive elements (e.g. negotiating
norms, legal reasoning) inspired by works on Al agents in social contexts [7]]. For instance, Chen
et al. introduce a “Proof-of-Thought” consensus in multi-agent systems to reward meaningful
collaboration [8]]. Our testbed similarly rates agent proposals using on-chain validation and reputation
mechanisms, aligning with these multi-agent research themes. In summary, while prior work has
explored individual aspects—neural-symbolic reasoning [4} 9]], blockchain-enabled learning, or
federated AI—the present framework is unique in unifying all these strands into a single, scalable
AGTI architecture. This integration allows us to leverage the strengths of each field simultaneously,
advancing beyond state-of-the-art hybrid systems and decentralized Al platforms.
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3 The task-based Methodology: LL.Ms, Logic, and Multi-Blockchain Systems

To overcome the intrinsic limitations of current large language models (LLMs) in reasoning and
continuous learning, we propose a task-based methodology that integrates three key components:
pre-trained LLMs, symbolic logic engines, and a hierarchical multi-blockchain knowledge store.
LLMs excel at pattern recognition and rapid generation, but as recent analyses confirm, they cannot
learn all computable functions and will inevitably hallucinate outside of their training data. Moreover,
LLMs are typically trained on static datasets and suffer catastrophic forgetting when adapted to
new domains. By contrast, symbolic logic provides rigorous inference and explicit knowledge
representation.

The multi-blockchain architecture serves as a decentralized knowledge base and audit trail, enabling
ongoing accumulation and verification of facts. Together, these components form a hybrid cogni-
tive system: the LLMs provide fast, flexible reasoning, the logic modules ensure correctness and
compositionality, and the blockchains enforce trust, versioning, and continuous knowledge updates.

LLM Modules: High-capacity neural models (e.g. transformers) act as fast heuristic subsystems,
generating fluent hypotheses and handling perception-to-text tasks. They process raw input (e.g.
natural language questions or sensor observations) to produce candidate solutions.

Logic Engines: Symbolic reasoners (e.g. theorem provers, constraint solvers) act as slow deliberative
subsystems. They consume structured problem representations and database queries to perform
high-precision inference, compliance checking, and formal planning.

Multi-Blockchain Layer: A tiered blockchain network stores training corpora, factual triples, learned
rules, and world-state updates. Lower-level (private or permissioned) chains record high-throughput
data and intermediate inferences, while upper-level (public) chains consolidate hashed summaries
for global integrity. Smart contracts deployed on each chain implement logic rules and orchestrate
interactions between LLM outputs and symbolic knowledge.

3.1 Logic-Based Slow Systems
Tasks requiring verifiable reasoning (e.g., theorem proving) use probabilistic first-order logic. Let a
probabilistic knowledge unit be a triple:

< F(z,y),y=t(z),p> M

where F'(x,y) is a logical formula describing the task, y = ¢(x) is a solution, and p is the probability.

Knowledge units are ordered hierarchically:

< Fit,p1 >2< Fy ta,pa > Fi C Fokepr < po )

3.1.1 Facts and Probabilistic Knowledge Generation

A fact is formally defined as a tuple:

< F(Cl,CQ >,Co = t(Cl) > 3)

where F'(cq, c2) represents a logical formula derived from probabilistic knowledge after grounding
variables © — ¢1 and y — co, and t(cl) denotes the solution to the task y = (). This structure
encodes verifiable truths extracted from the knowledge hierarchy.

Some details:

* Facts are often derived from probabilistic knowledge triples < F'(x,y),y = t(x),p > by
instantiating = and validating y = () against the blockchain-stored knowledge graph.

* New probabilistic knowledge can emerge inductively from facts.
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3.1.2 Probabilistic Logical Inference

The system leverages hierarchical probabilistic knowledge to perform inference akin to modus
ponens:

A A— BEFB
We can use the same rule, but with some limitations, for probabilistic truth.

This mechanism ensures:

* Monotonic Reasoning: Higher-tier knowledge (with greater p) takes precedence.

* Uncertainty Propagation: Probabilities decay across inference chains, requiring validation
against blockchain-stored facts
3.2 Integration with Metaverse and Blockchain

* Fact Logging: All validated conclusions are stored on Layer 1 [3.3.5]blockchain for au-
ditability.

* Agent Interaction: In the metaverse 5] agents use facts to enhance their cognitive abilities
and test logical reasoning.

This expansion aligns with the paper’s theoretical framework (e.g., Theorem on unbounded growth)
and implementation details (e.g., multi-blockchain architecture). It emphasizes the bidirectional flow
between probabilistic knowledge and facts, ensuring rigorous validation while enabling adaptive
learning.

3.3 Multi-Blockchain Architecture
3.3.1 Inductive Definition of a Multi-Blockchain
A multi-blockchain is recursively defined as follows:

1. Base Case: If B is a blockchain, then (B) is a multi-blockchain.

2. Inductive Step: If My, Ms, ..., M} are multi-blockchains and B is a blockchain, then
(B, (M7, Ms, ..., My)) is a multi-blockchain.

3.3.2 Height and Level Definitions

1. Base Case: For (B):
level(B) =1, h({(B))=1.

2. Inductive Step: For (B, (M, ..., My)) = M*:
h(M™*) = level(B) = max{h(Mi), ..., h(My)} + 1.

3.3.3 Master Blockchain
The master blockchain of a multi-blockchain M is the blockchain B within M such that:
level(B) = h(M).

3.3.4 Predicate Multi

The predicate Multi(X') holds if and only if X is a valid multi-blockchain under the inductive rules
above.

Lemma (Hierarchical Consistency) If h(M) > 1, then for all 2z € head(M):
Multi(X) A h(z) € [1,h(M) — 1] 4)

Proof: By induction: the components Mj, ..., My in (B, (M, ..., M};)) must themselves be
multi-blockchains of strictly lesser height.
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3.3.5 A special case of multi-blockchain

A layered blockchain stores knowledge:

* Layer 1 (Fast): High-throughput chains (e.g., Solana) store raw training data.

* Layer 2 (Intermediate): Chains like Ethereum execute smart contracts for knowledge
aggregation.

* Layer 3 (Master): A decentralized, immutable chain (e.g., Bitcoin-like) stores hashed
knowledge digests.

Data flows upward via periodic Merkle root commitments:
Commit(L;) = H(Datay,||sign) — Li+1 ®)

4 LLM’s Interaction with the Knowledge Base

4.1 Smart Contracts and Logic Module Coordination

In our framework, smart contracts are self-contained programs stored and executed within a single
blockchain. While a smart contract typically cannot access the entire multi-blockchain structure
directly, this limitation is resolved through a dedicated logic module—an external subsystem that
monitors the entire multi-blockchain in real-time. This logic module acts as a global orchestrator,
capable of:

1. Querying data across all blockchain layers.
2. Triggering specific smart contracts with tailored parameters.
3. Mediating interactions between smart contracts, LL.Ms, and the knowledge hierarchy.

4.2 Task-Based Problem-Solving Workflow

The methodology revolves around a structured problem-solving pipeline:
1. Initial Knowledge Check:

* When an Al agent encounters a task, the logic module first scans the multi-blockchain’s
knowledge base for pre-validated solutions.

» Example: A query like "Diagnose reactor overheating" triggers a search for verified causal
relationships (e.g., <F: "Low coolant flow = Overheat", t: "PumpA", p=0.93>).
2. LLM Engagement:

* If no solution exists, the logic module forwards the task to the LLM, augmented with
probabilistic knowledge units from the blockchain.

* The LLM generates hypotheses and reasoning chains (e.g., "Pump failure due to corrosion
(Steps: 1. Sensor data shows RPM drop; 2. Maintenance logs indicate rust)").

3. Smart Contract Validation

* The logic module invokes domain-specific smart contracts to verify the LLM’s solution.

» Example: A ThermodynamicCompliance smart contract checks whether the hypothesis
aligns with physical laws stored on Layer 2.

Gap Analysis and Iteration:

* Invalid solutions trigger the LogicEngine.get_proof_gaps method, which identifies miss-
ing premises (e.g., "Missing corrosion data for PumpA in 2024").

* The logic module queries Layer 1 for raw sensor logs, updates the context, and iterates until
confidence thresholds are met.
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More detailed: LLM is trying to solve this problem based on the data that is stored at different levels
of the multi-blockchain network, taking into account its hierarchical structure.

In the context of this framework, a hypothesis refers to a candidate solution or proposed answer
generated by the LLM in response to a query. It is a tentative claim that must be rigorously validated
against the blockchain-stored knowledge base and logic rules before being accepted as reliable.

Algorithm 1 class Hypothesis

1: class Hypothesis:

2:  def __init__(self, content: str, reasoning: str, confidence: float):
self.content = content # Claim ("Valve VX-2 failed")

self.reasoning = reasoning # Proof steps ("1. Corrosion detected...")
self.confidence = confidence # 0-1 validation score

self.proof = None # Formal proof object from LogicEngine

AN AR

The LogicEngine.validate function in Algorithm 2] checks a hypothesis and its reasoning steps
against existing knowledge stored in the blockchain. If there are gaps or missing information that
prevent the hypothesis from being fully validated, ‘LogicEngine.get_proof_gaps‘ should identify
these gaps.

For example, missing data (like sensor logs), unverified logical steps (like an unsupported lemma in
a proof), or contradictions with existing knowledge. The function needs to analyze the validation
results and the proof steps provided by the LLM to pinpoint where the reasoning falls short.

The pseudocode mentions examples like *Missing lemma about X’. This suggests that the feedback
needs to be specific enough to guide the next query to the blockchain. The function might categorize
gaps into different types (missing data, logical inconsistencies, incomplete proofs) and generate
structured feedback for each type.

Another aspect is how the gaps are prioritized. If multiple gaps are identified, which one should be
addressed first? The function might prioritize gaps based on their impact on the overall confidence
score or the hierarchy of the knowledge base.

Finally, the LogicEngine.get_proof_gaps method analyzes failed hypothesis validations to identify
precise missing components in the reasoning chain. It generates structured feedback to guide iterative
knowledge retrieval from the blockchain, enabling the system to resolve ambiguities or incomplete
proofs.

This integration of LLMs, logic modules, and multi-blockchains establishes a robust foundation for
trustworthy, scalable AGI systems capable of tackling open-world challenges.

5 The Role of the Metaverse and Multi-Agent Systems

The metaverse is envisioned as a persistent, shared virtual world that integrates advanced networking,
virtual/augmented reality, and AL In our context, it serves as a rich testbed for AGI: an open-ended
multi-agent environment where physical and virtual entities co-exist and interact. Formally, we
treat the metaverse as a multi-agent system (MAS) [13] ¢ with N agent "slots" , each receiving
observations and taking actions in a common environment.

Specifically, 11 can be modeled as a tuple (S, {A;}, T, {R;}, {O;}) where S is the (possibly shared)
state space, A; is the action space of agent i, T defines transition probabilities, R; is the reward (or
objective) function, and O; specifies observations of each agent. Each agent interacts in discrete time
steps: at step ¢, agent i receives observation o; ; € O;, takes action a; ; € A;, and obtains reward
7i.1eR;» With the join profile (a1 ¢, ..., an ) driving the environment to the next state.

In such a social setting, agents may form teams, compete, or cooperate, emulating the complexity
of human society. The general view of the interaction between an agent and an environment can be
extended to multiple agents by letting them interact simultaneously with the environment. Indeed, a
multi-agent metaverse can exhibit emergent phenomena (e.g. markets, cultures, conflict) inaccessible
to isolated agents.Within this metaverse, diverse agents interact with the logic and blockchain
infrastructure. We distinguish three broad agent classes:
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Virtual AI agents: Purely synthetic entities (software bots) endowed with the dual-system cognitive
architecture described above. These agents communicate, form beliefs, and act under the same
logic-and-LLM paradigm. They can post new knowledge to the blockchain, propose logical rules via
smart contracts, or collaborate on tasks like exploration.

Cyber-physical agents: Robotic or IoT systems that bridge the virtual and physical. For example,
a delivery robot in the real world whose decisions are partly managed by its digital avatar in the
metaverse. Such agents use sensory inputs (possibly augmented by VR simulators) and push real-
world data into the virtual ledger, allowing digital reasoning about physical events.

Biological (human) agents: Human participants, embodied as avatars or digital twins [L0], engage
in the metaverse. They can query knowledge via natural language (LLM) or refer to formal rules
(through the logic interface). Their actions—whether trading digital assets or voting on policies—are
recorded on the blockchain, and they experience the consequences of the shared virtual economy.

All agents access the global knowledge fabric by interfacing with logic modules and the blockchain.
Logic modules serve as query engines for rule-based reasoning. For instance, an agent might pose
a question via a smart contract that triggers a logical proof search or ethical check (e.g. “Is this
action permitted under the current laws?”). The multi-blockchain network captures every significant
event: transactions, contracts, sensory logs, even agent dialogues. Importantly, a blockchain can
enforce consensus on shared rules. For example, an autonomous “legislative DAO” agent could
submit a proposed regulation (encoded symbolically) to a public chain; other agents (or humans)
vote via transactions, and the rule is enacted if consensus is reached. This creates an evolving digital
constitution.

Such a metaverse ecosystem is invaluable for studying AGI safety, reasoning, and ethics at scale.
First, safety testing can occur in a simulated environment where consequences are contained. We
can deliberately introduce adversarial scenarios or ethical dilemmas without real-world risk. For
example, autonomous legal agents might rule on counterfactual cases to test alignment. Second,
the complexity of the environment stresses the AGI’s reasoning abilities: multi-step social games,
unpredictable agent behaviors, and large state spaces reveal how well the Al generalizes and maintains
coherence. Third, ethical norms can be encoded in the logic modules and enforced via the ledger
(e.g. immutable human rights protocols), allowing rigorous evaluation of value alignment. The
transparency of blockchains ensures that any undesirable behavior is traceable. Fourth, the metaverse
allows massive scaling: thousands of agents can coexist, enabling studies of population dynamics,
emergent cooperation/competition, and distributed consensus. Prior work emphasizes that MAS
can solve problems impossible for single agents, and our platform embodies this by hosting both
cooperative teams and adversarial groups.

Finally, consider practical applications. In a virtual legal system, autonomous judges (Al agents)
use logic contracts to interpret a shared code of laws, while human attorneys submit evidence as
blockchain transactions. Disputes are resolved by the consensus of validator nodes (simulating
juries), and all verdicts are logged on an immutable blockchain ledger for accountability. In scientific
research, teams of Al and human scientists inhabit a simulated laboratory. Agents propose experiments
using LLMs (for hypothesis generation) and formal models (for theoretical analysis); results are
automatically recorded on the blockchain, enabling reproducibility and automated meta-analysis by
logic agents. In adaptive education, Al tutor agents use LLMs to generate personalized lessons but
check pedagogical rules via logic modules; student progress is tracked on-chain so that both human
teachers and Al can assess learning outcomes. In each case, the metaverse acts as a comprehensive
sandbox: it harnesses VR/AR for embodied interaction, blockchains for secure data provenance,
and hybrid Al for intelligent agency. This combination provides a rich testbed where strong Al
systems can be rigorously evaluated on safety, reasoning, and ethical behavior before any real-world
deployment.

The framework builds on recent advances in neural-symbolic Al, federated LLM training with
blockchains, and metaverse-Al integration, among others. All design choices are motivated by
the goal of creating an AGI system that is robust, interpretable, and aligned within an interactive
multi-agent world.
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6 Theoretical Guarantees: Unbounded Cognitive Growth

Theorem (Asymptotic Cognitive Scaling) Assuming infinite computational resources and a mono-
tonically increasing knowledge hierarchy, the system’s problem-solving capability grows without
bound.

Proof Sketch:
Let K be the knowledge set at time ¢, and P(K}) be the set of solvable problems.

When axiomatizing a theory, we effectively define the set of provable theorems within that theory. By
deriving logical consequences from existing axioms and theorems, we can iteratively expand the set
of provable statements.

Formally, let T be a theory with Azioms as its set of axioms. The set of theorems T heorems can
be defined inductively as the least fixed point of the monotone operator I', where:

QT =TQ)={¢cT3q,....qn €Q: q1,-..,qn - q} (6)

This operator I' captures the closure of @ under logical entailment, ensuring that all derivable
statements are included in Q*.

We have that on each iteration: P(K;) C P(K;y1). Ast — 00, lim_,co| P(K¢)| = o0.

7 Ethical Considerations

* Autonomy vs. Control: Agents may self-modify smart contracts, risking unintended goals.
We propose ethical governor modules that override harmful actions.

* Decentralization: Master blockchain consensus prevents single-entity control.

8 Conclusion

We have presented a novel hybrid framework for Strong Al that synergizes LLM-based inference,
symbolic logic reasoning, and a decentralized blockchain memory. By structuring knowledge
into a hierarchical probabilistic logic and storing it across tiered blockchains, our system achieves
continuous, auditable learning: agents can ingest new information on-chain, verify it rigorously,
and reliably expand their capabilities over time. This design overcomes classic LLM weaknesses
(hallucinations, outdated facts) by always checking outputs against formally verifiable knowledge.
Using the example of a metaverse built according to our methodology, we have shown how agents
can interact with each other and how their cognitive abilities can grow in solving problems with a
fixed budget of computing resources, which underlines the potential of the approach. Key outcomes
include (1) formal guarantees of asymptotic cognitive growth with the knowledge hierarchy model, (2)
practical deployments in domains like law, science, and education enabled by hybrid Al-blockchain
coordination, and (3) built-in ethical safeguards (e.g. on-chain constitutional rules and universal basic
income mechanisms) that align agent behavior with human values.

Looking forward, our roadmap envisions several extensions and broader impacts. First, we aim to
enhance the blockchain substrate: adopting quantum-resistant consensus schemes and optimizing
cross-chain interoperability will enable truly global knowledge networks. Second, we will integrate
richer ontologies and continuous learning protocols, perhaps informed by federated learning advances,
to accommodate real-world data heterogeneity and privacy. Third, interdisciplinary collaboration
will be crucial: working with cognitive scientists, legal scholars, and ethicists, we plan to refine the
logical knowledge representation and ethical frameworks embedded in smart contracts. Over the long
term, we anticipate a worldwide ecosystem of intelligent agents sharing verifiable knowledge and
solving complex societal challenges in tandem. Such a system could revolutionize fields from law
(automated treaty analysis) to science (collaborative discovery) by guaranteeing that Al decisions
are both powerful and transparent. Ultimately, by converging machine learning, formal reasoning,
and secure decentralized technology, our task-based methodology lays the groundwork for robust,
trustworthy AGI. We hope this work will inspire further research on hybrid architectures and usher in
a new era where Al systems learn and evolve in a provable, collaborative manner—truly embodying
the vision of Strong Al
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A Algorithm - Verify Compliance

The Verify Compliance algorithm ensures that hypotheses generated by LLMs adhere to the knowl-
edge stored in the multi-blockchain system. It iteratively refines solutions by resolving gaps in
reasoning through cross-layer blockchain queries and logic-driven validation. Below is a detailed
breakdown of its components and workflow.

Workflow Steps

1. Initialization:
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* Fetch context from the blockchain using the query and blockchain_id.
« Initialize variables to track the best solution and iteration count.

2. Hypothesis Generation:

* The LLM generates candidate hypotheses with structured reasoning chains (e.g., "Hypothe-
sisIStep 1; Step 2; ...").

3. Validation Loop:

* For each hypothesis:

— The LogicEngine validates both the hypothesis and its reasoning steps against
blockchain-stored knowledge.

— A confidence score (0-1) is assigned based on alignment with verified facts.

 Early exit if any hypothesis exceeds the confidence threshold.
4. Context Refinement:

* If validation fails, the LogicEngine identifies missing premises (e.g., unverified lemmas or
sensor data gaps).

* Supplementary data is queried from lower blockchain layers (e.g., raw sensor logs from
Layer 1).

5. Termination:

» After max_iterations, log unresolved queries with partial proofs and missing steps
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Algorithm 2 Verify compliance

1: function SOLVE_QUERY(query, blockchain_id, max_iterations=5, confidence_threshold=0.9)
2: # Initial knowledge fetch

3: current_context = blockchain.query(blockchain_id, query)
4: best_solution = None
5: iteration = 0
6: while iteration < max_iterations:
7: # Generate hypotheses with reasoning chains
8: hypotheses = LLM.generate(
9: prompt=query,
10: context=current_context,
11: response_format="hypothesislreasoning" # Structured output
12: )
13: # Parse and validate hypotheses with their reasoning

14: validated = []
15: for raw_hyp in hypotheses do

16: hyp_text, reasoning = raw_hyp.split("l", 1) # Split into components
17: hyp = Hypothesis(

18: content=hyp_text,

19: reasoning=reasoning,

20: confidence=0.0

21: )

22: # Validate both hypothesis and its reasoning chain

23: proof, hyp.confidence = LogicEngine.validate(

24: hypothesis=hyp.content,

25: proof_steps=hyp.reasoning,

26: blockchain_id=blockchain_id,

27: context=current_context

28: )

29: hyp.proof = proof # Store formalized proof object

30: validated.append(hyp)

31: # Early return if high-confidence solution found

32: if hyp.confidence > confidence_threshold:

33: blockchain.commit(

34: blockchain_id=blockchain_id,

35: data="hypothesis": hyp.content, "proof": hyp.proof,

36: contract="KnowledgeUpdate"

37: )

38: return hyp

39: # Update best solution using combined confidence/proof metrics
40: current_best = max(validated, key=lambda x: x.confidence, default=None)
41: if current_best and (best_solution is None

42: or current_best.confidence > best_solution.confidence):

43: best_solution = current_best # Refine context using proof failures
44: feedback = LogicEngine.get_proof_gaps(validated) # e.g., "Missing lemma about X"
45: supplementary_data = blockchain.query(

46: blockchain_id=blockchain_id,

47: query=feedback,

48: depth=iteration+1,

49: proof_aware=True # Prioritize proof-related knowledge

50: )

51: current_context += supplementary_data

52: iteration 4+= 1

53: # Fallback with proof-aware logging

54: if best_solution:

55: blockchain.log(

56: query,

57: status="PartialProof",

58: missing_steps=LogicEngine.get_proof_gaps([best_solution])

59: )

60: return best_solution

61: return "No solution with valid proof four®'
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