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Abstract
We present ΦFlow, a Python toolkit that seamlessly
integrates with PyTorch, TensorFlow, Jax and
NumPy, simplifying the process of writing differ-
entiable simulation code at every step. ΦFlow pro-
vides many essential features that go beyond the
capabilities of the base ML libraries, such as dif-
ferential operators, boundary conditions, the abil-
ity to write dimensionality-agnostic code, floating-
point precision management, fully differentiable
preconditioned (sparse) linear solves, automatic
matrix generation via function tracing, integration
of SciPy optimizers, simulation vectorization, and
visualization tools. At the same time, ΦFlow in-
herits all important traits of the base ML libraries,
such as GPU / TPU support, just-in-time compila-
tion, and automatic differentiation. Put together,
these features drastically simplify scientific code
like PDE or ODE solvers on grids or unstructured
meshes, and ΦFlow even includes out-of-the-box
support for fluid simulations. ΦFlow is available at
https://github.com/tum-pbs/PhiFlow.

1. Introduction
Inferring physical parameters or states with neural networks
has sparked a multitude of promising lines of research. Neu-
ral networks have been used to accelerate simulations [1],
[2], improve simulation accuracy for fixed resolutions [3],
[4], control complex physical systems [5], [6], encode phys-
ical states and sequences [7] and find conservation laws [8],
among others. All of these tasks can be learned end-to-end
only with the aid of a differentiable simulator, as the net-
work predictions pass through a simulator in the forward
pass. However, many differentiable simulators don’t al-
low for seamless integration with ML frameworks, forcing
users to manually handle the forward and backward data
flow [9]–[11]. Meanwhile, the ML libraries PyTorch [12],
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TensorFlow [13], and Jax [14]–[16] lack vital functionality
required for many types of simulations, which has led re-
searchers to either not use end-to-end training [1], [17]–[19]
or implement custom differentiable simulations [2], [3], [5]
or libraries [11], [20]–[23] compatible with only one ML
framework, preventing adoption in the other communities.

In this work, we present ΦFlow (PhiFlow), an open-source
framework for differentiable simulations that builds on top
of PyTorch, TensorFlow, Jax or NumPy [24]. It is intended
to be used for a wide variety of simulations and includes
high-level data structures for grid/mesh-based (Eulerian) as
well as particle-based (Lagrangian) simulations. ΦFlow is
designed to make simulation code as reusable as possible
without sacrificing readability or performance. Additionally
ΦFlow aims to accelerate development iterations by promot-
ing interactivity and clean code. It has been used in produc-
tion for multiple works and publications [4], [6], [25]–[48],
as well as open data sets [49], [50].

2. Major features of ΦFlow

All of ΦFlow’s core functionality is implemented directly
in Python 3 [51]. This makes it easy to understand its
source code and enables seamless integration with PyTorch,
TensorFlow and Jax using the abstraction layer ΦML [52]
which supports DLPack [53]. ΦFlow provides classes to
represent grids, graphs, unstructured meshes, point clouds,
as well as various primitive geometries. Next we present
features that ΦFlow adds on top of the ML libraries with
further details in appendix A.

Fluid solver Incompressible fluid simulations are chal-
lenging, both theoretically and numerically [54]. Unlike
many other toolkits, ΦFlow does not provide a stand-alone
solver but rather a set of building blocks from which a full
simulation can quickly be assembled as in Fig. 1. These
include functions for advection, diffusion, and pressure com-
putation, giving users full control and making it easy to
adapt the code to their specific needs.

Discrete differential operators ΦFlow implements all
common differential operators for grids as well as unstruc-
tured meshes. These includes the gradient ∇u, divergence
∇ · u⃗, laplace ∇2u, and curl ∇ × u⃗, as well as their gen-
eralizations to matrix fields. For grids, ΦFlow also provides
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from phi.torch.flow import *

@jit_compile
def incompressible_fluid_step(v, dt=.25):

v, p = fluid.make_incompressible(v)
v = diffuse.explicit(v, 0.1, dt)
v = advect.semi_lagrangian(v, v, dt)
return v

v0 = StaggeredGrid(Noise(), x=256, y=256, bounds=Box(x=100, y=100), boundary=0)
v_trj = iterate(incompressible_fluid_step, batch(t=100), v0)

Figure 1. Executable source code of an incompressible fluid simu-
lation using staggered grids running on PyTorch.

higher-order operators, letting users specify arbitrary spa-
tial orders of accuracy for which the stencils are generated
on-the-fly.

Boundary conditions ΦFlow provides an extensive library
dedicated to boundary condition (BC) handling, including
Dirichlet, Neumann, periodic and symmetric BCs, all of
which support BC arithmetic, padding and distance func-
tions, as well as index transforms. All built-in physics
functions are coded to work with all of these BCs and adjust
the employed numerical scheme accordingly.

Dimensionality-agnostic code Many PDEs can be real-
ized in multiple dimensionalities (1D, 2D, 3D), because their
mathematical formulations are abstract, e.g. u̇ = κ∇2u. We
introduce a system for writing dimensionality-agnostic code
which works by letting users mark tensor dimensions as
being spatial. All relevant functions then infer the dimen-
sionality from the number of tagged dimensions. The code
given in Fig. 1 can be made to run in 1D, 2D, 3D, and higher
dimensions, by modifying only line 8. No change to the
simulation function is required.

Floating-point precision management ΦFlow includes
a novel system of controlling precision that is more pre-
dictable, less error-prone and easier to control than existing
solutions. All operations determine the desired precision
from the operation context rather than the data types of its
inputs. The precision can be set globally or locally, and oper-
ations automatically convert non-matching tensors, avoiding
all data type errors. To enable double precision in Fig. 1,
insert math.set global precision(64) below line 1.

Fully differentiable preconditioned linear solvers ΦFlow
includes all SciPy solvers, as well as custom GPU-
compatible conjugate gradient and (stabilized) bi-conjugate
gradient methods [55] for solving linear systems of equa-
tions, both with sparse and dense matrices. Furthermore,
ΦFlow comes with support for GPU-compatible precondition-
ers, such as the incomplete LU decomposition [56] and clus-
tering, which can drastically improve convergence speed.
We support differentiating not only w.r.t. the right-hand-side
but also the (sparse) matrix and all of its dependencies, a
feature that is missing from the base ML libraries.

Automatic matrix generation via function tracing
Given an affine function Â(x), ΦFlow can build a sparse
matrix A and offset o, such that Â(x) = A · x + o. This
allows users to conveniently express linear systems of equa-
tions as interpretable Python functions but solve them with
the efficiency of explicit representations. This is achieved
by tracing low-level affine operations, similar to just-in-time
(JIT) compilation. The matrix assembly itself can be JIT
compiled to avoid tracing overheads at runtime.

Integration of SciPy optimizers ΦFlow includes a simple
API to use all SciPy optimizers, integrating them into the
computational graph of the base ML library. Derivatives
are computed via automatic differentiation and can be eval-
uated on the GPU. ΦFlow also supports solving batches of
optimization problems in parallel by bundling the current
estimates of the individual optimizations.

Vectorization via batch dimensions ΦFlow supports par-
allelization via batch dimensions for all operations. This
eliminates the need for a vmap function which would pre-
vent debugging or visualizing the parallelized code. In
ΦFlow, dimensions can be tagged as batch, allowing users to
define arbitrarily many batch dimensions. Quantities with
different batch dimensions are automatically reshaped to
match, making user code parallelize trivially. Specifying
batch(config=n) in line 8 of Fig. 1 runs n parallel fluid
simulations with different initial conditions.

Single-call visualization ΦFlow includes a plotting fron-
tend for Matplotlib [57] and Plotly [58] that creates fully-
fledged figures from a single plot() call. Despite this
simplicity, the above-mentioned dimension tags allow ΦFlow
to know the type of data being visualized and choose an
appropriate plot. For example, two spatial dimensions indi-
cate a grid which might be plotted as a heatmap or vector
field depending on the other dimensions. Batch dimensions
translate to subfigures by default but can alternatively be
used as the time axis in an animation. All plots shown in
this document were created with one plot() call.

3. Experiments
We use the above features to solve two challenging inverse
problems involving PDEs. Furthermore, we reimplement
three experiments from prior work to show that ΦFlow is
broadly applicable.

Material composition from thermal conductivity First,
we consider heat conduction involving a mixture of two ma-
terials with different thermal conductivity coefficients, e.g. a
conductor and an insulator. The task is to determine the frac-
tion of each material at every point based on two snapshots
of the temperature distribution. An exact reconstruction is
impossible due to the limited information. Fig. 2 shows our
implementation along with an example reconstruction. Us-
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from phi.jax.flow import *

def simulate(x):  # x is the guess for the conductivity
return diffuse.implicit(initial_temp, field.maximum(0, x), 10, Solve('biCG-stab(2)'))

boundary = {'x': 'periodic', 'y': 'zero-gradient'}
conductivity = field.maximum(0, CenteredGrid(Noise(scale=100), boundary, x=100, y=40))
initial_temp = CenteredGrid(Noise(), boundary, x=100, y=40)
final_temp = simulate(conductivity)

fit = minimize(lambda x: math.l2_loss(final_temp - simulate(x)), 
Solve('GD', x0=conductivity.with_values(.01)))

Figure 2. Conductivity reconstruction on a 100× 40 grid with im-
plicit heat diffusion. The conductivity distribution is optimized for
using gradient descent with Jax, based on the initial and diffused
state after 10 seconds.

ing ΦFlow, we can easily write a differentiable simulator for
implicit heat conduction, ensuring numerical stability. We
use this to generate the ground-truth observation data and
to optimize for the material composition by minimizing the
MSE between the observed and reconstructed temperature
profile with gradient descent. Differentiating w.r.t. the con-
ductivity requires the implicit gradient w.r.t. the diffusion
matrix. This would require manual gradient implementation
in most ML libraries, but ΦFlow supports matrix gradients
for linear systems.

As can be seen in Fig. 2, fine detail cannot be recovered,
but the fit approximates the ground truth conductivity distri-
bution. The whole experiment can be written in 8 lines of
code using ΦFlow, attesting to the high information density.
We encourage readers to read the source code, as we believe
it explains our methodology in more detail and clarity than
we can achieve in text.

Particle image velocimetry Reconstruction the motion of
a fluid can be done by tracking the positions of small marker
particles, i.e. particle image velocimetry (PIV). The markers
are passively advected with the fluid, and, given the particle
positions at two consecutive frames, one can fit the velocity
field at that time. We realize a PIV solver using ΦFlow’s
differentiable advection operation. With the objective to
minimize the observed marker positions M(M0,∆t, v) on
the second frame given the initial positions M0, we get the
inverse problem

v = arg minv′ ||M(M0,∆t, v′)−M0||22, (1)
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from phi.jax.flow import *

@jit_compile
def simulate(v):  # v is the guess for the velocity

return advect.points(initial_markers, v, dt=.1, integrator=advect.rk4)

v0 = StaggeredGrid(Noise(batch(seed=16)), x=64, y=64, bounds=Box(x=20, y=20))
v0, _ = fluid.make_incompressible(v0)
marker_count = vec(batch('count'), 128, 256, 512, 1024, 2048, 4096)
initial_markers = v0.bounds.sample_uniform(instance(markers=marker_count))
final_markers = simulate(v0)

fit1 = minimize(lambda x: math.l2_loss(final_markers - simulate(x)),
Solve('L-BFGS-B', x0=0 * v0.downsample(4))).at(v0)

fit2 = minimize(lambda x: math.l2_loss(final_markers - simulate(x+fit1)),
Solve('L-BFGS-B', x0=0 * v0))

v_estimate = fit1 + fit2

Figure 3. Reconstruction of a divergence-free velocity field v from
128 to 2096 particles, observed at two times 0.1 seconds apart. We
use L-BFGS-B to first fit v at quarter-resolution and afterwards for
a residual fit at full resolution.

where v denotes the fluid velocity. We first fit a coarse veloc-
ity grid at quarter-resolution to avoid zero-velocity values
in cells empty of markers, and then perform a residual fit at
full resolution. For both fits, we employ SciPy’s L-BFGS-B
optimizer, which converges significantly faster than gradient
descent. The top plots of Fig. 3 show an example velocity
field with 4096 markers and the reconstruction error.

To determine how many markers are required to adequately
reconstruct v with this algorithm, we perform this exper-
iment for multiple numbers of marker particles and test
16 different velocity fields, each. Using ΦFlow’s batch di-
mensions, we can simply expand the relevant simulation
inputs and run the optimization and simulation code without
modification, as can be seen in Fig. 3, where the two batch
dimensions seed and count are introduced in lines 5 and
7. Varying the number of particles does change the tensor
sizes, but all sizes are still tracked consistently throughout
the simulation. The bottom plots in Fig. 3 show that increas-
ing the number of markers improves the velocity MSE at
about one order of magnitude per 8× more markers. The
average particle position MSE also decreases but is more
variable across runs with large standard deviations.
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Figure 4. Replication of the billiards experiment from [21]. Setup
with orange cue ball left, and loss L(α) right, where α denotes
angle of the cue ball velocity vcue. Source code in appendix C.
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from phi.tf.flow import *

def energy(x: Tensor, boundary=PERIODIC):
dx = boundary.shortest_distance(x, rename_dims(x, 'spheres', 'o'), size)
dr = math.vec_length(dx, eps=1e-8) / (R + rename_dims(R, 'spheres', 'o'))
return math.l2_loss(math.where((dr < 2e-4) | (dr > 1), 0, 1 - dr))

R = wrap([1]*64 + [vec(batch('d'), 1, .5)]*64, instance('spheres'))
size = (math.sum(Sphere(vec(x=0, y=0), R).volume, 'spheres') * 1.05) ** .5
x0 = math.random_uniform(instance(R), channel(vector='x,y'), high=size)
x_packed = minimize(energy, Solve('L-BFGS-B', x0=x0)) % size

Figure 5. Replication of the sphere packing experiment from [20].
We use L-BFGS-B to find the maximally frustrated state.

Billiards This experiment [21] served as a demonstration
of differentiable collisions. Ten billiard balls are placed in a
triangular formation, and a cue ball is placed some distance
apart, as shown in Fig. 4. The task is finding the initial
velocity of the cue ball vcue, such that one corner ball from
the triangle reaches a desired location after some time. The
objective is measured as the mean squared error between
desired and observed ball position x, L(vcue) = ||x(vcue)−
x∗||22. What makes this task challenging is the chaotic nature
of the collisions, resulting in discontinuous gradients ∂L

∂vcue
.

The corresponding loss landscape depending on the incident
angle, L(α) with α = tan−1(

vy
vx
), is shown in Fig. 4.

Figure 6. Replication of the wave propagation example from
warp [11]. Source code in appendix C.

The original implementation uses a custom Python-like pro-
gramming language designed for differentiable simulations.
To generate an animation of the simulation and the loss plot,
it requires 79 lines for computation, and 41 lines for plotting.
Our replication consists of 29 lines for computation and 2
lines for plotting, one for the animation and one for the loss
graph. We provide our source code for this experiment in
the SI.

Sphere packing The goal of this experiment [20] is to
pack spheres in a periodic 2D domain with minimal overlap,
i.e. to find the maximally frustrated state. This can be
achieved by defining an energy function E(x,R) given the
positions x and radii R of all particles and then minimizing
the energy. As in the original experiment, we divide the
spheres into two types, half with radius R = 1, the other
half with R = D, D ∈ (0, 1]. Fig. 5 shows the maximally
frustrated states for two values of D, along with our source
code. For this result, the original experiment used 25 lines of
imports, 25 lines for computation, and 33 lines for plotting.

Wave propagation This example [11] consists of a wave
simulation on a 128×128 grid, driven by a circular obstacle
that moves inside the domain. Fig. 6 shows the final wave
height after five seconds. Our implementation, shown in ap-
pendix C, consists of 14 lines of code, which is significantly
shorter than the original warp implementation at 165 lines.

4. Conclusions
We have explained and demonstrated the capabilities of
ΦFlow, both for challenging problems involving PDEs and
for general inverse problems. We have showcased the mod-
ular nature of ΦFlow as well as its tight integration with
PyTorch, Jax and TensorFlow, which can be interchanged
by simply modifying the import statement. ΦFlow provides
a large number of simulation-related functions and unique
features, such as automatic matrix generation or the ability
to write dimension-agnostic code.

The source code provided in this document and appendix C
demonstrates that user code written against ΦFlow’s API is
concise and expressive, without sacrificing flexibility or
performance. To emphasize this point, we reimplemented
three experiments that were published as showcases for their
respective frameworks. In all cases, we achieve the same
result with more concise, less convoluted code, making our
implementation easier to understand. To assess the readabil-
ity, we tasked ChatGPT with explaining our code and the
original code, see Appendix C. We believe code readability
is a greatly underappreciated aspect of machine learning re-
search, resulting in many unnecessary re-implementations,
and we hope that ΦFlow will aid in that regard.
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[54] J. H. Ferziger, M. Perić, and R. L. Street, Computational
methods for fluid dynamics. springer, 2019.

[55] J. R. Shewchuk et al., An introduction to the conjugate
gradient method without the agonizing pain, 1994.

[56] Y. Saad, “Iterative methods for sparse linear systems,”
IEEE Computational Science and Engineering, vol. 3, no. 4,
p. 87, 1996.

[57] J. D. Hunter, “Matplotlib: A 2d graphics environment,”
Computing in Science & Engineering, vol. 9, no. 3, pp. 90–
95, 2007. DOI: 10.1109/MCSE.2007.55.

[58] P. T. Inc. “Collaborative data science.” (2015), [Online].
Available: https://plot.ly.

[59] J. Bradbury, R. Frostig, P. Hawkins, et al., JAX: Compos-
able transformations of Python+NumPy programs, ver-
sion 0.3.13, 2018. [Online]. Available: http://github.
com/google/jax.

6

https://doi.org/10.21105/joss.06171
https://doi.org/10.21105/joss.06171
https://doi.org/10.21105/joss.06171
https://github.com/dmlc/dlpack
https://doi.org/10.1109/MCSE.2007.55
https://plot.ly
http://github.com/google/jax
http://github.com/google/jax


PhiFlow: Differentiable Simulations for Machine Learning

A. Additional Information on the Design and Implementation of ΦFlow

Simulation implementation For all simulations, users assemble a custom simulation function from the building blocks
provided by ΦFlow, such as diffusion, advection or linear system solves. We provide a large number of pre-built examples
on our website, but always expose the simulation procedure directly to the user. This allows users to easily implement
complex simulation schemes, from operator splitting approaches to the SIMPLE algorithm patankar1980numerical. Most
of ΦFlow’s functions can operate both on grids and meshes.

Spatial order of accuracy All differential operators can be configured in the spatial order to be used. For grids, all
positive inegers are supported in theory, and all operators can be applied either explicitly or implicitly for added stability.
Unstructured meshes support first and second-order as well as upwind schemes.

Solving linear systems of equations ΦFlow includes all SciPy solvers, as well as custom GPU-compatible conjugate
gradient and (stabilized) bi-conjugate gradient methods [55] for solving linear systems of equations, both with sparse and
dense matrices. Furthermore, ΦFlow comes with support for GPU-compatible preconditioners, such as the incomplete LU
decomposition [56] and clustering, which can drastically improve convergence speed.

Linear solves are implemented differentiably, i.e. the adjoint system is solved during backpropagation or computation of
higher-order derivatives. This is implemented via implicit differentiation in order to save on memory requirements and
converge more quickly than backpropagating through the rolled-out solve. Users can specify the termination of the gradient
solve and higher-order derivative solves independently of the forward solve if desired. Preconditioners are generally re-used
in the adjoint solve.

In addition to differentiating w.r.t. the right-hand-side b, ΦFlow can also differentiate w.r.t. the (sparse) matrix A and all of
its dependencies, a feature that is missing from the base ML libraries but is required in many circumstances, e.g. when
differentiating through implicit convection or finding the optimal viscosity in implicit diffusion.

Automatic matrix generation via function tracing There are generally two categories of linear system solvers: ones
that use an explicit representation of the matrix A, and matrix-free solvers which use a functional representation Â(x) that
computes the result of A · x. While the latter is more convenient, concise, readable and debuggable in code, the former is
more efficient and enables usage of generic preconditioners, such as the incomplete LU decomposition of A. We aim to
combine the best of both worlds by introducing automatic (sparse) matrix generation. This allows users to write and test the
effect of A as a function but still perform an explicit matrix solve with automatically-generated preconditioners. To achieve
this, we implement a function tracing algorithm similar to just-in-time compilation, but, instead of low-level code, it outputs
a matrix, representing the effect of the function Â on a placeholder vector. It records all affine operations, including boundary
conditions, performed by Â and assembles the matrix A ∈ Rn×m and offset o ∈ Rn, such that Â(x) = A · x+ o ∀x ∈ Rm.
Tracing can be done explicitly by the user via matrix from function(), or under-the-hood by decorating an affine
Python function with @jit compile linear. Then the matrix will be generated when the function is used in a linear
solve, and all constant terms in Â will be automatically subtracted from the right-hand-side vector to solve A · x = b− o.
Tracing Python functions may seem like a large overhead if it needs to be done for each simulation step, but, in addition to
caching, ΦFlow includes various optimizations for production code, i.e. when the simulation is jit-compiled.

• The dependencies of A and o on simulation parameters are expressed as a jit-compiled computational graph in the
corresponding ML library, reducing the overhead of matrix construction.

• The sparsity pattern of A is determined at jit-compile time, usually performed only once. For variable patterns, such as
upwind schemes, the combined pattern is determined and zeros are added to the matrix values where necessary.

• Sparse matrices are automatically compressed at compile-time into the most optimal format supported by the ML
library, such as the compressed sparse row (CSR) format. At runtime, this only induces a gather operation with fixed
indices on the values tensor to order the entries correctly.

• If Â has no dependence on variables outside x, the matrix is computed using NumPy. It enters the computational graph
of the ML library as a constant, and no matrix-building operations need to be performed at runtime.

• If the matrix values depend on parameters that vary across examples, the sparse matrix can be represented in either
monolithic block-diagonal form or batched-values form to maximize hardware utilization.
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These optimizations also apply to all preconditioners.

B. Performance measurements
We benchmark all experiments with the three supported machine learning backends: PyTorch, TensorFlow and JAX. We
always enable just-in-time (JIT) compilation using ΦFlow’s @jit compile function decorator. The results are shown in
Tab. 1. Overall, the performance gap between the backends is reasonably small, and no library consistently outperforms the
others. For fluids and tasks involving random data access, JAX usually yields the best performance, while PyTorch works
best for easy-to-parallelize tasks.

Table 1. Performance measurements of our experiments by ML backend. The table shows wall-clock time in ms per step on an NVIDIA
RTX 3090 excluding warm-up.

PyTorch TensorFlow JAX
Thermal conductivity 24.4 ± 1.5 28.2 ± 1.1 40.5 ± 3.1
PIV 25 ± 2 41.6 ± 1.7 46 ± 2
Learning fluids 293 ± 363 296 ± 356 156 ± 373
Billiards 0.88 ± 1.80 1.20 ± 2.45 0.85 ± 0.21
Sphere packing 2.0 ± 0.3 4.4 ± 0.4 7.8 ± 0.7
2D Waves 0.50 ± 0.07 0.74 ± 0.05 0.38 ± 0.05

C. Code readability
To measure the readability of our code, we prompt ChatGPT with the input ”Explain this code to me:”, followed by the
source code. We show the first output generated by ChatGPT 3.5 for each experiment in full below. We made no changes to
our code after reading the explanations generated by ChatGPT to prevent biasing the results.

Sphere packing (ΦFlow) ChatGPT accurately explains our code, recognizing our library PhiFlow and the TensorFlow
backend. Its summary is also correct, but it misses the physical interpretation of the energy function. ChatGPT breaks the
code into sections and explains each variable separately, citing the appropriate snippets of code. The explanation resembles
our description above, which was written without AI-assistance.

Sphere packing (JAX-MD) Given the original Jax-MD code, ChatGPT summarizes the task as ”self-assembly of colloidal
particles”, which matches the domain of the Jax-MD library but is not correct for the given code, as the spheres are explicitly
referred to as bubbles in the original experiment and code. ChatGPT also fails to recognize the Jax-MD library, despite 7
lines of corresponding imports. Instead, it assumes the code uses JAX [59] directly. ChatGPT breaks the code down into
nine sections, each with two to seven subsections. It does not cite lines from the source, likely due to the lengthy input.

Billiards (ΦFlow) ChatGPT’s explanation of our code is concise and to the point, structuring the code into four sections
with three to five points each. Despite the brevity, the output captures all essential parts with sufficient detail, such as the
triangular initialization, how the simulation works, and what the loss function is intended to do. ChatGPT even draws on its
physics knowledge to explain that the elasticity is connected to the energy conserved in collisions. The output is generally
high-level, focusing more on the purpose than on individual variables. All explanations are correct except for two minor
issues: (i) ChatGPT did not recognize that only the cue ball velocity is optimized and (ii) it refers to a ”controllable ball”,
which does not match the code. ChatGPT’s summary at the bottom perfectly describes the experiment.

Billiards (DiffTaichi) ChatGPT’s explanation of the original source code differs greatly from our version. ChatGPT
structures the original source code from DiffTaichi into 13 sections, many of which only sport a single bullet point. This lack
of structure is likely due to the fact that ChatGPT tries to mirror the order in which variables and functions are defined in the
source code. Unlike with our code, the explanations here are low-level, usually limited to individual variables or functions.
The bigger picture, such as the purpose of functions or the code as a whole, is not mentioned. Except for missclassifying sys
and os as scientific computing libraries and describing the loss as a ”scalar field”, the output is mostly correct. However,
most statements seem trivial and redundant, e.g. ”collide pair(t, i, j): Function to handle collisions between
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pairs of balls” or ”vis resolution: Resolution for visualization”. How the simulation works is not explained; ChatGPT
only states that the simulation ”initializes the system, performs collision handling, and updates the positions and velocities
of the particles”. The initial triangle configuration as well as the loss function are not explained at all. Evidently ChatGPT
understands that the code runs a Billiards simulation but fails to figure out how the simulation works or what its purpose is.

Waves (ΦFlow) ChatGPT identifies the code as a 2D grid simulation of propagating waves, quoting many important lines
from the source code. It correctly identifies the purpose of both functions and all of their arguments, and it extracts the
resolution, domain size and boundary conditions of the simulation. While it correctly identifies that 60 steps per second with
16 sub-steps each are used, it fails to derive the total simulation time, mixing up seconds and minutes.

Waves (Warp) ChatGPT identifies the code as a grid-based wave propagation simulation but does not extract its resolution,
domain size, boundary conditions, or simulation time. No line from the source code is quoted, instead the explana-
tion focusses on the code structure, likely due to the lengthy input. The helper functions sample, laplacian and
grid update are summarized very briefly, and ChatGPT seems unaware that, as kernel functions, these will run on the
whole grid in parallel. The descriptions of the main functions wave displace and wave solve are also very short
but also partly inaccurate. ChatGPT describes wave displace as displacing points in a circular pattern to simulate
wave generation. While technically true, the function simply fills a circle on the grid with a constant value. Furthermore,
wave solve is described as solving the wave equation iteratively for each point in the grid. This fails to capture that the
function only performs one simulation sub-step, and it misses that the execution is performed in parallel, not iteratively. The
bulk of ChatGPT’s response deals with the code structure, such as the Example class. Only section 2 out of six sections
describes the simulation, and no concrete numbers are given.

The full ChatGPT generations are shown on the next pages, followed by the source code we gave to ChatGPT. For both
experiments, the outputs based on our code seem easier to understand, more concise and more insightful.
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Sphere Packing (Φ𝐹𝑙𝑜𝑤) 

You: Explain this code to me: from phi.tf.flow import * […] 

 

ChatGPT: 

This code appears to be a Python script using the TensorFlow-based library called “PhiFlow” to simulate a 
physical system involving spheres. Let’s break down the code step by step: 

• Import necessary modules: 

from phi.tf.flow import * 

This line imports the required modules from the “phi.tf.flow” package. PhiFlow is a library for differentiable 
physics in TensorFlow. - Define an energy function: 

def energy(x: Tensor, boundary=PERIODIC): 
  dx = boundary.shortest_distance(x, rename_dims(x, 'spheres', 'o'), size) 
  dr = math.vec_length(dx, eps=1e-8) / (R + rename_dims(R, 'spheres', 'o')) 
  return math.l2_loss(math.where((dr < 2e-4) | (dr > 1), 0, 1 - dr)) 

This function energy calculates the energy of a system of spheres at positions x. It uses the periodic 
boundary condition (PERIODIC). The energy is based on the shortest distances (dx) between the spheres, and 
dr is a normalized distance. The energy is calculated using the L2 loss of a modified distance. - Set up initial 
parameters: 

R = wrap([1]*64 + [vec(batch('d'), 1, .5)]*64, instance('spheres')) 

This line sets up a list of radii (R) for 64 small spheres with radius 1 and 64 larger spheres with radius 0.5. - 
Compute system size: 

size = (math.sum(Sphere(vec(x=0, y=0), R).volume, 'spheres') * 1.05) ** .5 

This line calculates the total volume of the spheres and computes the size of the simulation domain based on 
that volume. - Initialize particle positions randomly: 

x0 = math.random_uniform(instance(R), channel(vector='x,y'), high=size) 

This line initializes the positions (x0) of the spheres randomly within the simulation domain. - Minimize the 
energy using L-BFGS-B optimization: 

x_packed = minimize(energy, Solve('L-BFGS-B', x0=x0)) % size 

The code uses the minimize function to find the configuration of sphere positions (x_packed) that 
minimizes the energy. The optimization is performed using the L-BFGS-B algorithm. The result is wrapped 
around to ensure periodic boundary conditions. 

In summary, this code sets up a physical system with spheres, defines an energy function based on sphere 
positions, initializes the system, and then minimizes the energy using an optimization algorithm to find a 
stable configuration for the spheres. The periodic boundary conditions ensure that the system behaves 
consistently at the edges of the simulation domain. 

 



Sphere Packing (Φ𝐹𝑙𝑜𝑤) 

from phi.tf.flow import * 

 

def energy(x: Tensor, boundary=PERIODIC): 

    dx = boundary.shortest_distance(x, rename_dims(x, 'spheres', 'o'), size) 

    dr = math.vec_length(dx, eps=1e-8) / (R + rename_dims(R, 'spheres', 'o')) 

    return math.l2_loss(math.where((dr < 2e-4) | (dr > 1), 0, 1 - dr)) 

 

R = wrap([1]*64 + [vec(batch('d'), 1, .5)]*64, instance('spheres')) 

size = (math.sum(Sphere(vec(x=0, y=0), R).volume, 'spheres') * 1.05) ** .5 

x0 = math.random_uniform(instance(R), channel(vector='x,y'), high=size) 

x_packed = minimize(energy, Solve('L-BFGS-B', x0=x0)) % size 

plot(Sphere(x_packed, R), size=(6, 3)) 

 



Sphere Packing (JAX-MD) 

You:   Explain this code to me:   import time   […]   finalize_plot((2.0, 1))

 

ChatGPT: 

This code is a Python script that uses JAX (Just Another XLA) to simulate the self-assembly of colloidal 
particles. The simulation is based on the minimization of a soft sphere pair potential energy function. 

Let’s break down the code into sections: 

• Importing Libraries: 

– The code starts by importing necessary libraries like JAX, NumPy, and Matplotlib. 

– It also includes some utilities for progress bars and plot formatting. 

• Progress Bars and Plot Settings: 

– The ProgressIter and progress functions are used for displaying progress bars. 

– Matplotlib settings are configured for plot formatting. 

• System Visualization Functions: 

– draw_system: Function to visualize the system by plotting particle positions. 

– finalize_plot: Function to adjust the plot size and layout. 

• System Property Utilities: 

– box_size_at_number_density: Calculates the box size based on particle count and number 
density. 

• Simulation Parameters: 

– N: Total number of particles. 

– simulation_steps: Number of simulation steps. 

– dt: Time step for the simulation. 

– temperature: Temperature of the system. 

– key: Random key for initializing the system. 

– packing_fraction: Desired packing fraction of particles in the system. 

– markersize: Size of markers for particle visualization. 

• Particle Species and Interaction: 

– The system consists of two types of particles, species 0 and species 1. 

– species_sigma: Function to define the diameter matrix based on particle species. 

• Simulation Function: 

– simulation: Main simulation function that takes a diameter and a random key as input. 

– It sets up the simulation environment, defines the soft sphere pair potential energy, initializes 
the system, and performs minimization steps. 

• Simulation Visualization: 

– The script plots two visualizations using Matplotlib: 

• The first subplot shows the self-assembly of particles with a diameter of 1.0. 

• The second subplot shows the self-assembly of particles with diameters 0.8 and 1.0. 

– Plotting and Finalization: 

– The draw_system function is used to plot the particle positions. 

– The finalize_plot function adjusts the plot size and layout. 

In summary, the code simulates the self-assembly of colloidal particles using JAX and visualizes the results 
with Matplotlib. The particles interact through a soft sphere pair potential energy, and the system’s evolution 
is visualized at different diameters. 

 



 

Sphere Packing (JAX-MD) 

import time 

 

from functools import partial 

import numpy as onp 

 

import jax.numpy as np 

 

from jax.api import jit 

from jax.api import grad 

from jax.api import vmap 

from jax.api import value_and_grad 

 

from jax import random 

from jax import lax 

 

from jax.experimental import stax 

from jax.experimental import optimizers 

 

from jax.config import config 

config.update('jax_enable_x64', True) 

 

from jax_md import space 

from jax_md import minimize 

from jax_md import simulate 

from jax_md import space 

from jax_md import energy 

from jax_md import quantity 

from jax_md.util import f32, f64 

 

 

# Progress Bars. 

from IPython.display import HTML, display 

import time 

 

def ProgressIter(iter_fun, iter_len=0): 

  if not iter_len: 

    iter_len = len(iter_fun) 

  out = display(progress(0, iter_len), display_id=True) 

  for i, it in enumerate(iter_fun): 

    yield it 

    out.update(progress(i + 1, iter_len)) 

 

def progress(value, max): 

    return HTML(""" 

        <progress 

            value='{value}' 

            max='{max}', 

            style='width: 45%' 

        > 

            {value} 

        </progress> 

    """.format(value=value, max=max)) 

 

 

# Matplotlib settings. 

 

import matplotlib 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

sns.set_style(style='white') 

sns.set(font_scale=1.6) 

 

def format_plot(x, y): 

  plt.xlabel(x, fontsize=20) 

  plt.ylabel(y, fontsize=20) 

 

def finalize_plot(shape=(1, 1)): 

  plt.gcf().set_size_inches( 

    shape[0] * 1.5 * plt.gcf().get_size_inches()[1], 

    shape[1] * 1.5 * plt.gcf().get_size_inches()[1]) 

  plt.tight_layout() 

 

def draw_system(R, box_size, marker_size, color=None): 

  if color == None: 

    color = [64 / 256] * 3 

  ms = marker_size / box_size 

 

  R = onp.array(R) 

 

  marker_style = dict( 

      linestyle='none', 

      markeredgewidth=3, 

      marker='o', 

      markersize=ms, 

      color=color, 

      fillstyle='none') 

 

  plt.plot(R[:, 0], R[:, 1], **marker_style) 



  plt.plot(R[:, 0] + box_size, R[:, 1], **marker_style) 

  plt.plot(R[:, 0], R[:, 1] + box_size, **marker_style) 

  plt.plot(R[:, 0] + box_size, R[:, 1] + box_size, **marker_style) 

  plt.plot(R[:, 0] - box_size, R[:, 1], **marker_style) 

  plt.plot(R[:, 0], R[:, 1] - box_size, **marker_style) 

  plt.plot(R[:, 0] - box_size, R[:, 1] - box_size, **marker_style) 

 

  plt.xlim([0, box_size]) 

  plt.ylim([0, box_size]) 

  plt.axis('off') 

  plt.gca().set_facecolor([1, 1, 1]) 

 

 

# System property utilities. 

 

def box_size_at_number_density(particle_count, number_density): 

  return f32((particle_count / number_density) ** 0.5) 

 

N = 128 

N_2 = N // 2 

 

simulation_steps = np.arange(300) 

dt = 1e-2 

temperature = 1e-5 

 

key = random.PRNGKey(0) 

 

packing_fraction = 0.98 

markersize = 260 

 

def box_size_at_packing_fraction(diameter): 

  bubble_volume = N_2 * np.pi * (diameter ** 2 + 1) / 4 

  return np.sqrt(bubble_volume / packing_fraction) 

 

species = np.array([0] * (N_2) + [1] * (N_2), dtype=np.int32) 

 

def species_sigma(diameter): 

  d_AA = diameter 

  d_BB = 1 

  d_AB = 0.5 * (diameter + 1) 

  return np.array( 

      [[d_AA, d_AB], 

       [d_AB, d_BB]] 

  ) 

 

@jit 

def simulation(diameter, key): 

  # Create the simulation environment. 

  box_size = box_size_at_packing_fraction(diameter) 

  displacement, shift = space.periodic(box_size) 

 

  # Create the energy function. 

  sigma = species_sigma(diameter) 

  energy_fun = energy.soft_sphere_pair( 

      displacement, species=species, sigma=sigma) 

 

  # Randomly initialize the system. 

  R = random.uniform(key, (N, 2), maxval=box_size) 

 

  # Minimize to the nearest minimum. 

  init_fn, apply_fn = minimize.fire_descent(energy_fun, shift) 

  state = init_fn(R) 

 

  do_step = lambda state, t: (apply_fn(state, t=t), ()) 

  state, _ = lax.scan(do_step, state, simulation_steps) 

 

  return box_size, energy_fun(state.position), state.position 

 

plt.subplot(1, 2, 1) 

 

box_size, raft_energy, bubble_positions = simulation(1.0, key) 

draw_system(bubble_positions, box_size, markersize) 

finalize_plot((0.5, 0.5)) 

 

plt.subplot(1, 2, 2) 

 

box_size, raft_energy, bubble_positions = simulation(0.8, key) 

draw_system(bubble_positions[:N_2], box_size, 0.8 * markersize) 

draw_system(bubble_positions[N_2:], box_size, markersize) 

finalize_plot((2.0, 1)) 

 



Billiards (Φ𝐹𝑙𝑜𝑤) 

You: Explain this code to me:   from phi.torch.flow import *    […] 

 

ChatGPT: 

This code appears to be a Python script that defines a simulation of billiard balls moving in a triangular 
configuration. Let’s break down the code into its main components: 

• billiards_triangle function: 

– This function generates the initial configuration of the billiard balls arranged in a triangular 
pattern. 

– billiard_layers determines the number of layers in the triangle, and radius is the radius of 
each ball. 

– The function uses nested loops to create the ball coordinates based on the layer and position 
within the layer. 

• physics_step function: 

– This function simulates a physics step for the billiard balls. 

– It uses the phi library (specifically, advect.points and math functions) for numerical 
simulation. 

– The function calculates the next position of the balls (v_next) based on advection (movement). 

– It then computes the distance between balls, checks for collisions, and updates the velocities 
accordingly. 

– Elasticity determines how much energy is conserved during collisions. 

• loss_function function: 

– This function defines the loss function for the optimization process. 

– It takes initial position x0 and initial velocity v0 as inputs and simulates the motion of the 
billiard balls using the physics_step function. 

– The goal is to minimize the L2 loss between the final position of the controllable ball and a 
specified goal position. 

– The function returns the L2 loss and the trajectory of the simulation. 

• Last part: 

– The script sets an initial position x0 and a function v0 that generates initial velocities based on 
an angle alpha. 

– It then uses the loss_function to create a scan over different values of alpha, aiming to find 
the best initial velocity that minimizes the L2 loss. 

– The result is stored in the scan variable, which represents a centered grid of loss values over 
the specified range of alpha. 

In summary, this code defines a simulation of billiard balls with a triangular initial configuration, and it aims 
to find the optimal initial velocity to reach a specified goal position. The optimization is performed over a 
range of angles using the phi library for numerical simulations. 

 



Billiards (Φ𝐹𝑙𝑜𝑤) 

from phi.torch.flow import * 

 

 

def billiards_triangle(billiard_layers=4, radius=.03): 

    coords = [] 

    for i in range(billiard_layers): 

        for j in range(i + 1): 

            coords.append(vec(x=i * 2 * radius + 0.5, y=j * 2 * radius + 0.5 - i * radius * 0.7)) 

    return Sphere(stack(coords, instance('balls')), radius=radius) 

 

 

def physics_step(v: PointCloud, dt: float, elasticity=0.8): 

    v_next = advect.points(v, v, dt) 

    dist = v_next.points - rename_dims(v_next.points, 'balls', 'others') 

    dist_norm = math.vec_length(dist, eps=1e-4)  # eps to avoid NaN during backprop of sqrt 

    rel_v = v.values - rename_dims(v.values, 'balls', 'others') 

    dist_dir = math.safe_div(dist, dist_norm) 

    projected_v = dist_dir.vector * rel_v.vector 

    has_impact = (projected_v < 0) & (dist_norm < 2 * v.geometry.radius) 

    impulse = -(1 + elasticity) * .5 * projected_v * dist_dir 

    radius_sum = v.geometry.radius + rename_dims(v.geometry.radius, 'balls', 'others') 

    impact_time = math.safe_div(dist_norm - radius_sum, projected_v) 

    x_inc_contrib = math.sum(math.where(has_impact, math.minimum(impact_time - dt, 0) * impulse, 0), 'others') 

    v = v.with_elements(v.geometry.shifted(x_inc_contrib)) 

    v += math.sum(math.where(has_impact, impulse, 0), 'others') 

    return advect.points(v, v, dt) 

 

 

def loss_function(x0: Tensor, v0: Tensor, goal=vec(x=0.9, y=0.75), steps=1024): 

    triangle_balls = PointCloud(billiards_triangle()) * (0, 0) 

    controllable_ball = PointCloud(Sphere(expand(x0, instance(triangle_balls).with_size(1)), 

radius=triangle_balls.geometry.radius)) * v0 

    all_balls = controllable_ball & triangle_balls 

    trj = iterate(physics_step, batch(t=steps), all_balls, f_kwargs={'dt': 0.003}) 

    return math.l2_loss(trj.t[-1].balls[-1] - goal), trj 

 

 

x0 = vec(x=.1, y=.5) 

v0 = lambda alpha: vec(x=0.3 * math.cos(alpha), y=0.3 * math.sin(alpha)) 

scan = CenteredGrid(lambda alpha: loss_function(x0, v0(alpha))[0], alpha=1000, bounds=Box(alpha=(-PI/4, PI/4))) 

plot({"Billiard balls": [billiards_triangle(), Sphere(x0, radius=.03)], "Loss by angle": scan.alpha[200:-200]}, size=(6, 1.8), 

overlay='list') 

 



Billiards (DiffTaichi) 

You:   Explain this code to me:   import taichi as ti   […]    scan(float(sys.argv[1])) 

 

ChatGPT: 

This code is a simulation of billiards using the Taichi programming language. It employs a numerical 
approach to simulate the physics of billiards, including collision detection and response. 

Here is a breakdown of the code: 

• Importing Libraries: 

– taichi, sys, math, numpy, os: Libraries for scientific computing and simulation. 

– matplotlib.pyplot: Used for plotting graphs. 

• Taichi Initialization: 

– ti.init(): Initializes the Taichi runtime with a default floating-point precision (real is set to 
ti.f32). 

• Simulation Parameters: 

– max_steps, vis_interval, output_vis_interval, steps: Parameters for the simulation. 

– vis_resolution: Resolution for visualization. 

– scalar and vec: Functions to define scalar and vector fields. 

– loss: Scalar field to represent the loss. 

• Particle Properties and Simulation Setup: 

– init_x, init_v: Initial positions and velocities. 

– x, v, x_inc, impulse: Particle positions, velocities, increments, and impulses. 

– billiard_layers, n_balls, target_ball: Parameters defining the billiard scene. 

– goal, radius, elasticity: Goal position, radius of the balls, and elasticity factor. 

– ti.root: Defines the hierarchical structure of the simulation data. 

• Simulation Parameters and Constants: 

– dt, alpha, learning_rate: Time step, regularization parameter, and learning rate. 

• Collision Pair Function: 

– collide_pair(t, i, j): Function to handle collisions between pairs of balls. 

• Collision, Advance, and Loss Computation Kernels: 

– collide(t): Kernel to handle collisions between all pairs of balls. 

– advance(t): Kernel to update particle velocities and positions based on impulses. 

– compute_loss(t): Kernel to compute the loss at a given time step. 

• Initialization Function: 

– initialize(): Initializes the initial positions and velocities of the particles. 

• Taichi GUI Setup: 

– ti.GUI: Initializes a graphical user interface for visualization. 

• Forward Simulation Function: 



• forward(visualize=False, output=None): Main simulation function that initializes the system, 
performs collision handling, and updates the positions and velocities of the particles. 

• Clear Function: 

• clear(): Resets the impulse and position increment fields. 

• Scan Function: 

• scan(zoom): Performs a parameter scan by varying the initial velocity angle and plots the resulting 
loss. 

• Simulation Execution: 

• The script executes by calling the scan function with a zoom factor specified from the command line 
argument (sys.argv[1]). 

The simulation progresses through time steps, handling collisions, updating positions and velocities, and 
computing the loss. The final loss values are plotted against the angle of the initial velocity, providing insights 
into the objective of the billiard scene. 

 



Billiards (DiffTaichi) 

import taichi as ti 

import sys 

import math 

import numpy as np 

import os 

import matplotlib.pyplot as plt 

 

real = ti.f32 

ti.init(default_fp=real, flatten_if=True) 

 

max_steps = 2048 

vis_interval = 64 

output_vis_interval = 16 

steps = 1024 

assert steps * 2 <= max_steps 

 

vis_resolution = 1024 

 

scalar = lambda: ti.field(dtype=real) 

vec = lambda: ti.Vector.field(2, dtype=real) 

 

loss = scalar() 

 

init_x = vec() 

init_v = vec() 

 

x = vec() 

x_inc = vec()  # for TOI 

v = vec() 

impulse = vec() 

 

billiard_layers = 4 

n_balls = 1 + (1 + billiard_layers) * billiard_layers // 2 

target_ball = n_balls - 1 

# target_ball = 0 

goal = [0.9, 0.75] 

radius = 0.03 

elasticity = 0.8 

 

ti.root.dense(ti.i, max_steps).dense(ti.j, n_balls).place(x, v, x_inc, impulse) 

ti.root.place(init_x, init_v) 

ti.root.place(loss) 

ti.root.lazy_grad() 

 

dt = 0.003 

alpha = 0.00000 

learning_rate = 0.01 

 

 

@ti.func 

def collide_pair(t, i, j): 

    imp = ti.Vector([0.0, 0.0]) 

    x_inc_contrib = ti.Vector([0.0, 0.0]) 

    if i != j: 

        dist = (x[t, i] + dt * v[t, i]) - (x[t, j] + dt * v[t, j]) 

        dist_norm = dist.norm() 

        rela_v = v[t, i] - v[t, j] 

        if dist_norm < 2 * radius: 

            dir = ti.Vector.normalized(dist, 1e-6) 

            projected_v = dir.dot(rela_v) 

 

            if projected_v < 0: 

                imp = -(1 + elasticity) * 0.5 * projected_v * dir 

                toi = (dist_norm - 2 * radius) / min( 

                    -1e-3, projected_v)  # Time of impact 

                x_inc_contrib = min(toi - dt, 0) * imp 

    x_inc[t + 1, i] += x_inc_contrib 

    impulse[t + 1, i] += imp 

 

 

@ti.kernel 

def collide(t: ti.i32): 

    for i in range(n_balls): 

        for j in range(i): 

            collide_pair(t, i, j) 

    for i in range(n_balls): 

        for j in range(i + 1, n_balls): 

            collide_pair(t, i, j) 

 

 

@ti.kernel 

def advance(t: ti.i32): 

    for i in range(n_balls): 

        v[t, i] = v[t - 1, i] + impulse[t, i] 

        x[t, i] = x[t - 1, i] + dt * v[t, i] + x_inc[t, i] 

 

 

@ti.kernel 

def compute_loss(t: ti.i32): 

    loss[None] = (x[t, target_ball][0] - goal[0])**2 + (x[t, target_ball][1] - 



                                                        goal[1])**2 

 

 

@ti.kernel 

def initialize(): 

    x[0, 0] = init_x[None] 

    v[0, 0] = init_v[None] 

 

 

gui = ti.GUI("Billiards", (1024, 1024), background_color=0x3C733F) 

 

 

def forward(visualize=False, output=None): 

    initialize() 

 

    interval = vis_interval 

    if output: 

        interval = output_vis_interval 

        os.makedirs('billiards/{}/'.format(output), exist_ok=True) 

 

    count = 0 

    for i in range(billiard_layers): 

        for j in range(i + 1): 

            count += 1 

            x[0, count] = [ 

                i * 2 * radius + 0.5, j * 2 * radius + 0.5 - i * radius * 0.7 

            ] 

 

    pixel_radius = int(radius * 1024) + 1 

 

    for t in range(1, steps): 

        collide(t - 1) 

        advance(t) 

 

        if (t + 1) % interval == 0 and visualize: 

            gui.clear() 

            gui.circle((goal[0], goal[1]), 0x00000, pixel_radius // 2) 

 

            for i in range(n_balls): 

                if i == 0: 

                    color = 0xCCCCCC 

                elif i == n_balls - 1: 

                    color = 0x3344cc 

                else: 

                    color = 0xF20530 

 

                gui.circle((x[t, i][0], x[t, i][1]), color, pixel_radius) 

 

            if output: 

                gui.show('billiards/{}/{:04d}.png'.format(output, t)) 

            else: 

                gui.show() 

 

    compute_loss(steps - 1) 

 

 

@ti.kernel 

def clear(): 

    for t, i in ti.ndrange(max_steps, n_balls): 

        impulse[t, i] = ti.Vector([0.0, 0.0]) 

        x_inc[t, i] = ti.Vector([0.0, 0.0]) 

 

 

def scan(zoom): 

    N = 1000 

    angles = [] 

    losses = [] 

    forward(visualize=True, output='initial') 

    for i in range(N): 

        alpha = ((i + 0.5) / N - 0.5) * math.pi * zoom 

        init_x[None] = [0.1, 0.5] 

        init_v[None] = [0.3 * math.cos(alpha), 0.3 * math.sin(alpha)] 

 

        loss[None] = 0 

        clear() 

        forward(visualize=False) 

        print(loss[None]) 

 

        losses.append(loss[None]) 

        angles.append(math.degrees(alpha)) 

 

    plt.plot(angles, losses) 

    fig = plt.gcf() 

    fig.set_size_inches(5, 3) 

    plt.title('Billiard Scene Objective') 

    plt.ylabel('Objective') 

    plt.xlabel('Angle of velocity') 

    plt.tight_layout() 

    plt.show() 

 

 

scan(float(sys.argv[1])) 

 



Waves (Φ𝐹𝑙𝑜𝑤) 

You: Explain this code to me: from phi.jax.flow import * […] 

 

ChatGPT: 

This code seems to be a simulation of a wave propagating through a 2D grid, possibly representing a 
water surface or similar phenomenon. Let's break it down step by step: 

1. Import Statements: 

from phi.jax.flow import * 
This imports necessary functions and classes from the phi library for running simulations with 

computational fluid dynamics (CFD) applications. 

2. Function Definitions: 

• wave_displace(sphere: Sphere, *fields: Field, mag=.5, t=-math.PI * 0.5): This 

function takes a Sphere object and one or more Field objects as input. It displaces the fields 

based on the distance to the sphere and a time-dependent displacement value. The displacement 
value is calculated as a sinusoidal function of time (t). It returns a list of displaced fields. 

• step(h_c, h_p, time, dt=1/60./16, k_speed=1.0, k_damp=0.0): This function defines a 

single time step in the simulation. It takes the current state of the simulation grid h_c, the previous 

state h_p, the current time, and optional parameters for time step (dt), wave speed coefficient 

(k_speed), and damping coefficient (k_damp). It computes the next state h_n based on the wave 

equation and returns it along with updated values of the current grid and time. 

3. Initial Conditions: 

h_initial = CenteredGrid(x=128, y=128, bounds=Box(x=12.8, y=12.8), 
boundary=ZERO_GRADIENT) 
This initializes the simulation grid (h_initial) with a resolution of 128x128 cells and a spatial 

domain defined by a bounding box of size 12.8x12.8. ZERO_GRADIENT indicates the boundary 

condition where the gradient at the boundary is assumed to be zero. 

4. Simulation Execution: 

final, *_ = iterate(step, 5 * 60 * 16, h_initial, h_initial, 0) 
This line executes the simulation. It iterates the step function for a total of 5 minutes (using 60 steps 

per second and 16 iterations per step). It starts with the initial grid state (h_initial) and previous 

state (h_initial) and initial time 0. It returns the final state of the simulation grid. 

5. Visualization: show(final) 
This line displays the final state of the simulation grid. 

In summary, this code simulates the propagation of waves through a 2D grid using computational fluid 
dynamics principles, possibly representing phenomena like water waves, with the capability to displace 
the grid based on a spherical object. 

 



Waves (Φ𝐹𝑙𝑜𝑤) 

from phi.jax.flow import * 

 

def wave_displace(sphere: Sphere, *fields: Field, mag=.5, t=-math.PI * 0.5): 

    sq_dist_to_sphere = math.vec_squared(fields[0].center - sphere.center) 

    displace_val = mag * math.sin(t) 

    return [field.where(sq_dist_to_sphere < sphere.radius**2, displace_val, f) for f in fields] 

 

@jit_compile 

def step(h_c, h_p, time, dt=1/60./16, k_speed=1.0, k_damp=0.0): 

    sphere = Sphere(center=h_c.bounds.center + math.rotate_vector(vec(x=0, y=-12.8/3), time), radius=1.) 

    h_c, h_p = wave_displace(sphere, h_c, h_p) 

    h_n = 2.0 * h_c - h_p + dt * dt * (k_speed * h_c.laplace() - k_damp * (h_c - h_p))  # wave_solve 

    return h_n, h_c, time + dt 

 

h_initial = CenteredGrid(x=128, y=128, bounds=Box(x=12.8, y=12.8), boundary=ZERO_GRADIENT) 

final, *_ = iterate(step, 5 * 60 * 16, h_initial, h_initial, 0) 

plot(final) 

 



Waves (Warp) 

You: Explain this code to me:   import math    […] 

 

ChatGPT: 

This code appears to be a simulation of wave propagation in a grid-based environment, with a visualization 
component. Let's break it down: 

1. Imports: The code imports necessary libraries, including math for mathematical operations and a 
module named warp for parallel computation and rendering. 

2. Function Definitions: 

o sample: Retrieves the value from a 2D array at specified coordinates, clamping the 
coordinates within the array boundaries. 

o laplacian: Computes the Laplacian of a scalar field at a given point in the grid. 

o wave_displace: Displaces the grid points around a specified center in a circular pattern to 
simulate wave generation. 

o wave_solve: Solves the wave equation iteratively for each point in the grid. 

o grid_update: Updates the vertex positions of a grid based on the calculated heights. 

3. Class Definition: 

o Example: Manages the simulation and rendering of the wave propagation. 

▪ Initializes simulation parameters, grid dimensions, and wave constants. 

▪ Generates grid vertices and indices for rendering. 

▪ Provides methods to advance the simulation (step) and render the current state 
(render). 

4. Main Execution: 

o Instantiates an Example object. 

o Iterates over simulation frames, advancing the simulation and rendering each frame. 

o If a renderer is available, saves the rendered frames to a file. 

5. Simulation Process: 

o In each frame, the simulation advances in discrete substeps. 

o Wave displacement and wave equation solving kernels are launched in parallel for each grid 
point. 

o Grid heights are updated based on the wave simulation results. 

o The simulation time is incremented. 



6. Rendering: 

o If a renderer is available, the grid vertices along with a sphere representing the wave source 
are rendered in a 3D scene. 

o The rendering process is timed using ScopedTimer. 

Overall, the code simulates the propagation of waves in a grid-based environment and visualizes the results 
using parallel computation and rendering techniques provided by the warp module. 

 



Waves (Warp) 

import math 

 

import warp as wp 

import warp.render 

 

wp.init() 

 

 

@wp.func 

def sample(f: wp.array(dtype=float), x: int, y: int, width: int, height: int): 

    # clamp texture coords 

    x = wp.clamp(x, 0, width - 1) 

    y = wp.clamp(y, 0, height - 1) 

 

    s = f[y * width + x] 

    return s 

 

 

@wp.func 

def laplacian(f: wp.array(dtype=float), x: int, y: int, width: int, height: int): 

    ddx = sample(f, x + 1, y, width, height) - 2.0 * sample(f, x, y, width, height) + sample(f, x - 1, y, width, height) 

    ddy = sample(f, x, y + 1, width, height) - 2.0 * sample(f, x, y, width, height) + sample(f, x, y - 1, width, height) 

 

    return ddx + ddy 

 

 

@wp.kernel 

def wave_displace( 

        hcurrent: wp.array(dtype=float), 

        hprevious: wp.array(dtype=float), 

        width: int, 

        height: int, 

        center_x: float, 

        center_y: float, 

        r: float, 

        mag: float, 

        t: float, 

): 

    tid = wp.tid() 

 

    x = tid % width 

    y = tid // width 

 

    dx = float(x) - center_x 

    dy = float(y) - center_y 

 

    dist_sq = float(dx * dx + dy * dy) 

 

    if dist_sq < r * r: 

        h = mag * wp.sin(t) 

 

        hcurrent[tid] = h 

        hprevious[tid] = h 

 

 

@wp.kernel 

def wave_solve( 

        hprevious: wp.array(dtype=float), 

        hcurrent: wp.array(dtype=float), 

        width: int, 

        height: int, 

        inv_cell: float, 

        k_speed: float, 

        k_damp: float, 

        dt: float, 

): 

    tid = wp.tid() 

 

    x = tid % width 

    y = tid // width 

 

    l = laplacian(hcurrent, x, y, width, height) * inv_cell * inv_cell 

 

    # integrate 

    h1 = hcurrent[tid] 

    h0 = hprevious[tid] 

 

    h = 2.0 * h1 - h0 + dt * dt * (k_speed * l - k_damp * (h1 - h0)) 

 

    # buffers get swapped each iteration 

    hprevious[tid] = h 

 

 

# simple kernel to apply height deltas to a vertex array 

@wp.kernel 

def grid_update(heights: wp.array(dtype=float), vertices: wp.array(dtype=wp.vec3)): 

    tid = wp.tid() 

 

    h = heights[tid] 

    v = vertices[tid] 



 

    v_new = wp.vec3(v[0], h, v[2]) 

 

    vertices[tid] = v_new 

 

 

class Example: 

    def __init__(self, stage): 

        self.sim_width = 128 

        self.sim_height = 128 

 

        self.sim_fps = 60.0 

        self.sim_substeps = 16 

        self.sim_duration = 5.0 

        self.sim_frames = int(self.sim_duration * self.sim_fps) 

        self.sim_dt = (1.0 / self.sim_fps) / self.sim_substeps 

        self.sim_time = 0.0 

 

        # wave constants 

        self.k_speed = 1.0 

        self.k_damp = 0.0 

 

        # grid constants 

        self.grid_size = 0.1 

        self.grid_displace = 0.5 

 

        vertices = [] 

        self.indices = [] 

 

        def grid_index(x, y, stride): 

            return y * stride + x 

 

        for z in range(self.sim_height): 

            for x in range(self.sim_width): 

                pos = ( 

                    float(x) * self.grid_size, 

                    0.0, 

                    float(z) * self.grid_size, 

                ) 

 

                # directly modifies verts_host memory since this is a numpy alias of the same buffer 

                vertices.append(pos) 

 

                if x > 0 and z > 0: 

                    self.indices.append(grid_index(x - 1, z - 1, self.sim_width)) 

                    self.indices.append(grid_index(x, z, self.sim_width)) 

                    self.indices.append(grid_index(x, z - 1, self.sim_width)) 

 

                    self.indices.append(grid_index(x - 1, z - 1, self.sim_width)) 

                    self.indices.append(grid_index(x - 1, z, self.sim_width)) 

                    self.indices.append(grid_index(x, z, self.sim_width)) 

 

        # simulation grids 

        self.sim_grid0 = wp.zeros(self.sim_width * self.sim_height, dtype=float) 

        self.sim_grid1 = wp.zeros(self.sim_width * self.sim_height, dtype=float) 

        self.sim_verts = wp.array(vertices, dtype=wp.vec3) 

 

        # create surface displacement around a point 

        self.cx = self.sim_width / 2 + math.sin(self.sim_time) * self.sim_width / 3 

        self.cy = self.sim_height / 2 + math.cos(self.sim_time) * self.sim_height / 3 

 

        self.renderer = None 

        if stage: 

            self.renderer = wp.render.UsdRenderer(stage) 

 

    def step(self): 

        with wp.ScopedTimer("step", active=True): 

            for s in range(self.sim_substeps): 

                # create surface displacement around a point 

                self.cx = self.sim_width / 2 + math.sin(self.sim_time) * self.sim_width / 3 

                self.cy = self.sim_height / 2 + math.cos(self.sim_time) * self.sim_height / 3 

 

                wp.launch( 

                    kernel=wave_displace, 

                    dim=self.sim_width * self.sim_height, 

                    inputs=[ 

                        self.sim_grid0, 

                        self.sim_grid1, 

                        self.sim_width, 

                        self.sim_height, 

                        self.cx, 

                        self.cy, 

                        10.0, 

                        self.grid_displace, 

                        -math.pi * 0.5, 

                    ], 

                ) 

 

                # integrate wave equation 

                wp.launch( 

                    kernel=wave_solve, 

                    dim=self.sim_width * self.sim_height, 

                    inputs=[ 

                        self.sim_grid0, 

                        self.sim_grid1, 



                        self.sim_width, 

                        self.sim_height, 

                        1.0 / self.grid_size, 

                        self.k_speed, 

                        self.k_damp, 

                        self.sim_dt, 

                    ], 

                ) 

 

                # swap grids 

                (self.sim_grid0, self.sim_grid1) = (self.sim_grid1, self.sim_grid0) 

 

                self.sim_time += self.sim_dt 

 

        with wp.ScopedTimer("mesh", active=False): 

            # update grid vertices from heights 

            wp.launch(kernel=grid_update, dim=self.sim_width * self.sim_height, inputs=[self.sim_grid0, self.sim_verts]) 

 

    def render(self): 

        if self.renderer is None: 

            return 

 

        with wp.ScopedTimer("render", active=True): 

            vertices = self.sim_verts.numpy() 

 

            self.renderer.begin_frame(self.sim_time) 

            self.renderer.render_mesh("surface", vertices, self.indices, colors=((0.35, 0.55, 0.9),) * len(vertices)) 

            self.renderer.render_sphere( 

                "sphere", 

                (self.cx * self.grid_size, 0.0, self.cy * self.grid_size), 

                (0.0, 0.0, 0.0, 1.0), 

                10.0 * self.grid_size, 

                color=(1.0, 1.0, 1.0), 

            ) 

            self.renderer.end_frame() 

 

 

if __name__ == "__main__": 

    stage_path = "example_wave.usd" 

 

    example = Example(stage_path) 

 

    for i in range(example.sim_frames): 

        example.step() 

        example.render() 

 

    if example.renderer: 

        example.renderer.save() 

 


