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Abstract

This paper aims to investigate the possibil-001
ity of exploiting original semantic features002
of PLMs (pre-trained language models) dur-003
ing contrastive learning in the context of SRL004
(sentence representation learning). In the con-005
text of feature modification, we identified a006
method called IFM (implicit feature modifi-007
cation), which reduces the tendency of con-008
trastive models for VRL (visual representation009
learning) to rely on feature-suppressing short-010
cut solutions. We observed that IFM did not011
work well for SRL, which may be due to differ-012
ences between the nature of VRL and SRL. We013
propose BYOP, which boosts well-represented014
features, taking the opposite idea of IFM, un-015
der the assumption that SimCSE’s dropout-016
noise-based augmentation may be too simple to017
modify high-level semantic features, and that018
the features learned by PLMs are semantically019
meaningful and should be boosted, rather than020
removed. Extensive experiments lend credence021
to the logic of BYOP, which considers the na-022
ture of SRL.023

1 Introduction024

Contrastive learning has been successfully adopted025

in the field of VRL by constructing contrastive pairs026

(drawing positive pairs and repelling negative pairs)027

based on the sufficient background of augmenta-028

tion strategies (He et al., 2020; Chen et al., 2020).029

After that, SRL (sentence representation learning)030

followed the literature established by the baseline031

SimCSE (Gao et al., 2021), which proposed to032

construct contrastive pairs based on dropout-noise.033

Recent studies have generally confirmed the effec-034

tiveness of this method (Zhou et al., 2022; Zhang035

et al., 2022a,b; Wu et al., 2022; Liu et al., 2023).036

One interesting point is that SimCSE signifi-037

cantly improves the performance of PLMs (pre-038

trained language models) on sentence representa-039

tion benchmark, named STS benchmark (Cer et al.,040

2017) where PLMs showed poor performance be-041

fore the introduction of SimCSE. At the same time, 042

vanilla PLMs have shown comparable or even bet- 043

ter performances on several transfer tasks than 044

PLMs trained by SimCSE. We also observed these 045

performance trends, each reported in Table 1 and 046

Table 10 in Appendix (see the performances of 047

‘Avg.embeddings’ and ‘[CLS] embeddings’ which 048

indicate the vanilla PLMs, and that of ‘SimCSE’). 049

Based on these empirical results, we hypothesize 050

that PLMs indeed learn several well-represented 051

features, considering their success in the trans- 052

fer tasks even without the contrastive framework 053

proposed by SimCSE. And such meaningful fea- 054

tures would be utilized in contrastive learning of 055

SimCSE, which may partly contribute to the per- 056

formance improvement in the STS benchmark. 057

Therefore, if there is a way to boost these well- 058

represented features, it would make SimCSE per- 059

form even better. 060

In this context, we identified a method, named 061

IFM (implicit feature modification) (Robinson 062

et al., 2021) from the VRL literature, which tries to 063

remove some well-represented features, for the pur- 064

pose of avoiding shortcut learning (Geirhos et al., 065

2020) − a model tends to depend on a subset of fea- 066

tures that is easier to learn during training (Wang 067

and Isola, 2020). We interpret IFM to be the op- 068

posite of our idea, although IFM ultimately seek 069

to improve performance like we do. Considering 070

that VRL models are initialized and trained from 071

scratch while PLMs already capture semantic fea- 072

tures before contrastive learning, taking a contrary 073

approach to IFM will work better for SRL, rather 074

than following IFM as is. 075

This study first conducts a pilot study applying 076

the vanilla IFM to SimCSE. Contrary to its success 077

in VRL, we observe a performance degradation 078

especially for larger size of PLMs. We interpret 079

that this result comes from PLMs already learn 080

several meaningful features, which are indeed help- 081

ful in SRL and are not the shortcut features that 082
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harm the generalization performance. Then, we083

propose BYOP (bootstrap1 your own PLM), which084

boosts the well-represented features, contrary to085

the intuition of IFM from the VRL perspective. Ex-086

perimental results demonstrate the effectiveness,087

robustness, and extensibility of our BYOP.088

2 Preliminary089

Unsupervised Contrastive Learning for SRL090

SimCSE followed the literature of the NT-Xent091

(normalized temperature cross entropy) loss (Chen092

et al., 2020) with in-batch negatives:093

li = −log
esim(zi,z′i)/τ∑N
j=1 e

sim(zi,z′j)/τ
, (1)094

where sim(), zi, z′i, and z′j(i ̸= j) denotes a sim-095

ilarity function, representation of an anchor in-096

stance, a positive pair, and a negative pair. On097

top of SimCSE, a substantial body of literature has098

been published that shows promising performance.099

Implicit Feature Modification Unlike the100

straightforward supervised learning, construction101

of a discriminative instance is an important compo-102

nent in contrastive learning. Contrary to the general103

belief that lower contrastive loss avoids shortcut104

solutions (Wang and Isola, 2020), a strong focus on105

harder instance discrimination can lead to suppres-106

sion of well-established original features (Robin-107

son et al., 2021). This finding is in line with the108

reported simplicity bias in supervised learning (Her-109

mann et al., 2020; Huh et al., 2022).110

To solve this problem, Robinson et al., 2021 pro-111

posed a simple method, called IFM, which accel-112

erates instances to avoid well-represented features113

by applying adversarial perturbations toward the114

gradient ascent of the contrastive loss. Consid-115

ering the similarity function of Equation 1 as a116

simple ℓ2-normalized dot product2, each gradient117

with respect to the positive (∇z′i li) and the negative118

instance (∇z′j li) can be defined as:119

∇z′i li = (
esim(zi,z′i)/τ∑N
j=1 e

sim(zi,z′j)/τ
− 1) · zi

τ
,

∇z′j li =
esim(zi,z′j)/τ∑N
j=1 e

sim(zi,z′j)/τ
· zi
τ
.

(2)120

IFM (li,IFM ) applies perturbations with a mar-121

gin (m) toward the direction of gradient ascent122

1Same with the popular BYOL (Grill et al., 2020) paper,
the term ‘bootstrap’ is used in its idiomatic sense rather than
the statistical sense throughout the paper.

2It is an analogous of cosine similarity used in SimCSE.

2D manifold representation space after applying IFM
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Figure 1: PCA visualization of the 2D representation
space using hidden perturbation.

(∇z′i li ∝ −zi, ∇z′j li ∝ zi) and complements the 123

feature by adopting the multi-task loss li,total. The 124

perturbation loss (li,IFM ) and the multi-task loss 125

are computed by: 126

li,IFM = −log
e(sim(zi,z′i)−m)/τ

e(sim(zi,z′i)−m)/τ +
∑N

j ̸=i e
(sim(zi,z′j)+m)/τ

),

li,total =
1

2
(li + li,IFM ).

(3) 127

3 Pilot Study 128

Despite the effectiveness of IFM in VRL, we as- 129

sume that boosting the well-represented features, 130

contrary to IFM, will fit in SRL, due to the dif- 131

ferences between VRL and SRL; e.g., the use of 132

PLMs that may learn several well-represented fea- 133

tures. In this pilot study, we empirically show the 134

failure of the vanilla IFM applied to SimCSE, pro- 135

vide further analyses to point out differences in the 136

two fields. 137

Experimental Setups We followed the settings 138

of SimCSE to tune the basic hyperparameters. For 139

the margin term, we performed a grid search; m ∈ 140

[0.01, 0.10] with step 0.01. We trained all models 141

for 1 epoch and evaluated them every 250 steps on 142

the STS-B development set to save the best check- 143

point. For evaluation, we downloaded the sampled 144

English Wikipedia (106) from huggingface (Wolf 145

et al., 2019) same with SimCSE (Gao et al., 2021). 146

We evaluated the following 7 datasets: STS 2012- 147

2016 (Agirre et al., 2012, 2013, 2014, 2015, 2016), 148

STS Benchmark (STS-B) (Cer et al., 2017) and 149
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PLMs Method Avg.Score
BERTbase [CLS] embedding 31.40

Avg. embeddings 52.57
SimCSE 76.95
+IFM 77.39
+BYOPC 77.32
+BYOPD 77.45
+BYOPC-M 77.32
+BYOPD-M 77.35

BERTlarge [CLS] embedding 32.00
Avg. embeddings 48.91
SimCSE 78.46
+IFM 77.99
+BYOPC 78.89
+BYOPD 79.23
+BYOPC-M 79.08
+BYOPD-M 78.21

RoBERTabase [CLS] embedding 43.62
Avg. embeddings 53.49
SimCSE 76.64
+IFM 76.97
+BYOPC 77.62
+BYOPD 77.43
+BYOPC-M 77.61
+BYOPD-M 77.69

RoBERTalarge [CLS] embedding 26.64
Avg. embeddings 52.81
SimCSE 78.53
+IFM 77.78
+BYOPC 78.56
+BYOPD 78.38
+BYOPC-M 78.95
+BYOPD-M 78.65

Table 1: Evaluation results of different methods on STS
evaluation tasks. Each bold number means the best
performance within the PLMs, respectively. ♡ : Results
from Gao et al., 2021

SICK Relatedness (SICK-R) (Marelli et al., 2014).150

Results and Analyses We report the averaged151

score of the 7 evaluation tasks performed by Sim-152

CSE with the vanilla IFM in Table 1. We observe153

that IFM improves the performance of SimCSE154

only in the case of two base models (BERT-base155

and RoBERTa-base), but shows degraded perfor-156

mance in the two large models. Since larger size of157

PLMs have much capacity for establishing useful158

features during their pre-training, the idea of IFM159

especially degrades their performances.160

Beyond the STS evaluation results, we also inves-161

tigate the uniformity and alignment metrics (Wang162

and Isola, 2020) of the STS-B development sets163

during training, where the former leads to all in-164

stances being uniformly distributed and the latter165

increases the similarity between the anchor and the166

positive instance. As shown in Figure 3, we can see167

that the larger margin (m) of IFM leads to greater168

uniformity and alignment, which generally means169

the degradation. This result is unexpected as there170

is no meaningful change in uniformity and even171
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Figure 2: Uniformity and alignment (training) of BERT-
base depending on IFM with different margin (m).
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Figure 3: Uniformity and alignment (STS-B) of BERT-
base depending on IFM with different margin (m).

there is an improvement in alignment in the training 172

dataset, which we also visualize in Figure 2. 173

Based on the results, we suggest the following 174

intuitions. First, we assume that the dropout-noise- 175

based augmentation is too simple to modify high- 176

level semantic features by IFM. This is a funda- 177

mental limitation that makes it difficult to intu- 178

itively construct multiple predictive sets of inputs 179

in NLP. In this regard, IFM has difficulty remov- 180

ing frequently used features. Second, as shown in 181

Figure 1, PLMs’ semantic spaces are anisotropic 182

− a narrow cone-shaped space (Ethayarajh, 2019; 183

Wang et al., 2019; Li et al., 2020) − before be- 184

ing trained by contrastive learning. We think that 185

IFM’s perturbations, positive perturbation (w.r.t. 186

negative instance) and negative perturbation (w.r.t. 187

positive instance) in the direction of the anchor, 188

may be ineffective because PLMs already have 189

some meaningful semantic structures. In other 190

words, PLMs learn some semantic features that 191

are harder to alter by contrastive learning, but still 192

useful for sentence representation. 193

4 Proposed Method 194

4.1 BYOP 195

Motivated by the analyses of the previous section, 196

we propose BYOP (bootstrap your own PLM), 197

which boosts semantic features contrary to the con- 198

cept of IFM. In BYOP, we apply the perturbation in 199

the direction of the gradient descent; i.e., additive 200

margin to the positive logits and substractive mar- 201

gin to the negative logits, opposite to Equation 3. 202
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PLMs Method Avg.Score
BERTbase SimCSE 75.83 ± 0.71

+BYOPD 76.81 ± 0.62
+BYOPD-M 76.43 ± 0.81

BERTlarge SimCSE 77.14 ± 1.45
+BYOPD 78.98 ± 0.34
+BYOPC-M 78.78 ± 0.30

RoBERTabase SimCSE 76.77 ± 0.06
+BYOPC 77.51 ± 0.21
+BYOPD-M 77.44 ± 0.40

RoBERTalarge SimCSE 78.04 ± 0.64
+BYOPC-M 78.27 ± 0.65
+BYOPD-M 78.06 ± 0.52

Table 2: Averaged results of 3 different random seeds
experiments on STS evaluation tasks.

Perturbation Variants BYOP has two differ-203

ent types of margin values and 5 candidates for204

perturbation methods. For the margin value, we205

use (1) a constant value (BYOPC), which is the206

same as IFM, and (2) a dynamically changing value207

(BYOPD), which is determined by the similarity208

between an anchor and a positive instance. We209

simply compute the dynamic margin as sim(zi,z′i)
N−1210

(we set the denominator to N − 1 to account for211

the number of in-batch negative samples). For the212

perturbation method, we explore several combina-213

tions of perturbations, which we briefly express214

as additive ‘+’, substractive ‘-’, perturbation for215

positive instance ‘p’, and perturbation for negative216

instance ‘n’. For example, the additive perturbation217

for positive instance and the substractive perturba-218

tion for negative instance is denoted as ‘p+n-’ (see219

Appendix E for their results).220

Multi-task Loss VS. Single Loss Following221

IFM (Robinson et al., 2021), we adopt the multi-222

task loss (e.g., BYOPD-M) to complement the fea-223

ture semantics that might be ignored by perturba-224

tions. Since BYOP aims to boost the semantic225

features of contrastive learning, we also conduct226

experiments for the single loss (i.e., using only227

the perturbation loss li,IFM ). Equation for the228

two losses are similar to Equation 3 with a sub-229

tle change in the margin term. For example, BYOP230

with ‘p+n-’ alters each margin term (+m and −m)231

to sim(zi, z′i) +m and sim(zi, z′j)−m.232

4.2 Empirical Validation233

Implementation Details We followed the hy-234

perparameter settings of SimCSE, including batch235

size, learning rate, and temperature. For BYOP,236

we performed a grid search to find optimal values237

such as margin (m) and perturbation types. More238

detailed settings can be found in Appendix B.239

PLMs Method Avg.STS
BERTbase RankCSE-ListMLE 80.11

+BYOPC 80.53
+BYOPD 80.51

BERTlarge RankCSE-ListMLE 80.24
+BYOPC 80.64
+BYOPD 80.67

RoBERTabase RankCSE-ListMLE 79.05
+BYOPC 79.51
+BYOPD 79.50

RoBERTalarge RankCSE-ListMLE 79.70
+BYOPC 79.53
+BYOPD 79.84

Table 3: Averaged STS results of RankCSE applying
BYOP.

Unsupervised STS Tasks BYOP improves the 240

performance of SimCSE in 4 different PLMs. As 241

shown in Table 1, variants of BYOP lead to better 242

results in most cases: about 0.6% on BERT-base, 243

1.0% on BERT-large, 1.4% on RoBERTa-base, and 244

0.5% on RoBERTa-large. 245

Robustness to Different Seeds Previous work 246

has demonstrated the vulnerability of the unsu- 247

pervised manner of SimCSE on different random 248

seeds (Jiang et al., 2022). We therefore investigate 249

the robustness of BYOP using multiple random 250

seeds. We first select the best two methods within 251

PLMs based on the results of Table 1, and report the 252

averaged STS results. As shown in Table 2, Sim- 253

CSE with BYOP shows better performance and 254

also lower standard deviation in most cases. 255

Applying BYOP to SOTA To assess the ex- 256

tensibility of BYOP, we incorporate BYOP into 257

RankCSE-ListMLE (Liu et al., 2023), a recent 258

state-of-the art approach in SRL, by using the sin- 259

gle loss. As shown in Table 3, it is evident that 260

BYOP plays a significant role in improving perfor- 261

mance in all models. These results highlight the 262

potential for BYOP to function as a viable plugin 263

within the contrastive learning schemes. 264

5 Conclusion 265

We have proposed BYOP based on the intuition that 266

PLMs’ semantic features are useful for sentence 267

representation. Our pilot study, which observes 268

unexpected experimental artifacts in terms of the 269

uniformity, also motivates re-examining the logic 270

of the original IFM by boosting the gradient of 271

loss. We have conducted the STS benchmark of 272

which the results back up the assumption of BYOP 273

with testing several variants. We hope that these 274

approaches shed new light on the deeper analysis 275

of the contrastive learning of SRL. 276
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6 Limitation277

Despite its performance, there is a lack of under-278

standing on how the perturbations lead to feature279

modification in the representation space. The au-280

thors of IFM (Robinson et al., 2021) visualized the281

examples of instances that are the nearest neigh-282

bors of modified feature vectors in terms of both283

positive and negative pairs. In contrast, we do not284

find any intuitive results in SRL. It seems likely that285

these results are in fact due to the dropout-based286

augmentation of SRL, which is much more prone287

to ignore semantic information when constructing288

negative pairs.289

At present, several research questions remain un-290

clear; which shortcut features of PLMs are harder291

to remove or can be useful to boost in downstream292

tasks. One of the candidates may be a frequency293

bias in the representation space (Jiang et al., 2022);294

i.e., feature vectors align in the space depending295

on their frequencies. We think that there is ample296

room for further progress in analyzing these prop-297

erties, which may lead to the construction of an298

effective negative pair for SRL.299

Due to space limitations, we report results from300

ablation experiments in the Appendix E. These re-301

sults include various combinations of perturbations302

used in BYOP in terms of BYOPD. Similar to Sim-303

CSE, we evaluate each method on typical transfer304

tasks (see Appendix F).305

7 Ethical Consideration306

We download all datasets and PLMs used in exper-307

iments from huggingface (scholar purpose) to keep308

an intellectual property. Still, ethical issues can309

be raised such as negative biases which are funda-310

mentally originated from the nature of web-scraped311

training data (Wiki) (Bender et al., 2021). Further-312

more, there are not any other problems which can313

be critical for the society.314
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Train Dev Test
STS12 - - 3108
STS13 - - 1500
STS14 - - 3750
STS15 - - 3000
STS16 - - 1186
STS-B 5749 1500 1379

SICK-R 4500 500 4927

Table 4: Statistics of 7 STS benchmarks from the Sen-
tEval toolkit.

Train Dev Test
MR 10662 - -
CR 3775 - -

SUBJ 10000 - -
MPQA 10606 - -
SST-2 67349 872 1821
TREC 5452 - 500
MPRC 4076 - 1725

Table 5: Statistics of 7 transfer task datasets.

A Datasets514

Following the literature, we used English515

Wikipedia, which can be downloaded at Hugging-516

face, and employed the SentEval (Conneau and517
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Figure 4: STS-B development set’s uniformity and align-
ment of BERT-base trained by 4 different BYOP meth-
ods.

Kiela, 2018) toolkit for evaluation, where we use 7 518

STS datasets, which are typical sentence represen- 519

tation benchmarks widely adopted in the SRL field. 520

In addition, we performed an evaluation of transfer 521

tasks: MR (Pang and Lee, 2005), CR (Hu and Liu, 522

2004), SUBJ (Pang and Lee, 2004), MPQA (Wiebe 523

et al., 2005), SST-2 (Socher et al., 2013), TREC 524

(Voorhees and Tice, 2000) and MRPC (Dolan and 525

Brockett, 2005), whose results are reported in Ap- 526

pendix F. Table 4 and Table 5 show the statistics of 527

the datasets. 528

B Detailed Implementation 529

For all cases of BYOP, we perform a grid search 530

to determine the hyperparameters. Specifically, we 531

first define the interval with an extensive search, 532

and then do a grid search within the following 533

range: 534

• Margin (m) for BYOPC ∈ [0.01, 0.1], step 535

size is 0.01. 536

• Perturbation method ∈ {p-n-, p+n-, p+, p-, 537

n-}. 538

Among combinations of these hyperparameters, 539

we report the settings that show the best perfor- 540

mance in STS benchmarks in the Table 6. As seen 541

in the table, perturbing the direction of the gradi- 542

ent descent (p+, n-, p-n-, p+n-) shows performance 543

improvement in several cases. Also, applying the 544

perturbations only to positive instances shows per- 545

formance improvement. We believe this indicates 546

the importance of removing features in positive 547

instances rather than negative instances since in- 548

batch negative samples in unsupervised contrastive 549

learning can lead to the false-negative problem. 550

C Uniformity and Alignment 551

Unlike IFM, BYOP aims to boost the gradient of 552

the contrastive loss. In this regard, we first think 553
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BYOPC batch_size learning_rate temp (τ ) margin (m) perturbation
BERTbase 64 3e-5 0.05 0.01 n-
BERTlarge 64 1e-5 0.05 0.04 p-n-
RoBERTabase 128 1e-5 0.05 0.03 p-
RoBERTalarge 256 3e-5 0.05 0.03 p-n-
BYOPD batch_size learning_rate temp (τ ) margin (m) perturbation
BERTbase 64 3e-5 0.05 − n-
BERTlarge 64 1e-5 0.05 − p-
RoBERTabase 128 1e-5 0.05 − p-
RoBERTalarge 256 3e-5 0.05 − p-
BYOPC-M batch_size learning_rate temp (τ ) margin (m) perturbation
BERTbase 64 3e-5 0.05 0.07 n-
BERTlarge 64 1e-5 0.05 0.03 p-n-
RoBERTabase 128 1e-5 0.05 0.005 n-
RoBERTalarge 256 3e-5 0.05 0.02 p+n-
BYOPD-M batch_size learning_rate temp (τ ) margin (m) perturbation
BERTbase 64 3e-5 0.05 − p+n-
BERTlarge 64 1e-5 0.05 − p-n-
RoBERTabase 128 1e-5 0.05 − p+
RoBERTalarge 256 3e-5 0.05 − n-

Table 6: Hyperparameters used in the main results (Table 1) of the STS evaluation.

that the application of BYOP leads to an improve-554

ment in uniformity and alignment. However, as555

shown in Figure 4, where we plot the change of556

two losses during the training of BERT-base, only557

BYOPC improves the uniformity and all methods558

marginally improve the alignment. This may verify559

our motivation that the learned shortcut features560

of PLMs are difficult to remove by the contrastive561

loss, even in the case of accelerating its gradient.562

D Results of STS Benchmark563

In this section, we report detailed results of BYOP564

on the STS benchmark. As shown in Table 7, we565

can observe that BYOP outperforms the original566

best result on STS tasks compared to the compet-567

ing baseline methods based on BERT or RoBERTa.568

Although BYOP achieves a more visible perfor-569

mance improvement on the base models than on570

the large models, it still outperforms almost all571

tasks in both the base and large models. These572

results suggest that BYOP is effective across dif-573

ferent PLMs regardless of their size and different574

contrastive learning methods.575

E Ablational Experiments576

We perform additional experiments on the STS577

evaluation when using different combinations of578

BYOP. Especially, we report the ablation results 579

of BYOPD, since this method does not require the 580

margin value m. As shown in Table 8 and Table 9, 581

other different methods can also improve the per- 582

formance of base models, while large models need 583

consideration in the choice of perturbation method 584

since their performance is mostly degraded. 585

F Results of Transfer Tasks 586

Following the literature, we also report the per- 587

formance of 7 transfer tasks as mentioned in Sec- 588

tion A. In general, PLMs show an outstanding per- 589

formance on downstream tasks despite of their poor 590

capability on STS tasks. In contrast, both SimCSE 591

and BYOP variants show promising performance 592

on STS tasks and also show a comparable perfor- 593

mance to PLMs. They even outperform in some 594

cases. 595
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PLMs Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
BERTbase [CLS] embedding 21.54 32.11 21.28 37.89 44.24 20.29 42.42 31.40

Avg. embeddings 30.87 59.89 47.73 60.29 63.73 47.29 58.22 52.57
SimCSE 71.64 82.68 75.81 82.25 78.60 78.93 68.76 76.95
+BYOPC 71.84 82.86 76.16 82.61 79.07 79.11 69.61 77.32
+BYOPD 72.04 82.86 76.36 82.78 79.12 79.24 69.72 77.45
+BYOPC-M 71.67 82.88 76.02 82.45 79.09 79.14 69.98 77.32
+BYOPD-M 71.86 82.85 76.23 82.64 79.07 79.13 69.66 77.35
RankCSE-listMLE 74.53 85.77 78.12 84.71 81.48 81.76 74.37 80.11
+BYOPC 76.16 85.97 78.92 84.90 81.23 82.60 73.91 80.53
+BYOPD 76.35 85.98 78.82 84.85 81.23 82.61 73.71 80.51

BERTlarge [CLS] embedding 27.67 30.76 22.59 29.98 42.74 26.75 43.44 32.00
Avg. embeddings 27.67 55.79 44.49 51.67 61.88 47.01 53.85 48.91
SimCSE 70.80 85.58 77.34 84.27 79.31 79.07 72.82 78.46
+BYOPC 72.45 85.15 76.42 84.00 79.56 80.19 74.43 78.89
+BYOPD 71.72 85.55 77.86 85.06 79.08 80.11 75.20 79.23
+BYOPC-M 71.52 84.88 77.37 84.42 79.47 80.39 75.50 79.08
+BYOPD-M 69.80 83.52 76.52 83.61 78.38 79.46 76.16 78.21
RankCSE-listMLE 74.33 86.18 78.75 85.30 81.07 81.27 74.75 80.24
+BYOPC 75.59 86.58 79.50 85.74 80.73 81.86 74.45 80.64
+BYOPD 75.61 86.55 79.59 85.71 80.62 81.99 74.65 80.67

RoBERTabase [CLS] embedding 16.67 45.56 30.36 55.08 56.98 38.82 61.90 43.62
Avg. embeddings 32.11 56.33 45.22 61.34 61.98 55.40 62.03 53.49
SimCSE 68.65 81.70 73.44 82.30 81.09 80.51 68.76 76.64
+BYOPC 70.57 82.69 74.88 82.76 81.66 82.04 68.71 77.62
+BYOPD 69.92 82.31 74.34 82.29 81.28 81.88 69.99 77.43
+BYOPC-M 70.44 82.53 74.36 83.09 81.65 81.51 69.69 77.61
+BYOPD-M 70.51 82.49 74.56 82.59 81.61 81.65 70.44 77.69
RankCSE-listMLE 73.45 84.56 76.00 83.96 82.67 82.80 69.89 79.05
+BYOPC 73.24 84.97 76.79 84.18 82.52 83.52 71.33 79.51
+BYOPD 73.15 84.98 76.85 84.19 82.49 83.51 71.32 79.50

RoBERTalarge [CLS] embedding 19.25 22.97 14.93 33.41 38.01 17.30 40.63 26.64
Avg. embeddings 33.63 57.22 45.67 63.00 61.18 50.59 58.38 52.81
SimCSE 70.85 83.67 75.83 84.24 80.27 82.42 72.41 78.53
+BYOPC 70.89 84.06 76.39 84.52 79.94 82.33 71.77 78.56
+BYOPD 70.34 83.92 75.50 84.34 80.46 82.17 71.90 78.38
+BYOPC-M 72.31 83.91 76.03 84.83 80.12 81.99 73.43 78.95
+BYOPD-M 71.79 83.82 76.15 84.36 80.68 82.57 71.16 78.65
RankCSE-listMLE 73.69 84.38 76.75 85.54 82.18 83.38 72.01 79.70
+BYOPC 72.84 84.95 77.43 85.21 80.85 83.56 71.84 79.53
+BYOPD 74.69 84.46 76.52 85.36 82.21 83.36 72.31 79.84

Table 7: Results for each method on the STS benchmark. Each bold and underlined number represents the best and
second best performance within the PLMs and methods, respectively.

PLMs Method Avg.STS PLMs Method Avg.STS
BERTbase BYOPD 77.45 BERTlarge BYOPD 79.23

p-n- 77.15 p-n- 77.79
p+n- 77.11 p+n- 77.36
p+ 77.25 p+ 77.80
p- 75.46 n- 77.76

RoBERTabase BYOPD 77.43 RoBERTalarge BYOPD 78.38
p-n- 77.10 p-n- 78.20
p+n- 77.20 p+n- 77.54
p+ 77.24 p+ 77.67
n- 76.56 n- 77.78

Table 8: Ablation results of BYOP equipped with the single loss, using different combinations of perturbations on
the STS evaluation tasks. The top row within each PLM is the method with the best STS performance, as specified
in Table 6.
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PLMs Method Avg.STS PLMs Method Avg.STS
BERTbase BYOPD-M 77.35 BERTlarge BYOPD-M 78.21

p-n- 77.12 p+n- 78.09
p+ 77.03 p+ 77.18
p- 76.80 p- 77.40
n- 77.29 n- 78.05

RoBERTabase BYOPD-M 77.69 RoBERTalarge BYOPD-M 78.65
p-n- 77.46 p-n- 77.16
p+n- 77.09 p+n- 77.36
p- 77.48 p+ 77.85
n- 76.91 p- 77.49

Table 9: Ablation results of BYOP equipped with the multi-task loss, using different combinations of perturbations
on the STS evaluation tasks. The top row within each PLM is the method with the best STS performance, as
specified in Table 6.

PLMs Method MR CR SUBJ MPQA SST TREC MPRC Avg.
BERTbase Avg. embeddings 81.50 86.73 95.22 88.02 85.94 90.60 73.68 85.96

[CLS] embedding 81.83 87.39 95.48 88.21 86.49 91.00 72.29 86.10
SimCSE 81.37 86.49 94.46 88.66 84.95 87.60 74.32 85.41
+BYOPC 81.18 86.25 94.49 88.86 84.73 86.80 74.84 85.31
+BYOPD 81.37 85.94 94.57 88.66 85.01 87.00 75.01 85.37
+BYOPC-M 81.34 86.49 94.63 89.01 84.90 86.80 72.75 85.13
+BYOPD-M 81.17 86.39 94.44 88.79 85.01 86.80 73.16 85.11

BERTlarge Avg. embeddings 84.30 89.22 95.60 86.94 89.29 91.40 71.65 86.91
[CLS] embedding 85.89 90.15 95.83 86.04 89.95 93.60 69.86 87.33
SimCSE 84.30 87.98 94.86 88.78 89.51 93.00 74.61 87.58
+BYOPC 84.98 88.08 95.17 89.08 89.73 90.40 75.36 87.54
+BYOPD 84.53 88.77 95.31 89.26 90.72 92.20 75.01 87.97
+BYOPC-M 84.80 88.50 95.27 90.02 90.99 91.40 76.41 88.20
+BYOPD-M 85.37 88.69 95.13 89.54 90.99 92.20 76.75 88.38

RoBERTabase Avg. embeddings 84.35 88.34 95.28 86.13 89.46 93.20 74.20 87.28
[CLS] embedding 81.27 84.77 94.15 84.18 86.71 81.20 72.17 83.49
SimCSE 81.75 86.97 93.43 87.28 86.99 84.40 75.01 85.12
+BYOPC 81.44 86.20 93.03 87.02 86.11 86.20 75.65 85.09
+BYOPD 82.33 88.08 92.99 87.26 85.89 85.80 76.12 85.50
+BYOPC-M 81.49 87.34 93.25 87.40 87.42 84.60 75.01 85.22
+BYOPD-M 82.23 87.39 93.41 87.87 87.64 85.00 75.42 85.57

RoBERTalarge Avg. embeddings 85.46 88.85 96.04 88.32 91.27 93.80 73.74 88.21
[CLS] embedding 83.04 84.58 95.48 86.90 88.47 87.80 69.80 85.15
SimCSE 83.17 88.40 94.08 88.57 87.53 91.20 72.23 86.45
+BYOPC 81.80 87.42 93.33 88.42 87.20 93.00 75.77 86.71
+BYOPD 82.40 87.18 93.77 88.16 87.10 90.60 74.90 86.30
+BYOPC-M 80.93 87.47 93.29 88.41 86.00 90.40 75.25 85.96
+BYOPD-M 82.26 87.26 93.56 88.14 86.44 91.40 74.61 86.24

Table 10: Results of 4 models trained with different methods on transfer tasks. Each bold number and underlined
number indicates the best and the second best performance, respectively, within the PLMs. The method named
‘Avg. embddings’ uses the average of the last layer’s hidden states of PLMs as a sentence representation; the method
‘[CLS] embedding’ uses the last layer [CLS] token’s hidden state of PLMs as a sentence representation.
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