
A Clean Slate for Offline RL

Matthew T. Jackson* Uljad Berdica* Jarek Liesen*

Shimon Whiteson Jakob N. Foerster

University of Oxford
{jackson,uljadb,jarek}@robots.ox.ac.uk

Abstract

Progress in offline reinforcement learning (RL) has been impeded by ambiguous
problem definitions and entangled algorithmic designs, resulting in inconsistent
implementations, insufficient ablations, and unfair evaluations. Although offline
RL explicitly avoids environment interaction, prior methods frequently employ
extensive, undocumented online evaluation for hyperparameter tuning, compli-
cating method comparisons. Moreover, existing reference implementations differ
significantly in boilerplate code, obscuring their core algorithmic contributions. We
address these challenges by first introducing a rigorous taxonomy and a transparent
evaluation procedure that explicitly quantifies online tuning budgets. To resolve
opaque algorithmic design, we provide clean, minimalistic, single-file implemen-
tations of various model-free and model-based offline RL methods, significantly
enhancing clarity and achieving substantial speed-ups. Leveraging these stream-
lined implementations, we propose Unifloral, a unified algorithm that encapsulates
diverse prior approaches within a single, comprehensive hyperparameter space,
enabling algorithm development in a shared hyperparameter space. Using Unifloral
with our rigorous evaluation procedure, we develop two novel algorithms—TD3-
AWR (model-free) and MoBRAC (model-based)—which substantially outperform
established baselines. All code for this project can be found in our public codebase.

1 Introduction

Offline reinforcement learning (RL)—the task of learning effective policies from pre-collected, static
datasets—is critical for applying RL in real-world settings where online experimentation is expensive
or risky. Despite significant interest [1–5], the field has struggled to converge on clear, actionable
insights. Algorithms and methods proliferate rapidly but no broadly agreed-upon conclusions
or standardized benchmarks have emerged [6]. This undermines both practical application and
theoretical progress. In this work, we identify and address two primary problems that contribute
to stagnation and confusion in offline RL research: an ambiguous problem setting and opaque
algorithmic design.

Problem 1: Ambiguous Problem Setting Recent work in offline RL has lacked a rigorously artic-
ulated definition or standardized evaluation procedure. The broad mission statement, learning from a
static dataset without direct environment interaction, is prone to misinterpretation that skews pro-
posed methods towards impractical evaluation practices. Existing literature implicitly relaxes various
definitions concerning critical details such as hyperparameter tuning allowances [4, 7], the extent of
post-deployment policy adaptation [8], and the specifics of evaluation procedures [9]. Consequently,
comparisons between methods are confounded as each study might assume fundamentally different

*Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://anonymous.4open.science/r/Unifloral-NeurIPS-D1A2

experimental conditions. While some approaches restrict tuning based on related dataset perfor-
mance [10], most approaches extensively tune hyperparameters on the target environment [11, 5, 12].
Using the target environment to tune hyperparameters needs a large number of online evaluations,
which is in conflict with the basic premise of offline RL.

Solution 1: A Novel Taxonomy and Evaluation Procedure We first introduce a rigorous and
explicit taxonomy of offline RL evaluation variants (Section 3.1) and specify the one we find to be
implicitly adopted by most prior research. To facilitate consistent and transparent evaluation, we
propose a rigorous procedure for this setting (Section 3.2) that evaluates algorithmic performance
using a fixed hyperparameter range across multiple datasets. This procedure explicitly quantifies
performance at various permissible levels of online hyperparameter tuning, i.e., interactions with
the target environment, thus providing clarity about the practical deployment requirements of each
method. To ensure ease of adoption and reproducibility, we release a straightforward software
interface for performing this evaluation procedure, thereby empowering future work to evaluate
offline RL algorithms robustly and transparently.

Problem 2: Opaque Algorithmic Design Offline RL methods are often presented as intricate
bundles with intertwining algorithmic components, implementation-specific details, and unclear
tuning procedures. Researchers compare proposed methods to baseline performance quoted directly
from prior publications [6], inadvertently propagating these methodological issues. As a result, it is
difficult to isolate the impact of individual methodological choices. Thus, the state-of-the-art remains
ambiguous, with no method demonstrating uniformly strong performance across all datasets [13–15].

Solution 2: Consistent Reimplementations and a Unified Algorithm We first dissect the novel
components of prior algorithms by defining a phylogenetic tree based on their compositional structure
(Section 4.1). We use this representation to provide single-file reimplementations of a wide range
of offline RL methods. These minimal implementations eliminate extraneous code differences and
highlight fundamental components, as well as achieving average training speedups of 131.5× and
74.8× against OfflineRL-Kit [16] and CORL [17], two leading offline RL libraries. Furthermore, we
propose a unified offline RL algorithm (Unifloral, Section 4.2) that integrates core components from
various prior methods into one coherent framework. Crucially, Unifloral provides a single, unified
hyperparameter space containing all of these algorithms.

Leveraging Unifloral with our evaluation procedure, we introduce two novel offline RL methods:
a model-free approach (TD3-AWR, Section 5.1) and a model-based one (MoBRAC, Section 5.2).
These methods demonstrate substantial performance improvements over established baselines, vali-
dating both our unified methodology and rigorous evaluation framework.

Offline Training Pre-deployment Post-deployment

1. Zero-shot
Example: Autonomous search and rescue

Setting

2a. Pre-deployment policy selection
Example: Autonomous vehicles with safety driver testing

2b. Post-deployment policy selection
Example: Autonomous search and rescue

3. Offline-to-online
Example: Multi-step language reasoning models

Figure 1: Formalizing the variants of offline RL—we define a range of offline RL variants (Sec-
tion 3.1), with policy performance being measured post-deployment. Pre-deployment policy selection
(2a) and post-deployment policy selection (2b) use a policy-selection bandit after offline training,
whilst (3) uses unrestricted policy updates.

2

2 Preliminaries

2.1 Reinforcement Learning

We apply RL to a finite-horizon Markov Decision Process (MDP) defined by the tuple
⟨S0,S,A, D,R, T ⟩. Here S is the state space, A is the action space, and T is the horizon.
D : S × A → ∆(S) is the transition dynamics, defining how the state changes given a state
and the action taken on that state. ∆(S) is the set of all possible distributions over s. The scalar
reward function is R : S × A → R. The environments in this paper are all fully observable as the
Markov state is directly observed at each timestep.

A policy π maps a state in S to an action distribution over A. The policy is trained to maximize the
expected return Jπ

M for a given MDP M with trajectory length T :

Jπ
M := Ea0:T∼π,s0∼S0,s1:T∼D

[
T∑

t=0

rt

]
. (1)

2.2 Offline Reinforcement Learning

Offline RL methods use a pre-collected dataset to optimize a target policy to maximize Jπ by, without
online interactions in the environment. This dataset consists of transitions (si, ai, ri, si+1, ai+1) for
i = 1, . . . , N , where si, si+1 ∈ S, ai ∈ A, ri ∈ R are the current and next states, action, and reward,
respectively. Here, initial states are drawn from the distribution s0 ∼ S0 and trajectories are gathered
through a behaviour policy πb interacting with the environment. Since πb may be suboptimal, the
resulting dataset might not contain sufficient coverage of the environment’s state space to learn an
effective policy.

An effective offline RL method must learn policies that generalize from this limited dataset to
perform reliably when deployed in their environment. Typically, these methods require significant
regularization to avoid overestimation bias. For model-free methods, this is commonly done with
critic ensembles, where the minimum state value estimated by the ensemble is used for policy
optimization. Model-based methods generalize by training a dynamics model D̂(s, a) to predict
future states and rewards. This can be used to generate synthetic rollouts from the target policy,
allowing for direct optimization of its performance.

3 Refining Evaluation in Offline RL

This section describes our taxonomy of offline RL, illustrated in Figure 1, which motivates our
evaluation procedure in Figure 2. We also outline the procedure in detail and use it to analyze the
performance of a set of model-free and model-based algorithms in multiple environments.

3.1 Variants of Offline RL

The goal of offline RL is to train an agent using solely offline data, with the objective of maximizing
performance from deployment, i.e., the point where the agent is evaluated online. In this setting,
deployment marks a strict separation between the offline training phase and the online evaluation
phase. However, some methods may relax this strict separation in two ways. Firstly, pre-deployment
interaction allows the agent to take limited interactions with the environment before deployment
to improve post-deployment performance. For instance, to tune hyperparameters before selecting a
policy for deployment. Secondly, post-deployment adaptation allows the agent to continue learning
after deployment, and the performance metric includes all returns collected after deployment. Exam-
ples include dataset aggregation from multiple online episodes [18], selection from a set of policies
trained offline [7, 9], and fine-tuning a single policy [8], all of which can be performed both before
and after deployment. While any combination of these is possible, we identify four key settings.

3

A Taxonomy of Offline RL

1. ZERO-SHOT OFFLINE RL

• Train one policy offline, then deploy online with no further adaptation.
• No pre-deployment interaction, no post-deployment adaptation.

2a. OFFLINE RL WITH PRE-DEPLOYMENT ONLINE POLICY SELECTION

• Train a set of policies offline, select the best policy based on N online evaluations before
deployment.

• Limited pre-deployment interaction, no post-deployment adaptation.

2b. OFFLINE RL WITH POST-DEPLOYMENT ONLINE POLICY SELECTION

• Train a set of policies offline, then deploy online, adaptively selecting a policy every episode
based on online performance.

• No pre-deployment interaction, post-deployment adaptation via policy selection.

3. OFFLINE-TO-ONLINE RL

• Train one policy offline, then deploy online and fine-tune the policy on online data.
• Limited pre-deployment interaction and post-deployment adaptation via finetuning.

Many offline RL papers implicitly perform pre-deployment policy selection (Setting 2a), as they
report final performance after extensive hyperparameter tuning involving online evaluation [11, 5].
However, due to differences in the number of hyperparameters or computational resources, this
tuning process varies in scope across studies. As a result, reported performances are often not
directly comparable since they reflect not only algorithmic quality but also differences in tuning
budgets. Furthermore, these procedures typically assume low-variance estimates of each policy’s
performance, determined by an indefinite number of online evaluations. This is rarely made explicit
as hyperparameter tuning is often considered a technical detail and not part of the method, even
though it can dramatically affect performance (Section 3.3).

A Definition of Offline RL Methods

A method in offline RL consists of an algorithm and
a fixed sampling range for each hyperparameter.

Finally, much prior work has blurred the line
between algorithms and hyperparameters in
offline RL, proposing different hyperparame-
ter values or ranges for each task. This am-
biguity enables the same “method” to have
dramatically different behaviour across tasks,
undermining the assumption of limited interactions by essentially proposing a different method for
each task. To resolve this, we define an offline RL method to include a fixed hyperparameter range,
which remains constant across datasets (see A Definition of Offline RL Methods).

3.2 Proposed Evaluation Procedure

We now propose a rigorous and practical evaluation procedure for offline RL with pre-deployment
policy selection (Setting 2a), as it implicitly is the standard setting for evaluating offline RL methods
(see Section 3.1). Our goal is to evaluate offline RL algorithms under a fixed budget of N pre-
deployment environment interactions used for tuning. We measure this budget in terms of the number
of evaluation episodes, reflecting practical deployment constraints where each online interaction can
be costly. Whilst the tuning algorithm may be defined as part of the method, most research focuses on
offline policy optimization prior to tuning. Therefore, we provide an upper confidence bound (UCB)
bandit [19] in our implementation as the default tuning algorithm.

Furthermore, to reflect real-world limitations, we assume that the expected return of each policy is
not directly observable, with each pull from the bandit sampling a single episodic return from that
policy’s return distribution. This models the high-variance, sample-limited setting typical in real
deployments, where evaluating a policy’s performance requires interacting with the environment and
yields only noisy, episodic feedback. The importance of this is demonstrated by the emergence of
distractor policies, as discussed in Section 3.3.

In essence, our evaluation procedure repeatedly simulates hyperparameter tuning with a fixed online
budget, using a bandit to select a single policy for final deployment. This procedure (Figure 2) has
two steps: score collection and bandit evaluation.

4

Figure 2: Overview of our evaluation procedure. Left: We sample hyperparameters, train the
corresponding policies, and collect their final evaluation scores. Right: We simulate hyperparameter
tuning using the collected scores by subsampling K policy scores and recording the best-arm
performance of a UCB tuning bandit operating over them.

Step 1: Train Policies and Collect Scores Firstly, we collect a dataset of episodic evaluation scores
from policies trained by the target algorithm. To do this, we sample P hyperparameter settings (with
replacement and random seeds) from the range defined by the method, and then train P corresponding
policies. These policies are evaluated online for a large number of episodes R and their episodic
scores recorded. Following this, the policies may be discarded as only their episodic scores are
required for bandit evaluation.

Step 2: Run Bootstrapped Tuning Bandit Using our collected episodic evaluation dataset, we
then repeatedly simulate hyperparameter tuning to measure algorithm performance at different tuning
budgets. This is performed by subsampling K policies1 (i.e., their corresponding episodic scores)
and running a multi-armed bandit over them. In this bandit, each arm corresponds to a policy, with
each pull sampling one episode’s return from the corresponding policy. At each number of pulls N ,
we evaluate the performance of the algorithm by selecting the policy estimated to have the highest
return by the bandit, and taking its true average return. We repeat this process B times to obtain a
bootstrapped estimate of algorithm performance.

Recommended Datasets It is essential to evaluate methods on a diverse distribution of tasks to
ensure generality. Alarmingly, the majority of offline RL methods considered in this work were
evaluated only on MuJoCo and Adroit tasks from the D4RL suite [20]. While computational budgets
may be limited, we argue that they would be better spent considering a wider range of tasks and
behaviour policies. In order to make environment selection consistent, we recommend starting with
the following environments, where algorithms currently obtain non-trivial performance: hopper-
medium, halfcheetah-medium-expert, and walker2d-medium-replay, as a representative subset
of MuJoCo locomotion; pen-human, pen-cloned, and pen-expert, as algorithms often achieve
zero or perfect performance on other Adroit environments; kitchen-mixed, maze2d-large, and
antmaze-large-diverse, to provide diversity in the evaluated environments.

3.3 Results

In Figure 3, we evaluate a range of prior algorithms (list in Appendix A). For this, we uniformly
sample from the hyperparameter tuning ranges specified in each algorithm’s original paper or the
union of ranges when multiple are provided. Generally, an algorithm performs better if its curve is
closer to the top left corner of a plot, representing strong performance after few online interactions.
Prior work has typically reported performance after unlimited online tuning, which is the limit of the
score with an increasing number of policy evaluations, i.e., the top right corner.

Inconsistent Algorithm Performance No algorithm consistently performs well across all datasets.
However, ReBRAC and IQL are competitive for the overall best performing algorithm, with ReBRAC
achieving top performance at some number of evaluations on 5 out of 9 datasets and IQL on 4 out of 9
datasets. Even though both of these algorithms are worse than competing baselines on other datasets,
we believe them to be the clearest baselines for future method development, as done in Section 5.1.

1We fix K = 8 in our experiments but encourage future evaluation under other values.

5

100 101 102
0

20

40

60

80

100
hopper-medium-v2

100 101 102

20

40

60

80

100

halfcheetah-medium-expert-v2

100 101 102

20

40

60

80

walker2d-medium-replay-v2

100 101 102

0

20

40

60

pen-human-v1

100 101 102

0

20

40

60

pen-cloned-v1

100 101 102
0

50

100

pen-expert-v1

100 101 102
0

50

100

150

200

maze2d-large-v1

100 101 102
0

10

20

30

40

50

kitchen-mixed-v0

0.0 0.2 0.4 0.6 0.8 1.0
Number of policy evaluations

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
sc

or
e

Algorithm
BC
COMBO

CQL
EDAC

IQL
MOPO

MoReL
ReBRAC

SAC-N
TD3-BC

Figure 3: Evaluation of prior algorithms—mean and 95% CI over 500 bandit rollouts, with K = 8
policy arms subsampled from 20 trained policies each rollout. The x-axis denotes the number of
bandit pulls, whilst the y-axis denotes the true expected score of the estimated best arm after x pulls.
The full evaluation results in Appendix B.

Overfit Model-Based Methods The model-based algorithms we evaluate—MOPO, MOReL, and
COMBO (Appendix A.2)—achieve notably poor performance on all non-locomotion datasets, ranking
no higher than 6th out of the 10 evaluated algorithms (and failing to beat BC) at any number of policy
evaluations. While these results are surprising, we emphasize that our implementation successfully
reproduces reference results with the specialized hyperparameters for each dataset (Appendix G).
Instead, these results suggest that these methods are deeply overfit to the locomotion datasets they
were originally evaluated on (Appendix C), providing a sobering reflection of the field.

0 20 40 60 80 100 120
Policy index

0

20

40

60

80

100

Sc
or

e

Distractor policies can achieve higher scores

Figure 4: Ranked ReBRAC performance—
blue shaded area, solid and dashed lines rep-
resenting the standard deviation, mean, min,
and max episodic return, respectively.

Distractor Policy Phenomenon While perfor-
mance typically improves as more bandit arms are
pulled, certain performance curves exhibit distinctive
dips—temporary decreases in measured performance
despite additional policy evaluations. To better un-
derstand this, we examine the ranked performance
distribution of numerous ReBRAC policies trained
on hopper-medium (Figure 4). This analysis reveals a
notable cluster of policies that exhibit suboptimal av-
erage performance but possess a higher maximum per-
formance compared to consistently better-performing
policies. We refer to these anomalous policies as
distractor policies.

To demonstrate their impact on evaluation, we sim-
ulate the initial phase of a bandit rollout over these
policies, i.e., when the bandit enumerates all arms
(Figure 9a). Over this phase, we observe a clear in-
crease in the probability of preferring a distractor
policy, explaining the initial decrease in evaluation
performance. This phenomenon runs counter to the expectation that increasing policy evaluations
would monotonically reduce estimator variance and underscores the need to directly consider en-
vironment interactions in evaluation, a crucial distinction from prior evaluation methodologies [9].
Further analysis of distractor policies is provided in Appendix D.

6

4 Elucidating Algorithm Design in Offline RL

In this section, we seek to simplify algorithm design in offline RL. Firstly, we present a genealogy
of prior algorithms, using it to propose and implement a set of compositional reimplementations.
Following this, we propose a unified algorithm, Unifloral, capable of expressing these methods—as
well as any combination of their components—in a single hyperparameter space.

4.1 Disentangling Prior Methods

Figure 5: Speed up from our JAX
reimplementations — algorithms
trained for 1M update steps on
HalfCheetah−medium−expert using
a single L40S GPU. Our library, Unifloral, is
the fastest across the board. Full details can
be found in Appendix F.

New offline RL methods are typically derived from
preceding ones by adding or editing individual com-
ponents of the agent’s objective or architecture. De-
spite this, methods typically suffer from a range of
unnecessary implementation differences, making it
difficult for researchers to identify their contribution
or fairly compare methods. Even in popular single-
file implementations, we observe significant code
differences between “parent” and “child” algorithms,
which should require only the individual components
to be edited. This encourages researchers to compare
entire algorithms rather than ablating components.
We discuss this and how it informs our code philos-
ophy in Appendix E.

As a solution, we provide single-file reimplementa-
tions of a range of existing model-free (BC, TD3-BC,
ReBRAC, IQL, SAC-N, LB-SAC, EDAC, CQL, DT)
and model-based (MOPO, MOReL, COMBO) meth-
ods. Our implementation has a number of advantages.
Firstly, we focus on code clarity and minimal code
edits between algorithms, leading to a dramatic reduc-
tion in code differences between algorithms. Secondly, we implement our algorithms in end-to-end
compiled JAX, leading to major speed-ups against competing implementations (Figure 5). We
believe these implementations will lead to better algorithm understanding and fairer evaluation, as
well as enabling powerful experiments on low compute budgets. We verify the correctness of our
reimplementations in Appendix G.

4.2 A Unified Hyperparameter Space for Offline RL

Implementation inconsistency and missing ablations are common flaws of offline RL research. The
plethora of design decisions in each algorithm obfuscates evaluating how each feature contributes
to the performance. To address this, we combine all components from a range of model-free and
model-based algorithms (Appendix A) into a unified algorithm and single-file implementation, which
we name Unifloral. We start by compiling a minimal subspace of components covering the model-free
and model-based offline RL algorithms examined in this work (Appendix H). This has a range of
hyperparameters in each of four broad design categories, which we identify from prior algorithms:
model design, critic objective, actor objective, and dynamics modelling. A more detailed description
of design category is in Appendix I.

Model Design The choice of neural network architecture and optimizer is consistent across most
offline RL research, with proposed algorithms commonly using multi-layer perceptrons and the Adam
optimizer. However, the hyperparameters of these components commonly vary between algorithms.
Regarding the model architecture, this includes the number of layers, layer width, and usage of
observation and layer normalization. For optimization, this includes the learning rate (shared and
actor-specific), learning rate schedule, discount factor, batch size, and Polyak averaging step size.
The actor and critic networks can also have different structures, such the size of the critic ensemble
and whether the policy stochasticity.

7

Critic Objective The core contribution of offline RL research is often a novel critic objective [12,
13]. However, many of the components in the proposed objectives are shared with prior work. We
define the critic objective as the weighted sum of those components, or a selection between them if
mutually exclusive, in order to include all referenced methods (except CQL, which we omit due to its
substandard performance and high complexity). More detail in Appendix I.1.

Actor Objective We define the unified actor loss as the weighted sum of three terms:

Lactor = βq · Lq + βBC · LBC − βH · H(π(·|st)). (2)

This consists of q loss Lq, behaviour cloning loss LBC, and policy entropy H(·), with coefficients
βq, βBC, βH ∈ R controlling the weight of these terms. More detail in Appendix I.2.

Dynamics Modelling We include optional dynamics model training and sampling, broadening
Unifloral’s coverage to include model-based methods. As is standard, we use an ensemble of dynamics
models D̂θ = {D̂1

θ , D̂
2
θ , ..., D̂

M
θ }, where each D̂i

θ is trained to predict state transitions and rewards.
Following MOPO, we penalize the agent for going to states where the ensemble disagreement is high
as measured by the standard deviation of the model’s predictions. More in Appendix I.3.

5 Novel Methods Research with Unifloral

Our unified algorithm and hyperparameter space enable researchers to combine different components
and search through algorithm designs by only modifying the configuration of the unified implementa-
tion. To demonstrate the avenues our work opens up and encourage further research, we provide two
“mini-papers” completed entirely by specifying configurations of the unified implementation, without
any code changes. We examine a model-free and a model-based improvement.

5.1 TD3 with Advantage Weighted Regression

Hypothesis In Section 3.3, we show that one of two methods consistently outperformed existing
baselines: ReBRAC [5] and IQL [21]. ReBRAC is derived from TD3-BC, meaning it optimizes its
actor using TD3 value loss in combination with a BC loss term for regularization. In contrast, IQL
uses only a BC loss but performs advantage weighted regression (AWR) by weighting the BC loss of
each action by its estimated advantage. We hypothesise that substituting the BC term in ReBRAC
with AWR, a method we name TD3-AWR, would combine the strengths of these methods and lead
to improved performance overall.

Evaluation We define TD3-AWR in Unifloral by using the AWR hyperparameters from IQL and
the ReBRAC hyperparameters elsewhere. In Figure 6, we show that TD3-AWR’s performance
curve strictly dominates ReBRAC on 6 out of 9 datasets and is dominated by ReBRAC in only 1.
Interestingly, TD3-AWR achieves superior performance to ReBRAC under few policy evaluations—
such as in halfcheetah-medium-expert and pen-expert—despite searching over a wider range of
hyperparameters. Similarly, TD3-AWR strictly dominates IQL on 7 datasets, thereby outperforming
both of its source algorithms.

100 101 102
85

90

95

100

105

halfcheetah-medium-expert-v2

100 101 102

30

40

50

60

70
pen-human-v1

100 101 102

50

100

150

200
maze2d-large-v1

100 101 102

10

20

30

40

50

kitchen-mixed-v0

0.0 0.2 0.4 0.6 0.8 1.0
Number of policy evaluations

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
sc

or
e

Algorithm
IQL ReBRAC TD3-AWR

Figure 6: TD3-AWR evaluation against ReBRAC and IQL (full results in Appendix J).

8

5.2 Improving Policy Optimization for Model-Based Offline RL

Hypothesis In Section 3.3, we demonstrate the poor performance of model-based methods on
non-locomotion environments. Whilst this is partially due to overfit hyperparameters, the design
space of policy optimizers in model-based methods is underexplored, with all considered methods
using SAC-N or CQL (Figure 5). Given the performance improvements from recent methods, we
posit that these methods would be more competitive with an alternative policy optimizer. We therefore
propose using ReBRAC with synthetic rollouts generated from a MOPO world model, which we
name Model-based Behaviour Regularized Actor-Critic, or MoBRAC.

Evaluation We implement MoBRAC in Unifloral, using the MOPO hyperparameters for dynam-
ics model training and sampling, then using the ReBRAC hyperparameters elsewhere. Figure 7
shows how MoBRAC outperforms other model-based methods for all datasets, except for MOPO in
maze2d-large-v1. Under a transparent evaluation budget, we find that MoBRAC outperforms the
other model-based methods in 6 out of 9 datasets and is tied with MOPO for 3 others (Appendix K).

100 101 102

25

50

75

100
halfcheetah-medium-expert-v2

100 101 102

0

20

40

pen-human-v1

100 101 102

0

10

20

30

maze2d-large-v1

100 101 102
0

5

10

15

kitchen-mixed-v0

0.0 0.2 0.4 0.6 0.8 1.0
Number of policy evaluations

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
sc

or
e

Algorithm
COMBO MOPO MoReL MoBRAC

Figure 7: MoBRAC evaluation against prior model-based algorithms (full results in Appendix K).

6 Related Work

Our work builds upon several foundational aspects of offline RL, including evaluation strategies,
open-source implementations, and algorithmic unification. Existing evaluation regimes primarily
address hyperparameter tuning either through limited online interactions [8, 9] or by estimating policy
performance offline [4, 10, 22]. In contrast, our approach introduces an evaluation procedure that re-
quires neither reference policies nor additional hyperparameters, offering broader applicability across
the entire D4RL benchmark suite. Furthermore, our single-file implementations draw inspiration
from projects such as CORL [17, 23] and CleanRL [24], whilst our unified algorithm, Unifloral, is
informed by prior unification attempts [25, 26, 15, 27]. For a comprehensive review, see Appendix L.

7 Conclusion

In this work, we addressed critical challenges in problem formulation, evaluation, and algorithm
unification in offline RL. We introduced a taxonomy that clearly distinguishes between offline RL
variants—spanning zero-shot deployment to approaches with limited pre-deployment tuning or
post-deployment adaptation. This categorization exposes the hidden online interactions, such as
hyperparameter tuning, that have long confounded fair evaluation and reproducibility. To overcome
these issues, we proposed a rigorous evaluation procedure that transparently quantifies the cost
of online interactions via noisy, single-episode feedback. Additionally, by dissecting components
of existing offline RL algorithms, we developed Unifloral, a novel unified offline RL algorithm
that combines improvements of many previous methods, enabling seamless ablation of algorithmic
components. We demonstrate this with two novel algorithms inside Unifloral, TD3-AWR and
MoBRAC, which integrate the strengths of existing methods to achieve superior performance over a
wide range of tasks. Collectively, our contributions set a new standard for addressing ambiguity in
offline RL, promoting rigorous evaluation, and driving reproducible, impactful research in the field.

9

Acknowledgements

The authors thank Michael Beukman, Cong Lu, Jack Parker-Holder, Hugh Bishop, and Nathan
Monette for their valuable feedback on the paper. MJ, UB, and JL are funded by the EPSRC Centre
for Doctoral Training in Autonomous Intelligent Machines and Systems. MJ is also funded by
Amazon Web Services, UB is also funded by the Rhodes Scholarship and JL is funded by Sony
Interactive Entertainment Europe Ltd.

References
[1] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline Reinforcement Learning:

Tutorial, Review, and Perspectives on Open Problems, November 2020. URL http://arxiv.
org/abs/2005.01643. arXiv:2005.01643 [cs, stat].

[2] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. MOPO: Model-based Offline Policy Optimization, November 2020.
URL http://arxiv.org/abs/2005.13239. arXiv:2005.13239 [cs, stat].

[3] Scott Fujimoto and Shixiang Shane Gu. A Minimalist Approach to Offline Reinforcement
Learning, December 2021. URL http://arxiv.org/abs/2106.06860. arXiv:2106.06860
[cs, stat].

[4] Tom Le Paine, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre, Konrad Zolna, Alexander
Novikov, Ziyu Wang, and Nando de Freitas. Hyperparameter Selection for Offline Reinforce-
ment Learning, July 2020. URL http://arxiv.org/abs/2007.09055. arXiv:2007.09055
[cs].

[5] Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting
the Minimalist Approach to Offline Reinforcement Learning, October 2023. URL http:
//arxiv.org/abs/2305.09836. arXiv:2305.09836 [cs].

[6] Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on
offline reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on
Neural Networks and Learning Systems, 2023.

[7] Ksenia Konyushova, Yutian Chen, Thomas Paine, Caglar Gulcehre, Cosmin Paduraru, Daniel J
Mankowitz, Misha Denil, and Nando de Freitas. Active offline policy selection. Advances in
Neural Information Processing Systems, 34:24631–24644, 2021.

[8] Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu.
Deployment-efficient reinforcement learning via model-based offline optimization. arXiv
preprint arXiv:2006.03647, 2020.

[9] Vladislav Kurenkov and Sergey Kolesnikov. Showing Your Offline Reinforcement Learning
Work: Online Evaluation Budget Matters, June 2022. URL http://arxiv.org/abs/2110.
04156. arXiv:2110.04156 [cs].

[10] Matthew Smith, Lucas Maystre, Zhenwen Dai, and Kamil Ciosek. A strong baseline for batch
imitation learning. arXiv preprint arXiv:2302.02788, 2023.

[11] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. MOReL :
Model-Based Offline Reinforcement Learning, March 2021. URL http://arxiv.org/abs/
2005.05951. arXiv:2005.05951 [cs, stat].

[12] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-Learning for
Offline Reinforcement Learning, August 2020. URL http://arxiv.org/abs/2006.04779.
arXiv:2006.04779 [cs, stat].

[13] Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-Based Offline
Reinforcement Learning with Diversified Q-Ensemble, October 2021. URL http://arxiv.
org/abs/2110.01548. arXiv:2110.01548 [cs].

10

http://arxiv.org/abs/2005.01643
http://arxiv.org/abs/2005.01643
http://arxiv.org/abs/2005.13239
http://arxiv.org/abs/2106.06860
http://arxiv.org/abs/2007.09055
http://arxiv.org/abs/2305.09836
http://arxiv.org/abs/2305.09836
http://arxiv.org/abs/2110.04156
http://arxiv.org/abs/2110.04156
http://arxiv.org/abs/2005.05951
http://arxiv.org/abs/2005.05951
http://arxiv.org/abs/2006.04779
http://arxiv.org/abs/2110.01548
http://arxiv.org/abs/2110.01548

[14] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea
Finn. COMBO: Conservative Offline Model-Based Policy Optimization, January 2022. URL
http://arxiv.org/abs/2102.08363. arXiv:2102.08363 [cs].

[15] Cong Lu, Philip J. Ball, Jack Parker-Holder, Michael A. Osborne, and Stephen J. Roberts.
Revisiting Design Choices in Offline Model-Based Reinforcement Learning, March 2022. URL
http://arxiv.org/abs/2110.04135. arXiv:2110.04135 [cs].

[16] Yihao Sun. Offlinerl-kit: An elegant pytorch offline reinforcement learning library. https:
//github.com/yihaosun1124/OfflineRL-Kit, 2023.

[17] Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov.
CORL: Research-oriented deep offline reinforcement learning library. In 3rd Offline RL
Workshop: Offline RL as a ”Launchpad”, 2022. URL https://openreview.net/forum?
id=SyAS49bBcv.

[18] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics, pages 627–635. JMLR Workshop and
Conference Proceedings, 2011.

[19] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47:235–256, 2002.

[20] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[21] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline Reinforcement Learning with Implicit
Q-Learning, October 2021. URL http://arxiv.org/abs/2110.06169. arXiv:2110.06169
[cs].

[22] Aviral Kumar, Anikait Singh, Stephen Tian, Chelsea Finn, and Sergey Levine. A Workflow for
Offline Model-Free Robotic Reinforcement Learning, September 2021. URL http://arxiv.
org/abs/2109.10813. arXiv:2109.10813 [cs].

[23] Soichiro Nishimori. Jax-corl: Clean sigle-file implementations of offline rl algorithms in jax.
2024. URL https://github.com/nissymori/JAX-CORL.

[24] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty,
Kinal Mehta, and JoÃG, o GM AraÃšjo. Cleanrl: High-quality single-file implementations of
deep reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18,
2022.

[25] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improve-
ments in deep reinforcement learning. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

[26] Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent Sifre, Theo-
phane Weber, David Silver, and Hado Van Hasselt. Muesli: Combining improvements in policy
optimization. In International conference on machine learning, pages 4214–4226. PMLR, 2021.

[27] Harshit Sikchi, Qinqing Zheng, Amy Zhang, and Scott Niekum. Dual rl: Unification and new
methods for reinforcement and imitation learning. arXiv preprint arXiv:2302.08560, 2023.

[28] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. Pmlr, 2018.

[29] Scott Fujimoto, Herke Hoof, and David Meger. Addressing Function Approximation Error
in Actor-Critic Methods. In Proceedings of the 35th International Conference on Machine
Learning, pages 1587–1596. PMLR, July 2018. URL https://proceedings.mlr.press/
v80/fujimoto18a.html. ISSN: 2640-3498.

11

http://arxiv.org/abs/2102.08363
http://arxiv.org/abs/2110.04135
https://github.com/yihaosun1124/OfflineRL-Kit
https://github.com/yihaosun1124/OfflineRL-Kit
https://openreview.net/forum?id=SyAS49bBcv
https://openreview.net/forum?id=SyAS49bBcv
http://arxiv.org/abs/2110.06169
http://arxiv.org/abs/2109.10813
http://arxiv.org/abs/2109.10813
https://github.com/nissymori/JAX-CORL
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html

[30] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

[31] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in
neural information processing systems, 1, 1988.

[32] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361, 2019.

[33] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in neural information processing systems, 34:15084–15097,
2021.

[34] Ishita Mediratta, Qingfei You, Minqi Jiang, and Roberta Raileanu. The Generalization Gap in
Offline Reinforcement Learning, March 2024. URL http://arxiv.org/abs/2312.05742.
arXiv:2312.05742 [cs].

[35] Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, and Jakob
Foerster. Discovered policy optimisation. Advances in Neural Information Processing Systems,
35:16455–16468, 2022.

[36] Han Wang, Archit Sakhadeo, Adam White, James Bell, Vincent Liu, Xutong Zhao, Puer Liu,
Tadashi Kozuno, Alona Fyshe, and Martha White. No more pesky hyperparameters: Offline
hyperparameter tuning for rl. arXiv preprint arXiv:2205.08716, 2022.

[37] Takuma Seno. d3rlpy: An offline deep reinforcement library. https://github.com/
takuseno/d3rlpy, 2020.

[38] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
machine learning research, 22(268):1–8, 2021.

[39] Joshua Achiam. Spinning Up in Deep Reinforcement Learning, 2018. URL https:
//spinningup.openai.com/en/latest/index.html.

[40] Jarek Liesen, Chris Lu, and Robert Lange. rejax, 2024. URL https://github.com/
keraJLi/rejax.

12

http://arxiv.org/abs/2312.05742
https://github.com/takuseno/d3rlpy
https://github.com/takuseno/d3rlpy
https://spinningup.openai.com/en/latest/index.html
https://spinningup.openai.com/en/latest/index.html
https://github.com/keraJLi/rejax
https://github.com/keraJLi/rejax

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We point out problems in offline RL, describe an informative taxonomy Fig-
ure 1 and propose an evaluation procedure, the results of which support our claims Sec-
tion 3.3. We then provide extensive explanation on our implementations’ design and
performance (Section 4.1). The unified implementations (Appendix I) and the evaluation
procedure (Section 3.2 are used to discover two new algorithm that we describe and test
in Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We address lack of algorithmic clarity which is inherent in the field we are
aiming to unify Section 1 and we acknowledge the limited number of evaluation environ-
ments Appendix C. In our full results for the two novel algorithms, Figure 15 and Figure 14,
we include challenging environments where our algorithms underperform. However, these
results themselves are further evidence of the robustness and reliability of our evaluation
procedure.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

13

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .

Justification: This paper does not have theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We plan to open-source our library. Regardless, we have provided with
exhaustive detail on algorithm similarity Section 4 and our code philosophy Appendix E.
To encourage transparent and reliable scientific practices, we also provide snippets from
the actual code to demonstrate our clean and consistent implementations Figure 12 and
Figure 13.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

14

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, the paper features an anonymous repository and is built to optimize for
transparent ablations, reproducibility and evaluations. We use standard D4RL [20] datasets
available through their API.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, we have a unified hyperparameter space for all the algorithms Table 5 and
describe every design decision in Section 4.2 and Appendix I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: As described in Section 3.2, we provide a bootstrapped estimate of each
algorithm’s performance as more online evaluations are allowed to be used for hyperparam-
eter selection. We plot mean and 95% confidence intervals everywhere and add mean and
standard deviation when relevant, like Figure 4).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, in Table 2 and Figure 5 we specify the number of steps used for the
runtime measurements and the hardware, namely a single Nvidia-L40S GPU.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: There are no experiments in this work requiring human participants. All the
datasets are in the public domain and have been used in accordance with their respective
licenses.
Guidelines:

16

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: There are no societal impacts beyond encouraging the researchers and prac-
titioners to report results in a more unified and transparent way. We provide the tools,
baselines and demonstrate the effectiveness of our work by discovering two new algorithms.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: This is not relevant for the paper. The justification is similar to the above.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

17

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We give credit and cite every piece of code that we use or were inspired by.
We emphasize that our paper does not rely on extensive amounts of boilerplate code, which
is also one of our key contributions (Appendix E). Every dataset we used in accordance
with its license and standard community practices.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: or [NA] .

Justification: We do not provide any assets beyond the implementation, configuration files
and package requirements.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: This paper does not contain such experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

18

paperswithcode.com/datasets

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: This paper does not involve crowd-sourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The contributions and reproduction of this work does not require any LLMs,
neither did its ideation and development.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Algorithm Implementations in Unifloral

A.1 Model-Free Offline RL

SAC Soft Actor-Critic (SAC) by Haarnoja et al. [28] is a Q-learning method with a stochastic
actor. The authors use two independently optimized Q-functions and take their minimum for the
value function gradient to reduce positive bias in the policy improvements. SAC uses function
approximators for both the policy and value functions.

EDAC Function approximators do not operate well out-of-distribution (OOD), which poses a
significant challenge for offline RL methods that rely on a fixed dataset of logged trajectories. An
et al. [13] propose increasing the size of the Q-function ensemble. They find that SAC requires
a large ensemble to avoid optimistic value estimations for OOD actions as the cosine similarity
of the gradients increases. To minimize this similarity within the ensemble, the authors propose
the Ensemble-Diversified Actor-Critic (EDAC), which adds an ensemble similarity penalty to the
Q-function loss in SAC. We refer to SAC with more than two members in the ensemble as SAC-N.

CQL Optimistic value estimations when bootstrapping from OOD actions is a persisting issue in
offline RL. Kumar et al. [12] propose learning a conservative Q-function that lower bounds the true
value. They perform SAC updates to the Q-function with an additional minimization term that uses
the value of randomly sampled actions. Their Conservative Q-Learning (CQL) algorithm is also
implemented on top of a SAC-N policy update similar to EDAC.

TD3-BC Fujimoto et al. [29] formulate the Twin-Delayed Policy Deep Deterministic policy gradient
algorithm (TD3) to address the value estimation pathology in online RL where the ensemble of
Q-networks is updated at a higher frequency than the actor. TD3 also takes the minimum over the
critics ensemble as in CQL, SAC-N, and EDAC. Follow-up work by Fujimoto and Gu [3] adapts the
method for the offline paradigm by adding a behaviour cloning (BC) regularization term to the actor’s
updates. This augmented algorithm is commonly referred to as TD3-BC. Not having to update two
networks in every training step brings significant speed-ups while still matching the highest scores
across all D4RL [20] locomotion tasks at an increased stability.

IQL Implicit Q-learning by Kostrikov et al. [21] is a computationally efficient algorithm that
avoids querying out-of-sample actions altogether by using expectile regression. The Q-function is
updated using a mean squared error loss on state-action pairs from the dataset. This approximation
of the optimal Q-function is used to extract the policy through advantage-weighted regression [30],
where each action is weighted according to the exponentiated advantage with an inverse temperature
hyperparameter that directs the policy towards higher Q-values when increased and approximates
behavior cloning [31] when decreased.

ReBRAC Tarasov et al. [5] use the Behavior Regularized Actor-Critic (BRAC) framework [32] and
the behavior cloning term from TD3-BC [3] to propose the Revisited BRAC algorithm (ReBRAC).
Specifically, they decouple the BC penalty coefficient in the critic and the actor objectives, thus
requiring additional hyperameteres to the benefit of higher scores and faster convergence on D4RL.
In addition, ReBRAC [5] proposes several improvements, like using deeper networks, training with
larger batches, adding layer norms to the critic network, and changing the γ hyperparameter for tasks
with different reward sparsity. However, these design decisions add new hyperparameters with tuning
overheads since they are reportedly different for each D4RL dataset.

A.2 Model-Based Offline RL

MOPO In Model-Based Offline Policy Optimization (MOPO), Yu et al. [2] argue that offline RL
algorithms should be able to go beyond the behaviors in the data manifold to avert sub-optimalities in
the dataset and generalize to new tasks to deliver on the promises of real-world deployment. MOPO
provides several bounds and theoretical guarantees on behavior policy improvement. The model is
implemented through an ensemble of multiple dynamics models trained via maximum likelihood. For
every policy step during training, the maximum standard deviation of the learned models’ prediction
at that step is subtracted from the reward. The highest results are obtained on short truncated rollouts

20

that are 0.5% to 1% of the real environment’s episode length. The model predictions are used to form
the batch for the SAC [28] policy update step.

MOReL The model-based offline RL algorithm (MOReL) by Kidambi et al. [11] claims to not
require severely truncated rollouts due to learning a pessimistic MDP (P-MDP) that is implemented
in a similar way to the MOPO dynamics model with an additional early termination condition in
the event of high ensemble disagreement. This scalar halting threshold is calculated by taking the
maximum distance between the predictions of any two models of the ensemble for every state and
action pair in the dataset. Even for academic demonstration datasets like D4RL, this poses a major
overhead in addition to model and policy training. The reported rollout length approximating 50% of
the original episode length is only achievable through extensive tuning of the pessimism coefficient
that scales the discrepancy threshold.

COMBO Conservative Offline Model-Based Policy Optimization (COMBO) by Yu et al. [14] is
implemented on top of MOPO [2] with more policy improvement guarantees. They use a CQL [12]
policy update step with an added loss term using transitions from the dataset to penalize Q-values
on likely out-of-support state-actions while increasing Q-values on trustworthy pairs. There are
many similarities across model-based methods, and many of their algorithmic contributions like the
P-MDP from MOReL, uncertainty penalties from MOPO, and the policy update from COMBO can
be combined through our framework.

A.3 Imitation Learning

This section examines methods that operate outside traditional RL paradigms. These methods use
identical offline RL datasets and have achieved scores comparable to other offline RL methods when
evaluated under the same conditions.

BC Behavioral cloning (BC), originally formalized by Pomerleau [31], directly optimizes the actor
by learning the transitions from the dataset in a supervised manner, thus making the final online
performance fully reliant on the quality of the dataset. Recent work by Kurenkov and Kolesnikov [9]
further points out the effectiveness of BC under restricted budgets.

DT Introduced by Chen et al. [33], Decision Transformers (DT) have shown remarkable general-
ization [34] in ORL. DT bypasses the need for traditional RL algorithms to use discounted rewards
and bootstrapping for long-term credit assignment by using the logged environment interactions as a
sequence modelling objective. Instead of sampling from a policy conditioned on the current states, the
trained transformer autoregressively generates the next action based on a fixed intra-episode context
of previous interaction and a target cumulative return. This target return can be a hyperparameter
that significantly increases the tuning overhead if its value is unknown or a way to obtain optimal
performance results when the target return is known.

The reward at each step is decremented from the target return, which is referred to as return-to-go at
time t. Formally, R̂t =

∑T
t′=t rt′ where rt′ are the observed rewards. Rather than directly modelling

the reward function R, the model is conditioned on the return-to-go values to enable generation based
on desired future returns.

The trajectory representation τ is structured as an ordered sequence of return-to-go values, states, and
actions:

τ = (R̂1, s1, a1, R̂2, s2, a2, ..., R̂T , sT , aT), (3)

where (st, at) ∈ S ×A for all timesteps t.

During online evaluation, the model is initialized with a desired target return and an initial state
s0 ∼ S0. After executing action at, the received reward is subtracted from the target: R̂t+1 = R̂t−rt.

21

B Full Results from the Proposed Evaluation Procedure

100 101 102
0

20

40

60

80

100
hopper-medium-v2

100 101 102

20

40

60

80

100

halfcheetah-medium-expert-v2

100 101 102

20

40

60

80

walker2d-medium-replay-v2

100 101 102

0

20

40

60

pen-human-v1

100 101 102

0

20

40

60

pen-cloned-v1

100 101 102

0

50

100

pen-expert-v1

100 101 102
0

5

10

15

20

antmaze-large-diverse-v2

100 101 102
0

50

100

150

200

maze2d-large-v1

100 101 102
0

10

20

30

40

50

kitchen-mixed-v0

0.0 0.2 0.4 0.6 0.8 1.0
Number of policy evaluations

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
sc

or
e

Algorithm
BC
COMBO

CQL
EDAC

IQL
MOPO

MoReL
REBRAC

SAC-N
TD3-BC

Figure 8: Evaluation of prior algorithms—mean and 95% CI over 500 bandit rollouts, with K = 8
policy arms subsampled from 20 trained policies each rollout. The x-axis denotes the number of
bandit pulls, whilst the y-axis denotes the true expected score of the estimated best arm after x pulls.

22

C Evaluation Benchmarks in Prior Work

Table 1: Evaluations performed in the papers introducing the offline RL algorithms we consider.
A "✓" indicates complete evaluation, "∼" indicates a partial evaluation, and "−" indicates that the
domain was not evaluated. MuJoCo locomotion is the most widely studied domain, although random
and expert datasets are often omitted. Atari experiments are limited to only 5 datasets (Breakout,
Qbert, Pong, Seaquest, and Asterix). Notably, the model-based offline RL works referenced here
only evaluate on locomotion tasks, which may explain their dramatic performance collapse on
non-locomotion tasks.

D4RL Fu et al. [20]
Algorithm Locomotion Adroit Kitchen Maze2d AntMaze Minigrid Carla Flow Atari

CQL [12] ∼ ✓ ✓ − ✓ − − − ∼
DT [33] ∼ − − − − − − − ∼
EDAC [13] ✓ ✓ − − − − − − −
IQL [21] ∼ ✓ ✓ − ✓ − − − −
ReBRAC [5] ✓ ✓ ✓ ✓ ✓ − − − −
SAC-N [13] ✓ ✓ − − − − − − −
TD3-BC [3] ✓ − − − ∼ − − − −

COMBO [14] ∼ − − − − − − − −
MOPO [2] ∼ − − − − − − − −
MOReL [11] ∼ − − − − − − − −

D Distractor Policy Phenomenon

Here, we show additional observations from the analysis of distractor policies in Section 3.3.

0 20 40 60 80 100 120
Number of pulls

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Pr
ob

ab
ili

ty
 o

f p
re

fe
rr

in
g

a
di

st
ra

ct
or

 p
ol

ic
y

Bandit overestimates values of distractor policies

(a) Probability of preferring a distractor policy (inside
dashed orange lines in Figure 4) against the number of
pulls (mean over 100K random policy orderings). The
probability of preferring an unstable policy increases
over time.

100 101 102

Number of policy evaluations

70

75

80

85

90

95

100

105

M
ea

n
sc

or
e

Number of
subsampled policies

4
8
16

32
64

(b) The number of subsampled policies influences
evaluation behaviour—as the number of policies in-
creases, we observe a greater dip in selected-policy
performance from our UCB bandit. This is due to
the presence of distractor policies (Figure 4), which
achieve higher peak performance with a lower mean.

23

E Code Philosophy

E.1 Single-file

We follow the community’s preference for single-file algorithm implementations with integrated
loggers and evaluations [17, 23, 35, 24]. All of our model-free algorithm implementations are self-
contained, with every object necessary to set the hyperparameters, run the training loop, and evaluate
the policy included in a single file. As model-based methods typically run sequential dynamics and
policy training phases, we implement a single-file dynamics training script that saves trained model
checkpoints. These can then be imported by any of the policy training scripts for the model-based
algorithms.

E.2 Consistent

Even within the same library, algorithm implementations often differ in boilerplate code. We change
the minimum number of lines between implementations to control for implementation differences and
help developers. Guided by the design genealogy illustrated in Figure 10a, we first ensure the single
file implementation of the base algorithms like BC and SAC-N is clear and concise (Figure 10b) and
then make minimal differences from their algorithmic ancestors (Figure 10c).

Figure 11a shows the minimal differences between clean implementations of each algorithm, and
Figure 11b shows the line differences from CQL. We acknowledge that prior implementations do not
directly seek to minimize the differences between single-file implementations, but we believe it to be
a beneficial feature for research. See Figure 12 and Figure 13 for a more complete illustration of the
full code.

(a) Genealogy of algorithms. (b) Length of root algorithms. (c) Length of diff from parent.

Figure 10: We provide clean and consistent single-file implementations, as demonstrated by compact
implementations and minimal differences between algorithms.

(a) Using command line tool diff on our implementations
of SAC-N and EDAC.

(b) Implementation length difference of each al-
gorithm from CQL in their respective repository.

Figure 11: Analysis of algorithmic differences between offline RL implementations.

24

Figure 12: All code edits across implementations, from left to right: SAC-N, CQL, and EDAC.

25

Figure 13: Full code difference for SAC-N, EDAC, and CQL from left to right. The code for the final
evaluation loop is omitted to illustrate the consistency of the algorithm implementations.

26

F Reimplementation Training Time

Table 2: Speed up from our JAX implementations, training time in minutes. Algorithms trained
for 1M update steps on HalfCheetah−medium−expert using a single L40S GPU. Our library,
Unifloral, is the fastest across the board.

Algorithm OfflineRL-Kit CORL JAX-CORL Unifloral

BC 19.8 15.0 — 1.7
TD3-BC 56.1 42.5 6.9 3.1
IQL 79.7 65.0 5.2 4.0
ReBRAC — 8.7 — 6.8
SAC-N 107.5 98.8 — 7.7
CQL 203.9 180.3 20.7 9.8
EDAC 127.1 113.0 — 20.8

MOPO 168.1 — — 14.0
MOReL — — — 14.0
COMBO 289.6 — — 22.0

G Results Reproduction

Table 3: Performance of our algorithm reimplementations over 5 training seeds, Mean±Std.
Env. Dataset BC COMBO CQL EDAC IQL MOPO MOREL ReBRAC SAC-N TD3-BC

H
al

fC
he

et
ah

Expert 93.0 ± 0.4 89.5 ± 9.3 3.3 ± 1.3 2.3 ± 0.0 96.3 ± 0.3 62.7 ± 19.1 43.0 ± 27.2 106.3 ± 0.9 98.8 ± 2.8 98.0 ± 0.8
Medium 42.5 ± 0.2 72.2 ± 1.5 63.9 ± 1.1 52.2 ± 28.0 48.5 ± 0.4 72.8 ± 0.9 72.1 ± 1.6 65.6 ± 1.3 65.2 ± 1.4 48.6 ± 0.3
Medium-Expert 59.4 ± 10.9 93.6 ± 4.7 66.1 ± 8.3 102.8 ± 1.1 92.3 ± 3.1 80.9 ± 19.2 63.2 ± 6.8 104.5 ± 2.3 103.4 ± 5.6 92.9 ± 3.5
Medium-Replay 37.3 ± 2.0 54.4 ± 13.6 55.2 ± 1.1 55.8 ± 1.0 43.8 ± 0.5 69.0 ± 1.5 65.4 ± 3.5 49.1 ± 0.8 57.4 ± 1.3 44.8 ± 0.5
Random 2.2 ± 0.0 34.1 ± 1.6 30.7 ± 1.1 16.8 ± 13.3 12.5 ± 3.0 30.5 ± 1.0 31.8 ± 3.0 16.9 ± 17.8 26.6 ± 1.0 12.0 ± 1.6

H
op

pe
r

Expert 109.5 ± 3.3 12.5 ± 15.3 1.4 ± 0.3 4.9 ± 0.2 105.5 ± 4.5 2.2 ± 0.8 10.6 ± 6.8 108.2 ± 4.3 93.8 ± 12.2 109.4 ± 3.1
Medium 55.7 ± 4.8 3.1 ± 0.4 7.6 ± 0.4 100.8 ± 1.7 64.7 ± 5.6 46.6 ± 51.1 27.0 ± 10.4 101.8 ± 0.8 75.2 ± 36.0 62.3 ± 4.9
Medium-Expert 53.6 ± 4.4 2.8 ± 0.5 12.2 ± 3.0 109.9 ± 0.3 108.4 ± 4.9 25.2 ± 47.2 77.0 ± 44.4 108.0 ± 3.4 90.5 ± 22.1 105.2 ± 9.3
Medium-Replay 25.0 ± 5.3 28.1 ± 26.7 103.0 ± 0.3 101.2 ± 0.4 73.5 ± 7.5 86.3 ± 28.4 47.4 ± 13.8 84.4 ± 26.8 101.9 ± 0.4 51.1 ± 24.0
Random 4.9 ± 4.8 27.0 ± 8.6 22.0 ± 12.8 22.6 ± 15.2 7.3 ± 0.1 31.4 ± 0.0 21.9 ± 13.0 7.8 ± 1.2 26.6 ± 10.5 8.4 ± 0.7

W
al

ke
r2

d

Expert 108.5 ± 0.2 22.6 ± 24.0 2.4 ± 2.4 79.0 ± 45.3 112.7 ± 0.5 55.5 ± 10.7 19.4 ± 21.3 112.4 ± 0.1 3.2 ± 2.2 110.3 ± 0.3
Medium 63.8 ± 9.8 84.5 ± 0.4 87.9 ± 0.6 75.1 ± 40.9 84.0 ± 2.0 81.3 ± 2.6 16.4 ± 36.9 84.3 ± 2.3 87.9 ± 0.6 84.5 ± 0.7
Medium-Expert 108.1 ± 0.4 101.2 ± 0.9 88.9 ± 36.3 112.9 ± 0.7 111.8 ± 0.3 110.0 ± 1.5 21.7 ± 48.8 111.6 ± 0.5 114.8 ± 0.7 110.1 ± 0.5
Medium-Replay 23.8 ± 11.3 76.5 ± 2.0 79.1 ± 1.6 86.9 ± 1.5 82.8 ± 3.9 11.7 ± 3.3 -0.2 ± 0.0 82.7 ± 5.3 82.3 ± 1.6 78.4 ± 4.0
Random 0.9 ± 0.4 3.4 ± 2.6 9.1 ± 4.9 2.0 ± 0.0 4.4 ± 0.8 4.3 ± 6.3 0.3 ± 0.3 17.8 ± 8.9 20.7 ± 1.2 0.3 ± 0.4

Table 3 presents the results achieved by our method reimplementations on locomotion datasets,
matching the performance of prior implementations [17]. For our library’s completeness, we also
implement the Decision Transformer (DT) [33] using the hyperparameters from CORL [17].

Table 4: Performance of our Decision Transformer implementation over 5 training seeds, Mean±Std.
Env. Dataset Decision Transformer

HalfCheetah
Expert 92.9 ± 0.1
Medium 42.8 ± 0.5
Medium-Expert 92.5 ± 0.2
Medium-Replay 37.8 ± 1.3

Hopper
Expert 110.2 ± 1.5
Medium 61.3 ± 5.4
Medium-Expert 111.3 ± 0.5
Medium-Replay 25.5 ± 8.8

Walker2d
Expert 108.4 ± 0.2
Medium 71.4 ± 6.03
Medium-Expert 108.1 ± 0.3
Medium-Replay 53.24± 13.7

27

H Unifloral Hyperparameters

Table 5: Hyperparameters of prior algorithms in Unifloral—light gray values indicate inactive settings.

Hyperparameter IQL SAC-N EDAC TD3-BC ReBRAC
Batch size 256 256 256 256 1024
Actor learning rate 3e-4 3e-4 3e-4 3e-4 1e-3
Critic learning rate 3e-4 3e-4 3e-4 3e-4 1e-3
Learning rate schedule cosine constant constant constant constant
Discount factor γ 0.99 0.99 0.99 0.99 0.99
Polyak step size 0.005 0.005 0.005 0.005 0.005
Normalize observations True False False True False

Actor layers 2 3 3 2 3
Actor hidden size 256 256 256 256 256
Actor layer normalization False False False False True
Deterministic policy False False False True True
Deterministic eval True False False False False
Apply tanh to mean True False False True True
Learn action std True False False False False
Log std min -20.0 -5.0 -5.0 -5.0 -5.0
Log std max 2.0 2.0 2.0 2.0 2.0

of critics 2 [5–200] [10–50] 2 2
Critic layers 2 3 3 2 3
Critic hidden size 256 256 256 256 256
Critic layer normalization False False False False True

Actor BC coefficient 1.0 0.0 0.0 1.0 [5e-4–1.0]
Actor Q coefficient 0.0 1.0 1.0 [1.0–4.0] 1.0
Use Q target in actor False False False False False
Normalize Q loss False False False True True
Q aggregation method min min min first min

Use AWR True False False False False
AWR temperature [0.5–10.0] 1.0 1.0 1.0 1.0
AWR advantage clip 100.0 100.0 100.0 100.0 100.0

Critic BC coefficient 0.0 0.0 0.0 0.0 [0–0.1]
of critic updates per step 1 1 1 2 2
Diversity coefficient 0.0 0.0 [0.0–1e3] 0.0 0.0
Policy noise 0.0 0.0 0.0 0.2 0.2
Noise clip 0.0 0.0 0.0 0.5 0.5
Use target actor False False False True True

Use entropy loss False True True False False
Actor entropy coefficient 0.0 1.0 1.0 0.0 0.0
Critic entropy coefficient 0.0 1.0 1.0 0.0 0.0
Use value target False False False False False
Value expectile [0.5–0.9] 0.8 0.8 0.8 0.8

28

I Unified Algorithm Details

In this section we write out the different design decisions in a unified notation.

I.1 Critic Objective

First, we compute the value target using one of two methods, selectable via the method configuration:

vt+1 =

{
v(st+1)

minNn=1 q
′
n(st+1, clip(ât+1 + clip(ϵ, ϵmin, ϵmax), amin, amax))

, (4)

where N is the number of ensemble members, v is a value function trained with expectile regression
(as in IQL [21]), ât+1 ∼ π(at+1|st+1) is an action sampled from π (or a Polyak averaged target
policy), ϵ ∼ N (0, σ2) is random action noise with standard deviation σ, and ϵmin, ϵmax, amin, and
amax are clipping ranges. The value target is then augmented with behaviour cloning and entropy
terms (coefficients αBC and αH), defined as

v̂t+1 = vt+1 + αBC · (ãt+1 − at+1) + αH · H(π(·|st+1)), (5)

which is then used to compute the value loss,

Lv =

N∑
n=1

(qn(st, at)− (r + (1− d) · γ · v̂t+1))
2. (6)

Finally, we add the critic diversity loss term from EDAC [13] with coefficient αdiv, giving the final
critic loss

Lcritic = Lv +
αdiv

N − 1
·

∑
1≤i̸=j≤N

⟨∇at
qi(st, at),∇at

qj(st, at)⟩. (7)

I.2 Actor Objective

We write the actor loss as:

Lactor = βq · Lq + βBC · LBC − βH · H(π(·|st)). (8)

This consists of q loss Lq, behaviour cloning loss LBC, and policy entropy H(·), with coefficients
βq, βBC, βH ∈ R controlling the weight of these terms.

The first term, Lq is defined simply by a selectable aggregation function over the q-network ensemble,
with the minimum being the most common choice,

Lq =


−minNn=1(qn(st, at))

− 1
N

∑N
n=1 qn(st, at)

−q0(st, at)

. (9)

This term may also be normalized across the batch in order to stabilize learning. The second term,
LBC, is most commonly defined as the distance d between the target policy and dataset action, being
the mean squared error for deterministic policies or log-probability for stochastic policies. However,
some methods use advantage weighted regularization (AWR), which further weights this loss by the
clipped and exponentiated advantage of the behaviour policy action in order to clone only positive
actions within the dataset. Therefore, this term has the following variants:

d =

{
(at − ât)

2

− log π(at|st)
, LBC =

{
d

d ·min
(
Amax, e

η·(q(st,at)−V (st))
) , (10)

where η and Amax are the temperature and maximum value for exponential advantage.

29

I.3 Dynamics Modelling

We use an ensemble of dynamics models D̂θ = {D̂1
θ , D̂

2
θ , ..., D̂

M
θ }, where each D̂i

θ is trained
to predict state transitions and rewards. Following MOPO, we penalize the agent for going to
states where the ensemble disagreement is higher, as measured by the standard deviation of the
model’s predictions. This is used to penalize the reward during policy optimization with a pessimism
coefficient η,

R̂(st, at) =
1

M

M∑
m=1

Rm
θ (st, at)− η · σ(D̂

∆s

θ (st, at)), (11)

where σ(D̂
∆s

θ (st, at)) represents the standard deviation across the models’ state-change predictions
and Rm

θ (st, at) is reward prediction of the m-th ensemble member.

J Complete TD3-AWR Results

100 101 102

60

70

80

90

100

hopper-medium-v2

100 101 102
85

90

95

100

105

halfcheetah-medium-expert-v2

100 101 102

40

60

80

walker2d-medium-replay-v2

100 101 102

30

40

50

60

70
pen-human-v1

100 101 102

60

65

70

75

pen-cloned-v1

100 101 102

125

130

135

140

pen-expert-v1

100 101 102
0

10

20

antmaze-large-diverse-v2

100 101 102

50

100

150

200
maze2d-large-v1

100 101 102

10

20

30

40

50

kitchen-mixed-v0

0.0 0.2 0.4 0.6 0.8 1.0
Number of policy evaluations

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
sc

or
e

Algorithm
IQL REBRAC TD3-AWR

Figure 14: Full comparison of TD3-AWR to prior model-based methods across all datasets.

30

K Complete MoBRAC Results

100 101 102
0

20

40

60

80

100
hopper-medium-v2

100 101 102

20

40

60

80

100

halfcheetah-medium-expert-v2

100 101 102

20

40

60

80
walker2d-medium-replay-v2

100 101 102

0

20

40

pen-human-v1

100 101 102

0

20

40

pen-cloned-v1

100 101 102

0

25

50

75

100

pen-expert-v1

100 101 102
0.000

0.005

0.010

0.015

0.020

antmaze-large-diverse-v2

100 101 102

0

10

20

30

maze2d-large-v1

100 101 102
0

5

10

15

kitchen-mixed-v0

0.0 0.2 0.4 0.6 0.8 1.0
Number of policy evaluations

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
sc

or
e

Algorithm
COMBO MOPO MoReL MoBRAC

Figure 15: Full comparison of MoBRAC to prior model-based methods across all datasets.

31

L Full Related Work

In this section, we describe the prior work related to our evaluation procedure, implementation, and
unified algorithm. We implement a comprehensive selection of offline RL algorithms, for which more
information can be found in Appendix A.

L.1 Evaluation Regimes for Offline RL

The challenge of hyperparameter tuning in RL spans various domains. Wang et al. [36] discuss offline
tuning and the practical risks of deploying policies of unknown quality in the real world, whilst Paine
et al. [4] directly tackle this issue, estimating the zero-shot performance of offline-trained policies
without any prior online interactions. Their evaluation is limited to behavioural cloning [31, BC] and
two critic-based methods, which have since been outperformed by modern algorithms. Konyushova
et al. [7] extend this procedure with an online phase, using a UCB-based bandit to investigate policy
selection over multiple online evaluations. Further highlighting these challenges, Smith et al. [10]
propose a procedure where offline evaluation methods are first calibrated using policies of known
quality, evaluating on D4RL [20] locomotion tasks. Unlike their work, we evaluate across the
D4RL suite and introduce a procedure that eliminates the need for reference policies or additional
hyperparameters. Matsushima et al. [8] present a variant of offline RL that uses a limited number
of online deployments to update the dataset and iteratively train offline to match the performance
of online methods, introducing an online deployment frequency hyperparameter. Kurenkov and
Kolesnikov [9] address the practice of unreported online evaluations for hyperparameter tuning,
demonstrating how the performance of each algorithm changes with the number of online evaluations.
Unlike our procedure, they assume a low-variance estimate of a policy’s true performance each
evaluation but still conclude that BC outperforms all baselines.

L.2 Open-Source Implementations

Offline RL Inspiring our implementation, Clean Offline RL [17, CORL] provides single-file
implementations of model-free offline RL methods in PyTorch. JAX-CORL [23] is a JAX-based port
of CORL, albeit with a limited range of only model-free algorithms, slower training time than our
implementations, and lacking our evaluation procedure and code consistency. OfflineRLKit [16] and
d3rlpy [37] implement a range of offline RL methods and feature both model-based and model-free
methods. Although the repository has transparent class inheritance and polymorphism, it lacks any
further attempt at algorithmic unification.

Online RL StableBaselines3 [38] is a set of reliable RL algorithm implementations in PyTorch
with the aim of abstracting away training and deployment through an object-oriented interface.
SpinningUp [39] is a similar, education-oriented effort of jointly implementing various online RL
algorithms. CleanRL [24] follows a different design philosophy with method-focused, single-file
implementations of online RL algorithms in PyTorch and JAX. PureJaxRL [35] also follows the
single-file approach and is implemented in JAX. Rejax [40] is a popular multi-file JAX-based
implementation of PureJaxRL with extensive logging integration and a selection of SOTA methods.

CleanRL, CORL, and JAX-CORL provide clear and accessible logs of their final runs, a standard of
reproducibility we plan to uphold throughout every release of our work.

L.3 Method Unification

Our unified algorithm, Unifloral, is heavily inspired by prior work that also seeks to ablate and
unify a range of methods. Lu et al. [15] investigate the key components of model-based offline
RL algorithms to find an optimized algorithm that outperforms all model-based baselines. Sikchi
et al. [27] cast multiple offline RL methods in the same dual optimization framework and use this
unification to categorize them in regularized policy learning and pessimistic value learning. Prudencio
et al. [6] provide a survey of offline RL, focused on elucidating the taxonomy and disambiguating the
contributions of each algorithm. In online RL, Hessel et al. [25] combine independent components
of Deep Q-network algorithms into a unified algorithm, Rainbow, reaching SOTA in the Atari 2600
benchmark. Muesli [26] examines the combination of policy optimization and model-based methods.

32

	Introduction
	Preliminaries
	Reinforcement Learning
	Offline Reinforcement Learning

	Refining Evaluation in Offline RL
	Variants of Offline RL
	Proposed Evaluation Procedure
	Results

	Elucidating Algorithm Design in Offline RL
	Disentangling Prior Methods
	A Unified Hyperparameter Space for Offline RL

	Novel Methods Research with Unifloral
	TD3 with Advantage Weighted Regression
	Improving Policy Optimization for Model-Based Offline RL

	Related Work
	Conclusion
	Algorithm Implementations in Unifloral
	Model-Free Offline RL
	Model-Based Offline RL
	Imitation Learning

	Full Results from the Proposed Evaluation Procedure
	Evaluation Benchmarks in Prior Work
	Distractor Policy Phenomenon
	Code Philosophy
	Single-file
	Consistent

	Reimplementation Training Time
	Results Reproduction
	Unifloral Hyperparameters
	Unified Algorithm Details
	Critic Objective
	Actor Objective
	Dynamics Modelling

	Complete TD3-AWR Results
	Complete MoBRAC Results
	Full Related Work
	Evaluation Regimes for Offline RL
	Open-Source Implementations
	Method Unification

