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Abstract

Multi-task learning (MTL) is a widely explored paradigm that enables the simulta-
neous learning of multiple tasks using a single model. Despite numerous solutions,
the key issues of optimization conflict and task imbalance remain under-addressed,
limiting performance. Unlike existing optimization-based approaches that typi-
cally reweight task losses or gradients to mitigate conflicts or promote progress,
we propose a novel approach based on Continual Optimization with Symmetry
Teleportation (COST). During MTL optimization, when an optimization conflict
arises, we seek an alternative loss-equivalent point on the loss landscape to re-
duce conflict. Specifically, we utilize a low-rank adapter (LoRA) to facilitate this
practical teleportation by designing convergent, loss-invariant objectives. Addition-
ally, we introduce a historical trajectory reuse strategy to continually leverage the
benefits of advanced optimizers. Extensive experiments on multiple mainstream
datasets demonstrate the effectiveness of our approach. COST is a plug-and-play so-
lution that enhances a wide range of existing MTL methods. When integrated with
state-of-the-art methods, COST achieves superior performance. Code is avaliable at
https://github.com/zzpustc/COST.

1 Introduction

(a) (b)

Figure 1: The illustration of symmetry telepor-
tation. (a) is the original gradient descent. (b) is
the gradient descent with a faster convergence
rate after teleporting the start point from (a).

Traditional machine learning typically requires sep-
arate models for each task, leading to higher com-
putational and storage demands as the number of
tasks increases[Zhou et al., 2023, Pan et al., 2024,
Feng et al., 2024]. To overcome this issue, multi-
task learning (MTL) offers an efficient approach,
enabling the simultaneous learning of multiple tasks
using a single model [Qiu et al., 2017, Hai et al.,
2016, Yao et al., 2021]. Recent developments in
MTL methods can be broadly divided into two categories: structure-based [Heuer et al., 2021, Ye and
Xu, 2023, Chen et al., 2023] and optimization-based [Sener and Koltun, 2018, Yu et al., 2020, Liu
et al., 2024a]. Structure-based methods focus on designing architectures that enhance task learning by
utilizing task relationships and promoting individual progress. On the other hand, optimization-based
methods prioritize the learning process by addressing challenges such as gradient conflicts and
task imbalances. Since this paper concentrates on optimization-based methods, our analysis and
comparisons will primarily focus on these approaches.
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Optimization-based MTL aims to resolve the aforementioned issues by re-weighting on various
aspects. For example, a series of studies [Sener and Koltun, 2018, Yu et al., 2020, Liu et al., 2021a]
explore different gradient combinations to prevent improving some tasks while sacrificing others.
Another group of works [Chen et al., 2018, Liu et al., 2024a] re-weight task loss to ensure fair
progress for individual tasks and thereby address the imbalance issue. While the former group of
works endeavors to balance conflict and imbalance issues, the latter focuses on attaining balanced
individual progress with minimal concern for the conflict issue. As a result, the latter is generally
less robust in different scenarios compared to the former according to empirical observations [Chen
et al., 2018]. However, the former also struggles to achieve a proper balance. In this paper, distinct
from these two paradigms and based on the definition of Pareto dominance, we approach MTL from
a new perspective, i.e., seeking the less conflicting and more convergent point through symmetry
teleportation during MTL optimization.

Unlike the traditional gradient descent regime, symmetry teleportation aims to accelerate the opti-
mization process by seeking another point within the same loss level set, as depicted in Figure 1.
Several recent works [Armenta et al., 2023, Zhao et al., 2022, 2023] have explored optimization
through symmetry teleportation. For example, [Zhao et al., 2022] introduces a simple teleportation
algorithm for non-linear neural networks, based on the assumption that activation functions are
bijective, and seeks the point of maximal gradient magnitude using gradient ascent. However, these
methods do not provide practical algorithms for larger, modern neural networks, primarily due to
their reliance on strict assumptions about non-linearity and computational intensity (Section 3.3).
These limitations are especially pronounced in more complex tasks, e.g., MTL.

Therefore, in this paper, we aim to develop a practical symmetry teleportation method that is applicable
for modern deep models, and addressing MTL issues. Specifically, we leverage the low-rank adapter
(LoRA) to realize teleportation when encountered with the conflicts issue. By designing the objectives
to ensure the invariant task loss and promote progress, we are able to further extend the boundaries of
individual task learning for MTL models in a balanced manner. Besides, we also design a historical
trajectory reuse strategy to continually benefit from advanced optimizer (e.g., Adam). In a nutshell,
our contribution can be summarized as follows:

• We approach MTL from a new angle, i.e., symmetry teleportation, and empirically verify its
applicability for MTL (Section 3.2).

• A new practical teleportation method COST is proposed for mitigating the conflict and
imbalance issue. To the best of our knowledge, we are the first to develop a practical
teleportation method for non-small deep models, specifically for MTL.

• By proposing a historical trajectory reuse strategy, we can continually benefit from the
advanced optimizer (e.g., Adam and its variants).

• Taking the advanced method as the baseline, our COST can well augment it to achieve
state-of-the-art (SOTA) performance across diverse evaluations. Besides, we also equip
mainstream MTL methods with COST, and showing its plug-and-play property.

2 Related Work

2.1 Optimization-based MTL

Optimization-based methods aim to optimize multiple tasks simultaneously by enhancing the gradient-
based learning process itself. For example, MGDA [Sener and Koltun, 2018] reduces conflicts
between task gradients by combining them using the Frank-Wolfe algorithm [Jaggi, 2013] to generate
a gradient with minimal norm. PCGrad [Yu et al., 2020] addresses gradient conflicts by projecting
gradients from different tasks onto directions that minimize interference. CAGrad [Liu et al., 2021a]
attempts to balance global optimization and task-specific performance, maintaining both Pareto
efficiency and overall optimization with the assistance of a hyperparameter. Nash-MTL [Navon
et al., 2022] introduces a game-theoretic approach where tasks negotiate to update parameters in a
manner that enables balanced progression across tasks. Additionally, MoCo [Fernando et al., 2023]
focuses on correcting biases in gradient direction by tracking parameters during the learning process,
improving gradient alignment and task performance. FairGrad [Ban and Ji, 2024] is a pioneering
MTL algorithm that puts forward fairness measurements to facilitate maximal loss reduction. It can
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be considered as an advanced version of Nash-MTL, being capable of balancing task progress in a
more fine-grained manner.

2.2 Symmetry Teleportation for Deep Model

Before presenting some recent works on symmetry teleportation, we first provide its definition here
as per [Zhao et al., 2022]. Let L(θ) be the loss function. Here, Rd denotes the model’s parameter
space, and A represents the acting space on the parameters that leaves the loss value unchanged.
Subsequently, we have the following definition:

L(θ) = L(a · θ), ∀a ∈ A, ∀θ ∈ Rd. (1)

θ′ = a · θ, a = argmax
a∈A

∥∇L(a · θ)∥2 . (2)

we can observe that symmetry teleportation aims to find a loss-invariant point (Eqn. 1) with a
maximum gradient norm (Eqn. 2) on the loss level set by acting with a group element.

As a recent research topic, symmetry teleportation has been explored in only a few works [Armenta
et al., 2023, Zhao et al., 2022, 2023]. [Armenta et al., 2023] first introduced the concept of ‘neural
teleportation’ and investigated its impact on optimization. [Zhao et al., 2022] proposed a gradient
ascent-based teleportation algorithm for small neural networks (e.g., three-layer MLPs). And [Zhao
et al., 2023] established the connection between symmetry teleportation and generalization through a
series of theoretical analyses and provided an alternative for enhancing the meta optimizer.

2.3 Low-Rank Adapter

LoRA is gaining increasing popularity in tandem with the rapid advancement of foundation models
and parameter-efficient fine-tuning (PEFT). It operates by maintaining the pre-trained weights of a
large model in a fixed state and incorporating small, trainable rank decomposition matrices. During
fine-tuning, rather than modifying all the parameters of the model, only these low-rank matrices are
subject to update.

Moreover, LoRA has several variants that can attain dynamic rank [Zhang et al.], or quantiza-
tion [Dettmers et al., 2024]. For instance, AdaLoRA [Zhang et al.] adaptively assigns dynamic rank
to different parameters, thereby enabling the capture of important updates while preserving efficiency.
In contrast, QLoRA [Dettmers et al., 2024] introduces 4-bit NormalFloat, double quantization, and
paged optimizers to more effectively optimize LoRA, while significantly reducing the required
memory.

Connection and Difference: Our work tackles conflict and imbalance issues in optimization-
based MTL through symmetry teleportation. Specifically, we utilize LoRA to imple-
ment practical teleportation. In contrast to previous studies, we explore MTL from a
novel perspective and introduce a new teleportation algorithm for modern deep models.
This algorithm is scalable, easily integratable, and compatible with both PEFT and MTL.
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Figure 2: Illustration of conflict and imbalance is-
sues in MTL. ‘Bal’ and ‘Imb’ represent balanced
and imbalanced, while ‘N-Con’ and ‘Con’ repre-
sent non-conflicting and conflicting.

3 Motivation and Observation

3.1 Preliminary

As mentioned, optimization-based MTL ap-
proaches operate under the assumption that the
model consists of a task-shared backbone net-
work alongside task-specific branches. Con-
sequently, the primary objective of these ap-
proaches is to devise gradient combination
strategies that optimize the backbone network to
yield benefits across all tasks. Let us consider a
scenario where there are K ≥ 2 tasks available,
each associated with a differentiable loss func-
tion Li(θ), where θ represents the task-shared
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parameters. The goal of optimization-based MTL is to search for the optimal θ∗ ∈ Rm that minimizes
the losses for all tasks.

Definition 1 (Gradient Similarity). Denote ϕij as the angle between two task gradients gi and gj ,
and assume ∥gi∥2 ≤ ∥gj∥2, then we define the gradient similarity as cosϕij and the gradients as
conflicting when cosϕij < 0 (referred as Weak Conflict). When the mean gradient g0 is conflicting
with gi, we call it as Dominated Conflict (see Figure 2).

3.2 Applicability of Symmetry Teleportation
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(a) CAGrad
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(b) FairGrad

Figure 3: Dominated conflict vs. loss examina-
tion. The pink backdrop designates the conflicting
area, whereas the green backdrop indicates the non-
conflicting area. The blue scatter points are the indi-
vidual recorded points throughout the optimization
process. The red dashed line symbolizes the tele-
portation occurring from a conflict point to a non-
conflict point. An exponential amplification has been
applied to the loss values to enhance visual clarity.

Before delving into the principal design of our
method, it is necessary to verify the existence
of parameter symmetries with differing con-
flict statuses. To this end, we examine the
optimization process of mainstream MTL ap-
proaches. We analyze the mean loss across all
tasks and the associated conflict status during
optimization from various initial points, with
the results presented in Figure 5.

As shown in Figure 5, it is often possible
to identify a non-conflict alternative at the
same loss level when encountering conflict,
demonstrating the potential of symmetry tele-
portation. Additional statistical results from
other MTL approaches are provided in the Ap-
pendix (Sec. A.3).

3.3 Pitfall of Current Paradigms

While several works [Armenta et al., 2023, Zhao et al., 2022, 2023] have proposed symmetry
teleportation algorithms for neural network-based models, we demonstrate their limitations with
current deep models. First, these algorithms require activation functions to be bijective, which poses a
significant challenge for widely-used deep models (e.g., ResNet-50) that use non-bijective activation
functions, e.g., ReLU and Sigmoid. Second, they require calculating the pseudo-inverse of inputs
layer by layer to ensure output and loss invariance. This process is computationally intensive and
may be impractical for modern deep models. As a result, these approaches have only been tested on
simple three-layer MLP networks and small-scale datasets (e.g. MNIST) for verification.

4 Principal Design

In this section, we present the detailed design of COST, incorporating the symmetry teleportation
paradigm and a historical trajectory reuse strategy. We also provide an analysis of convergence.

4.1 Continual Optimization with Symmetry Teleportation

The overall framework of COST is depicted in Figure 4. At a certain training stage t, we utilize LoRA
to teleport the weight of the shared backbone to the non-conflict point (merge the trained LoRA
into the backbone’s weight) with the same loss level. Subsequently, the model (including both the
backbone and branches) is continuously optimized by other MTL algorithms. In this framework,
there are two questions that need to be answered:

When: The first question is, when should teleportation be triggered? Unfortunately, the previous
solutions presented in [Armenta et al., 2023, Zhao et al., 2022, 2023] did not offer a clear answer
to this question. They merely triggered it in a random or intuitive manner. In contrast, our goal is
to address two key challenges in MTL: conflict and imbalance, challenges that are not concurrently
addressed by existing solutions [Zhou et al., 2025, 2024]. Moreover, a naïve linear scalarization (LS)
strategy can effectively promote all tasks, as illustrated in Figure 2 and has been empirically verified
in [Xin et al., 2022]. Thus, the primary challenge lies in resolving conflict arising from imbalance,
i.e., dominated conflict. Therefore, we establish the teleportation trigger condition based on the
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Figure 4: The Illustration of COST. Here, we depict a one-time teleportation procedure by using a
2-task example for the sake of illustration. Note that LoRA is only applied to the shared backbone.

occurrence of dominated conflict 2:

cosϕi0 < 0, ϕi0 = ∠(gi, g0) (3)

where gi and g0 represent the task gradient with the smallest norm and the mean gradient, respectively.
However, when handling a large number of tasks, dominated conflicts become inevitable, reaching a
97% conflict ratio per epoch on CelebA [Liu et al., 2015], as shown in Figure 5(a). Then if we still
employ dominated conflict as the trigger condition, frequent teleportation would occurs and results in
inefficiency. Therefore, our objective shifts to mitigating dominant conflicts, balancing efficiency and
effectiveness. To achieve this, we adopt the following condition:

K∑
j

1[cosϕj0 < 0] ≥
⌈
K

2

⌉
(4)
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Figure 5: (a) Conflict ratio per epoch on CelebA
(40-task) and NYUv2 (3-task) and (b) loss exami-
nations during a single teleportation.

Under this condition, the trigger frequency is sig-
nificantly reduced (see Figure 5(a)) while main-
taining effectiveness, as demonstrated in the
evaluation. Additionally, we analyze the trade-
off between effectiveness and efficiency for this
condition in the Appendix (Section A.4).

How: In the symmetry teleportation paradigm,
there are two key objectives: loss invariance
and gradient maximization, as outlined in Eqn. 1
and Eqn. 2. Since finding a group action g is
infeasible for deep models, we instead use LoRA
(∆θ) as an alternative, reformulating it as:

L(θ) = L(θ +∆θ) (5)

∆θ = argmax
∆θ

∥∇L(θ +∆θ)∥2 . (6)

With respect to the specific symmetry teleportation taking place during the optimization process, in
order to ensure the task loss remains invariant, we undertake the minimization of the loss fluctuation
in the following way:

Lt =
1

K

K∑
i

|Li − L∗
i | (7)

where Li represents the individual task loss, and L∗
i is its loss before starting teleportation, which is

unchanged during teleportation.
2We have provided a comparison between dominated conflict and weak conflict in the Appendix (Sec. A.4).
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To maximize the gradient of the target point, a simplistic solution would be to incorporate it into
the objective of LoRA optimization. However, two challenges arise when attempting to do so: (1)
It is difficult to explicitly incorporate gradient maximization into the objective design. (2) Even
if it were possible, the computation of the Hessian matrix would be overly burdensome for LoRA
optimization. On the other hand, upon closely examining Eqn. 6, we can observe that our intention is
merely to identify the point with the maximal gradient, rather than precisely attaining the maximal
gradient itself. Consequently, we choose to select another metric for measuring the gradient norm,
i.e., Sharpness [Foret et al., 2021]. Since the negative direction of the gradient is locally the fastest
direction of descent, thus we can estimate the gradient by seeking the sharpest direction at θ∗ as
follow:

Sharpness = max
∥ϵ∥≤δ

|L(θ∗ + ϵ)− L(θ∗)| (8)

where δ is the radius of the sphere. We further implement Eqn. 8 by randomly sampling ϵ ñ times
from the sphere, and estimating sharpness by selecting the maximum one:

Lg = max

{∣∣∣∣∣ 1K
K∑
i

Ri · [Li(θ +∆θ + ϵj)− Li(θ +∆θ)]

∣∣∣∣∣
}ñ

j=1

(9)

R = K · softmax

[∑K
j=1 ∥gj∥
∥gi∥

]K

i=1

 (10)

where R is computed to facilitate the search for more balanced alternatives, mitigating imbalance
issues. Consequently, the overall objective for LoRA optimization can be formulated as follows:

Llora = Lt − γLg (11)

where γ is the hyper-parameter (set as 0.1). As depicted in Figure 5(b), Lt largely decreases while
Lg increases as expected during teleportation.
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(b) LS + COST.

Figure 6: Trajectory illustration on toy examples.

To enhance understanding of our approach, we
provide a trajectory illustration on toy exam-
ples [Liu et al., 2021a] in Figure 6. As shown,
LS may fail to reach the Pareto front from cer-
tain initializations due to conflict issues. How-
ever, with the augmentation of COST, it success-
fully explores alternative paths for continuous
optimization rather than getting stuck.

4.2 Convergence Analysis

In this section, we present a convergence analysis to further enhance the understanding of the
applicability of our proposed method. By formulating a theorem, it has been proven that our method
converges to the Pareto stationary point with guarantee.

Theorem 2. Assume task loss functions L1, ...,LK are differentiable and Λ-smooth (Λ>0) such that
∥∇Li(θ1)−∇Li(θ2)∥ ≤ Λ ∥θ1 − θ2∥ for any two points θ1, θ2, and our symmetry teleportation
property holds. Set the step size as η = 1

Λ
√
T−1

, T is the training iteration. Then, there exists a
subsequence {θtj} of the output sequence {θt} that converges to a Pareto stationary point θ∗.

The proof of this theorem is provided in the Appendix (Sec. F).

4.3 Historical Trajectory Reuse Strategy

When training MTL models with advanced optimizers, a minor issue arises after reaching the
loss-invariant point through our symmetry teleportation. Specifically, the teleportation process
disrupts the continuous optimization flow, preventing the MTL model from leveraging its historical
trajectory—one of the key advantages of advanced optimizers (e.g., Adam [Kingma, 2014]).
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Figure 7: The illustration of HTR strategy. The
red star represents the teleported point. g′ is the
gradient at the pre-teleportation point, and α is
the angle between g′ and ∆θ.

Taking the Adam optimizer as an example, which
is commonly utilized in mainstream MTL ap-
proaches [Liu et al., 2021a, 2024a, Navon et al.,
2022]. It employs an exponentially weighted mov-
ing average to estimate the momentum (vt) and
quadratic moments (st) of the gradient (histori-
cal trajectory). However, when the model is tele-
ported to another point, the stored historical trajec-
tory would supply misleading information for the
current model optimization. To tackle this issue, we partially preserve the historical trajectory by
computing the correlation between teleportation and previous updating (as depicted in Figure 7):

σ = cos_sim(∆θ, g′) (12)
where cos_sim is the function of computing cosine similarity, and g′ is the gradient at the pre-
teleportation point. In this way, the historical trajectory can be modulated and reused according to
Eqn. 13. After that, σ is still set to 1, as is typically the case with the Adam optimizer.

vt = σβ1vt−1 + (1− σβ1)gt (13)

st = σβ2st−1 + (1− σβ2)g
2
t

The overall training algorithm is concluded in the Appendix (Section C).

5 Performance Evaluation
Table 1: Scene understanding (CityScapes, 2 tasks).

Method Segmentation ↑ Depth ↓ MR ↓ ∆m% ↓
mIoU Pix. Acc. Abs. Err. Rel. Err.

Independent 74.01 93.16 0.0125 27.77 - -

LS 75.18 93.49 0.0155 46.77 8.25 22.60
RLW 74.57 93.41 0.0158 47.79 11.00 24.37
DWA 75.24 93.52 0.0160 44.37 8.25 21.43
Uncertainty 72.02 92.85 0.0140 30.13 7.50 5.88
MGDA 68.84 91.54 0.0309 33.50 11.00 44.14
GradDrop 75.27 93.53 0.0157 47.54 7.75 23.67
PCGrad 75.13 93.48 0.0154 42.07 8.50 18.21
CAGrad 75.16 93.48 0.0141 37.60 7.50 11.58
IMTL 75.33 93.49 0.0135 38.41 5.75 11.04
Nash-MTL 75.41 93.66 0.0129 35.02 3.00 6.82
FAMO 74.54 93.29 0.0145 32.59 8.25 8.13
FairGrad 75.72 93.68 0.0134 32.25 2.25 5.18

COST 75.73 93.53 0.0133 31.53 2.00 4.30±1.3

In this section, we initially evaluate our
method using mainstream MTL bench-
marks and compare it with the fol-
lowing baselines: Linear Scalarization
(LS), Scale-Invariant (SI), Random Loss
Weighting (RLW) as described in [Lin
et al., 2021], Dynamic Weight Aver-
age (DWA) from [Liu et al., 2019],
Uncertainty Weighting (UW) detailed
in [Kendall et al., 2018], MGDA from
[Sener and Koltun, 2018], GradDrop
presented in [Chen et al., 2020], PC-
Grad as in [Yu et al., 2020], CAGrad
from [Liu et al., 2021a], IMTL detailed
in [Liu et al., 2021b], Nash-MTL from
[Navon et al., 2022], FAMO described
in [Liu et al., 2024a], and FairGrad
(α = 1) from [Ban and Ji, 2024]. Sub-
sequently, we offer some additional analyses regarding conflict and gradient examinations, ablation
studies, and plug-and-play verification, etc., to further enhance understanding. We also provide
additional analysis on conflict and gradient examination (Sec. A.1), plug-and-play verification (Sec.
A.2), alternatives to PEFT (Sec. A.5), and time cost (Sec. A.6) in the Appendix. All experiments are
carried out on a single Tesla V100 GPU. For more experimental details, please refer to the Appendix
(Sec. B). Code will be released once this paper is accepted.

Evaluation Metric. In addition to reporting individual performance, we also incorporate a widely
used metric, ∆m% [Maninis et al., 2019], which evaluates the overall degradation compared to
independently trained models that are considered as the reference oracles. The formal definition of
∆m% is given as:

∆m% =
1

K

K∑
k=1

(−1)δk
Mm,k −Mb,k

Mb,k
× 100 (14)

where Mm,k and Mb,k represent the metric Mk for the compared method and the independent model,
respectively. The value of δk is assigned as 1 if a higher value is better for Mk, and 0 otherwise.
Besides, we also report another popular metric named Mean Rank (MR), which computes the
average ranks of each methods across all tasks.
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5.1 Overall Evaluation

Dense Prediction. CityScapes [Cordts et al., 2016] and NYUv2 [Silberman et al., 2012] are
two widely-used scene understanding datasets, which are employed for the evaluation of MTL.
NYUv2 comprises 1449 annotated images and is utilized for three fine-grained tasks, i.e., semantic
segmentation, depth estimation, and surface normal prediction. CityScapes consists of 5000 annotated
scene images, which are readied for two tasks: semantic segmentation and depth estimation.

Table 2: Scene understanding (NYUv2, 3 tasks). We report MTAN model performance averaged
over 3 random seeds. The best scores are provided in gray , and the second scores are underlined.

Method
Segmentation ↑ Depth ↓ Surface Normal

MR ↓ ∆m% ↓
mIoU Pix. Acc. Abs. Err. Rel. Err. Angle Distance ↓ Within t◦ ↑

Mean Median 11.25 22.5 30

Independent 38.30 63.76 0.68 0.28 25.01 19.21 30.14 57.20 69.15 - -

LS 39.29 65.33 0.55 0.23 28.15 23.96 22.09 47.50 61.08 9.44 5.46
RLW 37.17 63.77 0.58 0.24 28.27 24.18 22.26 47.05 60.62 12.22 7.67
DWA 39.11 65.31 0.55 0.23 27.61 23.18 24.17 50.18 62.39 8.56 3.49
Uncertainty 36.87 63.17 0.54 0.23 27.04 22.61 23.54 49.05 63.65 8.78 4.01
MGDA 30.47 59.90 0.61 0.26 24.88 19.45 29.18 56.88 69.36 7.11 1.47
GradDrop 39.39 65.12 0.55 0.23 27.48 22.96 23.38 49.44 62.87 8.89 3.61
PCGrad 38.06 64.64 0.56 0.23 27.41 22.80 23.86 49.83 63.14 9.33 3.83
CAGrad 39.79 65.49 0.55 0.23 26.31 21.58 25.61 52.36 65.58 6.33 0.29
IMTL 39.35 65.60 0.54 0.23 26.02 21.19 26.20 53.13 66.24 5.56 -0.59
Nash-MTL 40.13 65.93 0.53 0.22 25.26 20.08 28.40 55.47 68.15 3.11 -4.04
FAMO 40.30 66.07 0.56 0.21 26.67 21.83 25.61 51.78 64.85 5.44 0.16
FairGrad 39.74 66.01 0.54 0.22 24.84 19.60 29.26 56.58 69.16 3.00 -4.66

COST 38.06 64.71 0.54 0.23 24.47 18.80 30.84 58.25 70.30 3.22 -5.39±0.5

In line with the implementation and training strategy of FairGrad [Ban and Ji, 2024], we construct
our model using SegNet [Badrinarayanan et al., 2017] and employ MTAN [Liu et al., 2019] as the
backbone within it. We train our model with the Adam optimizer for a total of 200 epochs, setting the
initial learning rate to 1.0e-4 and reducing it to half after 100 epochs. The batch size is set to 2 for
NYUv2 and 8 for CityScapes, respectively.

Table 3: Results on CelebA and QM9 datasets with
MR and ∆m%. The results of FairGrad-R are
reported according to the official implementation.

Method CelebA QM9

MR ↓ ∆m% ↓ MR ↓ ∆m% ↓
LS 7.08 4.15 9.09 177.6
SI 8.80 7.20 5.64 77.8
RLW 5.98 1.46 10.64 203.8
DWA 7.78 2.40 8.91 175.3
UW 6.65 3.23 7.00 108.0
MGDA 11.98 14.85 8.91 120.5
PCGrad 7.58 3.17 7.36 125.7
CAGrad 7.13 2.48 8.09 112.8
IMTL-G 5.53 0.84 6.91 77.2
Nash-MTL 5.73 2.84 4.27 62.0
FAMO 5.65 1.21 5.18 58.5

FairGrad-R 6.35 1.15 4.82 59.9
COST 4.80 0.93±0.2 4.18 58.3±1.2

The results obtained on these two datasets are
presented in Table 1 and Table 2, respectively.
With FairGrad serving as the baseline, our
method not only successfully surpasses it but
also attains the SOTA performance in terms of
MR and ∆m%. Specifically, upon closely exam-
ining the performance of each individual task,
we can note that COST significantly enhances
FairGrad on the CityScapes dataset and consid-
erably improves the surface normal prediction
task, while also showing some promise on the
other tasks on the NYUv2 dataset. These obser-
vations clearly demonstrate the effectiveness of
our design, which aids in alleviating conflict and
facilitating convergence.

Image Classification. CelebA [Liu et al.,
2015] is a commonly utilized face attributes
dataset [Wang et al., 2024] that contains over
200,000 images and is annotated with 40 at-
tributes. Recently, it has been adopted as a 40-task MTL benchmark to assess the model’s capacity
to handle a large number of tasks. In accordance with the setup of FairGrad, we utilize a 9-layer
convolutional neural network (CNN) as the backbone and linear layers as the task-specific heads on
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top of it. We train our model with the Adam optimizer for a total of 15 epochs, setting the initial
learning rate to 3.0e-4. Moreover, the batch size is set to 256.

The evaluation results are shown in Table 3. Given that our method is mainly developed based on
FairGrad, our performance is thus highly associated with it. We conscientiously re-implemented
FairGrad using the official code they provided and were able to achieve the reported performance on
CityScapes, NYUv2. However, we were unable to do so on CelebA and QM9. Consequently, we
only report our re-implemented performance of FairGrad here (referred to as FairGrad-R). As can be
observed, COST still significantly enhances its baseline and attains the SOTA performance according
to MR, ranking second according to ∆m%. These results demonstrate COST’s remarkable ability to
handle numerous tasks simultaneously.

Regression. QM9 [Ramakrishnan et al., 2014] is another widely used drug discovery MTL dataset
specifically for regression tasks. It contains 130,000 organic molecules that are organized as graphs
with node and edge features. This task is designed to predict 11 properties having different mea-
surement scales and can also be considered as an evaluation scenario for MTL involving a large
number of tasks. Our approach is trained for 300 epochs with a batch size of 120. The initial learning
rate is set to 1.0e-3, and a learning rate scheduler is applied to reduce the rate when the validation
performance shows no further improvement.

According to Table 3, our method still achieves competitive performance on this specific dataset.
However, in comparison to other datasets, it exhibits fewer enhancements over its baseline. One
crucial reason for these relatively less satisfactory results is that this task adopts a graph model with
only two layers supporting LoRA in current PEFT package, which reduces its effectiveness.

5.2 Ablation Study

Table 4: Ablation study of COST on
CityScapes (2 tasks).

Lt Lg HTR ∆m% ↓
5.18

✓ 7.90
- ✓ 381.86
✓ ✓ 4.65

✓ ✓ ✓ 4.30

We consider COST as an integrated system, and thus each
component ought to be evaluated to showcase its effec-
tiveness. In our design, there are primarily three key com-
ponents: the loss invariance objective (Lt), the gradient
maximization objective (Lg), and the HTR strategy. Con-
sequently, we carry out ablation studies for verification
purposes and present the results in Table 4. In the context
of symmetry teleportation, Lt and Lg serve as the founda-
tion for seeking alternatives within the orbit. Hence, we
exclude Lt and Lg during the LoRA optimization process,
respectively. The results indicate that without Lt or Lg,
COST performs worse than its baseline (which is FairGrad in this case). More specifically, COST
would experience a severe deterioration without Lt, thereby underlining the crucial importance of
loss invariance. These results might address another concern regarding COST, namely: Are the im-
provements brought about by COST rooted in the capability expansion facilitated by LoRA? Without
an appropriate objective design, LoRA is unable to effectively augment the base models.

On the other hand, it should be noted that LoRA is incorporated into the base model after each
teleportation. Thus, the model’s capability remains unchanged during the inference time. All that we
are doing is assisting in finding a better convergence point. Furthermore, when the HTR strategy is
excluded, ∆m% decreases from 4.30 to 4.65, which demonstrates the significance of benefiting from
advanced optimizers.

6 Conclusion

This paper explores the MTL problem from a brand new perspective, i.e., alleviating the conflict
issue through symmetry teleportation. Specifically, we utilize LoRA to achieve practical symmetry
teleportation for contemporary deep models. Additionally, we design loss-invariant and gradient
maximization objectives to assist in identifying non-conflict and more convergent points. We
also devise a historical trajectory reuse strategy to continuously benefit from advanced optimizers.
Extensive experiments have demonstrated the effectiveness of our proposed method as well as its
plug-and-play characteristic. As a scalable framework, we anticipate that our method can offer some
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valuable insights to researchers engaged in optimization-based MTL. Currently, there are still rooms
for improvement within this system, and our future work will focus on these aspects.
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A Additional Results

A.1 Conflict and Gradient Examinations

Although our method achieves competitive performance, it remains unclear whether it effectively
resolves the targeted issues, i.e., conflict mitigation and greater gradient norm discovery. To investigate
this, we analyze the training process by recording the results before and after teleportation, as shown
in Figure 8. The findings indicate that conflict is significantly alleviated, with task gradients becoming
positively correlated in most cases after teleportation. Besides, teleportation consistently yields
greater gradient norms, confirming the effectiveness of COST’s design.

0 100 200 300 400 500 600
Iteration

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

Co
sin

e 
Si

m
ila

rit
y

Before Teleportation
After Teleportation

(a) Conflict status

0 100 200 300 400 500 600
Iteration

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Gr
ad

ie
nt

 N
or

m

Before Teleportation
After Teleportation

(b) Gradient norm status

Figure 8: Examinations before/after teleportation.

A.2 Plug-and-Play Verification

Intuitively, our method is orthogonal to existing MTL approaches and is therefore plug-and-play,
enabling augmentation when integrated. Here, we take three baselines (i.e., CAGrad, Nash-MTL, and
FairGrad) to demonstrate the effectiveness of COST, and present the results in Table 5. As anticipated,
our method successfully brings considerable augmentation to its baselines, with improvements ranging
from 0.88 to 3.21 according to ∆m%. Specifically, CAGrad and FairGrad receive improvements on
almost each individual metric.

We also conduct an additional verification experiment using CAGrad on the NYUv2 dataset. The
results, presented in Table 6, show that COST consistently enhances CAGrad’s performance across all
metrics.

Table 5: Plug-and-play verification on CityScapes (2 tasks) dataset. We adopt FAMO’s implemen-
tation for Nash-MTL (denoted as Nash-R) and augment it with COST, since Nash-MTL does not
provide the official implementation on CityScapes.

Method Segmentation ↑ Depth ↓
∆m% ↓

mIoU Pix. Acc. Abs. Err. Rel. Err.

CAGrad 75.16 93.48 0.0141 37.60 11.58
CAGrad + COST 75.46 93.57 0.0134 35.68 8.37

Nash-R 75.87 93.57 0.0135 37.29 9.89
Nash-R + COST 75.70 93.56 0.0134 34.34 7.15

FairGrad 75.72 93.68 0.0134 32.25 5.18
FairGrad + COST 75.73 93.53 0.0133 31.53 4.30
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Table 6: Plug-and-play verification on NYUv2 (3 tasks).

Method

Segmentation Depth Surface Normal

∆m% ↓(Higher Better) (Lower Better) Angle Distance Within t◦

(Lower Better) (Higher Better)

mIoU Pix. Acc. Abs Err Rel Err Mean Median 11.25 22.5 30

CAGrad 39.79 65.49 0.55 0.23 26.31 21.58 25.61 52.36 65.58 0.29
CAGrad + COST 40.76 66.42 0.53 0.22 26.00 21.13 26.44 53.25 66.30 -1.61

FairGrad 39.74 66.01 0.54 0.22 24.84 19.60 29.26 56.58 69.16 -4.66
FairGrad + COST 38.06 64.71 0.54 0.23 24.47 18.80 30.84 58.25 0.30 -5.39

A.3 Motivation

To further elucidate our motivation, we additionally carry out a verification experiment to observe
the dominant conflict status within Nash-MTL. Based on the results shown in Figure 9, Nash-MTL
exhibits fewer dominated conflicts in comparison to CAGrad and FairGrad, yet still encounters a
significant number. Moreover, it also possesses symmetry points that have the same loss level but
with different conflict status.
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Figure 9: Dominated conflict vs. loss examination of Nash-MTL.

A.4 Analysis on Trigger Condition

As stated in the main text, the trigger condition is of importance for our symmetry teleportation
process. To illustrate this, we carry out a comparison between our system when triggered by
dominated conflict and when triggered by weak conflict, and the results are presented in Table 7. It
can be observed that although COST-weak surpasses COST-dominated in terms of most individual metrics,
it accomplishes this by sacrificing a significant portion of the performance on the Rel. Err. metric.
This is an unexpected outcome in the context of MTL. Consequently, it does not perform satisfactorily
on the overall metric (∆m%). These results further emphasize that addressing both imbalance and
conflict issues is crucial for MTL. This is because the scenario of weak conflict only focuses on the
conflict issue, overlooking the importance of handling imbalance as well.

Table 7: Trigger condition comparison on CityScapes (2 tasks) dataset.

Method
Segmentation Depth

∆m% ↓(Higher Better) (Lower Better)

mIoU Pix. Acc. Abs. Err. Rel. Err.

COST -dominated 75.73 93.53 0.0133 31.53 4.30
COST -weak 75.92 93.64 0.0127 35.94 6.94

We also conduct an additional experiment on the trigger condition in the presence of numerous
tasks, following Eqn. 4 in the main text. As previously stated, this condition is designed to balance
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effectiveness and efficiency—relaxing it would improve performance but at the cost of increased
inefficiency. The results, presented in Figure 10, confirm this trade-off. As shown, ∆m% gradually
decreases as the trigger condition is relaxed, with improvements driven by more frequent teleportation.
However, this comes at the cost of an almost linear increase in time complexity.
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Figure 10: Trigger condition under the massive tasks scenario. Time cost is measured for one epoch
on CelebA.

Table 8: PEFT alternatives comparison on CityScapes (2 tasks) dataset.

Method
Segmentation Depth

∆m% ↓(Higher Better) (Lower Better)

mIoU Pix. Acc. Abs. Err. Rel. Err.

FairGrad 75.72 93.68 0.0134 32.25 5.18
COST-LoRA 75.73 93.53 0.0133 31.53 4.30
COST-LoHa Hyeon-Woo et al. [2021] 75.52 93.43 0.0130 35.07 7.10
COST-OFT Qiu et al. [2023] 68.17 91.40 0.0151 45.25 23.39

A.5 Analysis on Alternative of PEFT

Currently, numerous PEFT alternatives are available for teleportation purposes. To further examine
the effect of PEFT on our method, we employ additional PEFT options to assess their impact on MTL
performance. Specifically, we evaluate a LoRA variant (LoHa) and another PEFT alternative, OFT.
The results, presented in Table 8, show that neither PEFT option improves upon their baselines. This
suggests that while advanced PEFT methods may enable more efficient tuning, their complex designs
can limit generalizability across various scenarios, aligning with some recent observations [Pu et al.,
2023]. Identifying a suitable PEFT approach remains a future direction for our framework.

The obtained results demonstrate that our framework can indeed benefits from certain other PEFT
alternatives, e.g., LoHa. However, it also encounters setbacks when using alternatives like OFT. This
implies that the selection of the PEFT method warrants further investigation.

A.6 Time Cost

Applying teleportation at every instance of a conflict would significantly increase the computational
burden and training time. To mitigate this, we introduce two strategies: delayed start and frequency
control. The delayed start strategy postpones the application of teleportation until after E epochs.
Meanwhile, frequency control limits the number of teleportation operations within each epoch,
reducing overhead without much compromising the optimization process.

Here, we measure the running time of a single epoch on CelebA, comparing the scenarios with
and without the COST augmentation, and present the results in Figure 11. As can be observed, our
applied strategies introduce only an additional 30% of the training time compared to its baselines.
Nonetheless, we acknowledge this still constitutes one of our limitations.
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Figure 11: Time cost comparison.

B Implementation Details

B.1 Baseline Implementation

CAGrad: CAGrad strikes a balance between Pareto optimality and globe convergence by regulating
the combined gradients in proximity to the average gradient:

max
d∈Rm

min
ω∈W

g⊤
ω d s.t. ∥d− g0∥ ≤ c ∥g0∥ (15)

In our experiments, we extend the official implementation to include COST. And all our training
settings follow the same manner with its original one. For more comprehensive information, please
consult the official implementation.

Nash-MTL: Nash-MTL provides the individual progress guarantee via the following objective:

min
ω

∑
i

βi(ω) + φi(ω) (16)

s.t.∀i,−φi(ω) ≤ 0, ωi > 0. (17)

where φi(ω) = log(ωi) + log(g⊤
i Gω), G = [g1, g2, ..., gK ]. As demonstrated, the individual

progress is ensured through the projection, subject to the constraint βi = g⊤
i Gω ≥ 1

ωi
.

We utilize the FAMO’s implementation of Nash-MTL, since Nash-MTL’s official code does not
provide the implementation on CityScapes (2 tasks). In the Table 4 of the main text, we honestly
report the results of this implementation, and show improvements brought by COST.

FairGrad: FairGrad is a pioneer MTL algorithm that proposes fairness measurements to promote
maximal loss decrease, and formulate the following objective to derive the combination of individual
gradients:

G⊤Gω = ω−1/α (18)
where α is the hyper-parameter, which is set to 1. We regard FairGrad as the advanced version of Nash-
MTL that is able to balance task progresses in a finer grained. We adopt its official implementation
for all our implementation through the paper.

B.2 PEFT Implementation

LoHa: As a variant of LoRA, it approximates large weight matrices with low-rank ones through the
Hadamard product. This approach has the potential to be more parameter-efficient than LoRA itself.

OFT: OFT draws inspiration from continual learning. It operates by re-parameterizing the pre-trained
weight matrices using its orthogonal matrix, thereby preserving the information within the pre-trained
model. To decrease the number of parameters, OFT incorporates a block-diagonal structure into the
orthogonal matrix.

We utilize the implementations of LoRA, LoHa, and OFT provided by Hugging Face’s PEFT. The
rank for each of these is set to 5, while other configurations are left at their default values. We
apply LoRA to the backbone network across three datasets (CityScapes, NYUv2, and CelebA). For
the QM9 benchmark, since it employs a graph network which is currently not supported by PEFT, we
only apply LoRA to input and output linear layers instead.
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Algorithm 1 COST for MTL
Model parameters θ0

Initialize Initialize θ0 randomly
t = 1 to T Compute task gradients G = [gi]

K
i=1

Dominated conflict detected Freeze θt and train LoRA (∆θt) according Eqn.7, 9, 10, and 11 in the
main text;
Merge θt and ∆θt: θt = θt +∆θt, and unfreeze θt

Apply HTR on the optimizer according to Eqn.12, and 13 in the main text; Other MTL optimization
Have applied HTR Reset σ to 1;

C Algorithm

We conclude the learning paradigm of COST in Algorithm 1. It should be noted that since COST is
a scalable framework, thus the other MTL optimization in Algorithm 1 could be mainstream MTL
approaches (e.g., CAGrad, Nash-MTL, and FairGrad, etc).

D Discussion & Limitation

We offer a new framework to address the challenges of MTL, which is highly scalable and can be
further improved by integrating more advanced components. For instance, LoRA could be substituted
with an alternative PEFT method, and sharpness estimation can be substituted with some efficient
gradient estimation methods [Liu et al., 2024b]. However, there are still some limitations. The current
training paradigm requires additional training costs, and its performance on regression tasks is less
competitive compared to the others. We have discussed some of these limitations in the Appendix,
while others are left for future work.

E Pareto Concept

Formally, let us assume the weighted loss as Lω =
∑K

i=1 ωiLi(θ), where ω ∈ W and W represents
the probability simplex on [K]. A point θ′ is said to Pareto dominate θ if and only if ∀i,Li(θ

′) ≤
Li(θ). Consequently, the Pareto optimal situation arises when no θ′ can be found that satisfies
∀i,Li(θ

′) ≤ Li(θ) for the given point θ. All points that meet these conditions are referred to
as Pareto sets, and their solutions are known as Pareto fronts. Another concept, known as Pareto
stationary, requires minω∈W ∥gω∥ = 0, where gω represents the weighted gradient ω⊤G, and G
is the gradients matrix whose each row is an individual gradient. We also provide the definition of
gradient similarity for ease of description.

F Convergence Analysis

Lemma 3. Let L(θ, ξ) be a Λ-smooth function, where ξ is the i.i.d sampled mini-batch data. It
follows that:

E
[
∥∇L(θ, ξ)∥2

]
≤

2Λ (L(θ)− L (θ∗)) + 2Λ

(
L (θ∗)− E

[
inf
θ

L(θ, ξ)
])

Proof. We have the following inequality according to the Λ-smooth property of L(θ, ξ):
L(θ′, ξ)− L(θ, ξ) ≤ (19)

⟨∇L(θ, ξ),θ′ − θ⟩+ Λ

2
∥θ′ − θ∥2 ,∀θ′,θ ∈ Rd

And θ′ = θ − 1
Λ∇L(θ, ξ), thus we have:

L(θ − (1/Λ)∇L(θ, ξ), ξ) ≤ L(θ, ξ)− 1

2Λ
∥∇L(θ, ξ)∥2 (20)
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Assume θ∗ = argmin
θ∈Rd

L(θ), then we can re-arranging the above inequality to have:

L(θ∗, ξ)− L(θ, ξ) = (21)
L(θ∗, ξ)− inf

θ
L(θ, ξ) + inf

θ
L(θ, ξ)− L(θ, ξ)

≤ L(θ∗, ξ)− inf
θ

L(θ, ξ) + L(θ − 1

Λ
∇L(θ, ξ), ξ)− L(θ, ξ)

≤ L(θ∗, ξ)− inf
θ

L(θ, ξ)− 1

2Λ
∥∇L(θ, ξ)∥2

where the first inequality holds because infθ L(θ, ξ) ≤ L(θ, ξ),∀θ. Taking expectation on above
gives:

E
[
∥∇L(θ, ξ)∥2

]
≤ 2E

[
Λ

(
L(θ∗, ξ)− inf

θ
L(θ, ξ) + L(θ, ξ)− L(θ∗, ξ)

)]
≤ 2ΛE

[
L(θ∗, ξ)− inf

θ
L(θ, ξ) + L(θ, ξ)− L(θ∗, ξ)

]
≤ 2Λ (L(θ)− L(θ∗)) + 2Λ

(
L(θ∗)− E

[
inf
θ

L(θ, ξ)
])

Theorem 4. Assume task loss functions L1, ...,LK are differentiable and Λ-smooth (Λ>0) such that
∥∇Li(θ1)−∇Li(θ2)∥ ≤ Λ ∥θ1 − θ2∥ for any two points θ1, θ2, and our symmetry teleportation
property holds. Set the step size as η = 1

Λ
√
T−1

, T is the training iteration. Then, there exists a
subsequence {θtj} of the output sequence {θt} that converges to a Pareto stationary point θ∗.

Proof. We have the following inequality according to the Λ-smooth property of L(θ):

L(θ′)− L(θ) ≤ ⟨∇L(θ),θ′ − θ⟩+ Λ

2
∥θ′ − θ∥2 (22)

Let θ′ = θt+1, θt′ = θt +∆θt (Gradient maximization: ∆θt = argmax∇L(θt +∆θt)), and
L(θt) = L(θt′) (Loss invariance), we have:

L(θt+1) ≤ L(θt′) + ⟨∇L(θt′),θt+1 − θt′⟩ (23)

+
Λ

2

∥∥∥θt+1 − θt′
∥∥∥2 (24)

= L(θt)− ηt⟨∇L(θt′),∇L(θt′ , ξt)⟩+ Λη2t
2

∥∥∥∇L(θt′ , ξt)
∥∥∥2 (25)

Taking expectation conditioned on θt, we have:

Et

[
L(θt+1)

]
≤ L(θt)− ηt

∥∥∥∇L(θt′)
∥∥∥2 (26)

+
Λη2t
2

Et

[∥∥∥∇L(θt′ , ξt)
∥∥∥2]

According to Lemma 3, we have:

E
[
∥∇L(θ, ξ)∥2

]
≤

2Λ (L(θ)− L (θ∗)) + 2Λ

(
L (θ∗)− E

[
inf
θ

L(θ, ξ)
])

(27)

Inserting Eqn. 27 into Eqn. 26, we have:

Et

[
L(θt+1)

]
≤ L(θt)− ηt

∥∥∥∇L(θt′)
∥∥∥2 (28)

+ Λ2η2t

(
L(θt′)− L(θ∗) + L(θ∗)− E

[
inf
θ

L(θ, ξ)
])
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By taking full expectation and re-arranging terms, we have:

ηtE
[∥∥∥∇L(θt′)

∥∥∥2] ≤(1 + Λ2η2t )E
[
L(θt)− L∗] (29)

− E
[
L(θt+1)− L∗]+ Λ2η2t σ

2

where σ2 = L(θ∗)−E [infθ L(θ, ξ)]. Then we consider to introduce the re-weighting trick in [Stich,
2019]. Let γt (γt > 0) be a sequence such that γt(1 + Λ2η2t ) = γt−1. Assume γ−1 = 1, then
γt = 1 + Λ2η2t

−(t+1). By multiplying γt on both sides of Eqn. 29, we have:

γtηtE
[∥∥∥∇L(θt′)

∥∥∥2] ≤ γt−1E
[
L(θt)− L∗] (30)

− γtE
[
L(θt+1)− L∗]+ γtΛ

2η2t σ
2

Summing up the above equation from t = 0, ..., T − 1, we have:

T−1∑
t=0

γtηtE
[
∥∇L(θt′)∥2

]
≤E

[
L(θ0)− L∗] (31)

+ Λ2σ2
T−1∑
t=0

γtη
2
t

Dividing both sides by
∑T−1

t=0 γtη
2
t , we have:

min
t=0,...,T−1

E
[∥∥∥∇L(θt′)

∥∥∥2] (32)

≤ 1∑T−1
t=0 γtηt

T−1∑
t=0

γtηt

∥∥∥∇L(θt′)
∥∥∥2

≤
E
[
L(θ0)− L∗]+ Λ2σ2

∑T−1
t=0 γtη

2
t∑T−1

t=0 γtηt

Assume ηt ≡ η, then we have:
T−1∑
t=0

γtηt = η

T−1∑
t=0

(1 + Λ2γ2
t )

−(t+1) (33)

=
γ

1 + Λ2η2
1− (1 + Λ2η2)−T

1− (1 + Λ2η2)−1

=
1− (1 + Λ2η2)−T

Λ2η

Note that (1 + Λ2η2)−T ≤ 1
2 and x

1+x ≤ log(1 + x), thus we have

log(2)

log(1 + Λ2η2)
≤ log(2)(1 + Λ2η2)

Λ2η2
≤ T (34)

From this, we can obtain:
T−1∑
t=0

γtηt ≥
1

2Λ2η
, for T ≥ log(2)(1 + Λ2η2)

Λ2η2
(35)

Inserting the above equation into the Eqn. 32, we have:

min
t=0,...,T−1

E
[∥∥∥∇L(θt′)

∥∥∥2] (36)

≤ 2Λ2ηE
[
L(θ0)− L∗

]
+ ηΛ2σ2, for T ≥ log(2)(1 + Λ2η2)

Λ2η2
(37)
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Setting η = 1
Λ
√
T−1

, we finally have:

min
t=0,...,T−1

E
[∥∥∥∇L(θt′)

∥∥∥2] (38)

≤ 2Λ√
T − 1

E
[
L(θ0)− L∗

]
+

Λσ2

√
T − 1

(39)

Thus, our method can readily reach to the Pareto Stationary point.
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