Continual Optimization with Symmetry Teleportation for Multi-Task Learning

Zhipeng Zhou¹, Ziqiao Meng², Pengcheng Wu¹, Peilin Zhao³, Chunyan Miao^{1*}

¹Nanyang Technological University

²National University of Singapore

³School of Artificial Intelligence, Shanghai Jiao Tong University

zzpustcml@gmail.com, zq-meng@nus.edu.sg, peilinzhao@sjtu.edu.cn,

{pengchengwu, ascymiao}@ntu.edu.sg

Abstract

Multi-task learning (MTL) is a widely explored paradigm that enables the simultaneous learning of multiple tasks using a single model. Despite numerous solutions, the key issues of optimization conflict and task imbalance remain under-addressed, limiting performance. Unlike existing optimization-based approaches that typically reweight task losses or gradients to mitigate conflicts or promote progress, we propose a novel approach based on Continual Optimization with Symmetry Teleportation (COST). During MTL optimization, when an optimization conflict arises, we seek an alternative loss-equivalent point on the loss landscape to reduce conflict. Specifically, we utilize a low-rank adapter (LoRA) to facilitate this practical teleportation by designing convergent, loss-invariant objectives. Additionally, we introduce a historical trajectory reuse strategy to continually leverage the benefits of advanced optimizers. Extensive experiments on multiple mainstream datasets demonstrate the effectiveness of our approach. COST is a plug-and-play solution that enhances a wide range of existing MTL methods. When integrated with state-of-the-art methods, COST achieves superior performance. Code is avaliable at https://github.com/zzpustc/COST.

1 Introduction

Traditional machine learning typically requires separate models for each task, leading to higher computational and storage demands as the number of tasks increases[Zhou et al., 2023, Pan et al., 2024, Feng et al., 2024]. To overcome this issue, multitask learning (MTL) offers an efficient approach, enabling the simultaneous learning of multiple tasks using a single model [Qiu et al., 2017, Hai et al., 2016, Yao et al., 2021]. Recent developments in

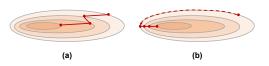


Figure 1: The illustration of symmetry teleportation. (a) is the original gradient descent. (b) is the gradient descent with a faster convergence rate after teleporting the start point from (a).

MTL methods can be broadly divided into two categories: structure-based [Heuer et al., 2021, Ye and Xu, 2023, Chen et al., 2023] and optimization-based [Sener and Koltun, 2018, Yu et al., 2020, Liu et al., 2024a]. Structure-based methods focus on designing architectures that enhance task learning by utilizing task relationships and promoting individual progress. On the other hand, optimization-based methods prioritize the learning process by addressing challenges such as gradient conflicts and task imbalances. Since this paper concentrates on optimization-based methods, our analysis and comparisons will primarily focus on these approaches.

^{*}Corresponding author.

Optimization-based MTL aims to resolve the aforementioned issues by re-weighting on various aspects. For example, a series of studies [Sener and Koltun, 2018, Yu et al., 2020, Liu et al., 2021a] explore different gradient combinations to prevent improving some tasks while sacrificing others. Another group of works [Chen et al., 2018, Liu et al., 2024a] re-weight task loss to ensure fair progress for individual tasks and thereby address the imbalance issue. While the former group of works endeavors to balance conflict and imbalance issues, the latter focuses on attaining balanced individual progress with minimal concern for the conflict issue. As a result, the latter is generally less robust in different scenarios compared to the former according to empirical observations [Chen et al., 2018]. However, the former also struggles to achieve a proper balance. In this paper, distinct from these two paradigms and based on the definition of Pareto dominance, we approach MTL from a new perspective, i.e., seeking the less conflicting and more convergent point through symmetry teleportation during MTL optimization.

Unlike the traditional gradient descent regime, symmetry teleportation aims to accelerate the optimization process by seeking another point within the same loss level set, as depicted in Figure 1. Several recent works [Armenta et al., 2023, Zhao et al., 2022, 2023] have explored optimization through symmetry teleportation. For example, [Zhao et al., 2022] introduces a simple teleportation algorithm for non-linear neural networks, based on the assumption that activation functions are bijective, and seeks the point of maximal gradient magnitude using gradient ascent. However, these methods do not provide practical algorithms for larger, modern neural networks, primarily due to their reliance on strict assumptions about non-linearity and computational intensity (Section 3.3). These limitations are especially pronounced in more complex tasks, e.g., MTL.

Therefore, in this paper, we aim to develop a practical symmetry teleportation method that is applicable for modern deep models, and addressing MTL issues. Specifically, we leverage the low-rank adapter (LoRA) to realize teleportation when encountered with the conflicts issue. By designing the objectives to ensure the invariant task loss and promote progress, we are able to further extend the boundaries of individual task learning for MTL models in a balanced manner. Besides, we also design a historical trajectory reuse strategy to continually benefit from advanced optimizer (e.g., Adam). In a nutshell, our contribution can be summarized as follows:

- We approach MTL from a new angle, i.e., symmetry teleportation, and empirically verify its applicability for MTL (Section 3.2).
- A new practical teleportation method COST is proposed for mitigating the conflict and imbalance issue. To the best of our knowledge, we are the first to develop a practical teleportation method for non-small deep models, specifically for MTL.
- By proposing a historical trajectory reuse strategy, we can continually benefit from the advanced optimizer (e.g., Adam and its variants).
- Taking the advanced method as the baseline, our COST can well augment it to achieve state-of-the-art (SOTA) performance across diverse evaluations. Besides, we also equip mainstream MTL methods with COST, and showing its plug-and-play property.

2 Related Work

2.1 Optimization-based MTL

Optimization-based methods aim to optimize multiple tasks simultaneously by enhancing the gradient-based learning process itself. For example, MGDA [Sener and Koltun, 2018] reduces conflicts between task gradients by combining them using the Frank-Wolfe algorithm [Jaggi, 2013] to generate a gradient with minimal norm. PCGrad [Yu et al., 2020] addresses gradient conflicts by projecting gradients from different tasks onto directions that minimize interference. CAGrad [Liu et al., 2021a] attempts to balance global optimization and task-specific performance, maintaining both Pareto efficiency and overall optimization with the assistance of a hyperparameter. Nash-MTL [Navon et al., 2022] introduces a game-theoretic approach where tasks negotiate to update parameters in a manner that enables balanced progression across tasks. Additionally, MoCo [Fernando et al., 2023] focuses on correcting biases in gradient direction by tracking parameters during the learning process, improving gradient alignment and task performance. FairGrad [Ban and Ji, 2024] is a pioneering MTL algorithm that puts forward fairness measurements to facilitate maximal loss reduction. It can

be considered as an advanced version of Nash-MTL, being capable of balancing task progress in a more fine-grained manner.

2.2 Symmetry Teleportation for Deep Model

Before presenting some recent works on symmetry teleportation, we first provide its definition here as per [Zhao et al., 2022]. Let $\mathcal{L}(\theta)$ be the loss function. Here, \mathbb{R}^d denotes the model's parameter space, and A represents the acting space on the parameters that leaves the loss value unchanged. Subsequently, we have the following definition:

$$\mathcal{L}(\boldsymbol{\theta}) = \mathcal{L}(a \cdot \boldsymbol{\theta}), \quad \forall a \in A, \quad \forall \boldsymbol{\theta} \in \mathbb{R}^d.$$
 (1)

$$\theta' = a \cdot \theta, \quad a = \underset{a \in A}{\operatorname{argmax}} \|\nabla \mathcal{L}(a \cdot \theta)\|^{2}.$$
 (2)

we can observe that symmetry teleportation aims to find a loss-invariant point (Eqn. 1) with a maximum gradient norm (Eqn. 2) on the loss level set by acting with a group element.

As a recent research topic, symmetry teleportation has been explored in only a few works [Armenta et al., 2023, Zhao et al., 2022, 2023]. [Armenta et al., 2023] first introduced the concept of 'neural teleportation' and investigated its impact on optimization. [Zhao et al., 2022] proposed a gradient ascent-based teleportation algorithm for small neural networks (e.g., three-layer MLPs). And [Zhao et al., 2023] established the connection between symmetry teleportation and generalization through a series of theoretical analyses and provided an alternative for enhancing the meta optimizer.

2.3 Low-Rank Adapter

LoRA is gaining increasing popularity in tandem with the rapid advancement of foundation models and parameter-efficient fine-tuning (PEFT). It operates by maintaining the pre-trained weights of a large model in a fixed state and incorporating small, trainable rank decomposition matrices. During fine-tuning, rather than modifying all the parameters of the model, only these low-rank matrices are subject to update.

Moreover, LoRA has several variants that can attain dynamic rank [Zhang et al.], or quantization [Dettmers et al., 2024]. For instance, AdaLoRA [Zhang et al.] adaptively assigns dynamic rank to different parameters, thereby enabling the capture of important updates while preserving efficiency. In contrast, QLoRA [Dettmers et al., 2024] introduces 4-bit NormalFloat, double quantization, and paged optimizers to more effectively optimize LoRA, while significantly reducing the required memory.

Connection and Difference: Our work tackles conflict and imbalance issues in optimization-based MTL through symmetry teleportation. Specifically, we utilize LoRA to implement practical teleportation. In contrast to previous studies, we explore MTL from a novel perspective and introduce a new teleportation algorithm for modern deep models. This algorithm is scalable, easily integratable, and compatible with both PEFT and MTL.

3 Motivation and Observation

3.1 Preliminary

As mentioned, optimization-based MTL approaches operate under the assumption that the model consists of a task-shared backbone network alongside task-specific branches. Consequently, the primary objective of these approaches is to devise gradient combination strategies that optimize the backbone network to yield benefits across all tasks. Let us consider a scenario where there are $K \geq 2$ tasks available, each associated with a differentiable loss function $\mathcal{L}_i(\theta)$, where θ represents the task-shared

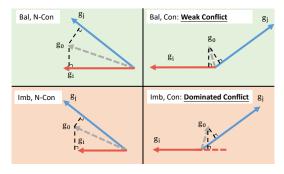


Figure 2: Illustration of conflict and imbalance issues in MTL. 'Bal' and 'Imb' represent balanced and imbalanced, while 'N-Con' and 'Con' represent non-conflicting and conflicting.

parameters. The goal of optimization-based MTL is to search for the optimal $\theta^* \in \mathbb{R}^m$ that minimizes the losses for all tasks.

Definition 1 (Gradient Similarity). Denote ϕ_{ij} as the angle between two task gradients g_i and g_j , and assume $\|g_i\|_2 \le \|g_j\|_2$, then we define the gradient similarity as $\cos \phi_{ij}$ and the gradients as conflicting when $\cos \phi_{ij} < 0$ (referred as **Weak Conflict**). When the mean gradient g_0 is conflicting with g_i , we call it as **Dominated Conflict** (see Figure 2).

3.2 Applicability of Symmetry Teleportation

Before delving into the principal design of our method, it is necessary to verify the existence of parameter symmetries with differing conflict statuses. To this end, we examine the optimization process of mainstream MTL approaches. We analyze the mean loss across all tasks and the associated conflict status during optimization from various initial points, with the results presented in Figure 5.

As shown in Figure 5, it is often possible to identify a non-conflict alternative at the same loss level when encountering conflict, demonstrating the potential of symmetry teleportation. Additional statistical results from other MTL approaches are provided in the **Appendix** (Sec. A.3).

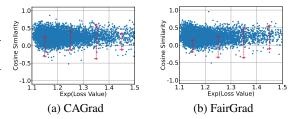


Figure 3: Dominated conflict vs. loss examination. The pink backdrop designates the conflicting area, whereas the green backdrop indicates the nonconflicting area. The blue scatter points are the individual recorded points throughout the optimization process. The red dashed line symbolizes the teleportation occurring from a conflict point to a nonconflict point. An exponential amplification has been applied to the loss values to enhance visual clarity.

3.3 Pitfall of Current Paradigms

While several works [Armenta et al., 2023, Zhao et al., 2022, 2023] have proposed symmetry teleportation algorithms for neural network-based models, we demonstrate their limitations with current deep models. First, these algorithms require activation functions to be bijective, which poses a significant challenge for widely-used deep models (e.g., ResNet-50) that use non-bijective activation functions, e.g., ReLU and Sigmoid. Second, they require calculating the pseudo-inverse of inputs layer by layer to ensure output and loss invariance. This process is computationally intensive and may be impractical for modern deep models. As a result, these approaches have only been tested on simple three-layer MLP networks and small-scale datasets (e.g. MNIST) for verification.

4 Principal Design

In this section, we present the detailed design of COST, incorporating the symmetry teleportation paradigm and a historical trajectory reuse strategy. We also provide an analysis of convergence.

4.1 Continual Optimization with Symmetry Teleportation

The overall framework of COST is depicted in Figure 4. At a certain training stage t, we utilize LoRA to teleport the weight of the shared backbone to the non-conflict point (merge the trained LoRA into the backbone's weight) with the same loss level. Subsequently, the model (including both the backbone and branches) is continuously optimized by other MTL algorithms. In this framework, there are two questions that need to be answered:

When: The first question is, when should teleportation be triggered? Unfortunately, the previous solutions presented in [Armenta et al., 2023, Zhao et al., 2022, 2023] did not offer a clear answer to this question. They merely triggered it in a random or intuitive manner. In contrast, our goal is to address two key challenges in MTL: conflict and imbalance, challenges that are not concurrently addressed by existing solutions [Zhou et al., 2025, 2024]. Moreover, a naïve linear scalarization (LS) strategy can effectively promote all tasks, as illustrated in Figure 2 and has been empirically verified in [Xin et al., 2022]. Thus, the primary challenge lies in resolving conflict arising from imbalance, i.e., dominated conflict. Therefore, we establish the teleportation trigger condition based on the



Figure 4: The Illustration of COST. Here, we depict a one-time teleportation procedure by using a 2-task example for the sake of illustration. **Note that LoRA is only applied to the shared backbone**.

occurrence of dominated conflict 2:

$$\cos \phi_{i0} < 0, \quad \phi_{i0} = \angle (\mathbf{g_i}, \mathbf{g_0}) \tag{3}$$

where g_i and g_0 represent the task gradient with the smallest norm and the mean gradient, respectively. However, when handling a large number of tasks, dominated conflicts become inevitable, reaching a 97% conflict ratio per epoch on CelebA [Liu et al., 2015], as shown in Figure 5(a). Then if we still employ dominated conflict as the trigger condition, frequent teleportation would occurs and results in inefficiency. Therefore, our objective shifts to mitigating dominant conflicts, balancing efficiency and effectiveness. To achieve this, we adopt the following condition:

$$\sum_{j=1}^{K} \mathbb{1}[\cos \phi_{j0} < 0] \ge \left\lceil \frac{K}{2} \right\rceil \tag{4}$$

Under this condition, the trigger frequency is significantly reduced (see Figure 5(a)) while maintaining effectiveness, as demonstrated in the evaluation. Additionally, we analyze the tradeoff between effectiveness and efficiency for this condition in the **Appendix** (Section A.4).

<u>How</u>: In the symmetry teleportation paradigm, there are two key objectives: loss invariance and gradient maximization, as outlined in Eqn. 1 and Eqn. 2. Since finding a group action g is infeasible for deep models, we instead use LoRA ($\Delta\theta$) as an alternative, reformulating it as:

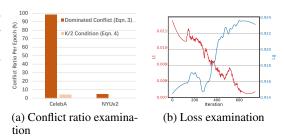


Figure 5: (a) Conflict ratio per epoch on CelebA (40-task) and NYUv2 (3-task) and (b) loss examinations during a single teleportation.

$$\mathcal{L}(\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta} + \Delta \boldsymbol{\theta}) \tag{5}$$

$$\Delta \boldsymbol{\theta} = \underset{\Delta \boldsymbol{\theta}}{\operatorname{argmax}} \|\nabla \mathcal{L}(\boldsymbol{\theta} + \Delta \boldsymbol{\theta})\|^{2}. \tag{6}$$

With respect to the specific symmetry teleportation taking place during the optimization process, in order to ensure the task loss remains invariant, we undertake the minimization of the loss fluctuation in the following way:

$$\mathcal{L}_t = \frac{1}{K} \sum_{i}^{K} |\mathcal{L}_i - \mathcal{L}_i^*| \tag{7}$$

where \mathcal{L}_i represents the individual task loss, and \mathcal{L}_i^* is its loss before starting teleportation, which is unchanged during teleportation.

²We have provided a comparison between dominated conflict and weak conflict in the **Appendix** (Sec. A.4).

To maximize the gradient of the target point, a simplistic solution would be to incorporate it into the objective of LoRA optimization. However, two challenges arise when attempting to do so: (1) It is difficult to explicitly incorporate gradient maximization into the objective design. (2) Even if it were possible, the computation of the Hessian matrix would be overly burdensome for LoRA optimization. On the other hand, upon closely examining Eqn. 6, we can observe that our intention is merely to identify the point with the maximal gradient, rather than precisely attaining the maximal gradient itself. Consequently, we choose to select another metric for measuring the gradient norm, i.e., *Sharpness* [Foret et al., 2021]. Since the negative direction of the gradient is locally the fastest direction of descent, thus we can estimate the gradient by seeking the sharpest direction at θ^* as follow:

Sharpness =
$$\max_{\|\boldsymbol{\epsilon}\| \le \delta} |\mathcal{L}(\boldsymbol{\theta}^* + \boldsymbol{\epsilon}) - \mathcal{L}(\boldsymbol{\theta}^*)|$$
 (8)

where δ is the radius of the sphere. We further implement Eqn. 8 by randomly sampling $\epsilon \tilde{n}$ times from the sphere, and estimating sharpness by selecting the maximum one:

$$\mathcal{L}_{g} = \max \left\{ \left| \frac{1}{K} \sum_{i}^{K} R_{i} \cdot \left[\mathcal{L}_{i} (\boldsymbol{\theta} + \Delta \boldsymbol{\theta} + \boldsymbol{\epsilon}_{j}) - \mathcal{L}_{i} (\boldsymbol{\theta} + \Delta \boldsymbol{\theta}) \right] \right| \right\}_{j=1}^{\tilde{n}}$$
(9)

$$\mathbf{R} = K \cdot \operatorname{softmax} \left(\left[\frac{\sum_{j=1}^{K} \|g_j\|}{\|g_i\|} \right]_{i=1}^{K} \right)$$
 (10)

where **R** is computed to facilitate the search for more balanced alternatives, mitigating imbalance issues. Consequently, the overall objective for LoRA optimization can be formulated as follows:

$$\mathcal{L}_{lora} = \mathcal{L}_t - \gamma \mathcal{L}_q \tag{11}$$

where γ is the hyper-parameter (set as 0.1). As depicted in Figure 5(b), \mathcal{L}_t largely decreases while \mathcal{L}_q increases as expected during teleportation.

To enhance understanding of our approach, we provide a trajectory illustration on toy examples [Liu et al., 2021a] in Figure 6. As shown, LS may fail to reach the Pareto front from certain initializations due to conflict issues. However, with the augmentation of COST, it successfully explores alternative paths for continuous optimization rather than getting stuck.

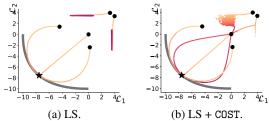


Figure 6: Trajectory illustration on toy examples.

4.2 Convergence Analysis

In this section, we present a convergence analysis to further enhance the understanding of the applicability of our proposed method. By formulating a theorem, it has been proven that our method converges to the Pareto stationary point with guarantee.

Theorem 2. Assume task loss functions $\mathcal{L}_1, ..., \mathcal{L}_K$ are differentiable and Λ -smooth $(\Lambda > 0)$ such that $\|\nabla \mathcal{L}_i(\theta_1) - \nabla \mathcal{L}_i(\theta_2)\| \le \Lambda \|\theta_1 - \theta_2\|$ for any two points θ_1 , θ_2 , and our symmetry teleportation property holds. Set the step size as $\eta = \frac{1}{\Lambda \sqrt{T-1}}$, T is the training iteration. Then, there exists a subsequence $\{\theta^{t_j}\}$ of the output sequence $\{\theta^t\}$ that converges to a Pareto stationary point θ^* .

The proof of this theorem is provided in the **Appendix** (Sec. F).

4.3 Historical Trajectory Reuse Strategy

When training MTL models with advanced optimizers, a minor issue arises after reaching the loss-invariant point through our symmetry teleportation. Specifically, the teleportation process disrupts the continuous optimization flow, preventing the MTL model from leveraging its historical trajectory—one of the key advantages of advanced optimizers (e.g., Adam [Kingma, 2014]).

Taking the Adam optimizer as an example, which is commonly utilized in mainstream MTL approaches [Liu et al., 2021a, 2024a, Navon et al., 2022]. It employs an exponentially weighted moving average to estimate the momentum (v_t) and quadratic moments (s_t) of the gradient (historical trajectory). However, when the model is teleported to another point, the stored historical trajectory would supply misleading information for the current model optimization. To tackle this issue, we have the stored of the current model optimization.

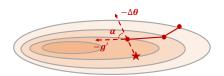


Figure 7: The illustration of HTR strategy. The red star represents the teleported point. g' is the gradient at the pre-teleportation point, and α is the angle between g' and $\Delta\theta$.

current model optimization. To tackle this issue, we partially preserve the historical trajectory by computing the correlation between teleportation and previous updating (as depicted in Figure 7):

$$\sigma = \cos_{\sin}(\Delta \theta, g') \tag{12}$$

where \cos_{sim} is the function of computing cosine similarity, and g' is the gradient at the preteleportation point. In this way, the historical trajectory can be modulated and reused according to Eqn. 13. After that, σ is still set to 1, as is typically the case with the Adam optimizer.

$$v_t = \sigma \beta_1 v_{t-1} + (1 - \sigma \beta_1) g_t$$

$$s_t = \sigma \beta_2 s_{t-1} + (1 - \sigma \beta_2) g_t^2$$
(13)

The overall training algorithm is concluded in the Appendix (Section C).

5 Performance Evaluation

In this section, we initially evaluate our method using mainstream MTL benchmarks and compare it with the following baselines: Linear Scalarization (LS), Scale-Invariant (SI), Random Loss Weighting (RLW) as described in [Lin et al., 2021], Dynamic Weight Average (DWA) from [Liu et al., 2019], Uncertainty Weighting (UW) detailed in [Kendall et al., 2018], MGDA from [Sener and Koltun, 2018], GradDrop presented in [Chen et al., 2020], PC-Grad as in [Yu et al., 2020], CAGrad from [Liu et al., 2021a], IMTL detailed in [Liu et al., 2021b], Nash-MTL from [Navon et al., 2022], FAMO described in [Liu et al., 2024a], and FairGrad $(\alpha = 1)$ from [Ban and Ji, 2024]. Sub-

Table 1: **Scene understanding** (*CityScapes*, 2 tasks).

Method	Segmentation \uparrow	Dep	oth ↓	MR J	∆m% ↓
	mIoU Pix. Acc.	Abs. Err	Rel. Err.		•
Independent	74.01 93.16	0.0125	27.77	-	-
LS	75.18 93.49	0.0155	46.77	8.25	22.60
RLW	74.57 93.41	0.0158	47.79	11.00	24.37
DWA	75.24 93.52	0.0160	44.37	8.25	21.43
Uncertainty	72.02 92.85	0.0140	30.13	7.50	5.88
MGDA	68.84 91.54	0.0309	33.50	11.00	44.14
GradDrop	75.27 93.53	0.0157	47.54	7.75	23.67
PCGrad ⁻	75.13 93.48	0.0154	42.07	8.50	18.21
CAGrad	75.16 93.48	0.0141	37.60	7.50	11.58
IMTL	75.33 93.49	0.0135	38.41	5.75	11.04
Nash-MTL	75.41 93.66	0.0129	35.02	3.00	6.82
FAMO	$74.54 \overline{93.29}$	0.0145	32.59	8.25	8.13
FairGrad	<u>75.72</u> 93.68	0.0134	32.25	2.25	<u>5.18</u>
COST	75.73 93.53	0.0133	31.53	2.00	$4.30_{\pm 1.3}$

sequently, we offer some additional analyses regarding conflict and gradient examinations, ablation studies, and plug-and-play verification, etc., to further enhance understanding. We also provide additional analysis on conflict and gradient examination (Sec. A.1), plug-and-play verification (Sec. A.2), alternatives to PEFT (Sec. A.5), and time cost (Sec. A.6) in the **Appendix**. All experiments are carried out on a single Tesla V100 GPU. For more experimental details, please refer to the **Appendix** (Sec. B). Code will be released once this paper is accepted.

Evaluation Metric. In addition to reporting individual performance, we also incorporate a widely used metric, $\Delta m\%$ [Maninis et al., 2019], which evaluates the overall degradation compared to independently trained models that are considered as the reference oracles. The formal definition of $\Delta m\%$ is given as:

$$\Delta \mathbf{m\%} = \frac{1}{K} \sum_{k=1}^{K} (-1)^{\delta_k} \frac{M_{m,k} - M_{b,k}}{M_{b,k}} \times 100$$
 (14)

where $M_{m,k}$ and $M_{b,k}$ represent the metric M_k for the compared method and the independent model, respectively. The value of δ_k is assigned as 1 if a higher value is better for M_k , and 0 otherwise. Besides, we also report another popular metric named **Mean Rank** (**MR**), which computes the average ranks of each methods across all tasks.

5.1 Overall Evaluation

Dense Prediction. CityScapes [Cordts et al., 2016] and NYUv2 [Silberman et al., 2012] are two widely-used scene understanding datasets, which are employed for the evaluation of MTL. NYUv2 comprises 1449 annotated images and is utilized for three fine-grained tasks, i.e., semantic segmentation, depth estimation, and surface normal prediction. CityScapes consists of 5000 annotated scene images, which are readied for two tasks: semantic segmentation and depth estimation.

Table 2: **Scene understanding** (*NYUv2*, 3 tasks). We report MTAN model performance averaged over 3 random seeds. The best scores are provided in gray, and the second scores are <u>underlined</u>.

			Segmentation ↑ Depth ↓		Surface Normal					<u> </u>	
Method	mIoU	Pix. Acc.	Ahs Err	Rel Frr	Angle Distance ↓		Within $t^{\circ} \uparrow$			MR↓	∆m%↓
					Mean	Median	11.25	22.5	30		
Independent	38.30	63.76	0.68	0.28	25.01	19.21	30.14	57.20	69.15	-	-
LS	39.29	65.33	0.55	0.23	28.15	23.96	22.09	47.50	61.08	9.44	5.46
RLW	37.17	63.77	0.58	0.24	28.27	24.18	22.26	47.05	60.62	12.22	7.67
DWA	39.11	65.31	0.55	0.23	27.61	23.18	24.17	50.18	62.39	8.56	3.49
Uncertainty	36.87	63.17	0.54	0.23	27.04	22.61	23.54	49.05	63.65	8.78	4.01
MGDA	30.47	59.90	0.61	0.26	24.88	19.45	29.18	56.88	69.36	7.11	1.47
GradDrop	39.39	65.12	0.55	0.23	27.48	22.96	23.38	49.44	62.87	8.89	3.61
PCGrad ¹	38.06	64.64	0.56	0.23	27.41	22.80	23.86	49.83	63.14	9.33	3.83
CAGrad	39.79	65.49	0.55	0.23	26.31	21.58	25.61	52.36	65.58	6.33	0.29
IMTL	39.35	65.60	0.54	0.23	26.02	21.19	26.20	53.13	66.24	5.56	-0.59
Nash-MTL	40.13	65.93	0.53	0.22	25.26	20.08	28.40	55.47	68.15	3.11	-4.04
FAMO	40.30	66.07	0.56	0.21	26.67	21.83	25.61	51.78	64.85	5.44	0.16
FairGrad	39.74	<u>66.01</u>	0.54	0.22	<u>24.84</u>	19.60	<u>29.26</u>	56.58	69.16	3.00	<u>-4.66</u>
COST	38.06	64.71	0.54	0.23	24.47	18.80	30.84	58.25	70.30	3.22	$-5.39_{\pm 0.5}$

In line with the implementation and training strategy of FairGrad [Ban and Ji, 2024], we construct our model using SegNet [Badrinarayanan et al., 2017] and employ MTAN [Liu et al., 2019] as the backbone within it. We train our model with the Adam optimizer for a total of 200 epochs, setting the initial learning rate to 1.0e-4 and reducing it to half after 100 epochs. The batch size is set to 2 for NYUv2 and 8 for CityScapes, respectively.

The results obtained on these two datasets are presented in Table 1 and Table 2, respectively. With FairGrad serving as the baseline, our method not only successfully surpasses it but also attains the SOTA performance in terms of MR and $\Delta m\%$. Specifically, upon closely examining the performance of each individual task, we can note that COST significantly enhances FairGrad on the CityScapes dataset and considerably improves the surface normal prediction task, while also showing some promise on the other tasks on the NYUv2 dataset. These observations clearly demonstrate the effectiveness of our design, which aids in alleviating conflict and facilitating convergence.

Image Classification. CelebA [Liu et al., 2015] is a commonly utilized face attributes dataset [Wang et al., 2024] that contains over 200,000 images and is annotated with 40 at-

Table 3: Results on *CelebA* and *QM9* datasets with MR and Δ m%. The results of FairGrad-R are reported according to the official implementation.

Method	Ce	elebA	QM9			
1,10,110,00	$\overline{\mathbf{MR}\downarrow \Delta \mathbf{m}\% \downarrow}$		MR↓	∆m% ↓		
LS	7.08	4.15	9.09	177.6		
SI	8.80	7.20	5.64	77.8		
RLW	5.98	1.46	10.64	203.8		
DWA	7.78	2.40	8.91	175.3		
UW	6.65	3.23	7.00	108.0		
MGDA	11.98	14.85	8.91	120.5		
PCGrad	7.58	3.17	7.36	125.7		
CAGrad	7.13	2.48	8.09	112.8		
IMTL-G	<u>5.53</u>	0.84	6.91	77.2		
Nash-MTL	5.73	2.84	4.27	62.0		
FAMO	5.65	1.21	5.18	<u>58.5</u>		
FairGrad-R	6.35	1.15	4.82	59.9		
COST	4.80	$\underline{0.93_{\pm0.2}}$	4.18	$58.3_{\pm 1.2}$		

tributes. Recently, it has been adopted as a 40-task MTL benchmark to assess the model's capacity to handle a large number of tasks. In accordance with the setup of FairGrad, we utilize a 9-layer convolutional neural network (CNN) as the backbone and linear layers as the task-specific heads on

top of it. We train our model with the Adam optimizer for a total of 15 epochs, setting the initial learning rate to 3.0e-4. Moreover, the batch size is set to 256.

The evaluation results are shown in Table 3. Given that our method is mainly developed based on FairGrad, our performance is thus highly associated with it. We conscientiously re-implemented FairGrad using the official code they provided and were able to achieve the reported performance on CityScapes, NYUv2. However, we were unable to do so on CelebA and QM9. Consequently, we only report our re-implemented performance of FairGrad here (referred to as FairGrad-R). As can be observed, COST still significantly enhances its baseline and attains the SOTA performance according to MR, ranking second according to $\Delta m\%$. These results demonstrate COST's remarkable ability to handle numerous tasks simultaneously.

Regression. QM9 [Ramakrishnan et al., 2014] is another widely used drug discovery MTL dataset specifically for regression tasks. It contains 130,000 organic molecules that are organized as graphs with node and edge features. This task is designed to predict 11 properties having different measurement scales and can also be considered as an evaluation scenario for MTL involving a large number of tasks. Our approach is trained for 300 epochs with a batch size of 120. The initial learning rate is set to 1.0e-3, and a learning rate scheduler is applied to reduce the rate when the validation performance shows no further improvement.

According to Table 3, our method still achieves competitive performance on this specific dataset. However, in comparison to other datasets, it exhibits fewer enhancements over its baseline. One crucial reason for these relatively less satisfactory results is that this task adopts a graph model with only two layers supporting LoRA in current PEFT package, which reduces its effectiveness.

5.2 Ablation Study

We consider COST as an integrated system, and thus each component ought to be evaluated to showcase its effectiveness. In our design, there are primarily three key components: the loss invariance objective (\mathcal{L}_t) , the gradient maximization objective (\mathcal{L}_g) , and the HTR strategy. Consequently, we carry out ablation studies for verification purposes and present the results in Table 4. In the context of symmetry teleportation, \mathcal{L}_t and \mathcal{L}_g serve as the foundation for seeking alternatives within the orbit. Hence, we exclude \mathcal{L}_t and \mathcal{L}_g during the LoRA optimization process, respectively. The results indicate that without \mathcal{L}_t or \mathcal{L}_g ,

Table 4: Ablation study of COST on *CityScapes* (2 tasks).

\mathcal{L}_t	\mathcal{L}_g	HTR	∆m% ↓
√			5.18 7.90
- ✓	√ √		381.86 4.65
✓	✓	✓	4.30

COST performs worse than its baseline (which is FairGrad in this case). More specifically, COST would experience a severe deterioration without \mathcal{L}_t , thereby underlining the crucial importance of loss invariance. These results might address another concern regarding COST, namely: Are the improvements brought about by COST rooted in the capability expansion facilitated by LoRA? Without an appropriate objective design, LoRA is unable to effectively augment the base models.

On the other hand, it should be noted that LoRA is incorporated into the base model after each teleportation. Thus, the model's capability remains unchanged during the inference time. All that we are doing is assisting in finding a better convergence point. Furthermore, when the HTR strategy is excluded, $\Delta m\%$ decreases from 4.30 to 4.65, which demonstrates the significance of benefiting from advanced optimizers.

6 Conclusion

This paper explores the MTL problem from a brand new perspective, i.e., alleviating the conflict issue through symmetry teleportation. Specifically, we utilize LoRA to achieve practical symmetry teleportation for contemporary deep models. Additionally, we design loss-invariant and gradient maximization objectives to assist in identifying non-conflict and more convergent points. We also devise a historical trajectory reuse strategy to continuously benefit from advanced optimizers. Extensive experiments have demonstrated the effectiveness of our proposed method as well as its plug-and-play characteristic. As a scalable framework, we anticipate that our method can offer some

valuable insights to researchers engaged in optimization-based MTL. Currently, there are still rooms for improvement within this system, and our future work will focus on these aspects.

Acknowledgement

This research is supported, in part, by the WeBank-NTU Joint Research Institute on Fintech, Jinan-NTU Green Technology Research Institute (GreenTRI), and Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY), Nanyang Technological University, Singapore. It's also supported, in part, by the NTU-PKU Joint Research Institute, a collaboration between Nanyang Technological University and Peking University that is sponsored by a donation from the Ng Teng Fong Charitable Foundation. The first author also would like to thank the insightful discussion with Dr. Shuaicheng Niu, Shibo Feng, and Haochen Li.

References

- Marco Armenta, Thierry Judge, Nathan Painchaud, Youssef Skandarani, Carl Lemaire, Gabriel Gibeau Sanchez, Philippe Spino, and Pierre-Marc Jodoin. Neural teleportation. *Mathematics*, 11 (2):480, 2023.
- Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. *IEEE transactions on pattern analysis and machine intelligence*, 39(12):2481–2495, 2017.
- Hao Ban and Kaiyi Ji. Fair resource allocation in multi-task learning. arXiv preprint arXiv:2402.15638, 2024.
- Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks. In *International conference on machine learning*, pages 794–803. PMLR, 2018.
- Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign dropout. *Advances in Neural Information Processing Systems*, 33:2039–2050, 2020.
- Zitian Chen, Yikang Shen, Mingyu Ding, Zhenfang Chen, Hengshuang Zhao, Erik G Learned-Miller, and Chuang Gan. Mod-squad: Designing mixtures of experts as modular multi-task learners. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 11828–11837, 2023.
- Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3213–3223, 2016.
- Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of quantized llms. *Advances in Neural Information Processing Systems*, 36, 2024.
- Jian Feng, Yajie He, Yuhan Pan, Zhipeng Zhou, Si Chen, and Wei Gong. Enhancing fitness evaluation in genetic algorithm-based architecture search for ai-aided financial regulation. *IEEE Transactions on Evolutionary Computation*, 28(3):623–637, 2024.
- Heshan Devaka Fernando, Han Shen, Miao Liu, Subhajit Chaudhury, Keerthiram Murugesan, and Tianyi Chen. Mitigating gradient bias in multi-objective learning: A provably convergent approach. In *The Eleventh International Conference on Learning Representations*, 2023.
- Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for efficiently improving generalization. 2021.
- Zhen Hai, Peilin Zhao, Peng Cheng, Peng Yang, Xiao-Li Li, and Guangxia Li. Deceptive review spam detection via exploiting task relatedness and unlabeled data. In *Proceedings of the 2016 conference on empirical methods in natural language processing*, pages 1817–1826, 2016.

- Falk Heuer, Sven Mantowsky, Saqib Bukhari, and Georg Schneider. Multitask-centernet (mcn): Efficient and diverse multitask learning using an anchor free approach. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 997–1005, 2021.
- Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product for communication-efficient federated learning. *arXiv preprint arXiv:2108.06098*, 2021.
- Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In *International conference on machine learning*, pages 427–435. PMLR, 2013.
- Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 7482–7491, 2018.
- Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.
- Baijiong Lin, Feiyang Ye, Yu Zhang, and Ivor W Tsang. Reasonable effectiveness of random weighting: A litmus test for multi-task learning. arXiv preprint arXiv:2111.10603, 2021.
- Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for multi-task learning. *Advances in Neural Information Processing Systems*, 34:18878–18890, 2021a.
- Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. Famo: Fast adaptive multitask optimization. *Advances in Neural Information Processing Systems*, 36, 2024a.
- Liyang Liu, Yi Li, Zhanghui Kuang, J Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and Wayne Zhang. Towards impartial multi-task learning. In *International Conference on Learning Representations*, 2021b.
- Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 1871–1880, 2019.
- Xinyue Liu, Hualin Zhang, Bin Gu, and Hong Chen. General stability analysis for zeroth-order optimization algorithms. In *The Twelfth International Conference on Learning Representations*, 2024b.
- Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In *Proceedings of the IEEE international conference on computer vision*, pages 3730–3738, 2015.
- Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. Attentive single-tasking of multiple tasks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 1851–1860, 2019.
- Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and Ethan Fetaya. Multi-task learning as a bargaining game. In *International Conference on Machine Learning*, pages 16428–16446. PMLR, 2022.
- Yuhan Pan, Zhipeng Zhou, Wei Gong, and Yuguang Fang. Sat: A selective adversarial training approach for wifi-based human activity recognition. *IEEE Transactions on Mobile Computing*, 23 (12):12706–12716, 2024.
- George Pu, Anirudh Jain, Jihan Yin, and Russell Kaplan. Empirical analysis of the strengths and weaknesses of peft techniques for llms. *arXiv* preprint arXiv:2304.14999, 2023.
- Minghui Qiu, Peilin Zhao, Ke Zhang, Jun Huang, Xing Shi, Xiaoguang Wang, and Wei Chu. A short-term rainfall prediction model using multi-task convolutional neural networks. In 2017 IEEE international conference on data mining (ICDM), pages 395–404. IEEE, 2017.
- Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller, and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning. *Advances in Neural Information Processing Systems*, 36:79320–79362, 2023.

- Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum chemistry structures and properties of 134 kilo molecules. *Scientific data*, 1(1):1–7, 2014.
- Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. *Advances in neural information processing systems*, 31, 2018.
- Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support inference from rgbd images. In *Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part V 12*, pages 746–760. Springer, 2012.
- Sebastian U Stich. Unified optimal analysis of the (stochastic) gradient method. *arXiv preprint* arXiv:1907.04232, 2019.
- Tianyi Wang, Mengxiao Huang, Harry Cheng, Xiao Zhang, and Zhiqi Shen. Lampmark: Proactive deepfake detection via training-free landmark perceptual watermarks. In *Proceedings of the 32nd ACM International Conference on Multimedia*, page 10515–10524, 2024.
- Derrick Xin, Behrooz Ghorbani, Justin Gilmer, Ankush Garg, and Orhan Firat. Do current multi-task optimization methods in deep learning even help? *Advances in neural information processing systems*, 35:13597–13609, 2022.
- Huaxiu Yao, Yu Wang, Ying Wei, Peilin Zhao, Mehrdad Mahdavi, Defu Lian, and Chelsea Finn. Meta-learning with an adaptive task scheduler. *Advances in Neural Information Processing Systems*, 34:7497–7509, 2021.
- Hanrong Ye and Dan Xu. Taskprompter: Spatial-channel multi-task prompting for dense scene understanding. In *The Eleventh International Conference on Learning Representations*, 2023.
- Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Gradient surgery for multi-task learning. *Advances in Neural Information Processing Systems*, 33: 5824–5836, 2020.
- Q Zhang, M Chen, A Bukharin, P He, Y Cheng, W Chen, and T Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. preprint (2023). arXiv preprint arXiv:2303.10512.
- Bo Zhao, Nima Dehmamy, Robin Walters, and Rose Yu. Symmetry teleportation for accelerated optimization. *Advances in neural information processing systems*, 35:16679–16690, 2022.
- Bo Zhao, Robert M Gower, Robin Walters, and Rose Yu. Improving convergence and generalization using parameter symmetries. *arXiv preprint arXiv:2305.13404*, 2023.
- Zhipeng Zhou, Lanqing Li, Peilin Zhao, Pheng-Ann Heng, and Wei Gong. Class-conditional sharpness-aware minimization for deep long-tailed recognition. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 3499–3509, 2023.
- Zhipeng Zhou, Liu Liu, Peilin Zhao, and Wei Gong. Pareto deep long-tailed recognition: A conflict-averse solution. In *The Twelfth International Conference on Learning Representations*, 2024.
- Zhipeng Zhou, Liu Liu, Peilin Zhao, and Wei Gong. Injecting imbalance sensitivity for multitask learning. In *Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence*, pages 7236–7244, 2025.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We provide the discussion of limitations in the Appendix (Sec. D).

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the proof in the Appendix (Sec. F).

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [NA]

Justification: Code will be released once this paper is accepted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine Learning. There are many potential societal consequences of our work, none which we feel must be specifically highlighted here.

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

A Additional Results

A.1 Conflict and Gradient Examinations

Although our method achieves competitive performance, it remains unclear whether it effectively resolves the targeted issues, i.e., conflict mitigation and greater gradient norm discovery. To investigate this, we analyze the training process by recording the results before and after teleportation, as shown in Figure 8. The findings indicate that conflict is significantly alleviated, with task gradients becoming positively correlated in most cases after teleportation. Besides, teleportation consistently yields greater gradient norms, confirming the effectiveness of COST's design.

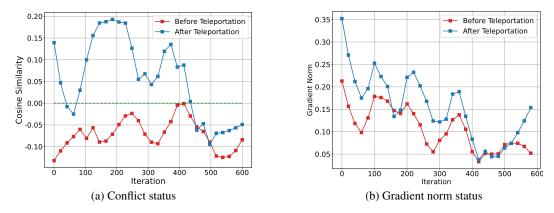


Figure 8: Examinations before/after teleportation.

A.2 Plug-and-Play Verification

Intuitively, our method is orthogonal to existing MTL approaches and is therefore plug-and-play, enabling augmentation when integrated. Here, we take three baselines (i.e., CAGrad, Nash-MTL, and FairGrad) to demonstrate the effectiveness of COST, and present the results in Table 5. As anticipated, our method successfully brings considerable augmentation to its baselines, with improvements ranging from 0.88 to 3.21 according to Δ m%. Specifically, CAGrad and FairGrad receive improvements on almost each individual metric.

We also conduct an additional verification experiment using CAGrad on the NYUv2 dataset. The results, presented in Table 6, show that COST consistently enhances CAGrad's performance across all metrics.

Table 5: Plug-and-play verification on *CityScapes* (2 tasks) dataset. We adopt FAMO's implementation for Nash-MTL (denoted as Nash-R) and augment it with COST, since Nash-MTL does not provide the official implementation on CityScapes.

Method	Segm	entation ↑	Dep	$ _{\Delta$ m% \downarrow	
	mIoU	Pix. Acc.	Abs. Err.	Rel. Err.	
CAGrad	75.16		0.0141	37.60	11.58
CAGrad + cost	75.46		0.0134	35.68	8.37
Nash-R	75.87		0.0135	37.29	9.89
Nash-R + cost	75.70		0.0134	34.34	7.15
FairGrad	75.72		0.0134	32.25	5.18
FairGrad + cost	75.73		0.0133	31.53	4.30

Table 6: Plug-and-play verification on NYUv2 (3 tasks).

Segmentati		nentation	Depth		Surface Normal						
Method	(Higher Better)		(Lower Better)		ther Better) (Lower Better)		Angle Distance		Within t°		$\mid \Delta$ m% \downarrow
	(Ingher Better)				(Lower Better)		(Higher Better)				
	mIoU	Pix. Acc.	Abs Err	Rel Err	Mean	Median	11.25	22.5	30		
CAGrad	39.79	65.49	0.55	0.23	26.31	21.58	25.61	52.36	65.58	0.29	
CAGrad + COST	40.76	66.42	0.53	0.22	26.00	21.13	26.44	53.25	66.30	-1.61	
FairGrad FairGrad + COST	39.74 38.06	66.01 64.71	0.54 0.54	0.22 0.23	24.84 24.47	19.60 18.80	29.26 30.84	56.58 58.25	69.16 0.30	-4.66 -5.39	

A.3 Motivation

To further elucidate our motivation, we additionally carry out a verification experiment to observe the dominant conflict status within Nash-MTL. Based on the results shown in Figure 9, Nash-MTL exhibits fewer dominated conflicts in comparison to CAGrad and FairGrad, yet still encounters a significant number. Moreover, it also possesses symmetry points that have the same loss level but with different conflict status.

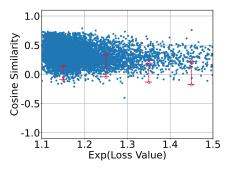


Figure 9: Dominated conflict vs. loss examination of Nash-MTL.

A.4 Analysis on Trigger Condition

As stated in the main text, the trigger condition is of importance for our symmetry teleportation process. To illustrate this, we carry out a comparison between our system when triggered by dominated conflict and when triggered by weak conflict, and the results are presented in Table 7. It can be observed that although COST-weak surpasses COST-dominated in terms of most individual metrics, it accomplishes this by sacrificing a significant portion of the performance on the Rel. Err. metric. This is an unexpected outcome in the context of MTL. Consequently, it does not perform satisfactorily on the overall metric ($\Delta m\%$). These results further emphasize that addressing both imbalance and conflict issues is crucial for MTL. This is because the scenario of weak conflict only focuses on the conflict issue, overlooking the importance of handling imbalance as well.

Table 7: Trigger condition comparison on CityScapes (2 tasks) dataset.

	Segn	nentation	De		
Method	(Higher Better)		(Lower	^{∆m%} ↓	
	mIoU	Pix. Acc.	Abs. Err.	Rel. Err.	
COST -dominated	75.73	93.53	0.0133	31.53	4.30
COST -weak	75.92	93.64	0.0127	35.94	6.94

We also conduct an additional experiment on the trigger condition in the presence of numerous tasks, following Eqn. 4 in the main text. As previously stated, this condition is designed to balance

effectiveness and efficiency—relaxing it would improve performance but at the cost of increased inefficiency. The results, presented in Figure 10, confirm this trade-off. As shown, $\Delta m\%$ gradually decreases as the trigger condition is relaxed, with improvements driven by more frequent teleportation. However, this comes at the cost of an almost linear increase in time complexity.

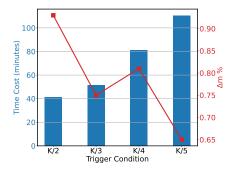


Figure 10: Trigger condition under the massive tasks scenario. Time cost is measured for one epoch on CelebA.

Table 8: PEFT alternatives comparison on CityScapes (2 tasks) dataset.

	Segn	nentation	De	ļ <u></u>	
Method	(High	er Better)	(Lower	$ ^{\Delta$ m% \downarrow	
	mIoU	Pix. Acc.	Abs. Err.	Rel. Err.	
FairGrad	75.72	93.68	0.0134	32.25	5.18
COST-Lora	75.73	93.53	0.0133	31.53	4.30
COST-LoHa Hyeon-Woo et al. [2021]	75.52	93.43	0.0130	35.07	7.10
COST-OFT Qiu et al. [2023]	68.17	91.40	0.0151	45.25	23.39

A.5 Analysis on Alternative of PEFT

Currently, numerous PEFT alternatives are available for teleportation purposes. To further examine the effect of PEFT on our method, we employ additional PEFT options to assess their impact on MTL performance. Specifically, we evaluate a LoRA variant (LoHa) and another PEFT alternative, OFT. The results, presented in Table 8, show that neither PEFT option improves upon their baselines. This suggests that while advanced PEFT methods may enable more efficient tuning, their complex designs can limit generalizability across various scenarios, aligning with some recent observations [Pu et al., 2023]. Identifying a suitable PEFT approach remains a future direction for our framework.

The obtained results demonstrate that our framework can indeed benefits from certain other PEFT alternatives, e.g., LoHa. However, it also encounters setbacks when using alternatives like OFT. This implies that the selection of the PEFT method warrants further investigation.

A.6 Time Cost

Applying teleportation at every instance of a conflict would significantly increase the computational burden and training time. To mitigate this, we introduce two strategies: delayed start and frequency control. The delayed start strategy postpones the application of teleportation until after E epochs. Meanwhile, frequency control limits the number of teleportation operations within each epoch, reducing overhead without much compromising the optimization process.

Here, we measure the running time of a single epoch on CelebA, comparing the scenarios with and without the COST augmentation, and present the results in Figure 11. As can be observed, our applied strategies introduce only an additional 30% of the training time compared to its baselines. Nonetheless, we acknowledge this still constitutes one of our limitations.

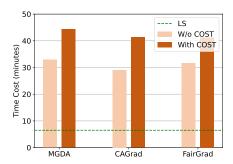


Figure 11: Time cost comparison.

B Implementation Details

B.1 Baseline Implementation

CAGrad: CAGrad strikes a balance between Pareto optimality and globe convergence by regulating the combined gradients in proximity to the average gradient:

$$\max_{\boldsymbol{d} \in \mathbb{R}^m \boldsymbol{\omega} \in \mathcal{W}} \boldsymbol{g}_{\boldsymbol{\omega}}^{\top} \boldsymbol{d} \quad \text{s.t.} \|\boldsymbol{d} - \boldsymbol{g}_0\| \le c \|\boldsymbol{g}_0\|$$
 (15)

In our experiments, we extend the official implementation to include COST. And all our training settings follow the same manner with its original one. For more comprehensive information, please consult the official implementation.

Nash-MTL: Nash-MTL provides the individual progress guarantee via the following objective:

$$\min_{\boldsymbol{\omega}} \sum_{i} \beta_{i}(\boldsymbol{\omega}) + \varphi_{i}(\boldsymbol{\omega}) \tag{16}$$

$$s.t. \forall i, -\varphi_i(\boldsymbol{\omega}) \le 0, \quad \omega_i > 0.$$
 (17)

where $\varphi_i(\omega) = \log(\omega_i) + \log(g_i^\top G \omega)$, $G = [g_1, g_2, ..., g_K]$. As demonstrated, the individual progress is ensured through the projection, subject to the constraint $\beta_i = g_i^\top G \omega \ge \frac{1}{\omega_i}$.

We utilize the FAMO's implementation of Nash-MTL, since Nash-MTL's official code does not provide the implementation on CityScapes (2 tasks). In the Table 4 of the main text, we honestly report the results of this implementation, and show improvements brought by COST.

FairGrad: FairGrad is a pioneer MTL algorithm that proposes fairness measurements to promote maximal loss decrease, and formulate the following objective to derive the combination of individual gradients:

$$\boldsymbol{G}^{\top} \boldsymbol{G} \boldsymbol{\omega} = \boldsymbol{\omega}^{-1/\alpha} \tag{18}$$

where α is the hyper-parameter, which is set to 1. We regard FairGrad as the advanced version of Nash-MTL that is able to balance task progresses in a finer grained. We adopt its official implementation for all our implementation through the paper.

B.2 PEFT Implementation

LoHa: As a variant of LoRA, it approximates large weight matrices with low-rank ones through the Hadamard product. This approach has the potential to be more parameter-efficient than LoRA itself.

OFT: OFT draws inspiration from continual learning. It operates by re-parameterizing the pre-trained weight matrices using its orthogonal matrix, thereby preserving the information within the pre-trained model. To decrease the number of parameters, OFT incorporates a block-diagonal structure into the orthogonal matrix.

We utilize the implementations of LoRA, LoHa, and OFT provided by Hugging Face's PEFT. **The rank for each of these is set to 5, while other configurations are left at their default values**. We apply LoRA to the backbone network across three datasets (CityScapes, NYUv2, and CelebA). For the QM9 benchmark, since it employs a graph network which is currently not supported by PEFT, we only apply LoRA to input and output linear layers instead.

Algorithm 1 COST for MTL

Model parameters θ^0

Initialize Initialize θ^0 randomly

t=1 to T Compute task gradients $G=[g_i]_{i=1}^K$ Dominated conflict detected Freeze θ^t and train LoRA ($\Delta\theta^t$) according Eqn.7, 9, 10, and 11 in the

Merge θ^t and $\Delta \theta^t$: $\theta^t = \theta^t + \Delta \theta^t$, and unfreeze θ^t

Apply HTR on the optimizer according to Eqn. 12, and 13 in the main text; Other MTL optimization Have applied HTR Reset σ to 1;

C Algorithm

We conclude the learning paradigm of COST in Algorithm 1. It should be noted that since COST is a scalable framework, thus the other MTL optimization in Algorithm 1 could be mainstream MTL approaches (e.g., CAGrad, Nash-MTL, and FairGrad, etc).

Discussion & Limitation

We offer a new framework to address the challenges of MTL, which is highly scalable and can be further improved by integrating more advanced components. For instance, LoRA could be substituted with an alternative PEFT method, and sharpness estimation can be substituted with some efficient gradient estimation methods [Liu et al., 2024b]. However, there are still some limitations. The current training paradigm requires additional training costs, and its performance on regression tasks is less competitive compared to the others. We have discussed some of these limitations in the Appendix, while others are left for future work.

Pareto Concept

Formally, let us assume the weighted loss as $\mathcal{L}_{\omega} = \sum_{i=1}^{K} \omega_{i} \mathcal{L}_{i}(\boldsymbol{\theta})$, where $\omega \in \mathcal{W}$ and \mathcal{W} represents the probability simplex on [K]. A point $\boldsymbol{\theta}'$ is said to Pareto dominate $\boldsymbol{\theta}$ if and only if $\forall i, \mathcal{L}_{i}(\boldsymbol{\theta}') \leq \boldsymbol{\theta}$ $\mathcal{L}_i(\theta)$. Consequently, the Pareto optimal situation arises when no θ' can be found that satisfies $\forall i, \mathcal{L}_i(\theta') \leq \mathcal{L}_i(\theta)$ for the given point θ . All points that meet these conditions are referred to as Pareto sets, and their solutions are known as Pareto fronts. Another concept, known as Pareto stationary, requires $\min_{\omega \in \mathcal{W}} \|g_{\omega}\| = 0$, where g_{ω} represents the weighted gradient $\omega^{\top} G$, and Gis the gradients matrix whose each row is an individual gradient. We also provide the definition of gradient similarity for ease of description.

Convergence Analysis

Lemma 3. Let $\mathcal{L}(\theta, \xi)$ be a Λ -smooth function, where ξ is the i.i.d sampled mini-batch data. It follows that:

$$\mathbb{E}\left[\left\|\nabla \mathcal{L}(\boldsymbol{\theta}, \xi)\right\|^{2}\right] \leq \\ 2\Lambda \left(\mathcal{L}(\boldsymbol{\theta}) - \mathcal{L}\left(\boldsymbol{\theta}^{*}\right)\right) + 2\Lambda \left(\mathcal{L}\left(\boldsymbol{\theta}^{*}\right) - \mathbb{E}\left[\inf_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \xi)\right]\right)$$

Proof. We have the following inequality according to the Λ -smooth property of $\mathcal{L}(\theta, \xi)$:

$$\mathcal{L}(\boldsymbol{\theta'}, \xi) - \mathcal{L}(\boldsymbol{\theta}, \xi) \leq$$

$$\langle \nabla \mathcal{L}(\boldsymbol{\theta}, \xi), \boldsymbol{\theta'} - \boldsymbol{\theta} \rangle + \frac{\Lambda}{2} \|\boldsymbol{\theta'} - \boldsymbol{\theta}\|^2, \forall \boldsymbol{\theta'}, \boldsymbol{\theta} \in \mathbb{R}^d$$
(19)

And $\theta' = \theta - \frac{1}{\Lambda} \nabla \mathcal{L}(\theta, \xi)$, thus we have:

$$\mathcal{L}(\boldsymbol{\theta} - (1/\Lambda)\nabla\mathcal{L}(\boldsymbol{\theta}, \xi), \xi) \le \mathcal{L}(\boldsymbol{\theta}, \xi) - \frac{1}{2\Lambda} \left\|\nabla\mathcal{L}(\boldsymbol{\theta}, \xi)\right\|^2$$
 (20)

Assume $\theta^* = \underset{\theta \in \mathbb{R}^d}{\arg \min} \mathcal{L}(\theta)$, then we can re-arranging the above inequality to have:

$$\mathcal{L}(\boldsymbol{\theta}^*, \xi) - \mathcal{L}(\boldsymbol{\theta}, \xi) =$$

$$\mathcal{L}(\boldsymbol{\theta}^*, \xi) - \inf_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \xi) + \inf_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \xi) - \mathcal{L}(\boldsymbol{\theta}, \xi)$$

$$\leq \mathcal{L}(\boldsymbol{\theta}^*, \xi) - \inf_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \xi) + \mathcal{L}(\boldsymbol{\theta} - \frac{1}{\Lambda} \nabla \mathcal{L}(\boldsymbol{\theta}, \xi), \xi) - \mathcal{L}(\boldsymbol{\theta}, \xi)$$

$$\leq \mathcal{L}(\boldsymbol{\theta}^*, \xi) - \inf_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \xi) - \frac{1}{2\Lambda} \|\nabla \mathcal{L}(\boldsymbol{\theta}, \xi)\|^2$$

$$(21)$$

where the first inequality holds because $\inf_{\theta} \mathcal{L}(\theta, \xi) \leq \mathcal{L}(\theta, \xi), \forall \theta$. Taking expectation on above gives:

$$\begin{split} & \mathbb{E}\left[\left\|\nabla\mathcal{L}(\boldsymbol{\theta},\xi)\right\|^{2}\right] \\ & \leq 2\mathbb{E}\left[\Lambda\left(\mathcal{L}(\boldsymbol{\theta}^{*},\xi) - \inf_{\boldsymbol{\theta}}\mathcal{L}(\boldsymbol{\theta},\xi) + \mathcal{L}(\boldsymbol{\theta},\xi) - \mathcal{L}(\boldsymbol{\theta}^{*},\xi)\right)\right] \\ & \leq 2\Lambda\mathbb{E}\left[\mathcal{L}(\boldsymbol{\theta}^{*},\xi) - \inf_{\boldsymbol{\theta}}\mathcal{L}(\boldsymbol{\theta},\xi) + \mathcal{L}(\boldsymbol{\theta},\xi) - \mathcal{L}(\boldsymbol{\theta}^{*},\xi)\right] \\ & \leq 2\Lambda\left(\mathcal{L}(\boldsymbol{\theta}) - \mathcal{L}(\boldsymbol{\theta}^{*})\right) + 2\Lambda\left(\mathcal{L}(\boldsymbol{\theta}^{*}) - \mathbb{E}\left[\inf_{\boldsymbol{\theta}}\mathcal{L}(\boldsymbol{\theta},\xi)\right]\right) \end{split}$$

Theorem 4. Assume task loss functions $\mathcal{L}_1, ..., \mathcal{L}_K$ are differentiable and Λ -smooth ($\Lambda > 0$) such that $\|\nabla \mathcal{L}_i(\theta_1) - \nabla \mathcal{L}_i(\theta_2)\| \le \Lambda \|\theta_1 - \theta_2\|$ for any two points θ_1 , θ_2 , and our symmetry teleportation property holds. Set the step size as $\eta = \frac{1}{\Lambda \sqrt{T-1}}$, T is the training iteration. Then, there exists a subsequence $\{\theta^{t_j}\}$ of the output sequence $\{\theta^t\}$ that converges to a Pareto stationary point θ^* .

Proof. We have the following inequality according to the Λ -smooth property of $\mathcal{L}(\theta)$:

$$\mathcal{L}(\boldsymbol{\theta'}) - \mathcal{L}(\boldsymbol{\theta}) \le \langle \nabla \mathcal{L}(\boldsymbol{\theta}), \boldsymbol{\theta'} - \boldsymbol{\theta} \rangle + \frac{\Lambda}{2} \|\boldsymbol{\theta'} - \boldsymbol{\theta}\|^2$$
(22)

Let $\theta' = \theta^{t+1}$, $\theta^{t'} = \theta^t + \Delta \theta^t$ (Gradient maximization: $\Delta \theta^t = \operatorname{argmax} \nabla \mathcal{L}(\theta^t + \Delta \theta^t)$), and $\mathcal{L}(\theta^t) = \mathcal{L}(\theta^{t'})$ (Loss invariance), we have:

$$\mathcal{L}(\boldsymbol{\theta^{t+1}}) \le \mathcal{L}(\boldsymbol{\theta^{t'}}) + \langle \nabla \mathcal{L}(\boldsymbol{\theta^{t'}}), \boldsymbol{\theta^{t+1}} - \boldsymbol{\theta^{t'}} \rangle \tag{23}$$

$$+\frac{\Lambda}{2}\left\|\boldsymbol{\theta^{t+1}} - \boldsymbol{\theta^{t'}}\right\|^2 \tag{24}$$

$$= \mathcal{L}(\boldsymbol{\theta^t}) - \eta_t \langle \nabla \mathcal{L}(\boldsymbol{\theta^{t'}}), \nabla \mathcal{L}(\boldsymbol{\theta^{t'}}, \boldsymbol{\xi^t}) \rangle + \frac{\Lambda \eta_t^2}{2} \left\| \nabla \mathcal{L}(\boldsymbol{\theta^{t'}}, \boldsymbol{\xi^t}) \right\|^2$$
(25)

Taking expectation conditioned on θ^t , we have:

$$\mathbb{E}_{t} \left[\mathcal{L}(\boldsymbol{\theta^{t+1}}) \right] \leq \mathcal{L}(\boldsymbol{\theta^{t}}) - \eta_{t} \left\| \nabla \mathcal{L}(\boldsymbol{\theta^{t'}}) \right\|^{2} + \frac{\Lambda \eta_{t}^{2}}{2} \mathbb{E}_{t} \left[\left\| \nabla \mathcal{L}(\boldsymbol{\theta^{t'}}, \xi^{t}) \right\|^{2} \right]$$
(26)

According to Lemma 3, we have:

$$\mathbb{E}\left[\left\|\nabla \mathcal{L}(\boldsymbol{\theta}, \xi)\right\|^{2}\right] \leq 2\Lambda \left(\mathcal{L}(\boldsymbol{\theta}) - \mathcal{L}(\boldsymbol{\theta}^{*})\right) + 2\Lambda \left(\mathcal{L}(\boldsymbol{\theta}^{*}) - \mathbb{E}\left[\inf_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \xi)\right]\right)$$
(27)

Inserting Eqn. 27 into Eqn. 26, we have:

$$\mathbb{E}_{t} \left[\mathcal{L}(\boldsymbol{\theta^{t+1}}) \right] \leq \mathcal{L}(\boldsymbol{\theta^{t}}) - \eta_{t} \left\| \nabla \mathcal{L}(\boldsymbol{\theta^{t'}}) \right\|^{2}$$

$$+ \Lambda^{2} \eta_{t}^{2} \left(\mathcal{L}(\boldsymbol{\theta^{t'}}) - \mathcal{L}(\boldsymbol{\theta^{*}}) + \mathcal{L}(\boldsymbol{\theta^{*}}) - \mathbb{E} \left[\inf_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \xi) \right] \right)$$

$$(28)$$

By taking full expectation and re-arranging terms, we have:

$$\eta_{t} \mathbb{E} \left[\left\| \nabla \mathcal{L}(\boldsymbol{\theta^{t'}}) \right\|^{2} \right] \leq (1 + \Lambda^{2} \eta_{t}^{2}) \mathbb{E} \left[\mathcal{L}(\boldsymbol{\theta^{t}}) - \mathcal{L}^{*} \right] \\
- \mathbb{E} \left[\mathcal{L}(\boldsymbol{\theta^{t+1}}) - \mathcal{L}^{*} \right] + \Lambda^{2} \eta_{t}^{2} \sigma^{2} \tag{29}$$

where $\sigma^2=\mathcal{L}(\pmb{\theta^*})-\mathbb{E}\left[\inf_{\pmb{\theta}}\mathcal{L}(\pmb{\theta},\xi)\right]$. Then we consider to introduce the re-weighting trick in [Stich, 2019]. Let γ_t ($\gamma_t>0$) be a sequence such that $\gamma_t(1+\Lambda^2\eta_t^2)=\gamma_{t-1}$. Assume $\gamma_{-1}=1$, then $\gamma_t=1+\Lambda^2\eta_t^{2-(t+1)}$. By multiplying γ_t on both sides of Eqn. 29, we have:

$$\gamma_{t} \eta_{t} \mathbb{E}\left[\left\|\nabla \mathcal{L}(\boldsymbol{\theta^{t'}})\right\|^{2}\right] \leq \gamma_{t-1} \mathbb{E}\left[\mathcal{L}(\boldsymbol{\theta^{t}}) - \mathcal{L}^{*}\right]
- \gamma_{t} \mathbb{E}\left[\mathcal{L}(\boldsymbol{\theta^{t+1}}) - \mathcal{L}^{*}\right] + \gamma_{t} \Lambda^{2} \eta_{t}^{2} \sigma^{2}$$
(30)

Summing up the above equation from t = 0, ..., T - 1, we have:

$$\sum_{t=0}^{T-1} \gamma_t \eta_t \mathbb{E}\left[\|\nabla \mathcal{L}(\boldsymbol{\theta^{t'}})\|^2 \right] \leq \mathbb{E}\left[\mathcal{L}(\boldsymbol{\theta^0}) - \mathcal{L}^* \right] + \Lambda^2 \sigma^2 \sum_{t=0}^{T-1} \gamma_t \eta_t^2$$
(31)

Dividing both sides by $\sum_{t=0}^{T-1} \gamma_t \eta_t^2$, we have:

$$\min_{t=0,...,T-1} \mathbb{E}\left[\left\|\nabla \mathcal{L}(\boldsymbol{\theta^{t'}})\right\|^{2}\right]$$

$$\leq \frac{1}{\sum_{t=0}^{T-1} \gamma_{t} \eta_{t}} \sum_{t=0}^{T-1} \gamma_{t} \eta_{t} \left\|\nabla \mathcal{L}(\boldsymbol{\theta^{t'}})\right\|^{2}$$

$$\leq \frac{\mathbb{E}\left[\mathcal{L}(\boldsymbol{\theta^{0}}) - \mathcal{L}^{*}\right] + \Lambda^{2} \sigma^{2} \sum_{t=0}^{T-1} \gamma_{t} \eta_{t}^{2}}{\sum_{t=0}^{T-1} \gamma_{t} \eta_{t}}$$

Assume $\eta_t \equiv \eta$, then we have:

$$\sum_{t=0}^{T-1} \gamma_t \eta_t = \eta \sum_{t=0}^{T-1} (1 + \Lambda^2 \gamma_t^2)^{-(t+1)}$$

$$= \frac{\gamma}{1 + \Lambda^2 \eta^2} \frac{1 - (1 + \Lambda^2 \eta^2)^{-T}}{1 - (1 + \Lambda^2 \eta^2)^{-1}}$$

$$= \frac{1 - (1 + \Lambda^2 \eta^2)^{-T}}{\Lambda^2 \eta}$$
(33)

Note that $(1 + \Lambda^2 \eta^2)^{-T} \le \frac{1}{2}$ and $\frac{x}{1+x} \le \log(1+x)$, thus we have

$$\frac{\log(2)}{\log(1+\Lambda^2\eta^2)} \le \frac{\log(2)(1+\Lambda^2\eta^2)}{\Lambda^2\eta^2} \le T \tag{34}$$

From this, we can obtain:

$$\sum_{t=0}^{T-1} \gamma_t \eta_t \ge \frac{1}{2\Lambda^2 \eta}, \text{ for } T \ge \frac{\log(2)(1+\Lambda^2 \eta^2)}{\Lambda^2 \eta^2}$$
(35)

Inserting the above equation into the Eqn. 32, we have:

$$\min_{t=0,\dots,T-1} \mathbb{E}\left[\left\|\nabla \mathcal{L}(\boldsymbol{\theta^{t'}})\right\|^2\right]$$
(36)

$$\leq 2\Lambda^2 \eta \mathbb{E}\left[\mathcal{L}(\boldsymbol{\theta^0}) - \mathcal{L}*\right] + \eta \Lambda^2 \sigma^2, \text{ for } T \geq \frac{\log(2)(1 + \Lambda^2 \eta^2)}{\Lambda^2 \eta^2}$$
(37)

Setting $\eta = \frac{1}{\Lambda\sqrt{T-1}}$, we finally have:

$$\min_{t=0,\dots,T-1} \mathbb{E}\left[\left\|\nabla \mathcal{L}(\boldsymbol{\theta^{t'}})\right\|^2\right]$$
 (38)

$$\leq \frac{2\Lambda}{\sqrt{T-1}} \mathbb{E}\left[\mathcal{L}(\boldsymbol{\theta^0}) - \mathcal{L}*\right] + \frac{\Lambda\sigma^2}{\sqrt{T-1}}$$
(39)

Thus, our method can readily reach to the Pareto Stationary point.