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Abstract
We develop a novel optimization method for
quantization-aware training (QAT). Specifically,
we show that convex, piecewise-affine regular-
ization (PAR) can effectively induce the model
parameters to cluster towards discrete, quantized
values. We minimize PAR-regularized loss func-
tions using an aggregate proximal stochastic gra-
dient method (AProx) and show that it enjoys
last-iterate convergence. Our approach provides
an interpretation of the straight-through estima-
tor (STE), a widely used heuristic for QAT, as
the asymptotic form of PARQ. We present nu-
merical experiments to demonstrate that PARQ
obtains competitive performance on convolution-
and transformer-based vision tasks.

1. Introduction
Modern deep learning models exhibit exceptional vision
and language processing capabilities, but often come with
excessive sizes and demands on memory and computing.
Quantization is an effective approach for model compres-
sion, which can significantly reduce their memory footprint,
computing cost, as well as the latency for inference (e.g.,
Han et al., 2016; Sze et al., 2017). There are two main
classes of quantization methods: post-training quantization
(PTQ) and quantization-aware training (QAT). Both are
widely adopted and receive extensive research; see the re-
cent survey papers by Gholami et al. (2022) and Fournarakis
et al. (2022) and references therein.

PTQ converts the weights of a pre-trained model directly to
lower precision without repeating the training pipeline; thus
it has less overhead and is relatively easy to apply (Nagel
et al., 2020; Cai et al., 2020; Chee et al., 2024). However,
it is limited mainly to 4 or more bit regimes and can suffer
steep performance drops with fewer bits (Yao et al., 2022;
Dettmers & Zettlemoyer, 2023). This is especially the case
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for transformer-based models, which are more difficult to
quantize (Bai et al., 2021; Qin et al., 2022) compared to
convolutional architectures (Martinez et al., 2019; Qin et al.,
2020). On the other hand, QAT integrates quantization into
pre-training and/or fine-tuning processes and can produce
low-bit (including binary) models with mild performance
degradation (e.g. Fan et al., 2021; Liu et al., 2022).

A key ingredient of QAT is the so-called straight-through
estimator (STE), which was proposed as a heuristic (Ben-
gio et al., 2013; Courbariaux et al., 2015) and has been
extremely successful in practice (e.g., Rastegari et al., 2016;
Hubara et al., 2018; Esser et al., 2019). Many efforts have
been made to demystify the effectiveness of STE, especially
through the lens of optimization algorithms (e.g., Li et al.,
2017; Yin et al., 2018; 2019; Bai et al., 2019; Ajanthan et al.,
2021; Dockhorn et al., 2021; Lu et al., 2023). However, sig-
nificant gaps remain between theory and practice.

In this paper, we develop a principled method for QAT based
on convex regularization and interpret STE as the asymptotic
form of an aggregate proximal stochastic gradient method.
The convex regularization framework admits stronger con-
vergence guarantees than previous work and allows us to
prove the last-iterate convergence of the method.

1.1. The Straight-Through Estimator (STE)

We consider training a machine learning model with pa-
rameters w ∈ Rd and let f(w, z) denote the loss of the
model on a training example z. Our goal is to minimize the
population loss f(w) = Ez[f(w, z)] where z follows some
unknown probability distribution. Here, we focus on the
classical stochastic gradient descent (SGD) method. During
each iteration of SGD, we draw a random training example
(or mini-batch) zt and update the model parameter as

wt+1 = wt − ηt∇f(wt, zt), (1)

where ∇f(·, zt) denotes the stochastic gradient with respect
to the first argument (here being wt) and ηt is the step size.

QAT methods modify SGD by adding a quantization step.
In particular, the BinaryConnect method (Courbariaux et al.,
2015) can be written as

ut+1 = ut − ηt∇f(Q(ut), zt), (2)

where Q(·) is the coordinate-wise projection onto the set
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Figure 1. A quantization map with Q = {0,±q1,±q2}.

{±1}d. It readily generalizes to projection onto Qd where
Q is a finite set of arbitrary quantization values. Figure 1
shows an example with Q = {0,±q1,±q2}.

Notice that in Equation (2) we switched the notation from
wt to ut, because we would like to define wt = Q(ut) as
the quantized model parameters. This reveals a key feature
of QAT: the stochastic gradient in (2) is computed at wt

instead of ut itself (which would be equivalent to (1)). Here
we regard ut as a full-precision latent variable that is used
to accumulate the gradient computed at wt, and the quan-
tization map Q(·) is applied to the latent variable ut+1 to
generate the next quantized variable wt+1.

The notion of STE arises from the intent of computing an
approximate gradient of the loss function with respect to ut.
Let us define the function f̃(u, z) := f(Q(u), z) = f(w, z)
in light of w = Q(u). Then we have for each i = 1, . . . , d,

∂f̃

∂ui
=

∂f

∂wi

dwi

dui
=

∂f

∂wi

dQ(ui)

dui
.

However, due to the staircase shape of the quantization map,
we have dQ(ui)/dui = 0 and thus ∇f̃(u, z) = 0 almost
everywhere, which prevent effective learning. In order to fix
this problem, STE tries to “construct” a nontrivial gradient
with respect to u, by simply treatingQ(·) as the identity map
during backpropagation, i.e., replacing dQ(ui)/dui with 1
in the above equation. This leads to the “straight-through”
approximation

∇f̃(u, z)
STE
≈ ∇f(w, z) = ∇f(Q(u), z),

so that one can interpret Equation (2) as an (approximate)
SGD update for minimizing the composite function f̃(u).

There are several issues with this argument. First, we know
exactly that dQ(ui)/dui = 0 almost everywhere, so there
is no need for “approximation.” Second, any approximation
that replaces 0 with 1 in this context warrants scrutiny of
the resulting bias and the consequences on training stability.
Existing works on this are restricted to special cases and
weak convergence results (Li et al., 2017; Yin et al., 2019).

Alternatively, we can view (2) as an implicit algorithm for
updating wt and analyze its convergence. More explicitly,

ut+1 = ut− ηt ∇f(wt, zt),

wt+1 = Q(ut+1).
(3)

Here ut serves as an auxiliary variable that accumulates past
gradients evaluated at w0, . . . , wt (similar to momentum).
This formulation allows application of the powerful frame-
work of regularization and proximal gradient methods (e.g.,
Bai et al., 2019; Dockhorn et al., 2021). And this is the path
we take in this paper.

1.2. Outline and contributions

In Section 2, we review the framework of regularization
and introduce a family of convex, piecewise-affine regular-
izers (PAR). In addition, we derive the first-order optimality
conditions for minimizing PAR-regularized functions.

In Section 3, we derive an aggregate proximal gradient
method (AProx) for solving PAR-regularized minimization
problems and provide its convergence analysis for convex
losses. AProx applies a soft-quantization map that evolves
over the iterations and asymptotically converges to hard
quantization, thus giving a principled interpretation of STE.

In Section 4, we present PARQ (Piecewise-Affine Regular-
ized Quantization), a practical implementation of AProx
with PAR regularization that does not need to pre-determine
the quantization values and regularization strength.

In Section 5, we conduct QAT experiments on low-bit quan-
tization of convolution- and transformer-based vision mod-
els and demonstrate that PARQ obtains competitive perfor-
mance compared to STE/BinaryConnect, as well as other
methods based on nonconvex regularization.

We note that Dockhorn et al. (2021) already used the regu-
larization framework and proximal optimization to interpret
(demystify) BinaryConnect and developed a generalization
called ProxConnect. In fact, AProx is equivalent to Prox-
Connect albeit following quite different derivations. Never-
theless, we make the following novel contributions.

• We propose convex PAR to induce quantization.
Dockhorn et al. (2021) focused on monotone (non-
decreasing) proximal maps, which can correspond to
arbitrary regularization. Although they presented con-
vergence results for convex regularization, no such
example was given to demonstrate its relevance. Be-
yond closing this gap between theory and practice, our
construction of convex PAR is rather surprising coun-
terintuitive for the purpose of quantization.

• We derive first-order optimality conditions for minimiz-
ing PAR-regularized functions. They reveal the critical
role of nonsmoothness in inducing quantization.
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Figure 2. Illustration of two nonsmooth regularizers.

• We prove last-iterate convergence of AProx. The con-
vergence results of Dockhorn et al. (2021) concern
the averaged iterates generated by ProxConnect/AProx.
While such results are conventional in the stochastic
optimization literature, they are far from satisfactory
for QAT, because the averaged iterate may not be quan-
tized even if every iterate is quantized. Last-iterate
convergence gives a much stronger guarantee.

• We propose a practical implementation called PARQ
that can adaptively choose the quantization values and
regularization strength in an online fashion.

Our implementation of PARQ in PyTorch is available at ht
tps://github.com/facebookresearch/parq.

2. Piecewise affine regularization (PAR)
Regularization is a common approach for inducing desired
properties of machine learning models, by minimizing a
weighted sum of the loss function f and a regularizer Ψ:

minimize
w∈Rd

f(w) + λΨ(w), (4)

where λ ∈ R+ is a parameter to balance the relative strength
of regularization. For example, it is well known that L2-
regularization helps generalization by preferring smaller
model parameters, and L1-regularization, illustrated in Fig-
ure 2(a), induces sparsity (e.g., Hastie et al., 2009).

There have been many attempts of using regularization to
induce quantization (e.g., Carreira-Perpiñán & Idelbayev,
2017; Yin et al., 2018; Bai et al., 2019). An obvious choice
is to let Ψ be the indicator function of Qd; in other words,
Ψ(w) =

∑d
i=1 δQ(wi) where

δQ(wi) =

{
0 if wi ∈ Q,
+∞ otherwise.

(5)

Then minimizing f(w) + λΨ(w) is equivalent to the con-
strained optimization problem of minimizing f(w) subject
to w ∈ Qd, which is combinatorial in nature and very hard
to solve in general. Yin et al. (2018) propose to use the
Moreau envelope of the indicator function, which under
the Euclidean metric gives Ψ(w) = minv∈Qd ∥v − w∥22. A
nonsmooth version is proposed by Bai et al. (2019) under

w
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Figure 3. Convex PAR: Ψ(w) = maxk{ak(|w| − qk) + bk}.

the L1-metric, resulting in Ψ(w) = minv∈Qd ∥v − w∥1;
Figure 2(b) shows a W-shaped example in one dimension.

We argue that the effectiveness of a regularizer for induc-
ing quantization largely relies on two critical properties:
nonsmoothness and convexity. Smooth regularizers such
as dist(w,Qd) := minv∈Qd ∥v − w∥22 behave like ∥w∥22
locally, thus do not induce zero or any discrete structure. On
the other hand, nonsmooth regularizers behave like ∥w∥1
near zero, so they can trap model parameters at the set of
nondifferentiable points—more suitable for quantization.

Convexity concerns the global behavior of regularization.
For example, the popularity of L1-regularization for sparse
optimization is largely attributed to its convexity besides
being nonsmooth. On the other hand, it is hard for a gradient-
based algorithm to cross the middle hill in the nonconvex
W-shaped regularizer shown in Figure 2(b), if the initial
weights are trapped in the wrong valley from the optimal
ones. Therefore, ideally we would like to construct a regu-
larizer that is both nonsmooth and convex.

2.1. Definition of PAR

To simplify presentation, we assume Ψ(w) =
∑d

i=1 Ψ(wi)
and use the same notation Ψ for the function of a vector or
one of its coordinates (it should be self-evident from the
context). For most of the discussion, we focus on the scalar
case and omit the subscript i or simply assume d = 1.

Suppose that the set of target quantization values is given
as Q = {0,±q1, . . . ,±qm} with 0 = q0 < q1 < · · · < qm.
We define a piecewise-affine regularizer (PAR) as

Ψ(w) = max
k∈{0,...,m}

{ak(|w| − qk) + bk}, (6)

where the slopes {ak}mk=0 are free parameters that satisfy
0 ≤ a0 < a1 < · · · < am = +∞, and {bk}mk=0 are
determined by setting b0 = 0, q0 = 0, and

bk = bk−1 + ak−1(qk − qk−1), k = 1, . . . ,m.

As shown in Figure 3, (±qk, bk) are the reflection points of
the piecewise-affine graph. The function Ψ(w) is convex
because the maximum of finite linear functions is convex
(Boyd & Vandenberghe, 2004, Section 3.2.3).
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Figure 4. Three special cases of PAR for low-bit quantization.

We note that setting a0 = 0 effectively removes q0 = 0 from
the quantization set Q because it is no longer a reflection
point of Ψ. Figure 4 illustrates three special cases of PAR for
low-bit quantization, where both Figures 4(a) and 4(b) have
a0 = 0. Finally, we note that the above definition of PAR is
symmetric around zero, for the convenience of presentation.
It is straightforward to extend to the asymmetric case.

2.2. Optimality conditions

In order to understand how PAR can induce quantization,
we examine the optimality conditions of minimizing PAR-
regularized functions. Suppose f is differentiable and w⋆ is
a solution to the optimization problem (4). The first-order
optimality condition for this problem is (see, e.g., Wright &
Recht, 2022, Theorem 8.18)

0 ∈ ∇f(w⋆) + λ∂Ψ(w⋆),

where ∂Ψ(w⋆) denotes the subdifferential of Ψ at w⋆,
and λ∂Ψ(w⋆) means multiplying each element of the set
∂Ψ(w⋆) by λ. For convenience, we rewrite it as ∇f(w⋆) ∈
−λ∂Ψ(w⋆), which breaks down into the following cases:

w⋆
i = −qk, ⇐= ∇if(w

⋆) ∈ λ (ak−1, ak)

w⋆
i ∈(−qk,−qk−1) =⇒ ∇if(w

⋆) = λ ak−1

w⋆
i = 0 ⇐= −∇if(w

⋆) ∈ λ (−a0, a0)
w⋆

i ∈ (qk−1, qk) =⇒ ∇if(w
⋆) = −λ ak−1

w⋆
i = qk, ⇐= ∇if(w

⋆) ∈ λ (−ak,−ak−1).

Here ∇i denotes the ith coordinate of the vector ∇f , the
subscript i runs from 1 through d, and the piecewise-affine
index k runs from 1 through m. The symbol ⇐= (=⇒)
means that the expression on the left side is a necessary
(sufficient) condition for the expression on the right side.
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Figure 5. Graph of proxΨ(u).

We immediately recognize that the sufficient condition for
w⋆

i = 0 (third equation above) is the same as for the L1-
regularization Ψ(w) = λ · a0∥w∥1. Further examination
reveals that for any weight not clustered at a discrete value
in Q, i.e., if w⋆

i ∈ (qk−1, qk) for some k, the correspond-
ing partial derivative ∇if(w

⋆) must equal the singleton
−λak−1. Conversely, almost all values of the partial deriva-
tives of f , except for the 2m discrete values, {±λak−1}mk=1,
can be balanced by assigning the model parameters at the
2m + 1 discrete values in Q = {0,±q1, . . . ,±qm}. Intu-
itively, this implies that the model parameters at optimality
are more likely to cluster at these discrete values. We will
derive an algorithm that manifests this property rigorously
in Section 3.

2.3. Proximal mapping of PAR

A fundamental tool for solving problem (4) is the proximal
map of the regularizer Ψ, defined as

proxΨ(u) = argminw
{
Ψ(w) + 1

2∥w − u∥22
}
.

See, e.g., Wright & Recht (2022, §8.6) for further details.
For the PAR function defined in (6), its proximal map has
the following closed-form solution (letting a−1 = 0)

proxΨ(u)=

{
sgn(u)qk if |u|∈ [ak−1+qk, ak+qk],

u−sgn(u)ak if |u|∈ [ak+qk, ak+qk+1].

(7)
where sgn(·) denotes the sign or signum function.

Figure 5 shows the graph of proxΨ(u), which is clearly
monotone non-decreasing in u. According to Yu et al. (2015,
Proposition 3), a (possibly multi-valued) map is a proximal
map of some function if and only if it is compact-valued,
monotone and has a closed graph. For example, the hard-
quantization map in Figure 1 is the proximal map of the
(nonconvex) indicator function δQ in (5). Dockhorn et al.
(2021) work with monotone proximal maps directly without
specifying the regularizer itself. In contrast, we construct a
convex regularizer, and show that it can effectively induce
quantization and obtain competitive performance in practice,
together with stronger convergence guarantees.
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3. The AProx Algorithm
The regularization structure of problem (4) can be well
exploited by the proximal gradient method

wt+1 = proxηtλΨ

(
wt − ηt∇f(wt)

)
, (8)

where proxηtλΨ is the proximal map of the scaled function
ηtλΨ. Since ηtλ effectively scales the slopes {ak}mk=1 (with
Q fixed), we obtain proxηtλΨ by simply replacing ak in (7)
with ηtλak and the corresponding map is shown in Figure 6.

If f is convex and ∇f is L-Lipschitz continuous, then using
the constant step size ηt = 1/L leads to a convergence rate
of O(1/t) (e.g., Wright & Recht, 2022, Theorem 9.6).

In the context of machine learning, we minimize the ex-
pected loss over a large amount of data, i.e., f(w) =
Ez[f(w, z)]. The Prox-SGD method replaces ∇f(wt)
in (8) with the stochastic gradient gt := ∇wf(w

t, zt):

wt+1 = proxηtλΨ

(
wt − ηtg

t
)
. (9)

However, it is well known that for the (proximal) SGD
method to converge, we need diminishing and non-
summable step sizes (e.g., Robbins & Monro, 1951), i.e.,

ηt → 0 and
∑∞

t=1 ηt = +∞. (10)

In this case, the flat segments on the graph of proxηtλΨ, as
shown in Figure 6, with lengths ηtλ(ak − ak−1), will all
shrink to zero when ηt → 0 (except at the two ends because
am = +∞). Therefore, the graph converges to the identity
map clipped flat outside of [−qm,+qm] and we lose the
action of quantization. This issue parallels that of using
Prox-SGD with L1-regularization, which does not produce
sparse solutions because of the shrinking deadzone in the
soft-thresholding operator as ηt → 0 (Xiao, 2010).

To overcome the problem of diminishing regularization, we
propose AProx, an aggregate proximal stochastic gradient
method. Aprox shares a similar form with BinaryConnect
(Courbariaux et al., 2015). Specifically, it replaces the hard-
quantization Q(·) in (3) with an aggregate proximal map:

ut+1 = ut − ηtg
t,

wt+1 = proxγtλΨ(u
t+1),

(11)
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Figure 7. Graph of proxγtλΨ
(u) with scaled input.

where γt =
∑t

s=1 ηs. Here proxγtλΨ is called an aggre-
gate map because λΨ is scaled by the aggregate step size γt.
In fact, BinaryConnect is a special case of AProx with Ψ be-
ing the indicator function of Qd given in (5). The indicator
function and its proximal map (Figure 1) is invariant under
arbitrary scaling, thus hiding the subtlety of aggregation.

The graph of proxγtλΨ can be obtained by replacing ηt in
Figure 6 with γt. However, according to (10), we have

γt =
∑t

s=1 ηs → +∞,

which implies that the flat segments in the graph, now with
lengths γtλ(ak − ak−1), grow larger and larger, which is
opposite to the Prox-SGD method. (In both cases, the sloped
segments has fixed length qk − qk−1.)

For the ease of visualization, we rescale the input u by γ−1
t

and obtain the graph in Figure 7. In this scaled graph, the
lengths of the flat segments λ(ak − ak−1) stay constant but
the sloped segments, with lengths γ−1

t (qk − qk−1), shrink
as γt increases. Asymptotically, as γt → ∞, the graph
converges to hard quantization, as shown in Figure 8.

3.1. AProx versus Prox-SGD and ProxQuant

To better understand the difference between AProx and
Prox-SGD, we rewrite Prox-SGD in (9) as

ut+1 = wt − ηtg
t,

wt+1 = proxηtλΨ(u
t+1),

(12)

which differ from AProx in (11) in two places (highlighted
in blue). Here we give an intuitive interpretation of these
differences. First, notice that the objective in (4) is the sum
of f and λΨ, and both methods make progress by using
the stochastic gradient of f (forward step) and the proximal
map of λΨ (backward step) — in a balanced manner.

• In Prox-SGD, ut+1 is a combination of wt and −ηtgt.
But wt already contains contributions from both f
and λΨ, through {−ηsgs}t−1

s=1 and {proxηsλΨ}
t−1
s=1

respectively. Therefore, from ut+1 to obtain wt+1, we
should use proxηtλΨ to balance −ηtgt.
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Figure 8. Asymptotic scaled mapping as γt → 0.

• For AProx, ut+1 is used to accumulate
∑t

s=1 ηsg
s,

solely contributed from f . Thus in computing wt+1,
we need to strike a balance with the contribution from
λΨ with the aggregated strength γt =

∑t
s=1 ηs.

While the total contributions from the forward steps (−ηtgt)
and backward steps (proxλΨ) are balanced in both cases,
Prox-SGD spreads the backward steps on every iterate wt

so the quantization effect on the last iterate eventually di-
minishes. In contrast, AProx always applies an aggregate
proximal map to generate the last iterate, in order to balance
the accumulation of pure forward steps in ut+1.

The above interpretation highlights the importance of bal-
ance between the forward and backward steps in minimizing
the sum of f and λΨ. With the flexibility of allowing any
step size rule that satisfies (10), it can be considered as a
more flexible variant, or a generalization, of the regularized
dual averaging (RDA) method of Xiao (2010).

Dockhorn et al. (2021) used the regularization framework
and proximal maps to interpret BinaryConnect/STE and
developed a generalization called ProxConnect. It is de-
rived from the generalized conditional gradient method (Yu
et al., 2017), through the machinery of Fenchel-Rockafellar
duality. We derived AProx as an direct extension of RDA
(Xiao, 2010), but realized that it is indeed equivalent to
ProxConnect, with some minor differences in setting γt.
Nevertheless, our construction through balancing forward
and backward steps provides a more intuitive understanding
of the algorithm and may shed light on further development
of structure-inducing optimization algorithms.

3.2. Convergence Analysis

To simplify the presentation, we define

Fλ(w) := Ez[f(w, z)] + λΨ(w).

The following theorem concerns the convergence of AProx
in terms of the weighted average w̄t = 1∑t

s=1 ηs

∑t
s=1 ηsw

s.
This result appeared in Dockhorn et al. (2021, Cor. 5.2.). We
include it here as a basis for proving last-iterate convergence
and give its proof in Appendix A.1 for completeness.

Algorithm 1 PARQ

input: w1 ∈ Rd, number of quantization bits n,
step sizes {ηt}Tt=1, slope schedule {ρ−1

t }Tt=1

initialize: u1 = w1

for t = 1, 2, . . . , T−1 do
ut+1 = ut− ηt ∇f(wt, zt)
Qt+1 = LSBQ(ut+1, n)
wt+1 = proxPARQ(u

t+1,Qt+1, ρt)
end for
output: wT

Theorem 3.1. Assume that f(w, z) is convex in w for any z,
Ψ is convex, and Fλ is continuous with Lipschitz constantG.
Also, let W⋆ be the set of minimizers of Fλ(w). Then,

(a) If the stepsize ηt satisfies (10) and {ws}ts=1 are gener-
ated by algorithm (11), then the weighted average w̄t

converges in expectation to a point in W⋆.
(b) Let w0 be an initial point,R =minw⋆∈W⋆∥w0−w⋆∥2

and the step size ηt = R
2G

√
1
t , then

E
[
Fλ(w̄

t)
]
− Fλ(w

⋆) ≤ GR
2 + 1.5 ln(t)√

t
,

where the expectation E[·] is taken with respect to the
sequence of random variables {w1, . . . , wt}.

While convergence results on the averaged iterates w̄t are
conventional in the stochastic optimization literature, they
are far from satisfactory for QAT. In particular, the aver-
aged iterates w̄t are most likely not quantized even if every
iterate wt is quantized. Therefore, only the last iterate is
meaningful for QAT in practice.

In general, last-iterate convergence of stochastic/online algo-
rithms is crucial for regularized optimization problems aim-
ing for a structured solution (such as sparsity and quantiza-
tion). Here we establish last-iterate convergence of AProx.

Theorem 3.2 (Last-iterate convergence of AProx for convex
optimization). Under the same assumptions as in Theo-
rem 3.1, the last iterate wt of AProx satisfies

E
[
Fλ(w

t)
]
− Fλ(w

∗) ≤ GR
2 + 1.5 ln(t)√

t
.

The proof of Theorem 3.2 is provided in Appendix A.2. We
note that this convergence rate matches the average-iterate
convergence rate established in Theorem 3.1.

We note that AProx updates the variable ut with a simple
SGD step. In practice, replacing it with more sophisticated
methods such as Adam (Kingma & Ba, 2014) or AdamW
(Loshchilov & Hutter, 2018) gives better performance. We
leave their convergence analysis for future work.
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Figure 9. Proximal maps of PARQ and BinaryRelax.

4. PARQ: A Practical Implementation
A practical issue for implementing AProx with PAR is how
to choose the PAR parameters {qk}mk=1 and {ak}m−1

k=0 , as
well as the regularization strength λ; see their roles in the
proximal map in Figure 7. In particular, {qk} are the tar-
get quantization values for wt and λ and {ak} determine
the quantization thresholds on the scaled input γ−1

t ut. In
practice, it is very hard to choose these parameters a priori
for different models and datasets. Therefore, we propose a
heuristic approach to estimate the target values {qk} online
and at the same time avoid setting λ and {ak} explicitly.

Given a vector ut ∈ Rd, we need to quantize it (element-
wise) to a vector wt ∈ Qd where wt

i ∈ Q for i = 1, . . . , d.
We use the least-squares binary quantization (LSBQ) ap-
proach (Pouransari et al., 2020) to estimate the target quan-
tization values in Q. LSBQ employs a form of n-bit scaled
binary quantization. Specifically, let

wi =
∑n

j=1 vjsj(ui),

where the vj’s satisfy v1 ≥ · · · ≥ vn ≥ 0 and each
sj : R → {−1, 1} is a binary function. The optimal
{vj , sj(·)}nj=1 for approximating u ∈ Rd in the least-
squares sense can be found by solving the problem:

minimize{vj ,sj(·)}
∑d

i=1

(
ui −

∑n
j=1 vjsj(ui)

)2
subject to v1 ≥ v2 ≥ · · · ≥ vn ≥ 0,

sj : R → {−1, 1}, j = 1, . . . , n.

For n = 1 (1-bit quantization), the solution is well-known:

v1 = ∥u∥1/d, and s1(ui) = sgn(ui);

see, e.g., Rastegari et al. (2016). Pouransari et al. (2020)
derived the solutions for the n = 2 case and the ternary case
(n = 2 with v1 = v2). For n > 2, there is no closed-form
solution, but Pouransari et al. (2020) gives a simple greedy
algorithm for foldable representations, which satisfy

sj(ui) = sgn(ui −
∑j−1

ℓ=1 vℓsℓ(ui)), j = 1, . . . , n.

This is the scheme that we adopt in PARQ.

Table 1. ResNet test accuracy on CIFAR-10. Full-precision (FP)
accuracy is shown in parentheses under each model depth.

Depth # bits STE BinaryRelax PARQ

20
(91.82)

1 89.56 ±0.18 89.98 ±0.13 90.48 ±0.26
T 90.94 ±0.15 91.25 ±0.07 91.45 ±0.11
2 91.22 ±0.15 91.57 ±0.06 91.71 ±0.03
3 91.84 ±0.22 91.77 ±0.05 91.97 ±0.04
4 91.93 ±0.04 91.92 ±0.16 91.93 ±0.05

56
(93.08)

1 91.55 ±0.33 91.75 ±0.37 91.47 ±0.35
T 92.42 ±0.09 92.34 ±0.23 92.97 ±0.15
2 92.72 ±0.27 92.30 ±0.40 92.77 ±0.10
3 92.73 ±0.44 92.86 ±0.40 92.86 ±0.25
4 92.34 ±0.23 92.59 ±0.10 92.78 ±0.30

Once a set of (exact or approximate) solution {vj}nj=1 is
obtained, the resulting quantization values can be written in
the form ±v1±· · ·±vn by choosing either + or − between
the adjacent operands. For example, the largest and smallest
values in Q = {±q1, . . . ,±qm} are qm = v1 + · · · + vn
and −qm = −v1 − · · · − vn. Since there are n binary bits,
the total number of target values is |Q| = 2n.

The selection of {ak} and λ is somewhat arbitrary and not
consequential. We can choose them so that the asymptotic
graph in Figure 8 matches the hard-quantization map de-
picted in Figure 1. That is, we can let λak = (qk+qk+1)/2,
but never really use them once Q is found by LSBQ.

While in theory we require γt =
∑t

s=1 ηs → +∞, in prac-
tice γt does not become very large due to the finite number
of iterations we run with diminishing step sizes. Therefore,
its effect on scaling the horizontal axis in Figures 7 and 8 is
limited and can be absorbed by tuning the step size. On the
other hand, we would like the proximal map to be able to
converge to hard-quantization by the end of training (so we
have fully quantized solutions). For this purpose, we use an
independent schedule for growing the slope of the slanted
segments. Specifically, we emulate the proximal map in
Figure 7 with the one in Figure 9(a), where Q is calculated
from LSBQ, and ρ is the slope of the slanted segments. For
convenience, we specify a schedule for the inverse slope
ρ−1
t to vary monotonically from 1 to 0 during T steps of

training (so the slope ρt go to infinity). For example,

ρ−1
t =

1

1 + exp (s(t− t1))
, (13)

where s > 0 is the steepness parameter, and t1 is the tran-
sition center (usually t1 = T/2). This schedule changes
ρ−1
t roughly from 1 to 0, taking value 0.5 at the transition

center t1. The steepness parameter s controls how fast the
transition from 1 to 0 happens, with larger s corresponding
to steeper transitions.

Putting everything together, we have PARQ in Algorithm 1.
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Table 2. Quantized ResNet-50 test accuracy on ImageNet.

Depth # bits STE BinaryRelax PARQ

50
(75.60)

1 66.17 ±0.04 66.14 ±0.28 66.71 ±0.13
T 70.94 ±0.19 71.59 ±0.11 71.45 ±0.11
2 72.38 ±0.10 72.64 ±0.17 72.71 ±0.19
3 73.58 ±0.09 74.02 ±0.09 73.94 ±0.10
4 74.52 ±0.04 74.58 ±0.04 74.83 ±0.19

5. Experiments
We train quantized convolutional and vision-transformer
models using QAT on image classification tasks across five
bit-widths: ternary (T) and 1–4 bits. For each model and
bit-width pair, we compare PARQ with two existing QAT
methods: STE/BinaryConnect (Courbariaux et al., 2015)
and BinaryRelax (Yin et al., 2018).

Specifically, STE/BinaryConnect uses the hard-quantization
map in Figure 1, PARQ applies the proximal map in Fig-
ure 9(a) with slope annealing, and BinaryRelax effectively
uses the proximal map in Figure 9(b) where the slope of
slanted segments gradually decreases to 0. We note that
proxPARQ is the proximal map of a convex PAR, but STE
and proxBinRel do not correspond to convex regularization.

Each entry in Tables 1–3 shows the mean and standard dev-
iation of test accuracies over three randomly seeded runs.

5.1. ResNet on CIFAR-10

We first evaluate quantized ResNet-20 and ResNet-56 (He
et al., 2016) on CIFAR-10. All weights, including those in
the final projection layer, are quantized. We train for 200
epochs using SGD with 0.9 momentum and 2e−4 weight
decay. Following Zhu et al. (2022), the 0.1 learning rate
decays by a factor of 10 at epochs 80, 120, and 150.

As shown in Table 1, PARQ performs competitively to STE
and BinaryRelax across all bit-widths. For 1-bit ResNet-20,
it outperforms STE by nearly one accuracy point. It is the
only QAT method for ternary ResNet-56 reaching within
∼0.1 points of full-precision accuracy.

5.2. ResNet on ImageNet

For QAT of ResNet-50 (He et al., 2016) on ImageNet, we
quantize all residual block weights per channel by comput-
ing Q row-wise over tensors. We use SGD with 0.1 learning
rate, 0.9 momentum, and 1e−4 weight decay. The learning
rate decays by a factor of 10 every 30 epochs.

Similar to the experiments on CIFAR-10, PARQ performs
capably against STE and BinaryRelax in Table 2. It shows a
slight advantage in the most restrictive 1-bit case, achieving
a half-point margin over the other two methods.

Table 3. Quantized DeiT test accuracy on ImageNet.

Size # bits STE BinaryRelax PARQ

Ti
(71.91)

1 51.62 ±0.18 52.62 ±0.03 55.43 ±0.23
T 61.43 ±0.08 62.18 ±0.11 62.32 ±0.28
2 64.81 ±0.15 65.20 ±0.04 66.60 ±0.18
3 69.02 ±0.11 69.26 ±0.03 69.60 ±0.22
4 70.95 ±0.11 71.06 ±0.09 71.21 ±0.11

S
(79.80)

1 70.07 ±0.03 70.69 ±0.07 73.40 ±0.19
T 75.83 ±0.06 76.02 ±0.03 76.74 ±0.06
2 77.40 ±0.01 77.43 ±0.04 77.94 ±0.04
3 79.02 ±0.14 79.11 ±0.07 79.04 ±0.04
4 79.57 ±0.04 79.55 ±0.12 79.61 ±0.04

B
(81.73)

1 78.79 ±0.03 79.02 ±0.03 79.35 ±0.04
T 80.50 ±0.01 80.61 ±0.08 80.62 ±0.01
2 80.73 ±0.17 80.81 ±0.14 80.97 ±0.20
3 80.54 ±0.20 80.94 ±0.05 81.49 ±0.13
4 80.45 ±0.10 80.76 ±0.12 81.60 ±0.12

5.3. DeiT on ImageNet

Applying QAT to a different architecture, we experiment
with Data-efficient image Transformers (Touvron et al.,
2021, DeiT). Our DeiT experiments include the Ti, S, and
B model sizes with 5M, 22M, and 86M parameters, respec-
tively. Attention block weights are quantized channel-wise
as in Section 5.2. Embeddings, layer normalization parame-
ters, and the final projection weights are left at full precision,
following the setting of Rastegari et al. (2016).

We use AdamW (Loshchilov & Hutter, 2018) to train for
300 epochs with a 5e−4 learning rate and 0.05 weight decay.
We hold the learning rate at 1e−8 for the final 20 epochs (af-
ter PARQ and BinaryRelax converge to hard-quantization);
this boosts performance relative to the default 1e−5 mini-
mum. We apply RandAugment (Cubuk et al., 2020) and all
prior regularization strategies (Zhang et al., 2018; Yun et al.,
2019) except repeated augmentation (Berman et al., 2019).

Table 3 reveals that PARQ’s performance trends persist
across model sizes. For 1-bit DeiT-Ti and DeiT-S, PARQ
outperforms BinaryRelax by nearly three accuracy points.
PARQ also achieves the best accuracy for ternary and and
2-bit DeiT-S, as well as 3- and 4-bit DeiT-B models.

Figure 11 shows the training loss curves of three different
QAT methods along with full precision (FP) training on
the DeiT-Ti model. We observe that in the initial phase,
PARQ closely follows the FP curve because the slope of the
slanted segments in its proximal map (Figure 9(a)) is close
to 1. Then the training loss of PARQ increases due to the
relatively sharp transition of the slope, and it follows the
STE curve closely in the second half of the training process
as its proximal map converges to hard quantization. The
training curve of BinaryRelax has a more gradual transition.
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Figure 10. PARQ proximal maps during early, middle, and late stages of training 2-bit DeiT-Ti (value weights from an attention layer).
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Figure 11. Training loss curves for 2-bit DeiT-Ti model (top) and
the ρ−1

t schedule in (13) with s = 50 and t1 = 0.5T .

Figure 10 gives snapshots of how PAR gradually induces
quantization in model parameters: compare the middle stage
plot with Figure 9(a) and the late stage plot with Figure 1.
Figure 12 shows the evolution of {q1, q2} (estimated by
LSBQ) during the training of a 2-bit DeiT-Ti model. They
are from the same layer as the one used in Figure 10 and
with the same weight initialization. It shows that both q1
and q2 start small from initialization, expand rapidly in the
early stage of training, then slowly contract in later epochs.

Our experiments demonstrate that PARQ achieves competi-
tive performance compared with QAT methods that corre-
spond to using nonconvex regularization. Compared with
using hard-quantization (STE) throughout the training pro-
cess, the gradual evolution of PARQ from piecewise-affine
soft quantization to hard quantization helps the training pro-
cess to be more stable, and often converges to better local
minima. This is more evident in the most demanding cases
of low-bit quantization of smaller models.

50 100 150 200 250 300
0

0.1

0.2

epoch

PARQ
q1 q2

Figure 12. Evolution of {q1, q2} estimated by LSBQ.

6. Conclusion
We developed a novel optimization method for quantization-
aware training (QAT) based on the framework of convex,
piecewise-affine regularization (PAR). In order to avoid the
diminishing regularization effect of the standard proximal
SGD method, we propose an aggregate proximal (AProx)
algorithm. The asymptotic form of AProx with PAR corre-
sponds to hard quantization, thus giving a principled inter-
pretation of the straight-through estimator (STE), which is
a widely successful heuristic for QAT.

The convex regularization framework of PARQ allows the
development of strong convergence guarantees. In partic-
ular, for convex loss functions, we are able to prove last-
iterate convergence of the AProx method. For future work,
we are interested in extending the convergence analysis for
nonconvex loss functions, as well as for variants of AProx
that incorporate stochastic momentum and diagonal scaling.

We have focused on PAR as an effective regularization in an
optimization framework. It would also be very interesting
to investigate its generalization capability in a statistical
learning framework, which will help us better understand
the tradeoff between model size and prediction performance.
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A. Convergence analysis
A.1. Proof of Theorem 3.1

We consider the framework of online convex optimization, which is more general than stochastic optimization. In particular,
let ft = f(·, zt) be a function presented to us at each iteration t = 1, 2, . . ., and Ψ be a regularization function that we use
throughout the whole process. The two-step presentation of AProx in (11) can be written in one-step as

wt+1 = argmin
w∈W

{ t∑
s=1

ηs
(
⟨gs, w⟩+ λΨ(w)

)
+

1

2
∥w − w0∥22

}
, (14)

where w0 is the initial weight vector and gt = ∇ft(wt). Moreover, we use a more general distance generating function h to
replace (1/2)∥ · ∥22, and define the Bregman divergence as

Dh(u,w) = h(u)− h(w)− ⟨∇h(w), u− w⟩.

With Bregman divergence, a more general form of AProx can be written as

wt+1 = argmin
w∈W

{ t∑
s=1

(
ηs⟨gs, w⟩+ λΨ(w)

)
+Dh(w,w

0)

}
. (15)

Assumption A.1. We make the following assumptions:

(a) Each loss function ft is convex and Lipschitz continuous with Lipschitz constant Gf .

(b) The regularizer Ψ is convex and Lipschitz continuous with Lipschitz constant GΨ.

(c) The function h is differentiable and strongly convex with convexity parameter ρ.

It follows from Assumption A.1(c) that Dh(u,w) is strongly convex in w with convexity parameter ρ.

Theorem A.2 (Regret bound for AProx). Under Assumption A.1, for any w ∈ Rd, it holds that

t∑
s=1

ηs
(
fs(w

s) + λΨ(ws)− fs(w)− λΨ(w)
)
≤ (Gf + λGΨ)

2

ρ

t∑
s=1

2η2s +Dh(w,w
0). (16)

Proof. We adapt the proof of Bubeck (2015, Theorem 4.3) by adding the regularizer Ψ and replacing the term h(w)−h(w0)
with Dh(w,w

0). An advantage of this replacement is that we can use any initial point w0 while the proof in (Xiao, 2010;
Bubeck, 2015) requires w0 = argminh(w).

Let w0 ∈ Rd be an arbitrary initial point and define ψ0(w) = Dh(w,w
0). For t ≥ 1, define

ψt(w) :=

t∑
s=1

ηs
(
⟨gs, w⟩+ λΨ(w)

)
+Dh(w,w

0).

The AProx algorithm (15) can be expressed as, for t ≥ 0,

wt+1 = argmin
w

ψt(w).

SinceDh(w,w
0) is strongly convex inw with convexity parameter ρ, the same property holds for ψt for all t ≥ 0. According

to a basic result on minimizing strongly convex functions (e.g., Chen & Teboulle, 1993, Lemma 3.2) and the fact that wt+1

minimizes ψt, we have
ψt(w

t+1) ≤ ψt(w)−
ρ

2
∥w − wt+1∥2, t = 0, 1, 2, . . . . (17)

From the definition of ψt and ψt−1, we have

ψt(w
t)− ψt(w

t+1) = ψt−1(w
t)− ψt−1(w

t+1) + ηt
(
⟨gt, wt − wt+1⟩+ λΨ(wt)− λΨ(wt+1)

)
. (18)
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For the left-hand side of (18), we apply (17) to obtain

ρ

2
∥wt+1 − wt∥2 ≤ ψt(w

t)− ψt(w
t+1).

For the first term on the right-hand side of (18), we apply (17) again for ψt−1 to obtain

ψt−1(w
t)− ψt−1(w

t+1) ≤ −ρ
2
∥wt+1 − wt∥2.

For the second term on the right-hand side of (18), we have

⟨gt, wt − wt+1⟩+ λΨ(wt)− λΨ(wt+1) ≤ ∥gt∥∗∥wt+1 − wt∥+ λΨ(wt)− λΨ(wt+1)

≤ Gf∥wt+1 − wt∥++λGΨ∥wt+1 − wt∥
= (Gf + λGΨ)∥wt+1 − wt∥, (19)

where in the first inequality we used Hölder’s inequality, and in the second inequality we used Assumptions A.1(a) and A.1(b)
respectively. Combining the above three inequalities with (18), we get

ρ∥wt+1 − wt∥2 ≤ ηt(Gf + λGΨ)∥wt+1 − wt∥,

which further implies
∥wt+1 − wt∥ ≤ ηt(Gf + λGΨ)/ρ.

Combining this with (19) yields

⟨gt, wt − wt+1⟩+ λΨ(wt)− λΨ(wt+1) ≤ ηt(Gf + λGΨ)
2/ρ. (20)

Next we prove that the following inequality holds for all w ∈ Rd and all t ≥ 0:

t∑
s=1

ηs
(
⟨gs, ws+1⟩+ λΨ(ws+1)

)
≤

t∑
s=1

ηs
(
⟨gs, w⟩+ λΨ(w)

)
+Dh(w,w

0). (21)

We proceed by induction. For the base case t = 0, the desired inequality becomes Dh(w,w
0) ≥ 0, which is always true by

the definition of Dh. Now we suppose (21) holds for t− 1 and apply it with w = wt+1 in the first inequality below:

t∑
s=1

ηs
(
⟨gs, ws+1⟩+ λΨ(ws+1)

)
=

t−1∑
s=1

ηs
(
⟨gs, ws+1⟩+ λΨ(ws+1)

)
+ ηt

(
⟨gt, wt+1⟩+ λΨ(wt+1)

)
≤

t−1∑
s=1

ηs
(
⟨gs, wt+1⟩+ λΨ(wt+1)

)
+Dh(w

t+1, w0) + ηt
(
⟨gt, wt+1⟩+ λΨ(wt+1)

)
=

t∑
s=1

ηs
(
⟨gs, wt+1⟩+ λΨ(wt+1)

)
+Dh(w

t+1, w0)

≤
t∑

s=1

ηs
(
⟨gs, w⟩+ λΨ(w)

)
+Dh(w,w

0), ∀w ∈ W.

In the last inequality above, we recognized the definition of ψt and used the fact that wt+1 is the minimizer of ψt. This
finishes the proof of (21).

Finally we add
∑t

s=1 ηs (⟨gs, ws⟩+Ψ(ws)) to both sides of (21) and rearrange terms to obtain

t∑
s=1

ηs
(
⟨gs, ws − w⟩+ λΨ(ws)− λΨ(w)

)
≤

t∑
s=1

ηs
(
⟨gs, ws − ws+1⟩+ λΨ(ws)− λΨ(ws+1)

)
+Dh(w,w

0). (22)
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For the left-hand side of (22), we use convexity of fs to obtain

fs(w
s)− fs(w) ≤ ⟨gs, ws − w⟩.

For the right-hand side of (22), we apply (20) to obtain

t∑
s=1

ηs
(
⟨gs, ws − ws+1⟩+ λΨ(ws)− λΨ(ws+1)

)
≤ (Gf + λGΨ)

2

ρ

t∑
s=1

η2s .

Combining the above three inequalities together, we have

t∑
s=1

ηs
(
fs(w

s) + Ψ(ws)− fs(w)− λΨ(w)
)
≤ (Gf + λGΨ)

2

ρ

t∑
s=1

η2s +Dh(w,w
0).

This finishes the proof of Theorem A.2.

Now we consider the stochastic optimization problem of minimizing f(w) + λΨ(w) where the loss function f(w) :=
Ez[f(w, z)]. We can regard the sequence of loss functions ft in the online optimization setting as f(·, zt) and compare with
w⋆ = argmin f(w) + λΨ(w). In this case, the regret bound (16) becomes

t∑
s=1

ηs
(
f(ws, zs) + λΨ(ws)− f(w⋆, zs)− λΨ(w⋆)

)
≤ (Gf + λGΨ)

2

ρ

t∑
s=1

η2s +Dh(w
⋆, w0).

Using a standard online-to-stochastic conversion argument (e.g., Xiao, 2010, Theorem 3), we can derive

t∑
s=1

ηs
(
E
[
f(ws) + λΨ(ws)

]
− f(w⋆)− λΨ(w⋆)

)
≤ (Gf + λGΨ)

2

ρ

t∑
s=1

η2s +Dh(w
⋆, w0), (23)

where the expectation E[·] is taken with respect to the random variables {w1, . . . , wt}, which in turn depends on
{z1, . . . , zt}.

For the ease of presentation, we denote R2 = minw∈W Dh(w,w
0). Moreover, we define a weighted average of all iterates

up to iteration t:

w̄t =
1∑t

s=1 ηs

t∑
s=1

ηsw
s.

Then by convexity of f and Ψ, we obtain

E
[
f(w̄t) + λΨ(w̄t)

]
− f(w⋆)− λΨ(w⋆) ≤

(Gf+λGΨ)2

ρ

∑t
s=1 η

2
s +R2∑t

s=1 ηs
. (24)

Constant stepsize. If the total number of iterations T is known ahead of time, then we can choose an optimal constant
stepsize. Let ηs = η for all s = 1, . . . , T , then the bound in (24) becomes

(Gf+λGΨ)2

ρ Tη2 +R2

Tη
=

(Gf + λGΨ)
2

ρ
η +

R2

Tη
.

In order to minimize the above bound, we take η = R
Gf+λGΨ

√
ρ
T and obtain

E
[
f(w̄T ) + λΨ(w̄T )

]
− f(w⋆)− λΨ(w⋆) ≤ 2(Gf + λGΨ)R

√
1

ρ T
.
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Diminishing stepsize. The right-hand side of (24) has the same form as the convergence rate bound for the classical
stochastic gradient or subgradient method (e.g., Nesterov, 2004, Section 3.2.3). A classical sufficient condition for
convergence is

∞∑
s=1

ηs = +∞,

∞∑
s=1

η2s < +∞.

In particular, if we take ηt = R
2(Gf+λGΨ)

√
ρ
t , we have

E
[
f(w̄t) + λΨ(w̄t)

]
− f(w⋆)− λΨ(w⋆) ≤ (Gf + λGΨ)R

(2 + 1.5 ln(t))√
ρt

.

Finally, Theorem 3.1 is obtained with some simplification. In particular, if we choose the Bregman divergence as the
Euclidean distance 1

2∥ · ∥
2
2, then we have ρ = 1. This leads to

E
[
f(w̄t) + λΨ(w̄t)

]
− f(w⋆)− λΨ(w⋆) ≤ GR

(2 + 1.5 ln(t))√
t

,

where G := Gf + λGΨ. This completes the proof.

A.2. Proof of Theorem 3.2

For simplicity, we denote Fλ(w) = f(w) + λΨ(w) and G = Gf + λGΨ where Gf and GΨ are the Lipschitz constants of
f and Ψ, respectively.

To establish the last-iterate convergence of AProx, we first introduce the following lemma, which connects the convergence
of the last iteration to the convergence of the average iteration.
Lemma A.3 (Lemma 1 in (Orabona, 2020)). Given that {ηt}Tt=1 is a non-increasing positive sequence and {qt}Tt=1 is a
nonnegative sequence, the following inequality holds

ηT qT ⩽
1

T

T∑
t=1

ηtqt +

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

ηt (qt − qT−k) . (25)

Upon setting qt = E [Fλ(w
t)]− Fλ(w

∗) in Lemma A.3, we derive that

ηT
(
E
[
Fλ(w

T )
]
− Fλ(w

∗)
)
≤ 1

T

T∑
t=1

ηt
(
E
[
Fλ(w

t)
]
− Fλ(w

∗)
)

+

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

ηtE
[
Fλ(w

t)− Fλ(w
T−k)

]
.

(26)

For the first term on the right-hand side, we apply Equation 23, which yields

1

T

T∑
t=1

ηt
(
E
[
Fλ(w

t)
]
− Fλ(w

∗)
)
≤ G2

ρT

T∑
t=1

η2t +
Dh(w

∗, w0)

T
. (27)

To control the second term, we note that for any 1 ≤ k ≤ T − 1

T∑
t=T−k+1

ηtE
[
Fλ(w

t)− Fλ(w
T−k)

]
=

T∑
t=T−k

ηtE
[
Fλ(w

t)− Fλ(w
T−k)

]
≤ G2

ρ

T∑
t=T−k

η2t . (28)

Here we apply Equation 23 again for the last inequality upon setting w⋆ = wT−k and use the fact that Dh(w,w) = 0 for all
w ∈ W .

Combining the above two components together, we have

E
[
Fλ(w

T )
]
− Fλ(w

∗) ≤ G2

ηT ρ

(
1

T

T∑
t=1

η2t +

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k

η2t

)
+
Dh(w

∗, w0)

ηTT
. (29)
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Constant stepsize. If the total number of iterations T is known ahead of time, then we can choose an optimal constant
stepsize. Let ηt = η for all s = 1, . . . , T , then the bound in (29) becomes

E
[
Fλ(w

T )
]
− Fλ(w

∗) ≤ G2

ρ

(
1 +

T−1∑
k=1

1

k

)
η +

Dh(w
∗, w0)

ηT
≤ G2

ρ
(2 + ln(T )) η +

Dh(w
∗, w0)

ηT
. (30)

Here we use the fact that
∑n

k=1
1
k ≤ 1 + ln(n) for all n ≥ 1. In order to minimize the above bound, we take η =

1
G

√
Dh(w∗,w0)ρ
(2+ln(T ))T and obtain

E
[
Fλ(w

T )
]
− Fλ(w

∗) ≤ 2G

√
Dh(w∗, w0)(2 + ln(T ))

ρT
. (31)

Diminishing stepsize. Suppose we set the stepsize ηt = η√
t
. Then, Equation 29 reduces to

E
[
Fλ(w

T )
]
− Fλ(w

∗) ≤ η
√
TG2

ρ

(
1

T

T∑
t=1

1

t
+

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k

1

t

)
+
Dh(w

∗, w0)

η
√
T

≤ η
√
TG2

ρ

(
1 + ln(T )

T
+

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k

1

t

)
+
Dh(w

∗, w0)

η
√
T

.

(32)

To proceed, note that
T∑

t=T−k+1

1

t
≤
∫ T

T−k

1

t
dt = ln

(
T

T − k

)
= ln

(
1 +

k

T − k

)
≤ k

T − k
. (33)

Therefore, we have
T−1∑
k=1

1

k(k + 1)

T∑
t=T−k

1

t
=

T−1∑
k=1

1

k(k + 1)

(
1

T − k
+

T∑
t=T−k+1

1

t

)

≤
T−1∑
k=1

1

k(T − k)

=

T−1∑
k=1

1

kT
+

T−1∑
k=1

1

T (T − k)

= 2

T−1∑
k=1

1

kT

≤ 2
1 + ln(T )

T
.

(34)

Invoking this result into Equation 32, we further have

E
[
Fλ(w

T )
]
− Fλ(w

∗) ≤ 3ηG2(1 + ln(T ))

ρ
√
T

+
Dh(w

∗, w0)

η
√
T

. (35)

Hence, upon setting η = 1
G

√
Dh(w∗,w0)ρ

2 , we derive that

E
[
Fλ(w

T )
]
− Fλ(w

∗) ≤ G

(
2
√
2 +

3√
2
ln(T )

)√
Dh(w∗, w0)

ρT
. (36)

Specifically, if we choose the Bregman divergence as the Euclidean distance 1
2∥ · ∥

2
2, then we have ρ = 1. Upon defining

R = minw⋆∈W⋆ ∥w0 − w⋆∥2, we have

E
[
Fλ(w

T )
]
− Fλ(w

∗) ≤ GR
(2 + 3

2 ln(T ))√
T

. (37)
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Figure 13. DeiT-S test accuracy (top row) and train loss (middle row) across several bit-widths (columns). All PARQ curves use a ρ−1

schedule with s = 1 and t1 = 0.5T (bottom row).

B. Additional experiment results
Figures 13–14 present accuracy and training loss curves for QAT of DeiT-S. In particular, Figure 13 uses s = 1, which is
essentially linear during the annealing period. The 1-bit accuracy plots reveal that PARQ trains more stably than STE and
BinaryRelax; it does not exhibit any sudden drops in accuracy. It performs the most consistently on DeiT-S, suggesting the
relative performance of QAT methods may vary by model size.

Ablation study on ρ−1
t . Table 4 shows results of 2-bit DeiT-Ti on ImageNet, trained using different s (rows) and t1

(columns) values in Equation (13). This sweep reveals that a shallow s = 1 performs best for the model and dataset setup. A
later transition center of t1 = 0.75T performs noticeably better for steepness values s ∈ {10, 20}.

Table 4. Ablation of parameters in (13) on 2-bit DeiT-Ti test accuracy. The only option for t1 is 0.5T for s = 1 since ρ−1
t decays linearly.

t1
0.25T 0.5T 0.75T

s

1 66.60
10 64.11 64.62 66.02
20 63.74 63.88 66.17
40 64.05 63.89 63.89
80 64.06 64.28 63.73
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Figure 14. DeiT-S test accuracy (top row) and train loss (middle row) across several bit-widths (columns). All PARQ curves use a ρ−1

schedule with s = 50 and t1 = 0.5T (bottom row).

19


