
Balancing Size and Sustainability: The Role of
Compression in Large Language Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

The rise of powerful Large Language Models like ChatGPT and GPT-4 has trans-1

formed AI across domains. However, their widespread use comes with significant2

environmental costs. To address this challenge, we propose a multi-pronged ap-3

proach, including LLM compression, resource optimization, and active monitoring.4

This paper focuses on evaluating compression methods for sustainable LLM de-5

ployment in enterprise settings.6

1 Introduction7

The emergence of powerful Large Language Models (LLMs), like ChatGPT and GPT-4 [10, 11],8

along with accessible and cost-effective APIs, has accelerated the adoption of Generative AI across9

diverse domains. Companies like Hugging Face have further democratized AI by making LLMs10

accessible to novice programmers and software developers. Beyond the consumer society, startups11

such as Glean, Scale, Yurts, OpenAI, and Cohere are at the vanguard of a revolution, propelling12

generative AI into enterprises through innovative on-premises deployments and personalized large13

language models. These LLMs, rooted in the Transformer architecture [14], are meticulously designed14

for language comprehension and boast an extensive output vocabulary comprising English words.15

Their prowess stems from training on colossal text corpora, approaching a staggering 2 trillion words,16

endowing them with the remarkable ability to generate coherent and meaningful text. The moniker17

"Large Language Models" is not just a label; it aptly encapsulates the scale of these models, with18

more modest variants like BERT [3] and Flan [1] encompassing between 100 million and 500 million19

parameters, while behemoths like GPT-3.5 and GPT-4 push the boundaries with an astonishing 15020

billion to 200 billion parameters.21

While the widespread adoption of Large Language Models (LLMs) across domains is undeniably22

transformative, it brings to the forefront a pressing issue—the environmental cost of this technology’s23

proliferation. Beyond the monetary expenses associated with deploying LLMs, there is a significant24

environmental burden to consider. Take, for example, the resources required to host a single model25

with 100B (billion) parameters (=400GB memory) for standard inference tasks. A 100B parameter26

model requires a minimum of 25 consumer GPUs, wherein each GPU has a capacity of 16GB. The27

number of models an organization needs to host depends on factors like the expected number of28

concurrent users and their tolerance for latency. For instance, accommodating up to 2 seconds of29

latency for 100 users would necessitate hosting one model per 100 users, translating to 10 instances30

of the same model for a generative AI experience serving 1000 concurrent users. With a single model31

requiring 25 GPUs, this equates to a staggering 250 GPUs running continuously. The environmental32

implications are substantial, as a single A4000 GPU running for a day emits approximately 1.24kg33

CO2-eq [6], equivalent to driving an internal combustion engine car for 5.1 km. Scaling this to the34

operation of 250 GPUs to serve 1000 users on the platform for a single day results in an expected35

emission of 3108kg CO2-eq! which is equivalent to a car journey spanning 12,500km, slightly36

Submitted to Computational Sustainability Workshop at NeurIPS 2023. Do not distribute.



more than a round trip from California to New York. Balancing the benefits of LLM’s with their37

environmental impact poses a critical challenge in the era of Generative-AI expansion.38

In the pursuit of sustainable deployment of Large Language Models (LLMs) and generative AI appli-39

cations, we advocate for a comprehensive, multi-pronged approach. Our strategy encompasses several40

key steps aimed at mitigating environmental impact while maintaining functional efficiency. First and41

foremost, we propose the development of mathematical methods to compress models to their sparser,42

low floating-point precision and lower parameter count counterparts of dense LLM’s, while ensuring43

that their task performance remain uncompromised. Secondly, we tackle the scheduling challenge44

of efficiently allocating multiple models across minimal GPUs, introducing innovative sharding45

strategies to optimize resource utilization. Thirdly, we advocate a departure from a single, large46

foundational model to a mixture of smaller experts, significantly reducing GPU demands. Fourthly,47

we recommend the on-demand utilization of GPUs for hosting purposes and the implementation48

of predictive algorithms to estimate user traffic, minimizing the total GPU on-time. Lastly, we49

emphasize the importance of continuous monitoring, advocating for active tracking of GPU usage50

and its associated environmental costs within teams hosting LLMs and generative AI applications.51

This paper will focus on evaluating different compression methods for sustainable deployment of52

large language models, particularly when deployed at scale in enterprise settings.53

2 Compression methods54

Today, one of the most widely used commercial models is Meta’s Llama-2-chat [13], introduced55

earlier this year. This model is pretrained on a massive dataset of 2 trillion tokens, roughly equivalent56

to about 500 billion words from the internet. Post pretraining, the model is further fine-tuned57

on multiple instruction datasets to enable it to provide precise answers to user queries (or user-58

instructions). The Llama-2 model comes in three different sizes: 7 billion parameters, 13 billion59

parameters, and 70 billion parameters, each demanding 28GB, 52GB, and 280GB of memory for their60

functioning. For hosting a single replica of the 7B, 13B, and 70B models, a minimum of 2, 4, and 1861

consumer GPUs, (with each consumer GPU having upto 16GB memory) is required, respectively. In62

order to maintain low latency as the number of concurrent users increase, it would be essential to63

scale the number of model replicas. We find that the optimal scaling estimate would be to have a64

single replica of the model for every 100 concurrent users, ensuring that user latency remains minimal65

while minimizing the idle GPU time.66

In this paper, we are specificially interested in assessing the role of model compression on the67

sustainable deployment of LLMs. We will focus on 3 aspects of compression.68

• Model quantization: wherein the parameters of the model are stored in lower precision69

floating points (e.g. conversion from fp-32 to fp-16 or int-4).70

• Model sparsification: wherein the non-zero parameters of the model are reduced, i.e. a71

large fraction of the models’ parameters are set to zero.72

• Model distillation: wherein a large model is used as a "teacher" to train a smaller "student"73

model for task-specific use-cases.74

2.1 Model quantization75

The standard deployment of any LLM is done in such a way that each parameter of the model is76

stored as a 32 bit floating point (fp-32), wherein the parameter value is stored using 8 exponent bits,77

23 bits dedicated to the fraction and 1 bit for the sign (8+23+1=32 bits) [5], requiring 4 bytes per78

parameter. The estimates of model sizes provided in the earlier sections are arrived at by evaluating79

the product of 4 bytes per parameter with number of parameters (say, 7 billion) in the model (= 28GB).80

Quantization of models has been adopted as an effective method to quickly reduce the model size,81

across the ML industry. The common quantization levels used are: (i) 16 bits per parameter (fp-16),82

(ii) 19 bits per parameter (tfloat32), (iii) 16 per parameter (bfloat16), and (iii) 4 bits per parameter83

(int-4). That is, by quantizing the model to fp-16, or bfloat-16 the model size halves instantly, while84

quantizing to int-4 reduces the model size by 8 times! So, the Llama-2-7B model would require85

only 3.5GB of GPU memory while using an int-4 quantization and 14GB after fp-16 quantization,86

effectively reducing the number of GPUs required for hosting the model from 2GPU’s to 1 GPU!87

2



Also, depending on the hardware being used, the power consumption of fp16 and tfloat32 consume88

5x lesser power than fp32, while bfloat-16 consumes 9x lesser power than fp-32!89

Although quantization works well for some use-cases, in practice, it has been observed that the naive90

reduction of floating point precision for every parameter in the model (especially to int-4) may result91

in the steep decline of functional performance. New methods, like, Sparse Quantized Representations92

[2], Reparameterized Ternary network (RTN) [7], have been proposed to identify parameters in the93

model that are more robust to quantization, in order to not sacrifice the generative performance of the94

quantized LLM obtained.95

2.2 Model sparsification96

Model sparsification refers to reducing the number of non-zero parameters in the LLM. The rationale97

behind model sparsification is that the non-zero weights in the LLM require upto 4 bytes per parameter98

(fp-32), while the zeroed out weights can be expressed with a single bit of information. The ML99

community has developed a wide array of sparsification routines, for reducing the number of non-100

zero weights in a neural network (or LLM). Some of the well known methods are: (1) Lottery101

ticket hypothesis [4], (2) Iterative pruning and retraining of neural networks [9, 8], (3) traversing102

functionally invariant paths (FIPs) [12], to name a few. Each of these techniques discover sparser103

counterparts of dense networks while maintaining the network (or LLMs) functional performance.104

We subjected BERT networks to traversal along FIPs [12] and discovered sparse BERTs that retain105

their high performance on general language understanding tasks [15] (e.g. QQP, QNLI), and also106

maintained their perplexity on the Wikipedia dataset, although being 50% sparser 1A, B!107

We also calculated the memory footprint of a few popular open-source LLMs (like Llama-2, Falcon)108

post sparsification by converting the underlying regular matrix (with a large fraction of zeroed out109

parameters) that make up the LLM into a sparse architecture (into Pytorch COO or CSR formats).110

In 1C, we find that a single instance of dense Falcon-180B requires more than 40 consumer GPUs111

(16GB memory each), while its 60% sparser counterpart requires only half the number of GPUs112

(∼20) for hosting a single instance. In Fig. 1D, we find that the CO2 equivalent for running a single113

instance of Llama-2-70B for a single day can be mitigated by sparsifying the model as well as by114

choosing to host these models in appropriate datacenters across the globe, as it was observed that115

hosting models on AWS datacenters in Asian countries produce a much larger CO2 equivalent when116

compared to the US west coast.117

Although, sparse networks should require much lesser memory for their inference, we do not observe118

this in practice. We observe that sparse networks only have lesser storage memory requirements119

(while stored using sparse matrices on a hard-drive), but during inference, they tend to require a120

similar amount of online GPU memory while being deployed for inferences. At times, for matrices121

that aren’t "sparse enough", the online GPU memory requirement of a sparse matrix is much larger122

than that of its denser counterpart.123

To actually harness the reduced computational footprint afforded by a sparsified model, we would124

need to enhance our hardware and build out routines at the assembly level to enable computation with125

matrices of mixed precision types. That is, to enable a single matrix to have elements with different126

memory types (say, fp-16, int-4, binary). Without these updates, it would be difficult for us to take127

advantage of LLMs that have unstructured sparsity (i.e. the non-zero parameters aren’t contiguous128

blocks within a matrix, or within the LLM). However, with our current hardware and assembly level129

implementations, LLMs with structured sparsity can still be taken advantage of for reducing the130

environmental burden of wide-scale deployment.131

2.3 Model distillation132

Compared to the above mentioned methods of compressing models, the method of model distillation133

is significantly different, as it uses the original larger language model as the "teacher" model for134

training a much smaller "student" LLM (with any network architecture), on a task-specific use case.135

In this scenario, a synthetic dataset of inputs and target outputs are generated from the "teacher"136

LLM, which is subsequently used for training the student LLM via the supervised learning paradigm.137

Distillation is extremely effective for building task-specific (smaller) models (or specialized experts).138

In many enterprise deployment settings, we find that the natural language tasks are very pointed,139

3



Figure 1: Role of compression in sustainable deployment (A) Perplexity score for sparse BERT
(solid blue) and dense BERT (dashed blue). (B) GLUE performance of dense BERT (black) and
p% sparse BERT (blue). (C) Quantifying memory requirement (in terms of GPU count) for a single
replica of well known open-source models. (D) Quantifying CO2 emissions in terms of Km driven
by an average ICE car [6] for hosting a single Llama-2-70B model for 24 hours. (E) Summarization
score of the "teacher" Llama-2 (7B) and "student" T5-large (770M), post model distillation, on an
evaluation dataset.

(for instance, summarization of an article), which makes distillation very effective. In Fig. 1E, we140

observe that, distillation can be effectively used to shrink a Llama-2-7B (with 7B parameters) to a141

T5-large (770M parameters) for a specific task like summarization without incurring a massive loss142

in functional performance.143

3 Discussion144

In this paper, we’ve explored vital avenues for compressing large language models (LLMs) to enable145

their sustainable deployment. Model quantization, sparsification, and distillation offer promising146

ways to reduce memory and computational demands. Model quantization, achieved through lower-147

precision formats, can significantly cut down model size and power consumption. However, a balance148

must be struck to avoid sacrificing performance, necessitating advanced techniques. Sparsification of149

LLMs can, theoretically speaking, lower GPU requirements and decrease CO2 emissions. However,150

it currently doesn’t reduce GPU memory usage during inference, highlighting the need for more151

development on the hardware and assembly level routines. Model distillation, where smaller models152

learn from larger ones, proves effective for task-specific applications, but aren’t the best choice for153

preserving the ability to perform a wide array of tasks. Choosing the right compression technique154

depends on specific use cases and resource constraints. Future research and hardware improvements155

will further enhance LLM deployment efficiency, ensuring their power is harnessed responsibly.156

4



References157

[1] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li,158

Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned159

language models. arXiv preprint arXiv:2210.11416, 2022.160

[2] Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh161

Ashkboos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized162

representation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078,163

2023.164

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of165

deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,166

2018.167

[4] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable168

neural networks. arXiv preprint arXiv:1803.03635, 2018.169

[5] William Kahan. Ieee standard 754 for binary floating-point arithmetic. Lecture Notes on the170

Status of IEEE, 754(94720-1776):11, 1996.171

[6] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying172

the carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.173

[7] Yuhang Li, Xin Dong, Sai Qian Zhang, Haoli Bai, Yuanpeng Chen, and Wei Wang. Rtn: Repa-174

rameterized ternary network. In Proceedings of the AAAI Conference on Artificial Intelligence,175

volume 34, pages 4780–4787, 2020.176

[8] Shiwei Liu, Decebal Constantin Mocanu, Amarsagar Reddy Ramapuram Matavalam, Yulong177

Pei, and Mykola Pechenizkiy. Sparse evolutionary deep learning with over one million artificial178

neurons on commodity hardware. Neural Computing and Applications, 33:2589–2604, 2021.179

[9] Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually need180

dense over-parameterization? in-time over-parameterization in sparse training. In International181

Conference on Machine Learning, pages 6989–7000. PMLR, 2021.182

[10] R OpenAI. Gpt-4 technical report. arXiv, pages 2303–08774, 2023.183

[11] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,184

Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to185

follow instructions with human feedback. Advances in Neural Information Processing Systems,186

35:27730–27744, 2022.187

[12] Guruprasad Raghavan and Matt Thomson. Engineering flexible machine learning systems by188

traversing functionally invariant paths in weight space. arXiv preprint arXiv:2205.00334, 2022.189

[13] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,190

Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open191

foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.192

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,193

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information194

processing systems, 30, 2017.195

[15] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.196

Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv197

preprint arXiv:1804.07461, 2018.198

5


	Introduction
	Compression methods
	Model quantization
	Model sparsification
	Model distillation

	Discussion

