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Abstract
The pursuit of general-purpose artificial intelli-
gence demands large language models (LLMs)
capable of excelling across diverse tasks, rang-
ing from symbolic reasoning to open-ended gen-
eration. However, existing post-training meth-
ods, such as Supervised Fine-Tuning (SFT) of-
ten fall short in multi-task settings, leading to
poor generalization and memorization rather than
transferable capabilities. In this work, we in-
troduce Omni-Think, a unified framework that
enhances LLM performance across both struc-
tured and open-ended tasks. Our approach inte-
grates rule-based verifiable rewards with genera-
tive preference signals obtained through LLM-as-
a-Judge evaluations, enabling consistent optimiza-
tion across heterogeneous task types. To better
understand the dynamics of multi-task RL, we ex-
plore different task scheduling strategies and find
that introducing tasks in a progression from struc-
tured to open-ended leads to better generalization
and mitigated forgetting. Experiments across four
domains reveals that curriculum training improves
average relative performance by 5.2 % over joint
multi-task RL and by 9.1 % over merging models
trained via RL on individual tasks. These findings
highlight the value of task-aware sampling and hy-
brid supervision in scaling RL-based post-training
for general-purpose LLMs.

1. Introduction
As Large Language Models (LLMs) (Hurst et al., 2024;
Liu et al., 2024a; Dubey et al., 2024; Yang et al., 2024)
evolve into general-purpose agents, there is growing demand
for models that generalize well across a broad range of
applications, from creative writing (Marco et al., 2025)
to robotics (Team et al., 2025). Yet, current post-training
approaches, especially Supervised Fine-Tuning (SFT), often
fall short in supporting robust generalization across highly
diverse domains (Chu et al., 2025), as they tend to encourage
memorization over deep reasoning.

Reinforcement Learning (RL) has recently emerged as
a compelling alternative for post-training, particularly in

reasoning-intensive domains such as mathematics and cod-
ing (DeepSeek-AI et al., 2025; Luo et al., 2025; Kimi-Team
et al., 2025). Its success has largely been driven by verifi-
able rewards: rule-based, often binary signals that provide
clear and objective correctness feedback. Notably, Group
Relative Policy Optimization (GRPO) (Shao et al., 2024)
has shown that even coarse-grained signals can effectively
guide LLMs toward structured, chain-of-thought responses.

Nonetheless, existing RL methods have primarily focused
on tasks with deterministic, easily verifiable settings. Their
applicability to open-ended domains, such as question an-
swering and creative writing, remains limited. Moreover,
it is unclear how to perform multi-task preference align-
ment with heterogeneous reward signals, derived from both
verifiable and generative sources, within a unified training
paradigm.

Prior efforts have explored two-stage training pipelines,
where models are initially trained on reasoning tasks with
verifiable rewards, such as those found in math, code, and
logical reasoning. In the second stage, these models are fur-
ther fine-tuned with general reward models to capture human
preferences in complex and nuanced scenarios (DeepSeek-
AI et al., 2025; Yang et al., 2025). However, general reward
models are difficult to train and often suffer from reward
hacking, where models exploit flaws in the reward signal
instead of genuinely improving output quality (Liu et al.,
2024b). Some other recent attempts aim to extend large
reasoning models to broader domains (Liu et al., 2025; Ma
et al., 2025; Akter et al., 2025), but they typically rely on
strict answer formatting for rule-based verification or on a
large-scale, high-quality dataset of verifiable tasks to train
reward models. These strategies remain limited in their
ability to generalize beyond narrow, well-structured settings
and struggle to scale to open-ended or subjective domains.

In this paper, we introduce Omni-Think, a unified frame-
work that enhances the performance of LLMs across di-
verse tasks through reinforcement learning with both ver-
ifiable and generative rewards.Our framework combines
rule-based verifiers with non-deterministic generative eval-
uations (Zheng et al., 2023; Zhang et al., 2025). Our ap-
proach combines rule-based verifiers with non-deterministic
generative evaluations (Zheng et al., 2023; Zhang et al.,
2025), thereby enabling RLVR to extend beyond narrowly
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defined tasks into subjective or ambiguous domains such
as open-domain question answering and creative writing.
Additionally, we investigate effective strategies for training
LLMs in a multi-task setting. Extensive experiments show
that curriculum-based training significantly improves gener-
alization, with average relative gains of 5.2% and 9.1% over
naive joint multi-task training and model merging, respec-
tively, across four diverse tasks.

Our key contributions are as follows:

• We propose Omni-Think, a unified training framework
that integrates verifiable and generative supervision
under a single policy, scaling RL across four diverse
domains.

• We demonstrate that LLM-as-a-Judge can be used to
convert open-ended tasks into scalable reward signals
in a multi-task RL setting, enabling GRPO-style train-
ing beyond rule-based domains.

• We show that not all multi-task training strategies are
equally effective. Curriculum training, which intro-
duces tasks in a structured progression (e.g., from code
to open-ended writing), outperforms joint training with
uniform task sampling, resulting in better generaliza-
tion and reduced forgetting.

2. Problem Formulation
We consider the problem of training a single language model
policy to perform well across a diverse set of tasks, such as
mathematical reasoning, code generation, question answer-
ing, and creative writing. Let T = {T1, . . . , TK} denote a
collection of K distinct tasks. Each task Tk is associated
with a dataset Dk containing input-output pairs (xk, y

∗
k),

where xk ∈ Xk is an input (e.g., a prompt), and y∗k ∈ Yk is
the corresponding ground-truth output (e.g., response).

The model is parameterized by θ and defines a conditional
distribution πθ(y | x) over outputs. The goal of supervised
fine-tuning (SFT) is to maximize the likelihood of ground-
truth outputs. This is typically achieved by minimizing the
following objective:

min
θ

K∑
k=1

E(xk,y∗
k)∼Dk

[− log πθ(y
∗
k | xk)] . (1)

While effective in-domain, SFT often leads to memorization
of training data and fails to generalize to out-of-distribution
(OOD) settings, especially when tasks vary in rules or
modalities. Recent works (Chu et al., 2025) demonstrate
that reinforcement learning (RL), particularly with outcome-
based rewards, is more effective than SFT in acquiring gen-
eralizable knowledge across domains. Motivated by this, we
frame our problem under multi-task reinforcement learning
(MTRL) with task-specific reward functions (Zeng et al.,

2021). For each task Tk, let Rk : Xk × Yk → R denote a
scalar reward function that evaluates model outputs.

The objective of MTRL is to learn a unified policy πθ that
maximizes the expected reward across the task distribution.
Formally, the RL objective is:

max
θ

J (θ) = ETk∼P (T )

[
Exk∼Dk,yk∼πθ(·|xk) [Rk(xk, yk)]

]
(2)

where, P (T ) is the task sampling distribution, and Rk is
the task-specific reward function. The objective is to learn
a single policy, πθ, that performs well on average across a
weighted mixture of diverse tasks. The outer expectation
is taken over the task sampling distribution P (T ), which
defines the proportion and order of each task seen during
training. The inner expectation is the standard single-task
RL objective, which aims to maximize the expected reward
for a given task by generating high-quality responses.

By optimizing this unified objective, the model learns to
effectively balance performance across all tasks T , enabling
knowledge transfer between structured and open-ended do-
mains, mitigate negative transfer, and generalize across rea-
soning and creative tasks within a single, coherent policy.

3. Methodology
We propose OMNI-THINK, a unified post-training frame-
work for aligning large language models (LLMs) to multiple
reasoning tasks via reinforcement learning, scaling RLVR
to general and non-reasoning tasks, beyond math reasoning
and coding tasks. In addition, we propose a forgetting-aware
curriculum for multi-task learning in LLM post-training that
optimizes reasoning and non-reasoning tasks in a sequential
order.

3.1. Omni-Think: Unified Multi-Task Supervision
Scales RLVR Beyond Math

Tasks across diverse domains vary in output structure and
supervision format. To support RLVR across such diversity,
we introduce the Omni-Think framework, that streamlines
multi-task learning especially in non-reasoning tasks with
custom reward functions under a shared interface.

Verifiable Supervision. For tasks with well-defined cor-
rectness criteria, such as symbolic reasoning or program
synthesis, we define Rk ∈ {0, 1} based on symbolic match,
test case execution, or other deterministic signals.

Short-Form Open-Ended Supervision. For concise gen-
erative tasks with reference answers (e.g., General QA),
inspired by Du et al. (2025), we reformulate queries into
open-ended prompts and augment with confusion answer
choices within the context, and during training we instruct
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the model to output in a structured reasoning format and
compute binary rewards through string matching or set mem-
bership.

During training, we format each input prompt with em-
bedded distractor choices without providing explicit option
letters and position indicators. This discourages shallow
memorization and instead prompts the model to rely on se-
mantic understanding. The model is thus incentivized to
perform internal reasoning using <think>...</think>
tags before committing to an answer string in the
<answer>...</answer> segment of its response. This
answer string must match one of expected full-text gold an-
swers to receive a positive reward. Such structured prompt-
ing aligns closely with the model’s chain-of-thought rea-
soning pathways while still enabling binary verification.
Additionally, the reward implementation ensures model’s
robustness across different query formatting and promotes
better transfer to both MCQs and non-MCQ question for-
mats in real-world.

Long-Form Open-Ended Supervision. For tasks with
subjective outputs and no ground truth (e.g., creative writ-
ing or dialogue), we use a LLM-as-a-Judge (Chen et al.,
2025) framework to assess output quality. Given a base-
line answer, the evaluator compares the model-generated
response against its earlier responses. The resulting re-
ward Rk ∈ [0, 1] reflects alignment progress with respect
to rubric-defined human preferences, enabling learning in
domains where exact-match signals are inadequate or un-
available.

This abstraction enables reinforcement learning to operate
uniformly across structured and open-ended tasks, providing
a consistent optimization objective adaptable to a wide range
of supervision modes.

3.2. Multi-Task Learning

We investigate two strategies for optimizing a single policy
across diverse reasoning tasks within a unified Multi-Task
reinforcement learning framework: (i) curriculum learning,
and (ii) joint training. Both approaches rely on task-specific
rewards but differ in how task exposure is structured during
training.

Curriculum Learning. Tasks are introduced sequentially
in the order: code → math → QA → writing. This order-
ing reflects an increasing degree of output ambiguity and
supervision subjectivity. By beginning with highly struc-
tured, verifiable tasks, the model benefits from early stabil-
ity and inductive scaffolding. Later tasks—such as QA and
writing—inherit improved initialization and reward ground-
ing. This curriculum design facilitates transfer across task
families and enhances calibration between verifiable and

generative objectives.

Joint Training. In contrast, joint training exposes the
model to all tasks simultaneously via a shared sampling dis-
tribution. Each task maintains its own reward function, and
mini-batches are interleaved across domains. While joint
training enables broader task exposure, it presents practical
challenges: (1) adaptive sampling is required to prevent
overfitting to easier tasks; (2) verification time varies across
reward types, necessitating asynchronous updates; (3) tasks
differ in KL sensitivity, motivating the use of task-specific
regularization.

In both strategies, we apply Multi-Task GRPO with task-
specific KL penalties and normalized advantages. At each
training step, a task Tk is sampled, completions are drawn
from the current policy πθ, and policy updates are computed
using the corresponding reward signal.

3.2.1. MULTI-TASK GROUP RELATIVE POLICY
OPTIMIZATION

We extend the GRPO algorithm to the multi-task setting
by jointly optimizing over task-specific reward signals and
reference policies. The MT-GRPO objective is defined as:

JMT-GRPO(θ) = Ek,xk,{ok,i}

[
1

G

G∑
i=1

1

|ok,i|

|ok,i|∑
t=1(

min
(
rk,i,tÂk,i,t, clip(rk,i,t, 1−ϵ, 1+ϵ)Âk,i,t

)
− βkDKL(πθ∥πref)

)]
(3)

rk,i,t =
πθ(ok,i,t | xk, ok,i,<t)

πθold(ok,i,t | xk, ok,i,<t)
, (4)

Âk,i,t =
Rk(ok,i)− µk

σk
, (5)

with µk = mean({Rk(ok,j)}Gj=1) and σk as the correspond-
ing standard deviations. The clipping parameter ϵ follows
the PPO-style approach, constraining the policy ratio rk,i,t
within a fixed range to prevent overly large updates and
stabilize training. KL divergence is regularized against a
reference policy πref, with task-specific coefficients βk.

4. Experimental Setup
4.1. Training Datasets

We curate a multi-domain training dataset covering Math,
Coding, General QA, and Creative Writing, with each do-
main selected to support hybrid reward functions and robust
evaluation. For Math, we begin with the OpenR1-Math
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(HuggingFace, 2025) dataset, retaining only word prob-
lems and excluding questions that require visual reasoning.
We further subsample 12,000 examples to fit our compute
budget. For Coding, data is sourced from the code-r1-12k
(Liu & Zhang, 2025) dataset, with outliers exceeding 1024
tokens removed. Each entry includes a code prompt and
JSON-formatted unit tests for automatic validation. For
General QA, we extract 5,500 examples from SuperGPQA
(M-A-P, 2025), downsampled proportionally by question
category. Each sample comprises a factual question paired
with a plain-text answer. The Creative Writing domain
leverages 6,650 conversations from Nitral AI’s ShareGPT
dataset(Nitral-AI, 2024), focused on one-turn completions.
Samples exceeding two dialogue turns are filtered out, and
responses are judged via an LLM-as-a-Judge framework.

4.2. Evaluation

We assess performance in each domain using dedicated held-
out benchmarks aligned with the task’s unique evaluation
criteria. The detailed evaluation set is presented as follows

Math Reasoning: we compute accuracy over seven
datasets: AIME24 (MAA, 2024), AMC23 (MAA, 2023),
Gaokao2023EN (Liao et al., 2024), Math-500 (Hendrycks
et al., 2021), Minerva Math (Lewkowycz et al., 2022), and
OlympiadBench (He et al., 2024).

Code Generation: We measured coding ability via
pass@1 on BigCodeBench (Complete-Full) (Zhuo et al.,
2024) and LiveCodeBench (24Oct-25Jan) (Jain et al., 2024).

General QA: we report exact-match accuracy using the
MMLU-Pro benchmark (Wang et al., 2024).

Creative Writing: we evaluate the creative writing task
using the role-play and creative writing subcategory of
MT-Bench (Zheng et al., 2023), reporting win rate against a
GPT-4 (pre-gen dated June 16, 2023) model.

Besides, we adapt a Backward Transfer (BWT) metric to
quantify forgetting in our multi-task setting. We measure
BWT as: BWTj = Pbase,j − Pafter,j , where Pbase,j is
the performance on task j from the original base model,
and Pafter,j is the performance on task j after training on
subsequent tasks (Lopez-Paz & Ranzato, 2017). A positive
BWTj indicates forgetting (performance degradation) on
task j due to learning new tasks. Specifically, we evaluate
how much performance drops on previously learned tasks
when the model is trained on new tasks, measuring the
extent of catastrophic forgetting in our multi-stage learning
scenario.

4.3. Baselines

We adopt Qwen2.5-7b-Instruct as the base model for all
our experiments (Yang et al., 2024). Its robust instruction-
following ability makes it a suitable candidate for subse-
quent reinforcement learning training on both reasoning
tasks and more general open-domain QA, as it relies on
the model’s capacity to comprehend and follow the given
prompts effectively. Compared to the pretrained Qwen2.5-
7B model, using an already competent SFT instruct model
provides a strong foundation and helps maximize the addi-
tional benefits introduced by our multi-task methodology.

Supervised Fine-Tuning (SFT): In order to have a mean-
ingful comparison with GRPO, we adopt a similar self-
sampled data curation and fine-tuning approach with Re-
jection sampling Fine-Tuning (Yuan et al., 2023). We first
prompt the base model to generate 128 chain-of-thought
responses for our training dataset to ensure we end up with
at least one correct response for most queries, then filter
them based on the same accuracy reward signals used in
GRPO training. We then perform supervised fine-tuning
on Qwen2.5-7b-Instruct using these self-distilled responses.
This provides a strong on-policy learning baseline that in-
corporates explicit reasoning steps through self-distillation
from the base model.

Model Merging: We employ TIES-Merging (Yadav et al.,
2023b) as our model-merging baseline. It’s a simple yet
effective method designed specifically for the multi-task
setting that takes into consideration of the interference be-
tween parameters from models trained on individual tasks
during the merging process. It has demonstrated superior
performance in multi-task learning compared to linear and
task arithmetic approaches (Yadav et al., 2023a). To begin
with, we conduct single-task GRPO training using individ-
ual task dataset and collect the model weights of the best
checkpoints with the help of a validation set for each train-
ing run. We then merge the four single-task models using a
scaling value λ = 1.

4.4. Verifiable Reward Design

We define task-specific reward functions Rk : X × Y →
[0, 1], where each function evaluates a model output y given
a prompt x with respect to a verifiable notion of correctness.
These rewards are designed to be deterministic, domain-
aware, and automatable to support scalable reinforcement
learning.

Primary Rewards. Each task employs a tailored correct-
ness criterion:
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Figure 1. Performance gains across four task domains, comparing our Multi-Task (MT) framework (Joint and Curriculum variants) against
baselines including Supervised Fine-Tuning (SFT) and Model Merging. Curriculum MT achieves the strongest results, particularly in
open-ended tasks, showing that controlling how multi-task learning is structured is crucial for effective generalization.

• Math:

Rmath(x, y) = 1 {verifymath(yans) = true}

where yans is extracted from <answer> tags, and
symbolic equivalence is verified by a deterministic
parser.

• Code Generation:

Rcode(x, y) = 1 {exec(yans) |= unittest(x, yans)}

where the generated code yans is executed in a sand-
boxed environment and evaluated against the unit tests
defined by x; |= indicates logical satisfaction.

• General QA:

Rqa(x, y) = 1 {yans = y∗ref}

which returns 1 if the predicted answer matches the
ground-truth string exactly.

• Creative Writing:

Rwriting(x, y) =


1.0 if y ≻ y∗

0.5 if y ∼ y∗

0.0 if y ≺ y∗

where y ≻ y∗ indicates that the model output y is
preferred over the reference y∗, y ≺ y∗ means the
reference is preferred, and y ∼ y∗ denotes a tie. Pref-
erences are judged via pairwise comparison by a fixed
LLM-as-a-Judge model.

Auxiliary Rewards. To encourage structured outputs, we
define formatting-based rewards shared across tasks:

Rformat(x, y) = 1 {tags valid(y)}

Rtags(x, y) =
1

4
· |tags present(y)|

Here, tags valid ensures proper nesting of <think>
and <answer> tags, while tags present counts re-
quired structural markers. Each auxiliary reward is weighted
by w = 0.1.

Total Reward. Let R(x, y) =
∑

r∈Rk
wr ·r(x, y) denote

the aggregated reward for a given sample, where wr ∈
[0, 1] is a weighting factor for reward component r. If any
r(x, y) is undefined (e.g., due to ill-formatted or unparseable
output), it is excluded from the sum. Samples for which
R(x, y) is undefined (i.e., zero valid reward components)
are filtered prior to policy update.

5. Results and Discussion
5.1. Main Results: Scaling Multi-Task LLM

Post-Training with the Omni-Think Framework

To assess the effectiveness of our multi-task RL framework,
we conduct experiments across four diverse domains: Cod-
ing, Math, General QA, and Creative Writing. Figure 1 high-
lights the performance improvements, demonstrating that
both Curriculum-Guided Multi-Task GRPO consistently out-
perform the SFT and model merging baselines. Between the
two multi-task variants we examine, the curriculum learning
design outperforms the joint training paradigm, due in part
to easier hyperparameter tuning when training each tasks
separately. These results demonstrate that our proposed
Omni-Think framework extends RLVR to non-reasoning
and creative tasks, allowing us to train a single unified policy
to generalize across both structured and open-ended tasks
during the same post-training step.

In Math, Curriculum MT attains the highest performance
(59.6%), notably leveraging structured and verifiable reward
signals early in the training. Joint MT similarly outperforms
SFT and model merging, validating the Omni-Think ap-
proach’s effectiveness. In General QA, Curriculum MT
again performs best (52.2%), followed by Model Merging
(49.8%) and Joint Multi-Task GRPO (48.8%). These im-
provements are driven by our Short-Form Open-Ended Su-
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Table 1. Ablation study comparing curriculum Learning (Curr)
to its reversed task ordering (Reverse-Curr). Presenting tasks
from symbolic reasoning to general reasoning to creative tasks
yields consistent performance gains across all domains, while
reversing this order leads to degraded results, especially in open-
ended domains.

Task Base Model Curr Reverse-Curr

Math 55.9 59.6 58.2
General QA 41.5 52.2 22.6
Code Generation 29.6 35.4 32.7
Creative Writing 74.2 84.2 75.0

pervision strategy: instead of generating responses in a fully
open-ended and unconstrained fashion, the model is trained
to produce complete answer strings given a diverse set of
candidate responses, enabling the effective application of
verifiable reward through simple string matching when train-
ing general-domain tasks. This design leads to more robust
generalization and aligns well with our multi-task reward
formulation. For Code Generation, Curriculum MT deliv-
ers 35.4%, outperforms both the Model Merging baseline at
34.4% and Joint Multi-Task GRPO with a score of 32.1%,
though both of which show improvement upon the SFT and
base model. In Creative Writing, the introduction of our
Long-Form Open-Ended Supervision strategy, employing
the LLM-as-a-Judge framework for pairwise evaluation, re-
sults in significant performance boosts (Curriculum-Guided
at 84.2% and Joint MT at 83.00%). This clearly underscores
the advantage of our generative reward mechanisms over
traditional rule-based methods in subjective domains.

These results support our central hypothesis: The Omni-
Think Training Framework, with the help of Curriculum
MT, enables a single unified policy to scale across structured
and open-ended tasks alike, without relying on interleaving
RLVR on reasoning tasks and fine-tuning non-reasoning
tasks.

5.1.1. CURRICULUM LEARNING ENHANCES
MULTI-TASK PERFORMANCE

In Figure 1, curriculum-guided training, which introduces
tasks in the order of code → math → QA → writing,
achieves the strongest performance in all four domains.

To better understand the impact of task ordering, we com-
pare against a reverse curriculum (Table 1). Reversing the
task order leads to catastrophic forgetting in General QA
(from 52.23 to 22.62), despite moderate retention in Math
and Coding abilities.

QA Format (Test) MCQ Format (Test)0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Trained on QA Format
Trained on MCQ Format

Figure 2. Models trained to generate full-text answers perform
better than those trained to select letter choices, especially in free-
form evaluation. This training format encourages deeper semantic
understanding, rather than relying on shallow pattern matching or
guessing.

5.2. Output Format Matters: Letter Choices Undermine
Generalization

Our novel approach to improving LLM’s general reasoning
capability through transforming open-ended QA pairs to
Multiple Choice Questions (MCQs) involves requiring the
model to generate the full text of the correct answer option
during GRPO training. This method was empirically val-
idated against a strategy of training the model to predict
only the letter choice. As illustrated in Figure 2, evaluations
on MMLU Pro demonstrate the superiority of our full-text
generation method for overall generalization.

Specifically, when GRPO models were evaluated by expect-
ing a full-text answer (as shown in the Text Answer (Test)
section of Figure 2):

• The model trained on full-text answer generation and
reward (blue bar) achieved an average accuracy of
51.35% on MMLU Pro.

• The model trained on letter-choice prediction and re-
ward (red bar) achieved a significantly lower average
accuracy of 41.51% on MMLU Pro, indicating its strug-
gle to generalize beyond simple letter prediction.

Conversely, when the same models were evaluated by ex-
pecting only a letter choice answer (as shown in the Letter
Answer (Test) section of Figure 2):

• The model trained on full-text answer generation and
reward (blue bar) achieved an average accuracy of
58.58% on MMLU Pro.

• The model trained on letter-choice prediction and re-
ward (red bar) achieved a slightly higher average ac-
curacy of 59.06% on MMLU Pro. This marginal im-
provement suggests that while it excels at its specific
trained task, its understanding is limited.
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These results, supported by Figure 2, indicate that while a
model trained specifically for letter-choice prediction per-
forms marginally better when only a letter is expected, it
struggles considerably when required to generate the full-
text answer. In contrast, the model trained for full-text
answer generation performs robustly on both evaluation
setups, suggesting that the model actually learns the ra-
tionales behind the questions being trained on instead of
simply memorizing the options. It is nearly as good at letter-
choice prediction (58.58%vs.59.06%) and vastly superior
at generating the full-text answer (51.35%vs.41.51%). This
suggests that training for full-text generation encourages a
deeper semantic understanding of the question and the an-
swer content, leading to better overall generalization and
robustness, rather than learning a superficial mapping to
letter choices. This improved generalization is crucial for
real-world general reasoning QA tasks where accurate full-
text answers are often expected.

5.3. Training Order Matters: From Least to Most
Forgettable

Coding Math General QA Writing5
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Figure 3. Cross-task backward transfer analysis. Each bar repre-
sents the average performance change on the other three tasks
when training with single-task GRPO on the source task (x-axis).
Coding shows the highest positive transfer, while creative writing
leads to the greatest average forgetting.

To minimize forgetting in a multi-stage, multi-task learning
setting, the training order of tasks is crucial. Our empiri-
cal findings suggest that training should progress from the
least forgettable tasks to the most forgettable tasks. This
intuition is supported by analyzing the average backward
transfer (BWT) across different task types. In our experi-
ment, we trained single-task GRPO models on each domain
individually, and measured the degree of forgetting as the
performance change on previously learned tasks. Figure 3

demonstrates the average backward transfer (BWT), which
shows a clear hierarchy of task forgettability. Coding ex-
hibits the most robust retention, actually showing positive
backward transfer (approximately +0.5%) on average. This
suggests that coding skills are not only preserved but poten-
tially benefiting through exposure to diverse queries from
other tasks, such as a stackoverflow style question in gen-
eral reasoning. In contrast, Mathematics, General QA, and
Creative Writing tasks show negative backward transfer,
indicating a forgetting effect when other tasks are intro-
duced. Specifically, Creative Writing experiences the most
significant negative transfer (around −4.5%), followed by
General QA (around −2%), and Mathematics (less than
−1%). Our empirical analysis reveals that task ordering
in multi-stage training significantly impacts the degree of
catastrophic forgetting across domains.

Based on these findings, our curriculum learning strategy
follows the principle of training from least forgettable to
tasks easiest to forget: Code → Math → General QA →
Creative Writing. This ordering minimizes cumulative for-
getting by establishing stable foundations in robust domains
before progressing to more fragile knowledge areas. As
demonstrated in Table 1, this curriculum-guided approach
achieves superior performance compared to reverse order-
ing, with the reverse curriculum showing catastrophic degra-
dation in General QA (from 52.23% to 22.62%) while our
proposed ordering maintains strong performance across all
domains, which reinforces the importance of a curriculum-
guided training schedule. Starting with highly structured,
verifiable tasks like coding and math, which are less suscep-
tible to catastrophic forgetting or even benefit from positive
transfer, provides a stable foundation. Subsequent training
on more broad tasks like general QA and creative writing
then leverages this improved initialization, mitigating the
negative backward transfer that these tasks are more prone
to.

The implications extend beyond task ordering: these BWT
patterns suggest that certain capabilities serve as better ”an-
chors” for multi-task learning, providing stable foundations
that support rather than interfere with subsequent learning.
This insight informs both the design of training curricula
and the selection of foundational capabilities in multi-task
language model development.

6. Related Work
Sanh et al. (2021) explore explicit multitask learning to in-
duce zero-shot generalization in language models. They
developed a system to map natural language tasks into a
human-readable, prompted format, creating a large multi-
task mixture with diverse prompts for various supervised
datasets. More recently, Dong et al. (2023) investigate how
the composition of SFT data influences various abilities in
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LLMs, specifically mathematical reasoning, code genera-
tion, and general human-aligning abilities.

Reinforcement Learning with Verifiable Rewards (RLVR)
(Lambert et al., 2024) has evolved from foundational work
in reinforcement learning (RL) and policy optimization.
Group Relative Policy Optimization (GRPO) (Shao et al.,
2024) was initially introduced in DeepSeekMath as a variant
of Proximal Policy Optimization (PPO) (Schulman et al.,
2017), simplifying the estimation of the advantage by using
group scores from multiple sampled outputs instead of a
learned critic model, thereby reducing training resources.
Subsequently, Guo et al. (2025) adopted and refined this
methodology, notably incorporating a widely successful
rule-based reward system into GRPO training. This rule-
based reward system primarily focused on accuracy (e.g.,
exact match for math problems, compiler feedback for code)
and format (e.g., specific tags for thinking processes), avoid-
ing learned reward models due to concerns about reward
hacking and training complexity.

Several works explore enhancing reasoning across general
domains and modalities through multi-task training involv-
ing RLVR. Liu et al. (2025) investigate the effects of using
supervised finetuning (SFT) and/or reinforcement learning
(RL) on general reasoning performance. SFT is performed
on general textual domains (e.g, math, medical) with long
chain-of-thought (CoT) data generated from a large reason-
ing model (e.g., o1 (Team, 2024)). RL is also used with
verifiable rewards on mathematical textual questions. Their
results show that SFT, RL, and their combination can en-
dow models with generalizable reasoning capabilities that
transfer across tasks, domains, and modalities despite be-
ing trained on textual problems only. However, their RL
experiments are limited to mathematical datasets. Ma et al.
(2025) propose General-Reasoner, a Zero-RL paradigm that
enhances LLM reasoning across diverse domains without
intermediate SFT. The authors construct a large-scale, high-
quality dataset of verifiable questions for STEM and intro-
duce a compact generative model-based verifier to replace
brittle rule-based verification, showing the efficacy of model-
based rewards for diverse tasks. Akter et al. (2025) is one
of the few works to extend the traditional RL training for
LLMs (DeepSeek-AI et al., 2025; Luo et al., 2025) beyond
math and coding datasets. The authors identify 2 key steps
to perform RL training on broad domains. First, the method
unifies answer templates for general domain (i.e., multiple-
choice and open-ended) questions to constrain output di-
versity and make them easily verifiable via a rule-based
function. Second, blending multi-domain data using a 2:1
ratio of general-purpose reasoning to math data. The results
show improved accuracy and conciseness for all domains
which further underscores the importance diverse multi-task
training. Su et al. (2025) proposes an alternative RL train-
ing framework for general domains by using a model-based

reward rather than a rule-based reward. By instructing a gen-
erative reward model (GRM) to output a binary score given
the candidate response and reference answer, the authors
are able to obtain very accurate rewards in general domain
scenarios and; hence, increase downstream cross-domain
performance.

In addition to the exploration of multi-task post-training
by the open-source research community, there have been
considerable efforts on the commercial model front. The
Qwen3 model series employs a four-stage post-training
pipeline (Yang et al., 2025) in the order of reasoning, non-
reasoning, and general-domain under a mix of supervised
fine-tuning and reinforcement learning. In comparison, the
post-training process for Command-A alternates between
training multiple expert models separately and merging the
experts’ parameters into a ”Soup Model” during its SFT and
RL steps, before the model undergoes a polishing phase of
preference alignment (Cohere et al., 2025).

Different from these works, our method introduces a unified
multi-task RL framework that seamlessly integrates both
verifiable and generative rewards. Rather than relying solely
on rule-based metrics or large external verifiers, we combine
lightweight, task-specific reward signals—including LLM-
as-a-Judge scoring for open-ended tasks and rule-based veri-
fication for structured domains within a single training loop.
Our framework enables simultaneous learning across do-
mains and address known challenges in multi-task RL, such
as reward imbalance, asynchronous validation latencies, and
negative backward transfer(Lopez-Paz & Ranzato, 2017).

7. Conclusion
We present Omni-Think, a unified reinforcement learning
framework that enables large language models to learn ef-
fectively across a wide range of tasks. By integrating both
structured and generative supervision, our method achieves
strong, balanced performance across domains. Overall, our
findings demonstrate that effective multi-task reinforcement
learning depends not only on the reward signals, but also
on how tasks are sequenced and optimized together. Omni-
Think takes a step toward generalist LLMs capable of adapt-
ing to heterogeneous tasks and supervision within a unified
training paradigm.
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