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Abstract

The advancement of general-purpose artificial in-
telligence relies on large language models (LLMs)
that excel across a wide range of tasks, from
structured reasoning to creative generation. How-
ever, post-training methods like Supervised Fine-
Tuning (SFT) often struggle with generalization,
favoring memorization over transferable learning.
In this work, we introduce OMNI-THINKER, a
unified reinforcement learning (RL) framework
that enhances LLM performance across diverse
tasks by combining rule-based verifiable rewards
with generative preference signals via LLM-as-
a-Judge evaluations. Our approach enables con-
sistent optimization across task types and scales
RL-based training to subjective domains. We fur-
ther investigate training strategies, demonstrating
that a curriculum-based progression that orders
tasks from structured to open-ended improves per-
formance and reduces forgetting. Experimental
results across four domains reveal that curriculum
learning improves performance by 5.2% over joint
training and 9.1% over model merging. These re-
sults highlight the importance of task-aware sam-
pling and hybrid supervision in scaling RL-based
post-training for general-purpose LLMs.

1. Introduction
As Large Language Models (LLMs) (Hurst et al., 2024; Liu
et al., 2024; Dubey et al., 2024; Yang et al., 2024) evolve
into general-purpose agents with applications ranging from
creative writing (Marco et al., 2025) to robotics (Gemini-
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Robotics-Team et al., 2025), the challenge of effective post-
training becomes increasingly critical. While Supervised
Fine-Tuning (SFT) is the dominant paradigm for adapting
LLMs to downstream tasks, it often encourages memoriza-
tion rather than robust generalization, especially on tasks
that differ from the training distribution or require flexible,
context-dependent reasoning (Chu et al., 2025).

Reinforcement Learning (RL) has emerged as a promising
path to improve generalization, especially in structured tasks
like math and coding, where verifiable, rule-based rewards
can be effective (DeepSeek-AI et al., 2025; Luo et al., 2025;
Kimi-Team et al., 2025). Methods such as Group Relative
Policy Optimization (GRPO) have shown that even coarse
signals can guide LLMs toward structured, chain-of-thought
responses (Shao et al., 2024). However, most RL methods
are tailored to deterministic, easily verifiable tasks, limiting
their utility in open-ended settings such as question answer-
ing and creative writing. Moreover, training LLMs across
multiple tasks remains challenging because it requires op-
timizing for diverse forms of feedback signals, including
binary correctness checks in structured tasks and subjective,
preference-based judgments in generative ones.

To address this, we propose OMNI-THINKER, a unified
RL framework that enables LLMs to learn from both rule-
based and generative supervision across tasks. Building
on Reinforcement Learning with Verified Reward (RLVR),
our method integrates symbolic verifiers with LLM-as-a-
Judge evaluations (Zheng et al., 2023; Zhang et al., 2025)
to handle subjective tasks. We further show that curriculum
training, which sequences tasks from structured to open-
ended based on Backward Transfer (BWT) measurements
of task forgettability, significantly improves generalization
and reduces forgetting. Across four domains, it achieves
average gains of 5.2% and 9.1% over joint training and
model merging, respectively.

Our key contributions are: (1) We propose OMNI-THINKER,
a unified framework that supports both verifiable and gener-
ative supervision under a single policy, scaling RL across
four diverse domains. (2) We show that LLM-as-a-Judge
enables scalable reward signals for open-ended tasks, ex-
tending GRPO beyond rule-based domains. (3) We demon-
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Figure 1. OMNI-THINKER Framework Overview. A unified multi-task RL framework for training a single LLM across structured and
open-ended tasks. (1) Backward Transfer quantifies task forgettability and informs (2) a curriculum that schedules tasks from least to
most forgettable. (3) Sampled tasks construct prompts. (4) The LLM generates completions, which are (5) scored by hybrid rewards:
verifiable (e.g., test case execution), generative (e.g., LLM-as-a-Judge), and auxiliary (e.g., format adherence), among others. (6) The
policy is updated via Multi-Task GRPO. The process repeats via iterative updates (bottom loop).

strate that not all multi-task training strategies are equally
effective. Curriculum-based task scheduling outperforms
uniform sampling and improves generalization in multi-task
RL.

2. Related Work
Large Language Models and Multi-Task Learning
Early work like (Sanh et al., 2021) showed that multi-task
prompted training can encourage zero-shot generalization.
Dong et al. (2023) further analyzed how mixing SFT data
across domains can cause performance conflicts and forget-
ting, proposing Dual-stage Mixed Fine-tuning to alleviate
these effects. However purely supervised objectives often
encourage memorization rather than transferable reason-
ing. The Qwen3 model series (Yang et al., 2025) employs
a four-stage post-training pipeline in the order of reason-
ing, non-reasoning, and general-domain under a mix of
supervised fine-tuning and reinforcement learning. In com-
parison, the post-training process for Command-A (Cohere
et al., 2025) alternates between training multiple expert
models separately and merging the experts’ parameters into
a “Soup Model” during its SFT and RL steps, before the
model undergoes a polishing phase of preference alignment.
In contrast, our work integrates multi-task learning directly
into a single RL framework. Its backward-transfer-guided
curriculum orders tasks from least to most forgettable, draw-
ing on continual learning insights (Lopez-Paz & Ranzato,
2017) to reduce interference and maintain stable cross-task
performance.

Large Language Models and Reinforcement Learning
Reinforcement Learning with Verified Rewards has demon-
strated effectiveness for tasks with deterministic correctness
signals such as math or code generation (Lambert et al.,
2024; Shao et al., 2024; Kimi-Team et al., 2025; Guo et al.,
2025). Recent frameworks like General-Reasoner (Ma et al.,
2025), Nemotron-Crossthink (Akter et al., 2025) and X-
REASONER (Liu et al., 2025) expand this to broader rea-
soning by blending multi-domain corpora and structured
answer templates. However, these tasks still largely remain
largely confined to verifiable STEM problems or multiple-
choice formats, leaving open-ended generation, such as
creative writing, insufficiently addressed. To bridge this gap,
Su et al. (2025) propose a generative reward model (GRM)
to replace rule-based signals. Although this improves RL
and makes it applicable to general-domain QA when ref-
erences exist, the approach is still restricted to verifiable
tasks. In contrast, our approach integrates hybrid verifiable
and preference-based rewards within a single RL loop, en-
abling consistent optimization across both structured and
open-ended tasks. Moreover, our curriculum design, guided
by backward transfer, helps maintain stable cross-task per-
formance even for tasks lacking deterministic evaluation
criteria.

3. Problem Formulation
We consider the problem of training a single language model
policy to perform well across a diverse set of tasks, includ-
ing mathematical reasoning, code generation, question an-
swering, and creative writing. Let T = {T1, . . . , TK} be a
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collection of K tasks, where each task Tk has a dataset Dk

of input-output pairs (qk, o
∗
k), where qk ∈ Qk is an input

prompt, and o∗k ∈ O∗
k is the corresponding ground-truth

output response.

The model, parameterized by θ, defines a conditional dis-
tribution πθ(yk | xk). Supervised fine-tuning (SFT) aims
to maximize the likelihood of ground-truth outputs by mini-
mizing:

min
θ

K∑
k=1

E(xk,yk)∼Dk

[
T∑

t=1

− log πθ(o
∗
k,t | qk, o∗k,<t)

]
,

(1)
where o∗k,t denotes the t-th token of o∗k, and T is the number
of tokens in the output.

While effective in-domain, SFT often overfits to training
data and fails to generalize, particularly when task formats
vary. Recent studies (Chu et al., 2025) show that reinforce-
ment learning (RL) with outcome-based rewards better pro-
motes cross-task generalization. Motivated by this, we adopt
a multi-task RL (MTRL) formulation with task-specific re-
ward functions Rk. The goal is to learn a unified policy πθ

that maximizes the expected reward over the task distribu-
tion:

max
θ

J (θ) = ETk∼P (T )

[
Eqk∼Dk,ok∼πθ(·|xk) [Rk(ok)]

]
,

(2)
where P (T ) is the task sampling distribution, which de-
termines task exposure during training, and Rk is the task-
specific reward function. This objective trains a single pol-
icy, πθ, that balances performance across tasks, enabling
knowledge transfer, mitigating negative transfer, and im-
proving generalization across domains.

4. Methodology
4.1. OMNI-THINKER Framework Overview

We introduce OMNI-THINKER, a unified post-training
framework that aligns LLMs to a wide range of tasks via
reinforcement learning, extending RLVR beyond structured
domains like math and code to include general and open-
ended tasks.

Verifiable Supervision. For tasks with objective correct-
ness signals, such as symbolic math and code generation,
we define binary rewards based on symbolic matches, test
case results, or other deterministic evaluators depending on
the tasks.

Short-Form Open-Ended Supervision. For language
tasks with known or extractable ground-truth answers such
as general question answering (QA), we reformulate queries
into open-ended prompts and incorporate distractor re-
sponses (LLM-generated plausible but incorrect answers)

into the context. Instead of labeling options, we prompt the
model to reason using the <think>...</think> format
and to output answers within <answer>...</answer>
tags. Responses are evaluated with a binary reward based
on string matching or set membership against reference an-
swers, thereby encouraging semantic grounding and mitigat-
ing shallow pattern memorization. We find that conditioning
the LLM on a diverse set of candidate options, including one
correct answer and multiple distractors, is key to steadily
improving general-domain reasoning while reducing sus-
ceptibility to random guessing or reward hacking, compared
to directly prompting the model to generate open-ended
answers during training without the augmented context.

Long-Form Open-Ended Supervision. For subjective
tasks lacking ground truth (e.g., dialogue, writing), we use
an LLM-as-a-Judge (Chen et al., 2025) to assign a scalar
reward based on rubric-aligned pairwise preferences be-
tween candidate outputs. This enables learning in domains
where symbolic correctness is insufficient or intractable.
This prompt-based approach leverages recent advances in
the general reasoning capabilities of LLMs, using generated
chain-of-thoughts (CoTs) to elicit a ternary reward signal,
preferred, tie, or dispreferred, without requiring large-scale
preference data collection and reward model training.

Together, these strategies enable consistent RL training
across structured and generative tasks within a unified opti-
mization framework.

4.2. Multi-Task Group Relative Policy Optimization

We extend the GRPO (Guo et al., 2025) algorithm to
the multi-task setting by jointly optimizing over task-
specific reward signals and reference policies. For each
input prompt qk, GRPO samples a group of outputs
{ok,1, ok,2, · · · , ok,G} from the old policy πθold . At each
generation step t, the partial output is denoted ok,i,<t, where
ok,i,<t = [ok,i,1, . . . , ok,i,t−1], that is, the input concate-
nated with the sequence of generated tokens up to step t− 1.
A reward function Rk(o, ϕk) scores each output,where ϕk

denotes task-specific information required for the evalua-
tion, such as reference answers, test cases, or comparison
outputs required for evaluation. The policy πθ is updated
to maximize expected return while controlling divergence
from a reference policy.

Let

µk = mean
(
{Rk(ok,i, ϕk)}Gi=1

)
, σk = std

(
{Rk(ok,i, ϕk)}Gi=1

)
,

(3)

we define the policy ratio ρk,i,t and the normalized advan-
tage estimate Âk,i,t as
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ρk,i,t =
πθ(ok,i,t | qk, ok,i,<t)

πθold(ok,i,t | qk, ok,i,<t)
, Âk,i,t =

Rk(ok,i, ϕk)− µk

σk
.

(4)

This allows us to write the MT-GRPO objective as

JMT-GRPO(θ) =Ek∼K,qk∼Dk,{ok,i}Gi=1∼πθold
(·|qk)

1

G

G∑
i=1

1

|ok,i|

|ok,i|∑
t=1

{
min

[
ρk,i,tÂk,i, clip (ρk,i,t, 1−ϵ, 1+ϵ) Âk,i

]
− βkDKL [πθ||πref ]

}
,

(5)

where

DKL [πθ||πref ] =
πref (oi,t|q, oi,<t)

πθ(oi,t|q, oi,<t)
−log

πref (oi,t|q, oi,<t)

πθ(oi,t|q, oi,<t)
−1.

(6)

The clipping parameter ϵ stabilizes updates by keeping pol-
icy ratios within a bounded range, following the PPO ap-
proach (Schulman et al., 2017). The KL divergence term
regularizes the new policy towards the reference policy πref,
weighted by a task-specific coefficient βk.

4.3. Task Scheduling

We consider two strategies for optimizing a shared policy
across multiple tasks: curriculum learning and joint train-
ing. Both utilize task-specific rewards but differ in schedul-
ing. To guide task ordering, we adapt a Backward Transfer
(BWT) metric to quantify forgetting in our multi-task set-
ting. Following Lopez-Paz & Ranzato (2017), we define
BWTj = Pafter,j − Pbase,j , where Pbase,j is the perfor-
mance on task j from the original base model and Pafter,j

is the performance on task j after training on subsequent
tasks. A negative BWTj indicates that performance on task
j degrades due to learning new tasks, measuring the extent
of forgetting.

Curriculum Learning: Prior work in curriculum learn-
ing prioritizes task complexity (e.g., easy to hard) for more
effective learning (Bengio et al., 2009; Parashar et al., 2025).
We instead adopt a forgetting-based curriculum that orders
tasks according to their average forgettability in multi-task
learning. Tasks with the least negative or even positive
backward transfer are introduced earlier, serving as stable
foundations for subsequent tasks that are more prone to
catastrophic forgetting. In our setup, this coincides with
increasing supervision subjectivity. This forgetting-based
ordering reduces overall forgetting and improves generaliza-
tion by minimizing destructive interference across tasks.

Joint Training: All tasks are sampled concurrently from
a shared distribution. While this promotes exposure, it intro-
duces three key challenges: (1) simpler tasks may dominate

without adaptive sampling due to the tendency of reward
hacking in GRPO; (2) reward delays vary, requiring asyn-
chronous updates; and (3) Kullback–Leibler (KL) regular-
ization demands tuning per task due to varying sensitivities.

In both regimes, we apply MT-GRPO with normalized ad-
vantages and task-specific KL coefficients. At each step, a
task Tk is selected, completions are generated by the current
policy πθ, and updates are applied based on the correspond-
ing reward signal.

5. Experimental Setup
5.1. Training Datasets

We curate a multi-domain training dataset covering Math,
Coding, General QA, and Creative Writing, with each do-
main selected to support hybrid reward functions and robust
evaluation. For Math, we begin with the OpenR1-Math
(HuggingFace, 2025) dataset, retaining only word problems
and excluding questions that require visual reasoning. We
further subsample 12,000 examples to fit our compute bud-
get. For Coding, data is sourced from the code-r1-12k (Liu
& Zhang, 2025) dataset, with outliers exceeding 1024 tokens
removed. Each entry includes a code prompt and JSON-
formatted unit tests for automatic validation. For General
QA, inspired by SuperGPQA (M-A-P, 2025), we subsample
5,500 queries from the benchmark dataset, proportionally by
question category. Each sample comprises a factual question
paired with a plain-text answer. We then generate 15 addi-
tional confusion options while making sure the uniqueness
of correctness by prompting an LLM. The Creative Writ-
ing domain leverages 6,650 conversations from Nitral AI’s
ShareGPT dataset (Nitral-AI, 2024), focused on single-turn
completions. Samples exceeding two dialogue turns are fil-
tered out, and responses are judged via an LLM-as-a-Judge
framework.

5.2. Baselines

We adopt Qwen2.5-7b-Instruct as the base model for all
our experiments (Yang et al., 2024). Its robust instruction-
following ability makes it a suitable candidate for subse-
quent reinforcement learning training on both reasoning
tasks and more general open-domain QA, as it relies on
the model’s capacity to comprehend and follow the given
prompts effectively.

Supervised Fine-Tuning (SFT): In order to have a mean-
ingful comparison with GRPO, we adopt a similar self-
sampled data curation and fine-tuning approach with Re-
jection sampling Fine-Tuning (Yuan et al., 2023). We first
prompt the base model to generate 128 chain-of-thought
responses for our training dataset to ensure we end up with
at least one correct response for most queries, then filter
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Figure 2. Performance gains across four task domains, comparing our Multi-Task (MT) framework (Joint and Curriculum variants) against
baselines including Supervised Fine-Tuning (SFT) and Model Merging. Curriculum MT achieves the strongest results, particularly in
open-ended tasks, showing that controlling how multi-task learning is structured is crucial for effective generalization.

them based on the same accuracy reward signals used in
GRPO training. We then perform supervised fine-tuning
on Qwen2.5-7b-Instruct using these self-distilled responses.
This provides a strong on-policy learning baseline that in-
corporates explicit reasoning steps through self-distillation
from the base model.

Model Merging: We employ TIES-Merging (Yadav et al.,
2023b) as our model-merging baseline. It’s a simple yet
effective method designed specifically for the multi-task set-
ting that takes into consideration the interference between
parameters from models trained on individual tasks during
the merging process. It has demonstrated superior perfor-
mance in multi-task learning compared to linear and task
arithmetic approaches (Yadav et al., 2023a). To begin with,
we conduct single-task GRPO training using individual task
datasets and collect the model weights of the best check-
points with the help of a validation set for each training run.
We then merge the four single-task models using a scaling
value λ = 1.

5.3. Evaluation

We assess performance in each domain using dedicated held-
out benchmarks aligned with the task’s unique evaluation
criteria. The detailed evaluation set is presented as follows

Math Reasoning: we compute accuracy over seven
datasets: AIME24 (MAA, 2024), AMC23 (MAA, 2023),
Gaokao2023EN (Liao et al., 2024), MATH-500 (Hendrycks
et al., 2021), MinervaMath (Lewkowycz et al., 2022), and
OlympiadBench (He et al., 2024).

Code Generation: we measure coding ability via pass@1
on BigCodeBench (Complete-Full) (Zhuo et al., 2024) and
LiveCodeBench (24Oct-25Jan) (Jain et al., 2024).

General QA: we report exact-match accuracy using the
MMLU-Pro benchmark (Wang et al., 2024).

Creative Writing: we evaluate the creative writing task
using the role-play and creative writing subcategory of
MT-Bench (Zheng et al., 2023), reporting win rate against a
GPT-4 (pre-gen dated June 16, 2023) model.

6. Results and Discussion
6.1. Main Results: Scaling Multi-Task LLM

Post-Training with OMNI-THINK

We evaluate OMNI-THINKER across four diverse domains:
Coding, Math, General QA, and Creative Writing, to as-
sess how reinforcement learning with rule-based verifiable
rewards and generative supervision supports multi-task gen-
eralization. Figure 2 shows that Curriculum-Guided Multi-
Task GRPO consistently yields the best results. Table 3
further details how these gains vary by benchmarks.

In Math, Curriculum MT achieves the highest average per-
formance at 59.6%, with the clearest gains on more complex
reasoning tasks such as MinervaMath and OlympiadBench.
These benchmarks benefit from strong rule-based reward
signals and backward-transfer-guided task ordering. In con-
trast, datasets like AMC23 show minimal change because
their relatively high baseline scores likely reflect smaller
question sets and potential pretraining overlap rather than
robust multi-step problem-solving.

In General QA, Curriculum MT again performs best
(52.2%), followed by Model Merging (49.8%) and Joint
Multi-Task GRPO (48.8%). These improvements are driven
by our Short-Form Open-Ended Supervision strategy: in-
stead of generating responses in a fully open-ended and
unconstrained fashion, the model is trained to produce com-
plete answer strings given a diverse set of candidate re-
sponses, enabling the effective application of verifiable re-
ward through simple string matching when training general-
domain tasks.

For Code Generation, Curriculum MT achieves 35.4%,
slightly ahead of Model Merging. Notably, we only evaluate
on the subset of LiveCodeBench(24Oct-25Jan) problems re-
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leased after Qwen2.5’s data cutoff, which ensures that these
are unseen test items. This setup highlights Curriculum
MT’s significant generalization gains on novel problems,
explaining the larger improvements on LiveCodeBench rel-
ative to static benchmarks like BigCodeBench, where data
overlap is more likely.

In Creative Writing, the introduction of our Long-Form
Open-Ended Supervision strategy, employing the LLM-as-
a-Judge framework for pairwise evaluation, results in sig-
nificant performance boosts (Curriculum-Guided at 84.2%
and Joint MT at 83.00%), underscoring the advantage of our
generative reward approach in subjective, open-ended tasks.

These results support our central hypothesis: The OMNI-
THINKER Training Framework, with the help of Curriculum
MT, enables a single unified policy to scale across structured
and open-ended tasks alike, without relying on interleaving
RLVR on reasoning tasks and fine-tuning non-reasoning
tasks.

6.2. Training Order Matters: From Least to Most
Forgettable

Our analysis highlights that task ordering is critical for
robust multi-task reinforcement learning. Figure 3 sum-
marizes the average backward transfer (BWT) each task
receives when training single-task GRPO models on other
tasks. Specifically, the x-axis of Figure 3 represents the
target task. A negative average BWT value for a target task
indicates that it tends to suffer forgetting or experience a de-
crease in performance when other tasks are trained before it;
a positive value suggests that the target task tends to benefit
or experience positive transfer. This high-level view reveals
that Creative Writing is the most vulnerable task, as it ex-
periences the most negative average BWT received, while
Coding is the most resilient, showing a positive average
BWT received.

For example, Coding benefits on average after training on
another task (average BWT received +1.06%, indicating
a positive transfer). In contrast, Creative Writing is the
most vulnerable to forgetting: it has the highest magnitude
of negative average BWT received (−4.57%), meaning it
easily loses performance when other tasks are trained first.

Figure 5 shows the full BWT matrix, where x-axis con-
sists of target tasks and y-axis represent source tasks that
are being trained on. Each cell (rowi, colj) in the matrix
represents the BWT from source task j to target task i. A
negative value indicates that training on source task j causes
forgetting in target task i, while a positive value suggests
positive transfer. We observe that structured tasks like Cod-
ing and Math are both less forgetting conducive as sources
and tend to receive more positive transfers as targets from
training on other tasks.
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Figure 3. Average backward transfer (BWT) per target task, show-
ing how training single-task GRPO on all other tasks affects it on
average. A negative BWT indicates forgetting; a positive value
indicates positive transfer.
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Figure 4. Models trained to generate full-text answers perform
better than those trained to select letter choices, especially in free-
form evaluation. This training format encourages deeper semantic
understanding, rather than relying on shallow pattern matching or
guessing.

Guided by this analysis, our curriculum trains tasks in a
least-to-most forgettable order: Coding → Math → Gen-
eral QA → Creative Writing. This progression grounds the
model in stable, verifiable tasks before introducing those
more prone to interference and forgetting. As confirmed
by Table 2, reversing this order significantly harms perfor-
mance.

Overall, our findings suggest that BWT patterns can offer a
practical, empirically informed guide for task sequencing,
helping reduce negative transfer and improve generalization
in multi-task RL for LLMs. Further work is needed to test
this approach across a broader range of tasks and domains,
including those that require logical reasoning over graph-
structured data (Zhou et al., 2024) and knowledge-base
retrieval (Dehghan et al., 2024), as well as more diverse
open-ended domains such as mixed-initiative collaborative
storytelling and co-creativity (Kreminski et al., 2024).

6.3. Output Format Matters: Full-Text Answers
Enhance Generalization

We examine how output format impacts generalization by
comparing models trained to generate full-text answers ver-
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sus selecting letter choices in multiple-choice QA (MCQ).
Using GRPO, we train two single-task policies on the train-
ing set, one prompted to produce full-text final answers at
the end of its chain-of-thought completions, and the other to
output only letter choices (e.g., “A”, “B”, “C”). As shown
in Figure 4, the model trained to output full-text answer
achieves significantly better generalization when evaluated
with free-form QA prompts on MMLU Pro (51% vs. 41%).
While the letter-choice model slightly outperforms when
evaluated strictly on MCQ prompts, the full-text model re-
mains competitive across both prompt formats.

These results suggest that training with complete, semanti-
cally grounded answers encourages deeper reasoning, im-
proving the model’s ability to generalize beyond the specific
format seen during training. In contrast, letter-choice train-
ing risks overfitting to shallow pattern matching, reducing
transferability to realistic QA settings that often require
articulated responses.

7. Conclusion
We presented OMNI-THINKER, a unified framework that ex-
tends LLMs to handle both structured and open-ended tasks
within a single policy. By integrating reinforcement learn-
ing with both rule-based verifiable rewards and generative
preference-based supervision, our method improves gener-
alization while addressing challenges such as forgetting and
task interference. Our findings show that effective multi-
task LLM post-training depends not only on reward design
but also on how tasks are sequenced and optimized together.
By ordering tasks from structured to open-ended domains
based on backward transfer, OMNI-THINKER minimizes
forgetting and achieves consistent gains across diverse rea-
soning and generative tasks. Overall, it takes a step toward
more general-purpose LLMs that can learn effectively from
both verifiable and subjective feedback, bridging structured
reasoning, open-ended question answering, and creative gen-
eration within a single, unified post-training framework.
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A. Appendix
A.1. Reward Estimation

Omni-Thinker employs a hybrid reward system combineing
rule-based correctness (math, code, QA) with preference-
based supervision (creative writing) in a unified RL frame-
work. We define task-specific reward functions as rk(o, ϕk),
where o denotes the model output and ϕk represents auxil-
iary task-specific inputs required for evaluation—such as
reference answers, unit tests, or candidate responses for
comparison. Each reward function captures domain-relevant
correctness criteria, assessing whether o satisfies symbolic
constraints, passes execution tests, or is preferred over al-
ternatives under subjective evaluation. While some rewards
(e.g., math and code) are strictly deterministic, others, such
as LLM-as-a-Judge comparisons, are inherently stochastic
but executed at low decoding temperature to ensure stable
and consistent supervision. All reward functions are de-
signed to be domain-aware and automatable, supporting
scalable reinforcement learning across both structured and
generative tasks.

Primary Rewards. Each task employs a tailored correct-
ness criterion:

• Math:

rmath(o, a) = 1 {verifymath(oans, a) = true} ,

where a denotes the ground-truth answer, and oans is
the predicted answer extracted from the <answer>
tags in the model output o. Symbolic equivalence
between oans and a is verified using a deterministic
parser.

• Code Generation:

rcode(o,test case) = 1
{
exec(oans) |=

unittest(oans,test case)
}

where the generated code oans is executed in a sand-
boxed environment and evaluated against the unit tests
defined by x; |= indicates logical satisfaction.

• General QA:

rqa(o, a) = 1 {oans = a}

which returns 1 if the predicted answer matches the
ground-truth string exactly.

• Creative Writing:

rwriting(o, oref ) =


1.0 if o ≻ oref

0.5 if o ∼ oref

0.0 if o ≺ oref

where o ≻ oref indicates that the model output o is
preferred over the reference oref , o ≺ oref means
the reference is preferred, and o ∼ oref denotes a tie.
Preferences are judged via pairwise comparison by a
fixed LLM-as-a-Judge model.

Auxiliary Rewards. To encourage structured outputs, we
define formatting-based rewards shared across tasks:

rformat(o) = 1 {tags valid(o)}

rtags(o) =
1

4
· |tags present(o)|

Here, tags valid ensures proper nesting of <think>
and <answer> tags, while tags present counts re-
quired structural markers.

Total Reward. We define the total reward as a weighted
sum over both primary and auxiliary reward components.
Let Fk = {r(1)k , r

(2)
k , . . . , r

(m)
k } denote the set of reward

functions associated with task k, where each r
(j)
k measures

a different aspect of correctness. Given a model output o
and its associated evaluation context ϕk, the total reward is
computed as:

Rk(o, ϕk) =
∑
r∈Fk

wr · r(o, ϕk),

where wr ∈ [0, 1] denotes the task-specific weight for re-
ward component r. If a component reward is undefined,
e.g., due to malformed or unparsable output, it is omitted
from the sum. Samples with no valid reward components
are excluded from policy updates.
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A.2. Detailed Hyper-Parameters

We show the hyperparameters used in our training in Table1

Table 1. Training Hyperparameters for All Training Settings. MT
= Multi-Task RL, ST = Single-Task RL (e.g., ST: Math = RL
trained only on math).

Hyperparameter Curr. MT Joint MT ST:Coding ST:Math ST:QA ST:Writing SFT

Model Configuration
Max Prompt Length 1024 1024 1024 1024 1024 1024 -
Max Response Length 3072 3072 3072 3072 3072 3072 -

Training Settings
Train Batch Size 256×6 256×6 256×6 256×6 256×6 256×6 128
Learning Rate 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 2.5e-6
Learning Scheduler Constant Constant Constant Constant Constant Constant Cosine
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW
Grad Clip 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Max Epoch 3 3 3 3 3 3 3

RL Settings
KL Beta 0.00 0.02 0.001 0.04 0.04 0.00 -
Clip Ratio Low 0.2 0.2 0.2 0.2 0.2 0.2 -
Clip Ratio High 0.2 0.2 0.2 0.2 0.2 0.2 -
N Rollouts 16 16 16 16 16 16 -
Rollout Temperature 1.0 1.0 1.0 1.0 1.0 1.0 -
Rollout Top-P 1.0 1.0 1.0 1.0 1.0 1.0 -
Rollout Top-K 50 50 50 50 50 50 -

LLM-as-a-Judge Settings
Model gpt-4.1-mini gpt-4.1-mini - - - gpt-4.1-mini -
Temperature 0.4 0.4 - - - 0.4 -
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A.3. Results

Coding Math General
QA

Creative
Writing

Coding

Math

General
QA

Creative
Writing

-1.82 -0.73 -2.56

0.53 -5.60 0.00

1.69 -0.18 -11.16

0.95 0.32 0.47 10
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0
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Figure 5. Backward transfer (BWT) matrix. Each cell shows the
BWT for a target task (columns) when training a single-task GRPO
model on a source task (rows). Positive BWT indicates forgetting;
negative indicates positive transfer.

Table 2. Ablation study comparing curriculum Learning (Curr) to
its reversed task ordering (Reverse-Curr). Ordering tasks from
structured to open-ended domains consistently improves perfor-
mance across all, while reversing this order leads to degraded
results, especially in open-ended domains.

Task Base Model Curr Reverse-Curr

Math 55.9 59.6 58.2
General QA 41.5 52.2 22.6
Code Generation 29.6 35.4 32.7
Creative Writing 74.2 84.2 75.0
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