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A B S T R A C T

A central problem in color vision is that the light reaching the eye from a given surface can vary dramatically
depending on the illumination. Despite this, our color percept, the brain's estimate of surface reflectance, remains
remarkably stable. This phenomenon is called color constancy. Here we investigated which human brain regions
represent surface color in a way that is invariant with respect to illuminant changes. We used physically realistic
rendering methods to display natural yet abstract 3D scenes that were displayed under three distinct illuminants.
The scenes embedded, in different conditions, surfaces that differed in their surface color (i.e. in their reflectance
property). We used multivariate fMRI pattern analysis to probe neural coding of surface reflectance and illumi-
nant, respectively. While all visual regions encoded surface color when viewed under the same illuminant, we
found that only in V1 and V4α surface color representations were invariant to illumination changes. Along the
visual hierarchy there was a gradient from V1 to V4α to increasingly encode surface color rather than illumi-
nation. Finally, effects of a stimulus manipulation on individual behavioral color constancy indices correlated with
neural encoding of the illuminant in hV4. This provides neural evidence for the Equivalent Illuminant Model. Our
results provide a principled characterization of color constancy mechanisms across the visual hierarchy, and
demonstrate complementary contributions in early and late processing stages.
1. Introduction

Color constitutes a fundamental quality of visual experience, and
supports a large variety of behavioral tasks (Mollon, 1989). However, the
fact that the light reflected from surfaces depends both on the surface
color (i.e. its reflectance) and the color of the incident light (Land and
McCann, 1971) poses a challenging problem to the visual system. It is
therefore impossible to know the reflectance of a surface without any
knowledge of the illumination. As numerous psychophysical studies have
documented, however, the perception of surface color is fairly robust
even in the face of changes in illumination. This property of the visual
system is referred to as “color constancy”. It is unclear how the human
brain transforms the highly ambiguous incoming color signals to create
surface color representations that are stable across illuminants. What
factors at the neural level are involved in color constancy?
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Early investigations demonstrated the involvement of area V4 in color
perception in monkeys (Wild et al., 1985; Zeki, 1983) and inspired
neuroimaging studies suggesting a similar role for human V4 (Bartels and
Zeki, 2000; Beauchamp et al., 1999; Lueck et al., 1989). Also the func-
tional organization of color responses in this area was shown to reflect
perceptually relevant stimulus dimensions in both non-human (Conway
and Tsao, 2009; Kusunoki et al., 2006; Li et al., 2014) and human pri-
mates (Brouwer and Heeger, 2013, 2009).

Human lesion studies have accordingly implicated a connection be-
tween area V4 and achromatopsia (but also form vision deficits) (Bouvier
and Engel, 2005). As for selective color constancy impairments, evidence
appears less conclusive with some work suggesting a link with V4 (Clarke
et al., 1998; Kennard et al., 1995) while different research highlights the
involvement of other areas (Rüttiger et al., 1999), including V1 (Ken-
tridge et al., 2007).
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Human neuroimaging indeed shows increased responses to color
already in early areas V1 and V2 (Bartels and Zeki, 2000; Beauchamp
et al., 1999; Engel et al., 1997). But also in non-human primates, the
chromatic context modulation of neural color tuning (Wachtler et al.,
2003) and the double opponency of neurons (Conway, 2001; Conway
and Livingstone, 2006; Johnson et al., 2008, 2001) outline possible early
color constancy mechanisms in V1.

While prior monkey studies shed some light on neural responses
encoding perceptual (i.e. color constant) versus physical color properties
in isolated regions, to our knowledge no prior study manipulated
reflectance and illumination spectra to examine regional encoding of
perceptually constant colors or of illuminant systematically across the
whole ventral visual pathway, neither in monkey nor human brains.

We used multi-voxel pattern analysis as a test for color constancy: if a
neural surface color representation is invariant across illumination
changes, distinctions between representations of different surface colors
should generalize across these changes. Using physically realistic
rendering methods we showed subjects 3D scenes rendered in three
conditions that simulated three different illuminants. Surfaces that
differed in their surface color were embedded in these scenes. We
designed our experiment in this way to achieve higher ecological val-
idity: color vision in real life occurs in 3D environments, and it is well
established that some surface color cues depend on 3D scene structure
(Maloney, 1999; Radonjic et al., 2015). Participants performed an
attention task (that was independent of illuminant or color) on these
surfaces during fMRI recording.

To test our hypotheses, we trained classifiers to discriminate BOLD
responses to two surfaces (“blue” and “yellow”) under two out of three
illuminations (e.g. “neutral”, and “blue”) and tested them on new BOLD
responses measured in the third illumination condition (e.g. “yellow”),
which was not part of the training set. This analysis showed that activity
patterns in V1 and V4α encoded surface colors in a way that generalized
across illumination conditions, i.e. in a color-constant way.

Furthermore, we tested a prediction from equivalent illuminant
models of color constancy. We hypothesized that the neural accuracy of
encoding the illuminant of a scene predicts the behavioral accuracy of
constant color perception. We collected behavioral color constancy
indices, including a cue conflict manipulation that abolishes behavioral
color constancy. We collected fMRI data for the same stimuli. In accord
with the equivalent illuminant model, we found that the behavioral effect
of the cue conflict manipulation on color constancy could be predicted
from neural decoding of the illuminant in hV4.

Lastly, we examined how visual areas interpret two different surfaces
that reflect the same light because they are presented under different
illuminations. These surfaces were perceived as having distinct colors,
but emitted the same light. These stimuli can be discriminated on the
basis of their surface reflectance or illumination. Our analysis revealed
that higher visual regions hV4, VO1, V4α weighted the difference in
surface reflectance more strongly than earlier visual areas.

In sum, the results provide a detailed account of the contributions of
different visual areas to color constancy.

2. Materials and methods

2.1. Participants

Our sample consisted of 20 healthy observers (15 female, 5 male)
from the Tübingen University community between the ages of 19–35
(mean age: 24.5). All participants had normal color vision as ascertained
with Ishihara plates (Ishihara, 2011). They provided written informed
consent to participation in the experiment prior to the first session. The
local ethics committee of the University Hospital Tübingen approved the
study. Data from the fMRI main experiment of subject 12 could not be
analyzed due to a data handling error. We therefore discarded this sub-
ject's dataset altogether, allowing us to use data of 19 subjects for the
reported analyses.
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2.2. Stimuli

2.2.1. Rendering method
We used the RenderToolbox3 (Heasly et al., 2014) to devise stimuli

very similar to those used previously in a typical psychophysics experi-
ment about color constancy (Xiao et al., 2012). The RenderToolbox3
provides a MATLAB-based framework for the development of stimuli
with the 3D modeling software Blender 2.73 (www.blender.org) and the
rendering software Mitsuba (www.mitsuba-renderer.org). The toolbox
enables the user to control material properties (like reflectance) and the
spectral power distributions (SPDs) of light sources within a 3D scene and
creates 2D images of that scene based on a physically accurate rendering
algorithm. The domains of reflectance functions and SPDs ranged from
380 nm to 730 nm and were discretized in steps of 10 nm.

2.2.2. Scenes, illuminants, and surfaces of interest
We rendered complex yet abstract three dimensional scenes, similar

to those used in prior behavioral studies on color constancy (Xiao et al.,
2012). The key motivation for using complex scenes was evidence that
color constancy benefits from complex surroundings, presumably as the
latter provides better cues to estimate the illuminant (Maloney, 1999;
Radonjic et al., 2015). We embedded several surface patches in these
scenes (see Fig. 1a). The patches had, in different experimental condi-
tions, two different surface reflectance functions. These functions were
chosen such that the surfaces appeared blue and yellow, respectively,
under “neutral”, daylight illumination, which was approximated by the
standard illuminant D65 (Fig. 1a). From here onward we refer to these
surfaces of interest simply as “surfaces” or “surface patches”. The full
scene (including the surfaces), was rendered under a total of three illu-
minants: the standard daylight illuminant D65 (Fig. 1a), plus two more
illuminants located on the black body curve at correlated color temper-
atures of 10,925 K (Fig. 1b) and 4500 K (Fig. 1c). For simplicity, the first
illuminant is referred to as the “neutral” illuminant, the second and third
as “blue” and “yellow” illuminants due to their appearances compared to
daylight. The reflectance functions of the two surfaces were chosen such
that the blue surface under the yellow illuminant reflected the same light
as the yellow surface under the blue illuminant (compare SPDs of re-
flected lights in Fig. 1b on the right and Fig. 1c on the left). Together, the
two surfaces and three illumination conditions constitute six conditions.

The colored surfaces appeared predominantly in the left visual hemi-
field for odd-numbered participants (Fig. 1) and in the right hemi-field in
even-numbered participants (not shown). Three surface patches were
shown in one hemifield and one in the other. We chose this stimulus
design to exploit the retinotopic organization in visual cortex, which
allowed us to test for hemispheric lateralization of BOLD responses.

Note that each rendered scene (including surface patches) provides
cues on its illuminant: the illuminant illuminates the whole scene.
However, and importantly, the scene excluding the surface patches does
not provide any information on the surface color. Surface color cues are
hence exclusively provided by the surfaces (within a given illuminant
condition), and by the combination of the scene and the surfaces (across
illuminants): under a given illuminant, the light emitted from the sur-
faces alone does differentiate between the two surface colors. But this is
not the case across illuminants, as under the blue illuminant the yellow
surface emits identical light as the blue surface under yellow illumina-
tion. To achieve color constancy, the brain needs to integrate information
from the scene and the surface to infer the reflectance property of the
surface, as it requires information of the illuminant and of the light re-
flected from the surface to infer its color.

Fig. 2 shows the chromaticity coordinates of the two surfaces under
each of the three illuminants. Average patch luminance in the neutral
condition was 284.4 cd/m2. Blue and yellow surfaces were matched in
luminance. We also matched stimulus luminance across illumination
conditions. The Michelson contrast between patches and the immedi-
ately surrounding (i.e., within 5 pixels) background surface was 0.179.

http://www.blender.org/
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Fig. 1. Experimental Procedure and Stimuli. (a) Rendered 3D scenes contained four surfaces that were either blue or yellow. In even-numbered subjects the location of the four surfaces
was mirrored horizontally at the center (not shown). Note that 3 surfaces fell in one hemifield, 1 in the other. Plots below each scene image show SPDs for the illuminant, the reflectance
functions for the surface, and light reflected from the surfaces. (b, c) Same scenes as in (a) but rendered under blue and yellow illumination, respectively. Note that the SPDs of the lights
reflected from the yellow surface under blue illumination and from the blue surface under yellow illumination are the same. (e, f) Same as in (b) and (c) except this time the background
rectangle was replaced with a different surface that reflected the same light as the original one under neutral illumination shown in (a). Note that this figure serves as illustration only, and
does not allow judgment of actual color constancy effects produced by the stimuli shown in experimental conditions. Robustness of color constancy in experimental conditions is quantified
in Fig. 5.
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Fig. 2. Stimulus chromaticities. Stimulus coordinates (x, y) in the CIE 1931 chromaticity
plane. Blue (yellow) circles mark chromaticities of the blue (yellow) surface. Dotted circles
indicate chromaticities under D65 illumination. Arrows represent chromaticity shifts
induced by changes in illumination. Note that a chromaticity shift from neutral to blue for
the yellow surface results in the same chromaticity as a shift from neutral to yellow for the
blue surface as indicated by overlapping blue and yellow circles.
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2.2.3. Cue conflict conditions
In addition to the above, we introduced cue conflict conditions shown

to strongly impair color constancy judgments (Delahunt and Brainard,
2004; Xiao et al., 2012). The manipulation consists in replacing the
central large background rectangle on which the blue or yellow colored
surfaces appeared with a background that reflected the same light under
each illuminant as the original background under neutral illumination
(Fig. 1d and e). We refer to the condition involving the original back-
ground as the consistent-cue condition and to the condition with the
replaced background as the reduced-cue condition (following Xiao et al.,
2012). The manipulation was applied for the blue and yellow illuminant
and both surfaces, yielding four cue conflict conditions – the neutral cue-
conflict condition was identical to the neutral consistent-cue condition.
In total, we had ten different conditions.

To make sure that classification of surface colors was driven only by
differences between the chromaticities of the two surfaces and not by
luminance differences, we took two measures: first, we equated lumi-
nances across both surface colors and all illumination conditions. This
was achieved by setting the images to the average luminance values
across the ten conditions on a pixel-by-pixel basis. Second, one half of the
stimuli was presented with luminance increased and the other half with
luminance reduced by 10%. This ensured that classifiers generalized
across possible differences in luminance and made discriminations based
on chromatic differences. To accomplish this, we converted the RGB
values of all images to XYZ tri-stimulus space using the transformation
matrix obtained from the display calibration. We then calculated the
mean luminance (Y) across all images. We converted each XYZ image to
CIE xyY space to separate chromaticity from luminance components and
applied the mean luminance vector to every image (including the two
10% luminance modulations). The images were subsequently trans-
formed back to RGB space for presentation on the gamma-
corrected displays.
2.3. fMRI experiment

Participants lay supine in the scanner and viewed the scene images
via a mirror mounted on top of the head coil. Stimuli were presented
against a screen located at the end of the scanner bore using a gamma-
calibrated projector (NEC PE401H, CalibrateMonSpd.m function from
Psychtoolbox, spectroradiometer by Photo Research PR-670). The size of
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each image on the projection screen was 16.8� and 15� of visual angle in
horizontal and vertical directions, respectively, at a resolution of
1024 � 768 pixels.

2.3.1. Stimulus presentation
The sequence of trials is shown in Fig. 3. Each scene appeared four

times for 1.5 s within a stimulus block in alternation with a luminance
matched color mask that lasted for 1 s, leading to a block-duration of 10 s.
Color masks consisted of three RGB layers created independently from 1/
f noise. All stimuli were presented using MATLAB and Psychtoolbox
(Kleiner et al., 2007). Stimulus blocks appeared on the screen in a
pseudo-randomized sequence that made sure that every pair-wise tran-
sition between conditions was equally likely across the whole experiment
(Brooks, 2012). All ten conditions were presented 40 times each in a total
of eight runs. Each run lasted 8 min 20 s plus 8.7 s for 11 dummy scans
and 8 s extra scan time.

2.3.2. Task
Participants maintained fixation on the fixation cross in the center of

the screen while paying attention to the colored surfaces surrounding it.
Their task was to respond via button press whenever they detected a
target event. Targets were a temporary decrease in the luminance of the
white fixation cross or a temporary change in the number of colored
surfaces. One of the surfaces at the 11, 9, 7, or 5 o'clock positions
sometimes disappeared for a short period or an additional surface
appeared at the 1 or 3 o'clock position. The target event lasted 0.5 s in
each case. Each of the six surface events occurred in 3.75% of the trials
while fixation cross events occurred in 22.5% of the trials yielding a total
target probability of 45% (¼ 22.5% þ 6 locations * 3.75%) for each
condition. To increase motivation, participants received feedback about
their performance at the end of each run.

2.4. Retinotopic mapping & ROI definition

Visual areas V1-V3, hV4, and VO1 were localized using standard
retinotopic mapping techniques (Sereno et al., 1995). In brief, observers
fixated in the middle of the screen while attending a flickering black and
white checkerboard visible through a wedge-shaped aperture on a gray
background. Check sizes increased logarithmically from the center to the
visual periphery to account for cortical magnification. The wedge sub-
tended the entire screen within an angle of 90� and rotated with a period
of 55.64 s in clockwise or counter-clockwise direction. Participants
viewed ten cycles of this stimulus in four polar mapping runs with
stimulus direction alternating between runs. The functional data were
analyzed using Freesurfer software (http://surfer.nmr.mgh.harvard.edu/
) to obtain polar maps on a flattened 2D reconstruction of individual
brains that allowed for the detailed demarcation of single visual areas.

In addition to retinotopic ROIs we also created a group ROI located
anterior to the retinotopically defined ROIs based on the results of our
within-illuminant searchlight analysis (see section “fMRI pattern classi-
fication: searchlight analysis” in Results). This ROI was defined as the
smallest sphere that encompassed an entire cluster of information located
in a brain region that has previously been labeled V4α (Barbur and
Spang, 2008; Bartels and Zeki, 2000). We hence refer to this region as
putative V4α (or pV4α for short). TheMNI coordinates of the center of the
sphere were x ¼ 39, y ¼ �58, z ¼ �11 and its radius was 6 mm.
Importantly, the searchlight analysis used to define pV4α was indepen-
dent from the subsequent classification tests carried out on this ROI.

2.5. fMRI scan details

We used a 64-channel coil to record functional activity at 3 T mag-
netic field strength (Siemens Prisma) with a GRAPPA accelerated T2*-
weighted 4-fold parallel imaging sequence (GRAPPA factor 2, 0.87 s
repetition time (TR), 57� flip angle, 30 ms echo time (TE), 56 slices
without gaps, 96 � 96 acquisition matrix, 2 mm isotropic voxel size). A
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Fig. 3. Stimulus Presentation Sequence. Each scene was presented four times for 1.5 s, each time followed by a random color mask shown for 1 s. Observers were instructed to press a
button whenever the fixation cross was dimmed or when the number of colored surfaces changed.
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T1-weighted MP-RAGE sequence was used to acquire an anatomical
image of each subject's brain at a resolution of 1� 1 � 1 mm3. To correct
for magnetic field inhomogeneity, we measured a Gradient Echo field
map in each fMRI session.
2.6. fMRI data analysis

2.6.1. fMRI data preprocessing
Preprocessing was carried out using SPM8 (http://www.fil.ion.ucl.ac.

uk/spm). We applied motion correction and unwarping (using the voxel
displacement maps obtained from the Gradient Echo field map) to our
functional data, corrected them for slice acquisition time, and co-
registered them to the anatomical scan. The anatomical scans were
segmented and normalized to MNI space along with the functional data.
The co-registered functional data from the retinotopic mapping experi-
ment were further smoothed with a 4 mm (FWHM) Gaussian kernel.

2.6.2. fMRI pattern estimation
To estimate the patterns of fMRI responses to our stimuli under

various conditions, we modeled the normalized, unsmoothed voxel time
series with GLMs. Every stimulus block (Fig. 3) was modeled separately
as a boxcar function shifted forward in time by 5 s to account for the
hemodynamic lag. Additional regressors modeled the estimated motion
parameters. For each time step voxel values were scaled by the global
mean value. Instead of applying SPM's frequency cutoff, the resulting
series of beta estimates were temporally filtered by removing linear and
quadratic trends (and intercept) from each voxel per run. Finally, we z-
scored the beta estimates for each voxel and replaced values above 2 with
2s and values below �2 with -2s to handle outliers as recommended by
the LIBLINEAR authors (see below).

2.6.3. fMRI pattern analysis
All classification analyses were carried out using leave-one-run-out

cross-validation, and all inference was based on bootstrapping and
family-wise error correction (FWE) (for inference see section on statis-
tical inference below). In detail, classification accuracy was calculated by
taking the sum of correct percentages across validation folds weighted by
the number of predictions made in that run. If training sets were unbal-
anced (i.e., contained more samples from one category than the other),
we imputed the missing values by setting them to the average pattern of
that category. We used the LIBLINEAR implementation (https://www.
csie.ntu.edu.tw/~cjlin/liblinear/) of SVM (Fan et al., 2008). The
training algorithm determined the optimal value for C by performing 3-
fold cross-validation on training data and selecting the value that mini-
mized prediction error. C is a penalty parameter that controls the trade-
off between training set error and generalization to prevent overfitting.
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Candidate values for C were powers of 2: 2�18, 2�17, …, 21.

2.6.3.1. Within illuminant classification. To provide a benchmark of
decoding accuracies for subsequent analyses, we first tested if the two
surface colors could be predicted from fMRI activity patterns when
training and test set data came from the same illuminant conditions. In
this case above-chance classification does not specifically depend on
perceived surface color but can be achieved simply on the basis of
different wavelength compositions of the lights the surfaces reflect.
Discriminability of surface color within the same illumination conditions
is rather a prerequisite if classification is expected to work when training
and testing are performed on different illumination conditions. This
analysis can be regarded as a replication of previous research (e.g.,
Brouwer and Heeger, 2009) but extends it to the more complex context of
our 3D rendered scene that embeds the surfaces of interest. We pro-
ceeded by training classifiers to distinguish between blue and yellow
surfaces under each two pairs of illuminants (neutral/blue-consistent-
cue, neutral/yellow-consistent-cue, blue-consistent-cue/yellow-consis-
tent-cue) and tested them on responses to stimuli from the same two
conditions (recorded in the withheld run) (Fig. 4a). The average across
all three possible combinations was taken as the dependent variable in
this analysis.

We provided the algorithm with vectors of voxel response patterns
(one for each trial), and for each one label corresponding to the surface
color (regardless of illuminant) that was presented to the observer when
that measurement was made. The algorithm was “blind” with regards to
the illumination that the measured pattern came from. The classifier thus
had to treat any variation due to our luminance modulation or illumi-
nation as within-class variation. This approach helps the classifier select
especially those voxels that are more likely to represent color in a con-
stant way while avoiding voxels that are driven by luminance differences.
At the same time, this approach allowed us to exploit as much of our data
as possible in our analyses. This training procedure was chosen for all
three analyses (Fig. 4a–c) to allow for comparison.

The critical difference between the classifications within-illuminants
and across-illuminants is this: In within-illuminant classification the test
data from the withheld run came from the same two illuminant condi-
tions while in across-illuminant classification the test data came from the
third illuminant condition.

The reason why we used data of two illuminants also for training in
our control (“within illuminant”) analysis is described in the following.
For “within illuminant” we trained a classifier to distinguish “blue” and
“yellow” surfaces that were viewed under two illuminants (e.g. “neutral”
and “blue”). Testing was done for the same two illuminants on trials of a
left-out run. Hence, for ROIs that did not have illuminant-invariant
representations, the classifier would learn two patterns for “blue”
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Fig. 4. Classification Analyses. Illustration of the first three classification analyses per-
formed on fMRI response patterns. These classifications aimed to distinguish between blue
and yellow surface conditions, within or across varying illumination conditions, respec-
tively. (a) Three classifiers were trained to distinguish responses to blue and yellow sur-
faces under two different illuminants and tested on responses to stimuli from the same
illumination conditions that were not used for training. No generalization across illumi-
nations was required. Results were averaged across the three analyses. (b) Training as in
(a), but this time classifiers were tested on responses to stimuli from the third illumination
condition that was not included for training. The analysis for (b) was carried out sepa-
rately for consistent-cue and for reduced-cue stimuli, respectively.
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surface (one for each illuminant) and another two for “yellow” surface,
and perform well on testing using trials taken from either illuminant.
Testing on a new (untrained) illuminant would fail. The advantage of this
training procedure on two illuminants, and the reason why we used it,
was that for ROIs that did have illuminant-invariant representations,
training would encourage the classifier to rely on voxel patterns that
were invariant with respect to the illuminant. Thus, for such ROIs, clas-
sification on a new (untrained) illuminant would work.

This was hence the best training scheme to maximize success of our
main classification (across illuminants). In order to have a control anal-
ysis that was as similar as possible to the main analysis, we used the same
training scheme – only the test trials differed between control and
main analyses.

2.6.3.2. Across illuminant classification (consistent-cue condition). The
critical test for the invariance of surface color representations is to
examine how well they generalize across changes in illumination. In
other words, howwell can a classifier predict surface color when the data
used to train the classifier come from different illumination conditions
than the data used for testing? Three classifiers were trained to distin-
guish between blue and yellow surfaces under each two pairs of illumi-
nants, as described above for within-illuminant decoding. However,
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testing was carried out on the left-out illumination for each of the clas-
sifiers and their accuracies were averaged. In detail: one classifier was
trained to distinguish blue and yellow surfaces on responses from
“neutral” and “blue-consistent-cue” illumination conditions and tested
on responses from the “yellow-consistent-cue” illumination condition;
one was trained on data from “neutral” and “yellow-consistent-cue”
conditions and tested on data from the “blue-consistent-cue” condition;
and one was trained on “blue-consistent-cue” and “yellow-consistent-
cue” condition responses and tested on “neutral” condition data. Each
classifier was thus trained to discriminate between surface colors under
two illuminants and then applied to responses to the same surfaces under
the third illuminant that was not included in the training set (Fig. 4b).
Note that a change in illumination alters the wavelength compositions of
the surfaces and that generalization accuracy above chance indicates that
the color representation of the surface is invariant with respect to the
illuminant under which it is viewed. It is also important to appreciate that
this classification scheme was comparable to the one applied for the
classification within illuminants because the same data were used
for training.

2.6.3.3. Across illuminant classification (reduced-cue condition). The pur-
pose of the reduced-cue conditionwas to investigate the sensitivity of any
neural signature of constant colors to manipulations that are known to
reduce color constancy as measured psychophysically. The classification
scheme in this analysis is identical to the one described above with one
exception: instead of using the responses elicited under the consistent-
cue blue condition and the consistent-cue yellow condition we used the
responses elicited by stimuli from the reduced-cue blue and reduced-cue
yellow conditions, respectively (Fig. 4b).

2.6.3.4. Ipsilateral and contralateral ROIs. As depicted in Fig. 1a, the four
blue or yellow surfaces appeared mostly in one visual hemifield. The
surface locations shown in Fig. 1 correspond to the locations for odd-
numbered subjects. Their locations were mirrored horizontally for
even-numbered subjects. We analyzed the ROI data separately for ipsi-
lateral and contralateral regions with respect to the hemifield where
more surfaces appeared.

2.6.3.5. Searchlight analysis. To obtain a more global view of the brain
responses coding for surface color, the three types of classifications
detailed above were also carried out in searchlight analyses (Kriegeskorte
et al., 2006). SVM classifiers were trained and tested in the same way as
in the ROI analyses (within illuminants, across illuminants/consistent-
cue, and across illuminants/reduced-cue) on local patterns of fMRI re-
sponses within a radius of 3 voxels.

2.6.3.6. Statistical inference: ROI results. Non-parametric permutation
tests were performed to test whether classification accuracy was above
chance (chance level being 50% for binary classifications). Class labels in
the training set were shuffled randomly 103 times and new classification
models were fit to the data and tested on the intact withheld test set.
When bootstrapping null distributions for classifications that required
averaging across classification accuracies, we took care that the same
label permutations were applied in each of the classification analyses
involved. This procedure yielded a distribution of mean classification
accuracies at the group level that would be expected if no relationship
existed between the multivariate data and the class labels in the training
set. To correct for multiplicity due to the number of ROIs tested, we
controlled the family-wise error (FWE) in the following way (e.g., Blair
and Karniski, 1993): within each permutation step, the randomized label
assignments were kept identical for all ROIs within individual subjects.
Group mean ROI classification values were then obtained for each ROI.
Only the maximum group mean value across all ROIs was used for the
null distribution. Therefore, a common null distribution was used for all
ROIs that controlled the error probability of at least one null hypothesis
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being falsely rejected.

2.6.3.7. Statistical inference: searchlight analyses. Individual searchlight
maps were spatially smoothed with a 6 mm (FWHM) Gaussian kernel. We
tested if decoding was significantly better than chance (i.e., 50%) using a
one-sample t-test across participants (df ¼ 18) and null hypotheses were
rejected for p values below .001 (uncorrected). The maps were masked
with each participant's whole brain mask only.

2.6.3.8. Surface/illuminant bias analysis. The purpose of the aforemen-
tioned analyses was to test to what extent surface color representations
are invariant with respect to changes in illumination. Since illumination
changes alter the SPDs of the light reflected off those surfaces, we
considered a complementary question as well: what happens if instead
the wavelength distribution of the reflected light is identical for two
stimuli that differ with respect to surface and illumination colors? Some
brain regions may be biased to encode reflectance, others illumination.

We devised stimuli and performed an analysis that can estimate this
bias (Seymour et al., 2015, 2010, 2009): Fig. 8 shows that the light re-
flected from the yellow surface under blue illumination is identical to the
light from the blue surface under the yellow illumination (top-right and
bottom-left stimuli in Fig. 8). Classifiers were trained to distinguish be-
tween responses to these two stimuli, but tested on responses to the other
two stimuli. The classifier results would hence reveal whether a ROI
encodes primarily the perceived surface color (i.e. reflectance), or illu-
mination. Either classifier response would be “correct”, but reveal the
encoding bias of a given ROI. If the classifier assigns the same labels to
stimuli in the same row, the neural representation weights the influence
of illumination on the incoming signal more strongly. If it assigns the
same labels to stimuli in the same column, the neural representation
emphasizes the difference in surface reflectance.

In contrast to our previous ROI analyses, we used a two-tailed per-
mutation technique to test if classifier predictions indicated a represen-
tational bias that was significantly different from 50%. This means that
the group null distribution this time did not consist of the largest clas-
sification value per permutation step but the value with the largest ab-
solute difference from chance level (i.e., 50%). This leads to a bimodal
null distribution. Reported p values are the proportion of samples in the
null distribution that are above or below the observed value (whichever
is smaller) multiplied by two.

In order to interpret a bias in favor of illuminant or surface encoding,
it is informative to check if illuminant or surface information can be
decoded when classifiers are explicitly trained to discriminate along one
or the other stimulus dimension. A region that showed no bias for illu-
minant or surface encoding for instance, would have the same bias as a
region that contained only noise. To distinguish between these scenarios,
we conducted two control analyses using the same data as in the bias
analysis. In explicit surface decoding, classifiers were trained to
discriminate between responses to blue and yellow surfaces (under blue
or yellow illumination) and tested on howwell they could predict surface
color in an independent test set (using leave-one-run-out cross-valida-
tion). In explicit illuminant decoding, illuminant and surface switched
roles such that classifiers were instead trained and tested on how well
they could predict illuminant irrespective of surface color. If activity
within a ROI was only noise, none of these classifications would reveal
any information.

Finally, we complemented this analysis with a comparison between
representational dissimilarity matrices (RDMs) of the measured voxel
responses and with two different model RDMs (Nili et al., 2014). For each
ROI, we calculated one 4-by-4 RDM. Each entry represented the pairwise
dissimilarities (1 – Pearson correlation coefficient) between the average
response vectors (voxel values for a given condition of a given ROI) of
two conditions. The RDM was calculated for the same four conditions
used in the bias analysis. These are given by the two binary factors sur-
face (blue or yellow) and illumination (blue or yellow). The observed
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RDMs were tested for agreement with two different model RDMs (shown
in Fig. 9c) using rank correlations. The surface model assumed that neural
activity in a ROI represented differences in surface reflectance but did not
distinguish between illuminations. It hence predicted a maximal
dissimilarity of 1 between patterns of responses to different surfaces and a
dissimilarity of 0 between illumination responses (i.e., a complete surface
bias). The illuminant model made the opposite prediction that neural re-
sponses only reflect differences in illumination without discriminating
between surfaces. It therefore predicted a dissimilarity of 1 between re-
sponses to different illuminations and a dissimilarity of 0 between
different surface representations (i.e., a complete illuminant bias).
Multidimensional scaling (MDS, metric stress criterion) was used to
discover relative commonalities between similarity structures in neural
encoding within multiple ROIs and the hypothetical model RDMs pre-
dicted by theory. We performed hierarchical clustering (average linkage,
Euclidean distance) and examined the resulting dendrograms to check
whether the representational similarity structures within ROIs preferred
a clustering by surface conditions over illumination conditions or
vice versa.

2.7. Psychophysics

Human observers differ in their ability to perceive a given surface as
the same color when the illumination varies, i.e. in their color constancy.
This can be quantified by the color constancy index (CI). We measured
color constancy in all our participants behaviorally using an alternating
staircase procedure described by Xiao et al. (2012). This method finds the
chromaticity of a color that appears achromatic under the illumination of
the scenes presented to observers. A CI can be computed with respect to a
pair of illuminants from the achromatic settings made under each of them
(Brainard, 1998). The color constancy index is based on the notion that a
perfectly color constant perceptual system should shift its achromatic
point in the direction of the illuminant change while a perceptual system
without any color constancy should exhibit identical achromatic points
under both illuminants (see Supplementary Information for formulas). A
CI of 0 thus indicates absence of color constancy while a CI of 1 means
perfect color constancy (although CIs are not necessarily bound between
0 and 1).

We identified the achromatic point for observers under each viewing
condition by instructing them to judge the appearance of a briefly flashed
color circle (750 ms) in alternating blocks as either more reddish than
greenish or as more bluish than yellowish. The judgments in every trial
were used to update the chromaticity of the circle such that it appeared
increasingly achromatic. Our methods were identical to those in Xiao
et al. (2012) except that we adjusted the chromaticity in the staircase
procedure not in RGB space but in a subspace of the perceptually uniform
CIE L*a*b* space. To accomplish this, the maximal red, green, blue, and
yellow RGB values of the calibrated display were converted to a*, b*
coordinates. We defined the red/green and the blue/yellow directions as
the unit difference vectors between the two coordinate pairs for each
direction. Another difference was that the color circle for which the color
judgment had to be made did not appear in the center of the screen but in
the part of the rectangle where no colored surfaces were present, i.e., in
the top-right corner for participants with odd subject numbers, in the top-
left for all others.

In addition to determining the CI for each participant, we also
determined CIreduced-cue by applying the same cue conflict manipulation
also applied for part of the imaging stimuli (see “Stimuli: cue conflict
conditions”). This manipulation is known to heavily impair color con-
stancy judgments in human observers (e.g., Delahunt and Brainard,
2004; Xiao et al., 2012), and allowed us to relate its behavioral effect to
individual brain decoding results (see section below).

Hence, two CIs were calculated for each participant by taking the
average of all CIs in the consistent-cue and reduced-cue conditions,
respectively (ignoring conditions in which staircases did not converge,
see Results).



Fig. 5. Behavioral Results. Color constancy was significantly better in the consistent-cue
than in the reduced-cue condition (paired t-test, t17 ¼ 10.566, p < .001). Error bars
denote SEM.
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2.8. Psychophysical data analysis

The mean CIs in the consistent-cue and reduced-cue conditions were
compared using a paired one-tailed t-test to ascertain that the cue validity
manipulation did in fact show a decrease of color constancy in the cue
conflict condition relative to the consistent-cue condition. Finally, we
were interested in the psychophysiological relationship between fMRI
measurements of neural activity and behavioral measurements of color
constancy. Specifically, we tested a prediction from the Equivalent Illu-
minant Model of color constancy (Brainard and Maloney, 2011). It as-
sumes that color constancy depends on the chromaticity of the illuminant
estimated by the perceptual system. Whether color constancy fails or not
depends on the accuracy of this estimate (the “equivalent illuminant”).
To test this prediction, we calculated the difference in prediction accu-
racies for the three illuminants between consistent-cue and reduced-cue
conditions in each ROI and subject. We then examined if these differ-
ences between conditions predict the individual decrease in color con-
stancy induced in the reduced-cue condition using linear
regression models.

3. Results

We rendered a complex scene containing four surfaces that appeared
either blue or yellow. Three different illuminations were simulated:
neutral D65, a blue illumination, and a yellow illumination (Fig. 1a, b, c).
Additionally, we introduced a reduced-cue condition for the blue
(Fig. 1d) and yellow (Fig. 1e) illumination conditions: in these conditions
the background square on which the colored surfaces appeared was
replaced with a surface that was chosen such that the light reflected from
it was the same as in the neutral condition. This manipulation is known to
strongly impair color constancy in human observers (Delahunt and
Brainard, 2004; Xiao et al., 2012). We reasoned that a neural correlate of
color constancy should be just as susceptible to this manipulation as
behavioral color constancy measures. Furthermore, the reflectance of the
blue and the yellow surfaces were chosen such that the light reflected
from the yellow surface under blue illumination (see power spectra in
insets in Fig. 1b on the right) was the same as the light reflected from the
blue surface under yellow illumination (see insets in Fig. 1c on the left).
This allowed us to study the degree to which different brain regions are
biased to encode surface color versus illuminant properties in a situation
when the reflected light is physically identical for both stimuli.

Participants completed a neuroimaging session in which they viewed
the rendered scenes on a projection screen while lying supine in the
scanner and performing a fixation and spatial attention task (Fig. 3). They
participated in a behavioral experiment to measure color constancy and a
retinotopic mapping experiment.

We trained linear classifiers to discriminate between the two surface
colors on the basis of fMRI activation patterns and examined how well
they generalize to new samples that were measured either under the
same illuminations (Fig. 4a) or a new illumination condition that has not
been included in the training set (Fig. 4b). Generalization to a new illu-
mination was used as an indicator for color constancy.

3.1. Psychophysics: cue condition effect

The reduced-cue conditions differed from the consistent-cue ones in
that the rectangular background surface of the rendered scene reflected
the same light in both blue and yellow illumination: that reflected under
neutral illumination. As expected, this manipulation led to a strong
decrease in color constancy relative to the consistent-cue condition – in
fact, in the reduced-cue condition color constancy was completely
abolished (Fig. 5). Accordingly, mean CI was significantly larger in the
consistent-cue than in the reduced-cue condition (CIconsistent-cue ¼ .4716,
CIreduced-cue ¼ �.0812, t17 ¼ 10.566, p ¼ 3.4 � 10�9, one-tailed). Note
that the behavioral data from subject 14 could not be used because the
staircases did not converge for any of the illuminant conditions.
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3.2. ROI-based fMRI pattern classification: within illuminants

The first fMRI data analysis examined the simplest scenario in which
classifiers were trained on samples of the same illuminant conditions as
those in the test set. We trained linear classifiers to distinguish between
blue and yellow surface colors under pairs of illuminations (e.g. neutral
and blue) and tested them on left-out samples from the same illumina-
tions; results were averaged for all combinations of illumination pairs
(see Fig. 4a). Training was done for pairs of illuminants to provide a
comparison point to analogous subsequent analyses. This analysis does
not test for any generalizability across illuminants. It tests for the dis-
criminability of BOLD responses caused by lights of different wavelength
compositions, and thus provides a baseline for decoding accuracy for the
current data. Our ROIs comprised the visual areas we identified in the
retinotopic mapping session and a functionally defined ROI anterior to
them found in the searchlight analysis (for ROI definition, see “fMRI
pattern classification: searchlight analysis” below). Consistent with pre-
vious research (Brouwer and Heeger, 2009), the two colors led to
different patterns of fMRI activity in almost all ROIs examined (Fig. 6a),
especially in contralateral ROIs. Note that surface stimuli had been pre-
sented in both hemifields, but with an asymmetry of three in the
contralateral and one in the ipsilateral hemifield (see methods). Classi-
fication accuracy ranged from 51.38% (Cohen's d ¼ .46) in ipsilateral
hV4, marginally failing to reach significance (p ¼ .057, FWE corrected),
to 54.42% (Cohen's d¼ 1.2, p¼ .001, FWE corrected) in contralateral V1.
We conclude that surface color can be predicted from fMRI activity
patterns in all ROIs (except ipsilateral hV4) when classifiers have been
trained on samples from the same illuminant conditions as those in the
test set. Although mean classification accuracies were not much higher
than chance, the effect sizes are considerable in magnitude. The result for
putative V4α in Fig. 6a is reported for completeness only because it is
based on voxels enclosing a cluster of information identified in the same
(and therefore non-independent) within-illuminant analysis conducted
with the searchlight technique. Note that pV4α results in Fig. 6b and c are
independent of the ROI-defining contrast.

3.3. ROI-based fMRI pattern classification: across illuminants (consistent-
cue)

This analysis addressed the question whether voxel patterns evoked



Fig. 6. Pattern Classification Results: ROI Analyses. Mean decoding accuracies in all
functionally defined ROIs for surface color discrimination (the three analyses shown in
Fig. 3). Results for anatomically defined V5/MT are shown in Fig. S7 in the Supplementary
Information. (a) Surface color could be decoded significantly above chance in all ROIs
(except ipsilateral hV4) when classification did not involve generalization across illumi-
nant conditions. This panel presents pV4α in light gray as this analysis (within-illuminant
decoding) was the same used to define this ROI. Note that the other panels show inde-
pendent analyses. (b)When classifiers were trained on one set of illuminants and tested on
an illuminant not present in the training set, classification was significant only in
contralateral V1 and pV4α. (c) In the reduced-cue condition generalization across illu-
minant condition was not better than chance in any ROI. *p < .05, **p < .005, 103 per-
mutations, FWE corrected, error bars: SEM.
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by the blue and yellow surfaces under one set of illuminants would
generalize to new illuminants as well. Generalization of response pat-
terns to new illuminant conditions would imply the invariance of surface
color representations with respect to illumination. To this end, we
trained classifiers in the same way as in the previous analysis within il-
luminants but this time tested them on data from an illuminant condition
that had not been part of the training set (see Fig. 4b). Our analysis
showed (Fig. 6b) that, among the retinotopically defined ROIs, only the
V1 area contralateral to the three surfaces allowed predicting the surface
color using a classifier trained on responses to stimuli simulating illu-
minations that were not included in the training set (54.41%, p ¼ .001,
FWE corrected, Cohen's d ¼ .88). Putative V4α also exhibited surface
color decoding across illuminants significantly above chance (52.04%,
p¼ .033, FWE corrected, Cohen's d¼ .43). We did not, however, observe
decoding accuracies significantly above chance in any other ROI, with
the highest non-significant decoding accuracy found in contralateral V2
(51.21%, p ¼ .427, FWE corrected, Cohen's d ¼ .33). Our analysis thus
demonstrates that neural representations of surface color in V1 and pV4α
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are invariant with respect to illumination changes. This invariance was
only observed in these two regions as the patterns of responses to surface
color in all other ROIs were not found to generalize across illuminants.

3.3.1. Control analysis: classification across cue conditions
In order to rule out that the null results for across-illuminant surface

decoding in hV4 and VO1was driven by bad signal quality, we performed
additional control analyses. In particular, previous research has sug-
gested that fMRI signal quality in V4 can suffer from the presence of
nearby blood vessels, which may put this region to a particular disad-
vantage (Winawer et al., 2010). We trained classifiers to discriminate
between surface colors (blue vs. yellow) in the consistent-cue condition
(using blocks from the blue and yellow illuminant conditions) and tested
them using the corresponding blocks of the reduced-cue condition (and
vice versa). The reasoning is the following: the surface-squares in
consistent-cue and reduced-cue conditions have identical light emissions
(i.e. wavelength-based information). However, the surface appearances
were more clearly distinguishable as blue and yellow in the consistent-
cue compared to reduced-cue blocks. Hence, a region encoding appear-
ance (i.e. perception of constant color) should suffer in decoding per-
formance in this cross-testing scenario, whereas a region encoding
wavelength-based information should not. Paired t tests in the contra-
lateral hemisphere showed that decoding accuracies were indeed larger
in hV4 (56.58%) than in V1 (53.29%, t18 ¼ 2.5617, p ¼ 0.0392, all one-
tailed and Bonferroni corrected for four comparisons) and pV4α (50.82%,
t18 ¼ 3.9504, p¼ .0019, Bonferroni corrected, see Fig. S1 for results from
all ROIs). For VO1 (53.27%), however, the differences relative to pV4α
(50.82%, t18 ¼ 1.4881, p¼ 0.077, uncorrected) or V1 (53.29%) were not
significant. This finding rules out the possibility that signal quality in hV4
was generally worse than in V1 and pV4α.

3.4. ROI-based fMRI pattern classification: across illuminants (reduced-
cue)

The observation that classifiers could predict surface color from
response patterns in V1 and pV4α even when training and test data came
from different illumination conditions raises an important question about
the functional role of such activity for color constancy. If it is related to
color constancy, there must be an experimental manipulation that
simultaneously affects activity in these regions as well as psychophysical
measures of color constancy. Our experimental design included a
reduced-cue condition, in which a background surface was made to emit
the same light in all three illumination conditions. How does this
manipulation affect brain activity on the one hand and behavior on the
other? As confirmed psychophysically, the reduced-cue condition
completely abolished color constancy in our observers (see Fig. 5). The
classification analysis was carried out in the same way as in the analysis
across illuminations in the consistent-cue condition (i.e., data in training
and test set came from different illumination conditions) except that now
only responses from the reduced-cue illumination conditions were used
(Fig. 1d and e). In this analysis, classification accuracy was not different
from chance in any of the examined ROIs (Fig. 6c). Classification accu-
racy was highest in ipsilateral area V2 (51.47%, p ¼ .293, FWE cor-
rected). Importantly, prediction accuracy was not significantly above
chance in contralateral V1 either (50.68%, p ¼ .882, FWE corrected).
Classification of responses in pV4α similarly did not exceed chance
(49.76%). Taken together with the psychophysical finding, this analysis
shows that a manipulation that strongly impairs color constancy also
causes surface color decoding across different illuminant conditions to
fail. This suggests that V1 and pV4α activity may have contributed to
color constancy in our experiment by encoding surface color in terms of
chromatic contrast.

3.5. fMRI pattern classification: searchlight analysis

Since there may be color-responsive activity beyond retinotopically
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mapped regions relevant to our task, we repeated the same classifications
performed for the ROIs also at the whole brain level by means of the
searchlight method (3 voxel radius) (Kriegeskorte et al., 2006).

Fig. 7a shows searchlight results for the within-illuminants analysis.
Significant decoding was apparent throughout the occipital cortex
including the calcarine gyrus, as well as in the fusiform gyrus primarily
contralateral to the surface stimuli. Note that we left-right flipped
searchlight maps for participants with even subject numbers to ensure
that for all subjects contralateral stimulation was on the right side
(positive values of x).

Fig. 7b shows the results from the searchlight analysis across illumi-
nants (consistent-cue). It revealed a cluster of voxels in the fusiform gyrus
where differences between local patterns of fMRI activity distinguishing
the two surface colors generalized across illuminants. This cluster was
located anterior to the ROIs we had examined, with the MNI coordinates
of the peak voxel being x¼ 34, y¼ �54, z ¼�10 (Fig. 7b). This fusiform
region overlaps with voxels that exhibit classification accuracies above
Fig. 7. Pattern Classification Results: Searchlight Analyses. Searchlight maps (3 voxel radius) fo
contralateral hemispheres with respect to location of most stimuli. (a) Surface classification wi
decoding. (b) Surface classification across illuminants. The searchlight map reveals a cluster
posterior view of the pV4α cluster identified in the searchlight analysis (dotted circle) and reti
located anteriorly to the ROIs. Colored labels denote surface area falling into individually defi
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chance in the within-illuminant searchlight analysis.
As expected from the null-findings in the ROI analyses, also the

searchlight analysis on reduced-cue across-illuminant decoding did not
reveal any significant results.

The functional properties of the anterior fusiform region thus
resemble those of area V1. Both regions allowed predictions of surface
colors from local brain activity within the same illuminant conditions as
well as across different illuminants. The reduced-cue abolished general-
izability across illuminants in both regions. Fig. 7c shows the location of
this cluster in relation to the retinotopically defined ROIs in a cortical
surface rendering.

Previous studies have already identified two separate color-
responsive regions in the fusiform gyrus (Barbur and Spang, 2008; Bar-
tels and Zeki, 2000; Beauchamp et al., 1999; Wade et al., 2008). This
region has often been referred to as V4α. The peak voxel of the cluster in
our searchlight analysis was located in close vicinity to the peak voxels
listed for V4α in the review by Bartels and Zeki (2000).
r the classification analyses shown in Fig. 3 and 5. Letters “i” and “c” denote ipsilateral and
thin illuminants. Circle marks the cluster defined as putative V4α using within-illuminant
coinciding with pV4α. (c) Illustration of relative location of the ventral regions. Medial
notopic ROIs overlaid on a cortical surface rendering in MNI space. The pV4α cluster was
ned ROIs in at least 25% of the participants.
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For a more direct comparison with the results from our ROI analyses,
we created a ROI from all voxels within a sphere just large enough to
encompass the whole information cluster circled in Fig. 7a (see also
“Retinotopic mapping & ROI definition” in Methods and Materials). We
included this region as putative V4α (or pV4α) in our ROI analyses. Re-
sults for this region can be seen to the right of the dotted lines in the plots
of Fig. 6.

Due to the similar response properties of V1 and pV4α, we explored
the connectivity between these regions. Partial correlation analyses of
the mean residual time series per ROIs showed that there was a small, yet
significant amount of unique variance shared between V1 and putative
pV4α (r ¼ �.038, p ¼ .0479, two-tailed, Holm-Bonferroni corrected for
15 tests, Fig. S2).

3.6. Surface/illuminant bias analysis

It is well known that color constancy depends on our estimation of the
illuminant (Delahunt and Brainard, 2004; Xiao et al., 2012). For example,
uncertainty about the illuminant within a scene can change the perceived
color of a given foreground object dramatically (e.g., “the dress”,
Gegenfurtner et al., 2015). It is hence likely that some neural represen-
tations primarily encode information about the current illuminant, while
others primarily encode the color, i.e. estimated surface reflectance.
While our previous analyses focused on the robustness of surface color
Fig. 8. Surface/Illuminant Bias Analysis: Procedure. Analysis determining bias towards encodi
used for the surface vs. illuminant bias analysis. Stimuli are identical to those shown in Fig. 1b an
blue surface under yellow illumination, even though they were perceived differently (indicate
between these two stimuli. These classifiers could hence rely on perceptual surface color or on i
which of the two features the classifiers relied on. If stimuli in the same row were assigned the
column were assigned the same label, this indicated a bias for surface representation. In a secon
(i.e. top versus bottom row) or between surface color (i.e. left vs. right column).
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representations in the face of changes in illumination and hence wave-
length distribution, we here investigated whether ROIs had a bias in
encoding surface color or illuminant information when the visual system
is presented with lights composed of identical SPDs.

We had designed stimuli such that the yellow surface reflected the
same light under blue illumination (SyIb) as the blue surface under yel-
low illumination (SbIy) (Fig. 8). Hence, while the surfaces emitted
identical wavelength information, their colors (i.e. their perceptual
appearance) differed, as did the context of their illumination. When a
classifier was trained to distinguish between responses to these two
stimuli, it could rely on two types of information: perceived color (yellow
vs. blue surface), or illumination (yellow vs. blue). Which of the two
dominated, could then easily be tested by cross-testing this classifier on
the two unambiguous stimuli, i.e., blue surface under blue illumination
(SbIb) and the yellow surface under yellow illumination (SyIy). If the
classifier learned to rely primarily on illumination, it would classify e.g.
SbIb as SyIb. However, if it relied primarily on surface color, it would
classify SbIb as SbIy.

As can be seen in Fig. 9a, all regions with the exception of pV4α
showed an illuminant bias significantly different from 50% (two-tailed).
Areas V1-V3 showed the strongest illuminant bias (weakest in V3: 40.9%,
p ¼ .002, FWE corrected), followed by areas hV4 and VO1 (weakest in
hV4: 46.0%, p ¼ .01, FWE corrected). Only pV4α did not show an illu-
minant bias (50.9%, p ¼ .942, FWE corrected). Since there is no absolute
ng of surface color versus illuminant, respectively. (a) Illustration of stimuli and analysis
d c. Importantly, the yellow surface under blue illumination reflected the same light as the
d by gray connector between surfaces). A first analysis trained classifiers to distinguish
llumination. Classifiers were tested on responses to the other two stimuli, which revealed
same label, this demonstrated a bias for illuminant representation. If stimuli in the same
d and third analysis classifiers were trained and tested to distinguish between illumination
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baseline for this bias analysis, we tested for bias differences between ROIs
using a repeated measures ANOVA with ROI as fixed and subjects as
random factors: differences across all ROIs were significant
(F5,90 ¼ 11.126, p ¼ 2.51 � 10�7, Greenhouse-Geisser corrected for non-
sphericity εGG ¼ 0.8381). Post-hoc contrasts with separate error terms
Fig. 9. Surface/Illuminant Bias Analysis: Results. (a) High percentages indicate surface
encoding bias while lower percentages indicate illuminant encoding bias. ROI results are
tested for a significant deviation from 50% (103 permutations, two-tailed). Post-hoc tests
showed that pV4α had a relatively stronger surface bias than retinotopic ROIs and that
hV4 and VO1 had stronger surface biases than areas V1-V3. (b) Mean decoding accuracies
(error bars represent SEMs) for illuminant and surface color classifications. Accuracies
were above chance for both analyses in all ROIs. (c) MDS solution in representational
similarity analysis (minimizing metric stress): of all regions examined, areas V1-V3 were
most similar to the illuminant model, followed by hV4 and VO1, and lastly pV4α, which
was more similar to the surface model. Dendrograms show that, in contrast to the other
ROIs, the grouping of the four stimuli in pV4α emphasized the difference between surfaces
over illuminants.
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showed that putative V4α indeed had a stronger surface bias than the
remaining ROIs (exceeding Roy-Bose critical value, F5,14 ¼ 5.064,
p ¼ .0148, Holm-Bonferroni corrected) and that hV4 and VO1 had
stronger surface biases than V1-V3 (exceeding Roy-Bose critical value,
F5,14 ¼ 3.149, p ¼ .0412, Holm-Bonferroni corrected).

Since in this analysis 50% could mean “no bias”, but equally well
“chance level”, we performed two control analyses using the data from
the same four conditions (SbIb, SyIb, SbIy, SyIy). In the first analysis we
trained and tested classifiers explicitly using leave-one-run-out cross-
validation to distinguish between surfaces (SbIb and SbIy vs. SyIb and
SyIy) while in the second analysis discriminations had to be made be-
tween illuminants (SbIy and SyIy vs. SbIb and SyIb). As can be seen in
Fig. 9b, such classifiers could successfully predict illumination and sur-
face color from almost all ROIs (lowest decoding accuracy for surface
decoding in pV4α: 53.5%, p ¼ .021, FWE corrected). Only illuminant
decoding was not significantly above chance in this region (51.1%,
p ¼ .653, FWE corrected). The fact that all ROIs exhibited significant
decoding in surface and/or illuminant color decoding shows that none of
them represented only noise.

Lastly, we calculated representational dissimilarity matrices (RDMs)
to compare the similarity structures reflected in the neural responses
within our ROIs with the similarity structures predicted for hypothetical
brain regions that exclusively represent illuminant or surface color.
While response properties in areas V1-V3 were closest to the illuminant
model, pV4α resembled more the surface model while areas hV4 and
VO1 were in between the two (Fig. 9c). Dendrograms on response pat-
terns provide further, descriptive evidence that, while all other ROIs
emphasized the difference between illuminants, activity patterns in pu-
tative V4α were clustered primarily according to surface color.

These results demonstrate that there is an increasing gradient from
areas V1-V3 to hV4 and VO1 and finally to putative V4α in preferentially
encoding surface as opposed to illuminant color.

3.7. Predicting behavioral color constancy indices from fMRI activity

The Equivalent Illuminant Model proposes a simple two-stage pro-
cedure that explains surface color appearance in typical psychophysical
experiments: the perceptual system first estimates the chromaticity of the
illuminant (the “equivalent illuminant”) and uses this estimate in a sec-
ond step to calculate surface reflectance (Brainard and Maloney, 2011).
Accurate estimates entail better behavioral color constancy. A direct and
testable prediction would hence be that the degree to which patterns of
fMRI responses to the three different illuminants can be decoded predicts
the individual behavioral color constancy score.

We trained classifiers to discriminate between activity patterns eli-
cited by the three different illuminants and cross-validated them by
leaving out every run once for testing only. We performed this analysis
for the consistent-cue and the reduced-cue conditions, respectively,
yielding two decoding accuracies per participant. The decreases in
decoding accuracies in each ROI between the two conditions entered
simple linear regression models to predict the behavioral decrease in
color constancy scores between the two conditions. As Fig. 10 shows,
there was a positive correlation in hV4 (r ¼ .414, p ¼ .0436, uncorrec-
ted). The correlation coefficients for the remaining ROIs are shown in
Table 1. Although the effect did not survive correction for multiple
comparisons, we report the result for hV4 due to its notable effect size.

4. Discussion

The present study is the first, to our knowledge, to investigate fMRI
brain responses to surface color that was perceived as constant during
illuminant changes, and to relate behavioral color constancy to neural
estimates of illumination. We found that the earliest cortical stage, V1, as
well as one of the most anterior color-responsive regions in the fusiform
gyrus, pV4α, encode color invariantly with respect to the illuminant. We
also found that there is a gradient from early cortex to anterior fusiform



Fig. 10. Predicting Behavioral Color Constancy change due to cue conflict manipulation
from neural decoding of illuminant in hV4. Each dot represents a change in color con-
stancy index and the corresponding change in illuminant decoding accuracy between
consistent-cue or reduced-cue conditions. Larger differences in illuminant decoding were
accompanied by larger differences in color constancy indices.

Table 1
Predicting color constancy from illuminant decoding Correlations between changes in
illuminant decoding and color constancy indices in consistent-cue and reduced-cue con-
ditions. Boldface denotes significance (p < .05).

ROI Pearson's r P (uncorrected)

V1 -.01 .5081
V2 .14 .2946
V3 .06 .4134
hV4 .41 .0436
VO1 .13 .3040
V4α -.12 .6853
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regions to increasingly encode surface color rather than illuminant.
Finally, we demonstrate that illuminant encoding in hV4 predicted the
strength of the effect of a cue manipulation on behavioral color con-
stancy, as predicted by the Equivalent Illuminant Model.
4.1. Color constancy computations in V1

We found that surface color could be decoded from fMRI activity in all
visual areas when illumination did not change between training and test
set. V1 and pV4α were the only regions where activity encoded surface
color such that the information content generalized to new illuminants.
The involvement of V1 in color constancy computations fits well with the
observation that neurons in this area flexibly adjust their firing behavior
to account for chromatic and achromatic changes in the illumination
context well outside their receptive fields (RF) (MacEvoy and Paradiso,
2001; Wachtler et al., 2003) and that V1 neurons are spectrally tuned to
match the chromatic variability of natural daylight (Lafer-Sousa et al.,
2012). Other authors have emphasized the importance of double-
opponent cells for color constancy (Conway and Livingstone, 2006;
Friedman et al., 2003; Johnson et al., 2001; Shapley and Hawken, 2011):
these neurons detect chromatic contrast or color gradients of surfaces,
which remain relatively constant across illuminant changes. In keeping
with the perceptual relevance of chromatic contrast for surface
368
perception, a recent study found strong edge enhancement effects for
chromatically defined surfaces (Zweig et al., 2015). Similarly, fMRI ac-
tivity in V1 has been shown to reflect color appearance in perceptual
filling-in (Hsieh and Tse, 2010). The two proposed mechanisms are not
mutually exclusive and may contribute in a complementary way to color
constancy computations in V1 (Hurlbert, 2003). Whatever the underly-
ing mechanism for color constancy in primary visual cortex is, even if it is
based on feedback, dysfunction of V1 is known to abolish color constancy
judgments in patient D.B. although he could still discriminate between
stimuli based on their spectral composition (Kentridge et al., 2007).

4.2. Invariance of surface color representations in V4 across illuminations

We did not find invariant surface color representations in reti-
notopically mapped areas hV4 or VO1, but more anterior, in pV4α. These
null findings of course do not prove that information is not represented in
those areas because differences in decoding accuracies may simply reflect
differences in how such information is represented (e.g., chromatic
representations in blobs in V1 versus thin stripes in V2), which may in
turn influence the “sampling bias” in MVPA (Bartels et al., 2008).
Although some differences exist (besides the numerous commonalities)
between the physiology of chromatic processing in human and
nonhuman primate brains (Lafer-Sousa et al., 2016; Wade et al., 2008),
the present findings are in conflict with previous observations that neu-
rons in monkey V4 encode surface color and are robust against changes in
wavelength composition (Kusunoki et al., 2006; Zeki, 1983), in particular
given the sensitivity of MVPA to surface color in most ROIs in the within-
illuminant classification analysis.

Our results may be explained by the fact that neural activity in V4 is
strongly influenced by attention to color as demonstrated in bothmonkey
electrophysiology (Maunsell and Treue, 2006; McAdams and Maunsell,
2000; Motter, 1994) and human fMRI studies (Bartels and Zeki, 2000;
Brouwer and Heeger, 2013; Saenz et al., 2002). We did not instruct our
participants to specifically pay attention to the color of the surfaces in the
scene. Alternatively, it is conceivable that V1 and V4 represent chromatic
gradients and contrasts at different spatial scales due to differences in RF
sizes (for a similar interpretation of Zeki's seminal findings (Zeki, 1983),
see Maunsell and Newsome (1987)). Our complete stimulus image
(16.8� � 15�), for instance, was considerably smaller than the stimuli
used by Kusunoki et al. (2006) (30�). In contrast, Wachtler et al. (2003)
examined contextual modulation of chromatic processing at distances of
up to only 6� of visual angle from the RF the size of which ranged from
2.5� to 4.5�. In fact, attention may be implemented in form of RF tuning,
as has been reported for V4 neurons (David et al., 2008; Klein et al., 2014;
Moran and Desimone, 1985). We should point out, however, given that
RFs presumably are even larger in V4α than V4, a pure RF size account
cannot fully explain the disparate findings in these two regions.

Our findings are in accord with evidence for the involvement of
anterior fusiform gyrus, which includes V4 and V4α, in achromatopsia
(Bouvier and Engel, 2005), with clinical observations being a key reason
for the traditional view of this region playing a crucial role in color vision
and color constancy (Zeki, 1990). The fact that electrical stimulation in
V4α elicits color percepts in a human patient underscores the relevance of
this area for color vision in general (Murphey et al., 2008).

4.3. A potential role of feedback in V1 signal

Finally, given the abundance of cortical feedback to V1 (Felleman and
Van Essen, 1991; Muckli and Petro, 2013), it is also conceivable that the
information we decode from V1 actually reflects feedback from higher
visual areas, possibly V4 or V4α. Prior studies have shown that BOLD
signal is particularly susceptible to feedback (Haynes et al., 2005;
O'Connor et al., 2002; Wunderlich et al., 2005), which is most likely due
to its strong correlation with postsynaptic neural input (Bartels et al.,
2008; Logothetis, 2008). Similarly, numerous fMRI studies that have
found decoding or signal modulation specifically in V1, but not in V2,
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found this pattern of result in situations where the signal must be due to
feedback: for memory color (Bannert and Bartels, 2013), size illusions
induced by distance (Sperandio et al., 2012), shape perception (Murray
et al., 2002), and context effects in scene perception (Smith and Muckli,
2010). The illuminant invariant surface signals decoded here in V1 may
hence also be the result of a complex interplay between V1, hV4 and
especially V4α that encoded illuminant invariant surface color. The sig-
nificant partial correlation between activity in V1 and V4α is consistent
with this idea (Fig. S2). Similarly, it has been suggested that color could
play different roles across areas to either represent illumination or
perceived hue (Conway, 2013).
4.4. Functional gradient for surface vs. illuminant color representation
from V1-VO1

When two differently colored surfaces reflect the same light, they can
be discriminated perceptually either on the basis of their reflective
properties or based on differences in their illumination. Our surface/
illuminant bias analysis tapped into this crucial mechanism of color
constancy. The results showed that the tendency to discriminate between
illuminant color as opposed to surface color decreased along a gradient
from V1 to V4α (Fig. 9a). The propensity of higher visual areas (in
particular hV4, VO1, V4α relative to earlier areas) to interpret the dif-
ference between stimuli as being between surface color (despite matched
wavelength composition) is consistent with V4's role in figure-ground
segmentation and surface perception (Bouvier et al., 2008; Cox et al.,
2013; Poort et al., 2012; Roe et al., 2012) and resembles gradients found
for the perception of illusory contours (Mendola et al., 1999) and chro-
matically defined figure/ground segmentation (Seymour et al., 2015).
4.5. A model for color constancy computations in visual cortex

A remarkable finding in the present study was the correlation of
neural discriminability between distinct illuminants with the change in
behavioral color constancy indices caused by our cue conflict manipu-
lation. To our knowledge this is the first empirical evidence at the level of
neural encoding for the Equivalent Illuminant Model, which links correct
illuminant estimation with the ability to estimate surface reflectance (i.e.
color) (Brainard and Maloney, 2011). In accord with this, we found that
when the difference in neural illuminant decoding between cue condi-
tions was large, the decrease of behavioral color constancy indices was
also strong.

5. Conclusion

The present study adds an important new piece to the puzzle of
human color vision. Experimental approaches seeking to discover
isomorphic mappings between perceptual and neural color spaces have
found area V4 to be involved in color perception (Brouwer and Heeger,
2009; Li et al., 2014). In the present study we examined two central
components of color constancy in the human brain, namely the robust-
ness of neural encoding of surface reflectance during changes in illumi-
nation, and the neural encoding of the illuminant itself. We found that
the only regions robustly encoding surface color during varying illumi-
nation conditions were the primary visual cortex and a region in anterior
ventral cortex previously implied in color vision, pV4α. Careful stimulus
design allowed us to examine for each region whether it was biased in
encoding of surface color or the illuminant. This was achieved by
choosing distinct pairs of surface reflectance and illumination that
resulted in matched reflected light. In such ambiguous situations, there
was a gradient from early to higher ventral regions to preferentially
encode surface reflectance relative to illumination. Finally, we found
evidence suggesting a correlation between perceptual color constancy
and neural encoding of the illuminant, as proposed by the equivalent
illuminant model, in area hV4.
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