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Abstract

Current benchmarks for Hebrew Natural Lan-
guage Processing (NLP) focus mainly on
morpho-syntactic tasks, neglecting the se-
mantic dimension of language understanding.
To bridge this gap, we set out to deliver
a Hebrew Machine Reading Comprehension
(MRC) dataset, where MRC is to be real-
ized as extractive Question Answering. The
morphologically-rich nature of Hebrew poses
a challenge to this endeavor: the indetermi-
nacy and non-transparency of span boundaries
in morphologically complex forms lead to an-
notation inconsistencies, disagreements, and
flaws in standard evaluation metrics. To rem-
edy this, we devise a novel set of guidelines,
a controlled crowdsourcing protocol, and re-
vised evaluation metrics, that are suitable for
the morphologically rich nature of the language.
Our resulting benchmark, HeQ (Hebrew QA),
features 30,147 diverse question-answer pairs
derived from both Hebrew Wikipedia articles
and Israeli tech news. Our empirical investi-
gation reveals that standard evaluation metrics
such as F1 Scores and Exact Match (EM) are
not appropriate for Hebrew (and other MRLs),
and we propose a relevant enhancement. In
addition, our experiments show low correla-
tion between models’ performance on morpho-
syntactic tasks and on MRC, which suggests
that models that are designed for the former
might underperform on semantics-heavy tasks.
The development and exploration of HeQ il-
lustrate some of the challenges MRLs pose in
natural language understanding (NLU), foster-
ing progression towards more and better NLU
models for Hebrew and other MRLs.

1 Introduction

Machine reading comprehension (MRC), a critical
skill of NLP systems, is often assessed by means
of testing the ability of models to answer questions
about a given passage, a setup known in NLP also
by the name Question Answering (QA).

QA systems find utility in a large spectrum of
applications, from chatbots (Gao et al., 2018) and
search engines (Guu et al., 2020) to the evalua-
tion and assessment of pre-trained models’ (Devlin
et al., 2019; Joshi et al., 2020; Lan et al., 2019)
comprehension and reasoning skills. Despite these
developments, the landscape of MRC is primar-
ily dominated by datasets and models for English,
where low- to medium-resource languages such as
Hebrew remain largely underrepresented.

Although recent research in NLP shows in-
creased interest in the Hebrew language (Seker
et al., 2022; Guetta et al., 2022), the focus remains
largely on morpho-syntactic tasks. With the excep-
tion of ParaShoot (Keren and Levy, 2021), the ab-
sence of Natural Language Understanding (NLU)
benchmarks for Hebrew leads to the design of mod-
els primarily tailored for morpho-syntactic tasks.
However, it remains an open question whether the
performance on existing morpho-syntactic bench-
marks correlates with actual natural language un-
derstanding, and indeed, as we demonstrate in §5,
this is not necessarily so.

A central challenge in the development of QA
systems for Hebrew, a Morphologically Rich
Language (MRL), compared with morphology-
impoverished ones, is the identification of precise
answer spans in morphologically rich internally
complex surface forms. This is exacerbated by mul-
tiple processes of affixation in Hebrew (prefixes,
suffixes, clitics) that may obscure the boundaries
between linguistic units, making it harder to pin-
point the correct span of answers. For instance,
given the sentence בבית.! הייתי אתמול (literally:
“yesterday I-was at-the-house”), valid responses to
the question “Where was I?” can be either בבית!
(at-the-house), or בית! (house). Current annotation
guidelines, crowdsourcing protocols and evaluation
metrics, however, assume the annotated spans re-
spect space-delimited token boundaries, and fail to
accommodate such morphological patterns, conse-



quently penalizing boundary alterations and caus-
ing annotation disagreements. To counter this, we
propose a revised set of guidelines and new evalua-
tion metric, Token-Level Normalized Levenshtein
Similarity (TLNLS), which manifests lower sensi-
tivity to affixation changes.

We thus present HeQ, a new benchmark for
MRC in Hebrew, modeled around the format of the
widely-used Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2016a, 2018a). SQuAD
is a benchmark dataset for MRC that was collected
via crowd-sourcing and consists of questions and
answers based on Wikipedia articles. However,
SQuAD has been shown to contain biases and
spurious regularities that allow models to exploit
heuristics and shallow cues without fully under-
standing the text (Jia and Liang, 2017). Further-
more, SQuAD covers only a limited range of topics
and domains (Ruder and Sil, 2021). Hence, in this
work, we introduce several novelties. First, we
work with a fixed set of human annotators and train
each annotator individually based on their previous
annotations to increase the quality and diversity of
their annotations. We also add a data source from a
news domain (GeekTime), besides Wikipedia, to in-
crease HeQ genre diversity. Finally, we change the
unanswerable questions generation methodology
so they become more challenging for the model.

In our experiments, we observe that a mul-
tilingual model, mBERT outperforms all other
Hebrew-trained models despite being exposed to
the least amount of Hebrew data during training,
and having the smallest Hebrew token vocabulary.
This suggests that pretrained models in Hebrew
can greatly benefit from pretraining on other lan-
guages. Furthermore, we find that models trained
on our new dataset, HeQ, perform significantly
better than those trained on the earlier ParaShoot
dataset, which emphasizes that the quality of the
collected data is greatly influential on model per-
formance (in fact, a model trained on a subset of
HeQ with the same number of questions as in the
ParaShoot dataset, outperforms a model trained on
ParaShoot, also on the ParaShoot test set). Lastly,
models based on the Geektime section outperform
the Wikipedia ones and demonstrate better domain
transferability, likely due to the former’s varied text
structure.

In conclusion, despite the complexity of Hebrew,
multilingual pretraining proves beneficial for MRC
tasks. The quality and diversity of the data appear

to be as important as the size, underscoring the im-
portance of dataset design and the value of our new
Hebrew MRC benchmark, HeQ. Note that all data,
tagging platform, user manual, and the training and
evaluation scripts are publically online.1

2 The Challenge: Extractive Question
Answering in Morphologically Rich
Languages

Extractive Question Answering (Extractive-QA) is
a common and widely used task where a model is
tasked with locating and reproducing an answer to a
question posed directly with regard to a source text.
In morphologically-rich languages, this task be-
comes more complex due to the linguistic features
that these languages manifest. Morphologically-
rich languages, such as Hebrew, Turkish, or Arabic,
exhibit high morphological complexity, including
extensive inflection, agglutination, and derivational
morphology. This characteristic makes Extractive-
QA more challenging because the model needs to
process and understand complex word forms and
grammatical constructions to correctly pinpoint the
answer spans.

In these languages, a single word can carry infor-
mation typically spread across several words in lan-
guages with more impoverished morphology, such
as English. This means that word- and sentence-
boundaries may not always align with semantic
units or logical chunks of information. Conse-
quently, Extractive-QA models must be able to
handle this morphological richness to accurately lo-
cate and extract the correct answer. Due to the high
inflectional nature of these languages, the correct
answer may appear in different forms within the
text, requiring the model to understand and match
these varied forms. This aspect necessitates an un-
derstanding of the language’s morphological rules
and a richly annotated dataset to provide the model
with enough examples to learn from.

On top of that, existing evaluation metrics, pri-
marily designed for morphologically simpler lan-
guages, often fall short when applied to languages
with higher morphological richness. A major con-
tributor to this is affixations, which are a prevalent
feature in MRLs. These languages often merge
what would be considered separate words in lan-
guages like English into a single unit. This means
that an answer span might not align with the tradi-

1https://github.com/NNLP-IL/
Hebrew-Question-Answering-Dataset

https://github.com/NNLP-IL/Hebrew-Question-Answering-Dataset
https://github.com/NNLP-IL/Hebrew-Question-Answering-Dataset


tional notion of word boundaries.
Current evaluation metrics do not take this into

account, leading to potential harsh penalties for mi-
nor boundary deviations. Metrics like Exact Match
(EM) or F1 score, which function well in morpho-
logically simpler languages, may not accurately
reflect a model’s performance in morphologically
rich languages. For instance, slight changes in
word endings might result in a dramatically differ-
ent EM score, even if the overall answer meaning
remains intact. Similarly, an F1 score may fail to
capture the nuances in word formation and changes
that are inherent to these languages.

3 Collection Process

This section provides a comprehensive account of
the data preparation, annotation, and validation pro-
cedures employed in this study. Specifically, we
describe the methods used to preprocess the raw
data and prepare it for annotation, the rigorous an-
notation process carried out to ensure high-quality
data, and the validation steps taken to evaluate the
reliability and accuracy of the resulting dataset.

3.1 Annotation Philosophy
HeQ was created with four principles in mind:

Diversity. There is evidence that the quality of
the model (in both pre-training and fine-tuning)
is based on the diversity of the datasets (Zhou
et al., 2023). We increase the diversification of
the datasets in three ways: First, we generate the
data from two sources, Wikipedia and News, which
have very different structures, and topics, which re-
sulted in different question types. The second is the
paragraphs chosen for annotation, we made sure
that the initial pool of paragraphs was as diverse
as possible. And thirdly, annotators were explic-
itly instructed to create different and diverse sets
of questions. We also monitored the diversity of
annotations during the questions collection process.

Accuracy Accuracy is important for both train-
ing robust models and accurate evaluation. We
detailed the measurements we took to ensure very
high accuracy in §3.3 and present the validation
metrics in §3.4.

Difficulty SQuAD was criticized to encourage
the model to learn shallow heuristics (Elazar et al.,
2022). We aimed to overcome this by instructing
the annotators to produce questions that require
some inference (see “gold” questions in Table 1).

In addition, the annotators were monitored and
have been given feedback on the overlap between
the questions and the text, aiming to minimize it.

Quality over quantity. While HeQ is much
smaller than SQuAD (30K vs 150K samples), we
argue that the quality, diversity, and difficulty of
the data are more important than the sheer number
of examples. To demonstrate this, in §5 we com-
pare different sizes of HeQ and compare HeQ to the
earlier ParaShoot dataset (Keren and Levy, 2021).

In the following subsections, we describe how
we created HeQ based on these principles.

3.2 Data Preparation

The HeQ dataset was created by combining two
distinct data sources, namely, Hebrew Wikipedia
and Geektime, an Israeli technology newspaper.
From the Hebrew Wikipedia, we selected the 3,831
most popular articles to create the Wikipedia para-
graph pool. Subsequently, we randomly extracted
paragraphs from these articles, with a constraint
that each paragraph should contain between 500
and 1,600 characters and no more than three para-
graphs per article. We removed paragraphs that
contained non-verbal sections, such as mathemati-
cal equations, and those that could be considered
highly sensitive or inappropriate for our dataset,
such as those containing violent, graphic, or sexual
content. Some paragraphs were manually replaced
with alternative paragraphs to ensure a diverse set
of topics and styles. After this filtering and manual
replacement process, the paragraph pool consisted
of 5,850 paragraphs, across a total of 2,523 articles.

To obtain the Geektime paragraph pool, we used
articles published from the year 2017 onwards, ex-
cluding those in the Career Management category
as they contained job descriptions and not news.
We randomly selected paragraphs from the remain-
ing pool of articles, with a minimum length of 550
characters and at least 300 characters in Hebrew.

3.3 Annotation Process

Crowed-workers recruitment. We ensured an-
notation quality by recruiting native Hebrew speak-
ers, who self-identified as fluent, via the Prolific
crowd-sourcing platform. Candidates were pro-
vided an annotation guide, outlining task require-
ments and guidelines for question creation and an-
swer identification.

The selection process involved a trial task, where
candidates crafted questions and identified answers



from given paragraphs. Their performance was
meticulously evaluated by the authors on parame-
ters like correct answer span, question-answer lex-
ical overlap, and attention to detail, ensuring the
exclusion of frequent typographical errors, poorly
articulated questions, or incomplete answers. Only
candidates demonstrating comprehensive task un-
derstanding and the ability to deliver high-quality
annotations were recruited.

The Annotation Process For the annotation,
we used a custom UI, based on the UI used in
ParaShoot. where in each step the annotator is pre-
sented with a paragraph and is required to write a
question and an answer, and mark if the question
is answerable. We show the UI in Figure 1 under
Appendix A. For each paragraph, the annotators
were instructed to create 3-5 questions.

Crowdsource Monitoring. During the annota-
tion process, we ensured ongoing quality control
over the work of our annotators by providing per-
sonalized feedback to each individual as needed.
This feedback highlighted areas for improvement
and areas of strength. Annotators who successfully
applied the feedback and demonstrated improve-
ment were invited to participate in additional anno-
tation tasks, while those who did not improve were
disqualified. Initially, feedback was given to each
annotator after they completed their task. However,
as the annotation process progressed, experienced
annotators were randomly selected for feedback to
allow for closer monitoring of new annotators and
greater freedom for trusted annotators. For most
annotators, We observed a significant improvement
in question quality after several rounds of feedback.

To assess the quality of the questions, we as-
signed each question a score based on four levels:
rejected, verified, good, and gold. Questions that
did not meet the minimum criteria for the dataset,
typically due to semantic or morpho-syntactic er-
rors, unclear questions, or questions that were clas-
sified “unanswerable” but were answerable to some
extent, were classified as “rejected”. “Verified”
questions passed the minimum threshold but were
relatively straightforward or used similar wording
to the relevant sentence in the paragraph. “Good”
questions had distinct wording, either lexically or
syntactically, from the relevant sentence in the para-
graph. Finally, “gold” questions required inference.
Table 1 presents examples of each question type.

The dataset was randomly split into train (90%),

development (5%), and test (5%) sets, with the
constraint that questions related to a specific article
were assigned to the same set. Each sample in the
test and train was augmented by creating several
correct answer spans for better validation.

3.4 Data Assessment

To ensure the quality of the evaluation, we man-
ually validated the test and development sets and
corrected wrong answers where necessary. Overall,
we reviewed 34% of the data, with 6.36% being
rejected due to quality concerns. However, this
rejection rate was largely attributed to disqualified
annotators and does not reflect the overall quality
of the dataset as shown in the following paragraph.
Also, note that the full development and test sets
were validated for correction.

To validate the final dataset quality, we randomly
sampled 100 questions from Wikipedia and 100
questions from Geektime for accuracy testing. We
measured the quality of questions according to two
parameters: the percentage of correct questions
(93% for Wikipedia and 97% for Geektime) and
the percentage of answers with a correct answer
span (100% for Wikipedia and 99% for Geektime).

We include more analysis on the quality of the
dataset in Appendix C.

4 MRC evaluation for MRLs

Evaluating the performance of MRC models is a
fundamental aspect of their development and re-
finement. However, this evaluation process isn’t
as straightforward as it might seem — especially
when it comes to MRLs. The traditional evalua-
tion metric of MRC is F1 over answer span words
(described in Appendix B.1) or a variation thereof.
The F1 score is sensitive to small changes in the an-
swer span boundary. For example, if the gold span
is “in the house” while the extracted span is “house”
the F1 score will be 2

3 . English somewhat allevi-
ates this problem by removing the words “a”, “an”,
and “the” for the evaluation, which in the former
example will increase the F1 to 0.5.

Unfortunately, the boundary issues in MRLs,
and in Hebrew specifically, are much more com-
mon and result in biased scores. For example, if
we consider the same example, but in Hebrew, the
phrase “in the house” is translated to the single
word ,בבית! while the word בית! corresponds to
“house”. So while the English phrase will get an F1

score of 0.5, the Hebrew span using a token-based



Quality label Example
Verified Question:!?Mקרובי Mקרובי התכנית תשודר Nהיכ

Sentence: זה, וזהו Mקרובי Mקרובי Nכגו החינוכית, הטלוויזיה Mע המזוהות חוזר בשידור תוכניות
!.11 Nבכא תשודרנה
Answer: !11 Nבכא

Good Question:!?בתפקידו מוחמד חאג’ את Pהחלי מי
Sentence: של הכללי כמפקד מוחמד בחאג’ להכיר המרכזית” ”הוועדה הסכימה 1939 בפברואר
Nחס מוחמד אחמד את הכללי המפקד לתפקיד המרכזית הוועדה מינתה מותו לאחר [...] Mהמורדי
! .Mשכ ליד בורקה בכפר לשעבר מורה בכר”), (”אבו
Answer: !Nחס מוחמד אחמד

Gold Question:!?1932 של הגביע בגמר Nהראשו הגול את הבקיע מי
Sentence: המשחק Kבמהל [...] הגביע לגמר 1932 בשנת להעפיל הקבוצה הצליחה ,Nכ פי על Pא
הקבוצה.! משחקני אחד ידי על הגביע נגנב [...] Nשטר יונה של משער להפועל 1–0 של במצב
Answer: !Nשטר יונה

Table 1: Example for quality levels of different samples.2

or word-based evaluation will be scored 0, leading
to an underestimation of model performance. This
is the result of compounding, combining two or
more words into a single word in Hebrew. Com-
pounding is very common in Hebrew and happens
in many situations like possessive, Pluralization,
definite article, prepositions, and other affixations.
While some of these affixations also appear in En-
glish (like Pluralization), they are much more com-
mon in the Hebrew setting.

One way to avoid the issue is to do a complete
morphological decomposition of each word in the
predicted span and the gold span and remove af-
fixations from the evaluation. Unfortunately, the
morphologically rich forms are ambiguous, and
Hebrew morphological disambiguation is context-
dependent, requiring a dedicated model to perform.
We seek an evaluation method that is not depen-
dent on the existence of a disambiguation model
and which will not be influenced by mistakes of
different disambiguation models. Rather want a
method that is simple, unbiased, and easy to run on
multiple MRLs. We thus present a novel evaluation
metric for MRC tailor-made for MRLs.

4.1 Qualities for Evaluation Metric for MRL

We propose a new evaluation metric that takes into
account the unique characteristics of MRLs. This
metric should have the following characteristics:
◦ Inflection invariance. The metric should give a
similar score to a word and its inflected and affixed
variants (e.g., ,בית! בבית! and .(הבית!
◦ Span invariance. The metric should give a simi-
lar score to different spans that represent the same
answer (“king David” vs “David”).
◦ language independence. We aim to create a
general evaluation metric for MRLs, that does not
require specific knowledge of the target language.

◦ Speed. The metric should have a short run time.

4.2 The Token-Level Normalized Levenshtien
Similarity (TLNLS) Metric

The Metric. A candidate for MRC evaluation
is the Normalized Levenshtien Similarity metric
(which we describe in Appendix B.1.1). This is a
character-level metric that has the benefit of being
less affected by a change in affixation but causes
the evaluation to be skewed when dealing with long
words and long sequences, which is undesirable. To
overcome this, we present a hybrid metric derived
from F1 and Levenshtien similarity. Given two tok-
enized spans, a predicted span P = {p1, . . . , pn},
and a gold span G = {g1, . . . , gn}, where pi and
gi are tokens, we define TLNLS as:

TLNLS(P,G) =

1

max(|G|, |P |)
∑
gi∈G

max
pi∈P

(ls(gi, pi)). (1)

Tokenization. TLNLS assumes tokenization of
the input phrases. There are several ways to tok-
enize a phrase, using white spaces, using a parser
(like YAP (More et al., 2019)), and using a pre-
trained model tokenizer. In this work we use white
spaces for TLNLS, for several reasons: first, this is
a language-independent approach, that can be used
for any MRL without any adjustment. Second, the
design of TLNLS is such that words with similar
stems, but different infliction get a high score. third,
any more advanced tokenization might be biased
towards a specific model.

Dates and numbers. A limitation of these ap-
proach concerns dates. E.g. the spans “1948” and
“1921” will result in F1 score of 0, but a TLNLS
score of 0.5. For this reason in the number of digits



Type F1 Edit TLNLS
Positive 0.576 0.389 0.727
Negative 0.019 0.233 0.093

Table 2: Performance Metrics. The value in the brackets
are without dates.

in either span is more than half, we revert to the
original F1.

4.3 Evaluating the Metric
Quantitative Evaluation We evaluate the score
the metric assigns to correct spans (positive evalua-
tion) and wrong spans (negative evaluation). Our
development set in each case contains several cor-
rect spans for each sample.

The positive evaluation is done by taking all the
samples in the development dataset that have more
than one answer span, and evaluating the similarity
between these spans based on each metric. For
example, if a sample contains the spans “ ,”הבית!
“ ,”בבית! and “ ,”בית! we compare each span to the
others (In our example, three comparisons, one for
each pair) and report the mean similarity for each
pair based on each of the metrics. We assume that
a better metric will give a high score for similar
spans.

In the negative evaluation, we collect negative
spans and validate that the metric gives a low score
to these spans compared to the gold answers. To
collect these spans we use the trained QA model on
the development set and collect answer spans that
received very low F1 scores (< 0.1) compared to
the gold spans, we manually verify that these spans
are incorrect. The result is 100 spans that contained
a wrong prediction of the model. We compare
the model (wrong) output to the gold labels using
different metrics.

Results. As shown in Table 2, TLNLS achieves
the highest score with a large margin in the positive
evaluation. The currently used F1 metric achieves a
mediocre score of 0.56. In the negative evaluation,
F1 achieves the best (lowest) score, while TLNL
achieves a slightly worse score of 0.093.

Qualitative Evaluation We measure the samples
with the greatest score difference between F1 and
TLNLS. We iterate over the development set and
calculate for each sample the F1 and TLNLS scores
(like in the positive evaluation). We show 4 random
samples in Table 3. All the samples are under-
evaluated by F1, (receive a score of 0) even though
the returned span is valid.

Span 1 Span 2 TLNLS F1

MusicaNeto-!ב MusicaNeto 0.909 0
!Mלסלבריטאי !Mסלבריטאי 0.9 0

!Nהמוזיאו !Nמוזיאו 0.875 0
ביתינו! בית! 0.5 0

Table 3: Qualitative comparison of TLNLS and F1. We
sampled 4 examples that had a high gap between F1 and
TLNLS.

Model EM F1 TLNLS
Aleph Bert 57.91 67.66 76.07
Aleph Bert Gimel 57.12 67.37 75.3
mBERT 62.7 71.42 78.2
mBERT (ParaShoot) 36.77 51.08 59.20
ChatGPT 9.38 32.19 37.91

Table 4: Performance Comparison of Different Models
on the HeQ Dataset. All results except Aleph Bert and
Aleph Bert Gimel are sgnificant.

4.4 Recommended Metric
A good metric is vital for the correct evaluation of
different models. Our experiments show that the
F1 is too strict in the sense that it gives a low score
to good spans (shown by our positive evaluation),
including spans that differ only by a single affix.
To compensate for this, we suggest a new metric
TLNLS, which gives significantly better results for
good spans while still giving low scores to bad
spans. For the evaluation, we use the two tradi-
tional metrics (F1 and exact match), and the new
TLNLS metric, which we offer for general use.

5 Experiments

We experiment with HeQ in several scenarios.
First, we create a baseline based on several known
models, then we evaluate the improvement of
HeQ trained model vs ParaShoot trained model.
We continue by analyzing the impact of the data
size of the train data on the models’ performance.
Finally, we assess the effect of the different do-
mains in the dataset on the overall performance
and the cross-domain performance on HeQ. We
discuss the training setup in Appendix E

Improvement compared to ParaShoot. In table
5 we evaluate the test set of ParaShoot using the
ParaShoot train data compared to theh HeQ train
data. On all models, we see a significant improve-
ment when training of HeQ compared to ParaShoot.

5.1 Baseline Results
We evaluate several known pre-trained models on
the HeQ test set. Unless stated otherwise, all mod-



Model ParaShoot HeQ
EM F1 TLNLS EM F1 TLNLS

AB 26 49.6 60.41 39.23 62.42 74.73
ABG 24.68 48.87 59.8 38.96 61.92 74.11
mBERT 32.08 56.25 66.83 44.29 65.58 75.38

Table 5: Performance Comparison of Models trained on
the ParaShoot and the HeQ Datasets and evaluated on
the Parashoot dataset.

Trainset EM F1 TLNLS
Geektime 58.38 68.00 75.80
Wikipedia 56.05 65.72 73.47
Geektime + Wikipedia 62.70 71.42 78.21
Geektime + Wikipedia (15K) 59.24 67.52 75.27
Geektime + Wikipedia (1.7K) 48.20 59.26 67.83

Table 6: Performance Comparison of Different Training
Sets (sizes and domains) on HeQ.

els were trained on the HeQ train set.
◦ AlephBERT (AB) (Seker et al., 2022): A He-
brew pre-trained model that is currently used as a
baseline for most Hebrew-related tasks.
◦ AlephBERTGimel (ABG) (Guetta et al., 2022):
A variation on AB which has a larger vocabulary
size which resulted in fewer splits and improved
performance on the AB evaluation benchmarks.
◦ mBERT (Devlin et al., 2019): A multilingual
variation of the known BERT model.
◦ mBERT (ParaShoot) (Keren and Levy, 2021) -
mBERT trained on the parashot dataset.
◦ chatGPT : ChatGPT is a well-known conversa-
tional model that was finetuned on a large LLM
from openAI. We evaluate chatGPT using the fol-
lowing prompt: “Answer the following question
based on the provided context. If the answer is
present in the text, please provide it as a span. If
the answer does not exist in the text, reply with
an empty string. Question: <question> Context:
<context>”.3

We present the results in Table 4. Similarly to
ParaShoot, the best-performing model on all met-
rics is mBERT, which is surprising considering that
mBERT is the pre-trained model that was exposed
to the least amount of Hebrew texts during training.
We attribute this result to the fact that during the
multilingual pretraining, mBERT is the model that
was exposed to the largest corpora overall. Based
on this hypothesis, future Hebrew pre-trained mod-
els might benefit from jointly pre-training on En-
glish or other high-resource languages.

3At the time of writing this paper we could not access the
GPT4 API.

Between the Hebrew-monolingual models (AB
and ABG), the results are almost comparable, giv-
ing AB a small insignificant advantage over ABG.
Based on this result we suspect that while the in-
creased vocabulary size has a positive effect on
morpho-syntactic tasks like the ones AB and ABG
were evaluated on, it has lower significance in se-
mantic tasks like MRC.

Next, the mBERT (ParaShoot) model is under-
performing compared to the HeQ trained model.
which is not surprising considering the size of
HeQ compared to ParaShoot and has better quality.

Surprisingly, the worst model in our evaluation
is chatGPT. While it is the largest model evaluated,
it achieves the lowest results, the returned spans are
often mistaken, and even when the model returns
the correct answer the span boundaries are wrong.

5.2 The Effect of Data Size and Type on
Model Performance

In this subsection, we examine the effect of the
number of samples, and the type of data, on the
overall performance of the trained models. The
results are presented in Table 6.

First, we consider three splits of the data: Geek-
time (news) only, Wikipedia only, and a subset
of the dataset that is roughly the same size as the
two other splits (Geektime + Wikipedia 15K). All
models were evaluated on the HeQ test set. The
Geektime dataset outperforms Wikipedia and the
combined split. We hypothesize that the reason
for that is that while Wikipedia has more diverse
topics, its text follows a relatively rigid structure.

The second experiment is evaluating the model
performance based on different data sizes. We com-
pare three data sizes, the full dataset (Geektime +
Wikipedia), the 15K version, and 1.7K version,
which is comparable in size to ParaShoot. The big-
ger the dataset is the more performance improves,
but interestingly, moving from 1.7K to the full ver-
sion (×20 increase) increases the final score by
only 11.4% TLNLS points, and moving from 15K
to the full version (×2 increase) increases the fi-
nal score by only 3% TLNLS points. Based on
this we assume that to improve future models a
100K+ dataset is needed. In addition, the large gap
between the 1.7K version and ParaShoot (67.83%
to 59.2% TLNLS) shows that most of the perfor-
mance comes from high-quality and challenging
questions and not from the sheer size of the dataset.



Split Geektime Wikipedia
EM F1 TLNLS EM F1 TLNLS

Geektime 61.07 70.59 77.35 55.70 65.36 74.36
Wikipedia 52.20 63.39 71.14 59.81 68.04 75.65
Geektime + Wikipedia (15K) 59.33 68.65 76.33 59.15 66.38 74.09
Geektime + Wikipedia 64.40 73.36 79.98 60.74 69.46 76.92

Table 7: Performance Comparison of Different Trainset on Geektime and Wikipedia Datasets

5.3 Domain Transfer

HeQ contains two domains: Geektime (tech news)
and Wikipedia. We evaluate the models in both
in-domain and cross-domain settings. We also add
Geektime + Wikipedia (15K) and the full dataset
(Geektime + Wikipedia) as baselines.

The results are presented in Table 7. Similarly
to §5.2, we see that the Geektime-trained mod-
els achieve better results than the Wikipedia one,
having a 6.21 points increase in TLNLS on the
Geektime test, while the Wikipedia train model has
only 1.29 points TLNLS increase.

We again attribute this to the similarity in text
structure in Wikipedia compared to the less strict
text structure in Geektime.

6 Related Work

MRC datasets (often these take the form of
question-answering (QA) tasks) have been devel-
oped by the NLP community for a long time
(Hirschman et al., 1999). While newer datasets
are being developed, the structure of QA data —
a paragraph (from Wikipedia), a question about
this paragraph, and an answer — is still the way
most datasets are constructed nowadays. Perhaps
the most well-known datasets are the SQuAD and
SQuAD 2.0 (Rajpurkar et al., 2016b, 2018b) which
use Wikipedia as a source for paragraphs, creat-
ing 100,000 QA instances. SQuAD 2.0 improve
over the first version by including another 50,000
unanswerable questions.

Other known datasets are NewsQA (Trischler
et al., 2017) that were collected from news arti-
cles, TriviaQA (Joshi et al., 2017), a large-scale
dataset (650K samples) that used questions from
quiz web sites aligned with Wikipedia and web re-
sults, and CoQA (Reddy et al., 2019), a dataset fo-
cused on conversational question answering, offers
a unique context-based approach with dialogues
and answers. Another recent QA dataset is natural
questions (Kwiatkowski et al., 2019), which dis-
tinctly uses natural queries from Google searches,
aligned with Wikipedia paragraphs.

All of the above are English datasets. In contrast,
TyDi QA (Clark et al., 2020) is designed for mul-
tilingual information-seeking QA, encompassing
languages from various language types, offering a
more global scope for MRC research.

While the selection of MRC datasets in En-
glish is large, the only MRC dataset in Hebrew
is ParaShoot (Keren and Levy, 2021), consisting
of Wikipedia articles and constructed in a similar
way to SQuAD. We improve over ParaShoot in
three aspects: size, diversity and quality. HeQ has
30K questions compared to 3K; uses news and
Wikipedia domains; and was much more rigorously
validated. In particular, special attention has been
given to the evaluation of flexible span boundaries.

While many MRC datasets leverage external
sources (user queries and trivia sites), these re-
sources are not available for Hebrew. Therefore,
we create HeQ in a similar fashion to SQuAD 2.0.
However, revised guidelines have been introduced
in order to ensure diversity, question difficulty, and
sorting our matters concerning span boundaries.

7 Conclusion

In this work, we presented the challenges of MRC
for MRLs. We introduced HeQ, a Hebrew MRC
benchmark designed to enable further research into
Hebrew NLU. Experimental insights highlighted
the surprising efficacy of mBERT, trained on di-
verse languages, over Hebrew-monolingual models,
suggesting the value of multilingual pretraining.

However, data quality was seen to be as impor-
tant as size, underlining the need for high-quality,
diverse Hebrew datasets. The complexity of evalu-
ating models in MRLs was also recognized, leading
to the proposal of the TLNLS metric, better suited
to handle morphological variations.

Overall, this work advances the understanding of
MRC in morphologically rich languages, offering
avenues for improved benchmarks, datasets, and
evaluation metrics. It invites further exploration
to broaden knowledge and enhance MRC perfor-
mance in underrepresented languages.



8 Limitation

We recognize two main limitations of the dataset:

Dataset Size. Although HeQ is of high qual-
ity, it consists of a relatively smaller number of
instances compared to well-established English
MRC datasets like SQuAD. The limited dataset
size might impact the model’s ability to generalize
and capture the full range of linguistic and contex-
tual variations in Hebrew. However, efforts have
been made to ensure the dataset’s quality and diver-
sity compensates for its smaller scale.

Lack of Natural Questions. One of the limita-
tions faced in constructing HeQ is the unavailability
of a dedicated resource containing natural ques-
tions in Hebrew. Natural questions, which reflect
authentic and unconstrained human language use,
provide a realistic and diverse set of challenges for
MRC models. Without access to such a resource,
the dataset may not fully capture the breadth and
complexity of real-world questions, potentially lim-
iting the evaluation of MRC models’ performance
in natural language understanding.

Despite these limitations, the introduction of a
new dataset and evaluation metric provided in this
paper are valuable contributions to the field and the
progression of Hebrew NLP research.

9 Ethics and Broader Impact

This paper is submitted in the wake of a tragic ter-
rorist attack perpetrated by Hamas, which has left
our nation profoundly devastated. On October 7,
2023, thousands of Palestinian terrorists infiltrated
the Israeli border, launching a brutal assault on 22
Israeli villages. They methodically moved from
home to home brutally torturing and murdering
more than a thousand innocent lives, spanning from
infants to the elderly. In addition to this horrifying
loss of life, hundreds of civilians were abducted
and taken to Gaza. The families of these abductees
have been left in agonizing uncertainty, as no infor-
mation, not even the status of their loved ones, has
been disclosed by Hamas.

The heinous acts committed during this attack,
which include acts such as shootings, sexual as-
saults, burnings, and beheadings, are beyond any
justification.

We fervently call for the immediate release of
all those who have been taken hostage and urge the
academic community to unite in condemnation of
these unspeakable atrocities committed by Hamas,

who claim to be acting in the name of the Pales-
tinian people. We call all to join us in advocating
for the prompt and safe return of the abductees,
as we stand together in the pursuit of justice and
peace.

This paper was finalized in the wake of these
events, under great stress while we grieve and
mourn. It may contain subtle errors.
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Figure 1: Annotation UI.

B Metrics

B.1 F1 Score

The current metric used for many MRC datasets
evaluation is the F1 score, defined as follows.

Given a stream of tokens for the gold span G =
{g1, . . . , gn} and a stream of tokens for the pre-
dicted span P = {p1, . . . , pn}. we define the inter-
section function as

intersect(G,P ) =

|{gi : ∃ pi s.t. pi = gi, gi ∈ G, pi ∈ P}|.

Using this we can define the known precision and
recall, and F1 functions:

precision(G,P ) = intersect(G,P )/|G|.

recall(G,P ) = intersect(G,P )/|P |.

F1(G,P ) =
2 · recall(G,P ) · precision(G,P )

recall(G,P ) + precision(G,P )
.

B.1.1 Normalized Levenshtien Similarity
Levenshtien distance is defined as the minimal
number of edits that are required to convert a string
s1 into a different string s2 (Navarro, 2001). An
edit is one of the following functions:

• Removal - remove a character from a string
(e.g. “cat” → “ca”).

• Addition - add a new character to a string (e.g.
“cat” → “cats”).

• Substitution - change a character from a
string to a different character (e.g. “cat” →
“cut”).

Formally we can define Levenshtien distance
recursively as:

lev(s1, s2) =

|s1|, if |s2| = 0

|s2|, if |s1| = 0

lev(s1, s2), if s1[0] = s2[0]

1+

min


lev(s1[1 :], s2)

lev(s1, s2[1 :])

lev(s1[1 :], s2[1 :]),

otherwise.

Where the “[]” operator is the array operator in
Python. To normalize the edit distance we sim-
ply divide the result by the max length of the two
strings. To use normalized Levenshtien similarity
we use the following formula:

ls(s1, s2) = 1− lev(s1, s2)

max(|s1|, |s2|
.
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(a) Question and answer overlap.

(b) Question and context overlap

Figure 2: A comparison of the overlap in HeQ. on
both metrics, our dataset has less overlap compared
to SQuAD.

Parameter Value
Learning rate 3 · 10−5

batch size per device 4
GPU type four Nvidia 2080TI
Optimizer Adam
Epochs 5 (with early stopping)

Table 8: Training parameters.

C Empirical Analysis

In this section, we supply more analysis driven by
other studies on MRC datasets.

Data Overlaps. Biases in the data result in a
model that learns the biases and not the actual task
(Elazar et al., 2022; Rondeau and Hazen, 2018).
We aimed to reduce biases as much as possible. In
this analysis, we validate that there is little overlap
between the question and the text and between the
question and the answer (in answerable samples).
We plot the overlap between the questions and the
context and answer in 2. It is easy to see that
HeQ has a lower overlap compared to the SQuAD
dataset.

D English Translation of Example from
the Data

We show the translation of Table 1 in Table 9

Figure 3: The distribution of answers inside the context
on HeQ and SQuAD. The distribution is roughly the
same.

Position Bias. Uneven distribution of the answer
location might also lead to biases in the data (Ko
et al., 2020; Shinoda et al., 2022). We show the
answer distribution across the context in Figure 3.
Like SQuAD, the distribution of answers in HeQ is
mostly uniform, where there is a bias towards the
start of the context and a negative bias towards its
end.

E Training Parameters

Table 8 shows the hyper-parameters used for train-
ing. No hyper-parameter tuning was made during
our experiments.



Quality label Example
Verified Question:Where will the program be broadcast in the coming days?>

Sentence: Rebroadcast programs associated with educational television such as “Close
Relatives” and “Zeho ze” will be broadcast on kan 11
Answer: on kan 11

Good Question: Who replaced Hajj Muhammad in his position?
Sentence: In February 1931, the “Central Committee” agreed to recognize Hajj Muhammad
as the general commander of the rebels [...] After his death, the Central Committee appointed
Ahmed Muhammad Hassan (“Abu Bakr”), a former teacher in the village of Burka near
Nablus, to the position of general commander.
Answer: Ahmed Muhammad Hassan

Gold Question: Who scored the first goal in the cup final of 1932?
Sentence: Nevertheless, the team managed to qualify in 1932 for the cup final [...] during
the game in a 1-0 situation to Hapoel from a goal by Yona Stern [...] the trophy was stolen
by one of the team’s players
Answer: Yona Stern

Table 9: Example for quality levels of different samples in English.


