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Abstract

Learning a good transfer function to map the word vectors from two languages1

into a shared cross-lingual word vector space plays a crucial role in cross-lingual2

NLP. It is useful in translation tasks and important in allowing complex models3

built on a high-resource language like English to be directly applied on an aligned4

low resource language. While Procrustes and other techniques can align language5

models with some success, it has recently been identified that structural differences6

(for instance, due to differing word frequency) create different profiles for various7

monolingual embedding. When these profiles differ across languages, it corre-8

lates with how well languages can align and their performance on cross-lingual9

downstream tasks. In this work, we develop a very general language embedding10

normalization procedure, building and subsuming various previous approaches,11

which removes these structural profiles across languages without destroying their12

intrinsic meaning. We demonstrate that meaning is retained and alignment is13

improved on similarity, translation, and cross-language classification tasks. Our14

proposed normalization clearly outperforms all prior approaches like centering and15

vector normalization on each task and with each alignment approach.16

1 Introduction17

The best multilingual NLP approaches typically do not jointly learn a single embedding, since words18

of the same language tend to cluster, and thus are not useful for translation and cross-lingual learning19

tasks. Rather, after learning individual embeddings, the standard approach is to map word vectors20

from multiple languages into a shared cross-lingual word vector space [15]. This shared space creates21

a cross-lingual word embedding (CLWE) [22, 43]. These serve as a valuable tool for transferring22

data across different languages, understanding cross-linguistic differences, and cross-lingual transfer23

for downstream tasks, such as direct translation [16, 20, 24], cross-lingual information retrieval [42],24

cross-lingual document classification [23], and cross-lingual dependency parsing [17, 39].25

A common element of almost all CLWE methods is the use of a rigid, orthogonal transformation26

mapping one embedding onto another so they inhabit a shared linguistic space. An orthogonal27

transformation is a special class of transformations that can be interpreted as the space of (in our28

case, high-dimensional) rotations around the origin, and also allowing a mirror flip. This family of29

transformations preserves (a) linear and (b) angular properties. By linear properties, we mean that30

the straight-line Euclidean distance between elements is preserved, as are more powerful properties31

like analogies (e.g., Paris - France + Italy ≈ Rome). Angular properties refer to measuring angles32

between pairs of points (from the origin), and as a result, cosine distance is preserved. Given a33

correspondence between pairs of objects across two embeddings, the classic Procrustes method,34

provides a closed-form solution which minimizes the sum of Euclidean distances. Moreover, if the35

vectors are all first made as unit vectors, then this also maximizes the sum of cosine similarities [10].36
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Under this framework, there has been a flurry of work significantly improving CLWE model per-37

formance along two directions. Semi-supervised and unsupervised models make these approaches38

require less input, and more amenable to lower-resource languages. For example Bootstrap Procrustes39

(PROC-B) [15, 41] is semi-supervised in that it starts with a small pairwise correspondence (of40

500-1000 words), aligns those to infer a larger correspondence, and repeats applying Procrustes41

alignment. Methods like MUSE [8] are unsupervised, and use a GAN to estimate a correspondence42

before applying a Procrustes procedure.43

The second direction is preprocessing the embeddings before applying the Procrustes alignment.44

These involve methods like removing the mean, removing principal components, and normalization45

which we will discuss in depth later. In principle, these methods aim to remove the geometry of46

data intrinsic to particular languages (but not shared across languages) while preserving similarity47

properties as assured by orthogonal alignment. The space of transformations allowed under orthogonal48

alignments is quite large, and we make the point that unless this data geometry is “normalized” it49

inhibits the alignment from optimizing over the entirety of this large space.50

Finally, we note that methods like Canonical Correlation Analysis (CCA) [13], Discriminative Latent51

Variable (DLV) [36], and Ranking-based optimization (RCSLS) [21] have also been applied towards52

finding an orthogonal alignment (or pair of alignments) which minimizes a different optimization53

function – since the objective function may not align with sums of squared Euclidean of cosine54

distance [8, 38]. Unlike the others, the RCSLS method notably does not require a rigid transformation.55

The focus of this paper is on embedding preprocessing, and is agnostic to the method of alignment56

used afterward, whether it is Procrustes-based, or optimizing something else.57

Our contribution. This work proposes a new and general approach to preprocessing word embed-58

dings, subsuming many previous approaches. The key is Spectral Normalization which regularizes59

the spectral properties of monolingual embeddings by setting all of the top singular vectors to have60

the same singular value. However, it leaves alone the smaller singular value; these capture important61

information and cannot be zeroed out, but making them the same value as the top singular vectors62

introduces too much noise. Spectral normalization already performs as well as the best previous63

approaches on alignment and translation tasks, and since it applies a fairly uniform stretching to the64

embeddings it does not distort monolingual similarity performance. Moreover, we show layering65

Spectral Normalization within an iterative sequence with also centering and vector length normaliza-66

tion improves results further. We first demonstrate this improvement on the standard translation task67

(BLI). We also show that this normalization preserves the core ontological structure of embeddings68

across languages, and that applying our normalization before aligning a low resource language to69

English improves performance on topic classification and on a natural language inference task.70

2 Existing Methods for Orthogonal Vector Spaces Alignment71

Given a language L, our starting point is an embedded representation of a set of n words. Indexing72

words from i = 1 . . . n, each word is associated with a vector xiL ∈ Rd. And let XL = {x1L, . . . , xnL}73

be the set of n words as their vector representation. These vector representations (derived by methods74

like word2vec [28], GloVe [33], or FastText [4]) are chosen so words with similar pairwise cosine75

similarity are found in the similar local context in large text corpora on which they are trained.76

Higher-level linear structure is shown to emerge, such as concept subspaces and analogies [29].77

The focus of this paper is on aligning embeddings of two languages L1 and L2. Each embedding78

XL1 and XL2 , only is designed to ensure pairwise relationships between its word vectors, but the79

actual coordinates of those vectors do not have any explicit meaning. Yet, previous work has clearly80

demonstrated that there exists significant overall structural similarity, and alignment seeks to make81

correspondences between those structures for translation and joint understanding.82

Most methods start with a known correspondence (or build one) between a set of K words in83

two languages, wlog let these be the same first K indexed words in those languages, denoted84

XK
L1

= {x1L1
. . . xKL1

} and XK
L2

= {x1L2
. . . xKL2

}. Then the Procrustes Problem solve for an85

orthogonal matrix W ∗ = arg minW ‖XK
L1
W −XK

L2
‖22. There exists a simple solution [2, 38, 45, 10]86

as W ∗ = UV > where UΣV > = svd(XK
L1

(XK
L2

)>). Dev et.al. [10] also point out that if all vectors87

are normalized first, then this procedure also maximizes the sum of cosine similarities.88
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2.1 Pre-processing Embeddings before Orthogonal Alignment89

It turns out directly aligning embeddings from two languages (even using the “optimal” Procrustes90

solution) does not provide the best possible joint embedding for translation tasks. While word91

meaning appears to hold a similar structure, languages have other properties such as differing word92

frequency, and this for instance leads to more frequent words having longer vectors in embeddings.93

This extra language-specific structure tends to interfere with alignment. As a result, a number94

of techniques have been developed to “normalize” the embeddings before Procrustes (or other)95

alignment. This in some sense allows the word meaning to dominate the optimization tasks without96

other confounding factors. We review the most common normalization approaches.97

Mean Centering (C) subtracts the mean of all vectors in an embedding from each vector in that98

embedding. The result is that the mean of all vectors is 0. This is a rigid transformation, and so does99

not change the Euclidean distance between any pair of points in an embedding, and also preserves100

any linear property like analogies (e.g., Paris - France + Italy ≈ Rome). Dev et. al. [10] points out101

that this is the first step (followed by the Procrustes orthogonal transformation) to minimize the sum102

of squared Euclidean distances among paired words, under any rigid transformation. However, this103

does change the cosine distance between pairs of points.104

Length Normalization (L) makes each vector have a 2-norm equal to 1, but retains its direction105

from the origin [2, 45]. This preprocessing step does not change the cosine distance between any pair106

of points in an embedding. But, it does change the Euclidean distance between pairs of points.107

Despite these contrasting goals, these two normalizations each turn out to be individually effective in108

regularizing the geometry of the embeddings, and allow for better CLWE. Wang et. al. [47], realized109

doing both was even more effective, and showed that iterating these two steps achieves the state-110

of-the-art way to preprocess, we denote as I-C+L. Iterative Normalization transforms monolingual111

word embeddings to have unit-length and zero-mean simultaneously (in practice they terminate this112

iterative process after a few steps before it achieves these two goals exactly).113

PCA Removal (PR) computes the principal component analysis (PCA) of an embedding, and then114

projects away from the direction of the top principal component, removing it [31]. Mu et. al. [31]115

observed that the top singular values typically do not encode essential semantic relationships between116

words but rather align strongly with word frequency. Also, they notice that the top principal values117

are much larger than the other values. After eliminating d/100 principal components, where d is the118

dimension of a word representation, they achieve better performance on both intrinsic and extrinsic119

tasks. Sachidananda et. al. [37] applied this simple pre-processing approach to their Filtered Inner120

Product Projection (FIPP) alignment method, and they significantly improve on the BLI task.121

2.2 Spectral Statistics of Embeddings122

Dubossarsky et. al. [11] recently documented how cross-lingual alignment is strongly affected by the123

spectral statistics of monolingual embeddings. We stack the embedded vectors xiL ∈ Rd as rows in124

a n × d matrix A ∈ Rn×d. The SVD decomposes A into UΣV > where U and V contain the left125

and right singular vectors, and the singular values σ1 ≥ σ2 ≥ . . . ≥ σd ≥ 0 are on the diagonal of Σ.126

The effective rank of A is a smoother analog to rank (when there is noise in low rank components),127

defined er(A) = eH(Σ) where H(Σ) = −
∑d
i=1 σ̄i log σ̄i with σ̄i = σi/

∑d
i=1 σi. The effective128

condition number κeff(A) = σ1/σer(A), which replaces the numerator (of condition number, σd)129

with the more robust singular value at the effective rank. This is desired to be small in stable data130

sets. The joint effective condition number measures the harmonic mean of the effective condition131

number across two matrices A,A′ as ECOND-HM(A,A′) = 2κeff(A)κeff(A
′)

κeff(A)+κeff(A′)
. The singular value gap132

measures how similar the singular value sequences are between two matrices as SVG(A,A′) =133 ∑d
i=1(log σi − log σ′i)

2. These should both be smaller, for more comparable data sets.134

Dubossarsky et. al. [11] applied these to monolingual embeddings and demonstrated that the135

performance of several CLWE methods were closely tied to these spectral properties. Basically136

embeddings align better if they are better jointly conditioned, especially measured via joint effective137

condition number and the singular value gap. Motivated by this idea, we propose methods that138

spectrally normalize embeddings improving these statistics while retaining intra-embedding meaning.139
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3 New Normalization Methods140

We introduce more direct and more general techniques to normalize monolingual word embeddings141

to more effectively prepare them for alignment. The goal is to remove language-specific geometry142

while maintaining the intrinsic similarity and structure captured within them.143

3.1 Geometric Median Normalization144

Iterative Normalization enforces individual word embeddings to have a unit length and each monolin-145

gual embedding to have a zero mean through an iterative technique. Wang et. al. [47] showed that146

iterating solutions for these distinct goals will eventually converge to a solution which satisfies both.147

In this paper, we observe that both goals can be done in one shot without iterating – by solving the148

Fermat-Weber problem [27, 25]. This dates to the 17th century, and corresponds with identifying the149

geometric median of a point set. Formally, the goal is a point x∗ ∈ Rd that minimizes the sum of150

distances from n anchor points {a1, . . . , an} ⊂ Rd which are not collinear: x∗ = minx
∑n
i=1 ‖x−151

ai‖. Several methods [6, 12, 32] have been proposed; the most popular is the Weiszfeld’s algorithm152

(Weiszfeld, see Appendix A). It is folklore that the solution x∗ satisfies that 0 =
∑n
i=1

ai−x∗
‖ai−x∗‖ ; we153

do not know of a written proof, so prove this in Appendix A.1 for completeness.154

Using this characteristic of the geometric median, we can simultaneously enforce monolingual155

word embeddings to have unit-length and zero-mean in just one step. This can be done using the156

Geometric Median normalization (GeoMediaN) algorithm (as Algorithm 1). Given a monolingual157

word embedding A, we compute the geometric median x∗, and "center" the data on this point, and158

unit length normalizes the centered embedding.159

Algorithm 1 Geometric Median Normalization: GeoMediaN(A)
1: x∗ ←Weiszfeld(A)

2: for all ai ∈ A do ai← ai−x∗
‖ai−x∗‖

3: return A

After these steps, all vectors are unit length, and because of the folklore property (Theorem A.1), the160

mean of those points is also 0. As a result, we can state the following property.161

Theorem 3.1. The output of GeoMediaN(A) is centered and length normalized.162

Despite the Geometric Median Normalization algorithm’s ability to enforce unit-length and zero-163

mean in just one step, we will observe that it does not perform especially well on the BLI task.164

Both GeoMediaN and I-C+L achieve one of many solutions which achieve these joint goals. We165

next investigate another one that works better: it preserves meaning and structure, and removes166

language-specific geometry allowing improved alignment.167

3.2 Spectral Normalization168

The predominant effect of unit-length and zero-mean normalization on monolingual word embeddings169

is that it makes embedding vectors from a language lie on a hypersphere with the center of the170

hypersphere centered at the origin. However, this does not take into account how the word embeddings171

vectors are spread out or clustered on the hypersphere. Approaches like PCA removal and mean172

centering have the effect of reducing the top principal component or top singular vector. As a result,173

if the spectral properties are extreme, it can help regularize them. However, this approach can be a174

bit blunt. PCA removal makes the top singular value exactly 0, so the condition number becomes175

infinite. Other quantities like the effective condition number, κeff(A), do however, tend to decrease.176

To this effect, we propose a new algorithm Spectral Normalization that more gently regularizes177

the spectral properties of word embeddings; see Algorithm 2. We will then combine it with other178

approaches to again ensure the embedding vectors lie on the unit sphere.179
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Algorithm 2 Spectral Normalization (SpecNorm(A, β))

1: Compute svd(A) = UΣV >; Let D ∈ Rd be a diagonal matrix.
2: Compute η =

√
‖A‖2F /d, where d is the dimension of the word embedding

3: for i = 1, . . . , d do
4: if (Σii > βη) then Dii ← Σii/(βη)
5: else Dii = 1.
6: return AVD−1

Given a monolingual word embedding A it updates part of the spectral properties of A as a whole,180

using on a parameter β ≥ 0. Based on an average of singular values η =
√
‖A‖2F /d, if a value is181

above β times that average, it adjusts it to βη. Hence, all of the top directions are given the same182

singular value. Otherwise, if it is below βη, it is considered a minor effect (some are quite small,183

and fairly noisy), and it is left alone. If these small ones are completely zeroed out, the critical184

information within is destroyed. However, if these small ones are also given the same value (i.e., βη)185

then components which do not contribute to the most prevalent aspects of a vectors similarity is given186

more importance, and we observed (see Section 4.1) that the usefulness of the embedding decreased.187

Iterative Spectral Normalization. Spectral normalization makes the most sense (see Appendix188

G) in a setting where the vectors are already centered, and also unit length. While SpecNorm does189

not change the center of the data, it does not maintain the length of individual vectors. As such, we190

advocate combining these methods into a single iterative algorithm: I-C+SN+L as in Algorithm 3.191

Algorithm 3 Iterative Spectral Normalization with C+L normalization (I-C+SN+L(A, #Iter))
1: for #Iter steps do
2: A← Center A
3: A← SpecNorm(A)
4: A← Unit length normalization of A
5: return A

We observe in Figure 1 that this process significantly improves the spectral properties, compare to192

any other approach. Without preprocessing (None), the languages (EN: English, DE: German, HI:193

Hindi, JA: Japanese shown) have large effective condition numbers – indicating that there is a large194

disparity between meaningful singular values. Note the y-axis is in log scale. Hence, aligning these195

languages without normalization would likely restrict alignment among top singular vectors, not196

allowing enough degree of freedom to align corresponding words.197

In contrast, after preprocessing when these values are more uniform, rotations among the dimensions198

containing the top principal components will not have an influence on the data distribution, and199

can fully optimize the alignment between words. Moreover, Figure 1 shows that I-C+SN+L most200

decreases the effective condition number, joint effective condition number, and singular value gap.201

Further, these values are fairly uniform across languages, despite great variation beforehand (as202

shown with None). In fact, I-C+SN+L is much more effective than other methods.203
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Figure 1: Spectral Measures of four (4) monolingual word embeddings, before (None) and after
applying various normalization methods.
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4 Experimental Analysis204

We provide an evaluation of our proposed preprocessing methods using 8 language embeddings205

pretrained on Wikipedia [4] of each language: Croatian (HR), English (EN), Finnish (FI), French206

(FR), German (DE), Italian (IT), Russian (RU), and Turkish (TR). We use the 300-dimensional207

fastText [4]1 embeddings, and all vocabularies are trimmed to the 200K most frequent words.208

Alignment evaluation tasks: BLI We evaluate and compare our proposed preprocessing methods209

mostly on the Bilingual Lexicon Induction (BLI) task, a word translation task. We discuss two more210

global applications Cross-lingual document classification (CLDC), and Cross-lingual transfer for211

natural language inference (XNLI) later. BLI is more direct, and has become the de facto evaluation212

task for CLWE models. For words in the source language, this task retrieves the nearest neighbors in213

the target language after alignment to check if it contains the translation. It reports the mean average214

precision (MAP) [15], which is equivalent to the mean reciprocal rank (MRR), of the translation.215

Unless stated otherwise, reported values on baseline methods are taken from [15], and use the Google216

Translate (GTrans) dictionary from [15]2. We trained (aligned) using 1k, 3k and 5k source words and217

evaluated (tested) on separate 2k source test queries, unless noted otherwise.218

Alignment Algorithms. We evaluated and compared the result of several supervised rigid-219

transformation CLWE models on the evaluation benchmarks using our proposed methods. All220

have publically available code, links are found in the reference citation. These include Canonical221

Correlation Analysis (CCA) [13], Procrustes (PROC) [2, 38, 45, 10], Bootstrapping Procrustes222

(PROC-B) [15], and Discriminative Latent-Variable (DLV) [36], as discussed in Section 1. We also223

consider Ranking-Based Optimization (RCSLS) [21] which is not a rigid alignment. In a few places,224

we also compare with VECMAP [3] as an example of an unsupervised alignment process. This should225

only use the geometry of the global embedding structure, e.g., derived from the natural ontology, and226

our normalization method still helps when using this approach.227

4.1 Hyperparameter Tuning228

Our main proposed algorithm I-C+SN+L has a few simple parameters. To avoid overfitting, we choose229

these through cross-validation on English (EN) and a held-out set of 5 languages Hindi (HI), Russian230

(RU), Chinese (ZH), Japanese (JA), Turkish (TR). Ten (10) Language pairs of the form EN-X and231

X-EN were considered. The hyperparameters β ∈ {1, 2, 3, 4, 5} and #Iter (number of iterations) ∈232

{1, 2, 3, 4, 5} were fine-tuned for I-C+SN+L.233

We used the publicly available MUSE3 translation dictionary [8] for hyperparameter tuning. The234

Procrustes alignment algorithm was trained on 5k source words and evaluated on 1.5k source test235

queries. We reported the mean average precision (MAP) in Table 1 for β ∈ {1, 2, 3, 4, 5} and with236

#Iter ∈ {1, 2, 3, 4, 5}. We observe the value of β = 2 was consistently the best threshold (although237

any β ≥ 2 performed similarly). These singular values were normalized, and those below β times the238

average we judged as noise, and left as is. However, the result did not change much with respect to239

the number of iterations.240

Table 1: Cross-Validation for Hyperparameter Tuning: MAP after Procrustes for 10 language pairs.

β #Iter=1 #Iter=2 #Iter=3 #Iter=4 #Iter=5

1 0.363 0.340 0.328 0.322 0.317
2 0.385 0.386 0.386 0.386 0.386
3 0.381 0.384 0.384 0.384 0.384
4 0.381 0.382 0.382 0.382 0.382
5 0.380 0.381 0.381 0.381 0.381

The tie between the #Iter hyperparameter was broken using their performance on thirteen English241

word similarity benchmarks; see Appendix C for more details. In Table 2 below, we report the242

1https://github.com/facebookresearch/fastText
2https://github.com/codogogo/xling-eval?utm_source=catalyzex.com
3https://github.com/facebookresearch/MUSE
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average Spearman rank coefficient score on the word similarity task (None means no normalization).243

(β, #Iter) = (2, 5) achieved the highest score. So hereafter, we applying I-C+SN+L with the244

hyperparameter (β, #Iter) = (2, 5).245

Table 2: Monolingual word similarity Task; Average Spearman rank coefficient

None (β, #Iter) = (2, 2) (β, #Iter) = (2, 3) (β, #Iter) = (2, 4) (β, #Iter) = (2, 5)

0.651 0.67077 0.67101 0.67108 0.67111

Note that the proposed approach (I-C+SN+L) only increased this score for these similarity tasks, so246

showed no signs of distorting inherent information. Although Spectral Normalization does not exactly247

preserve the linear properties or angular properties (as centering and length normalization do, one each,248

respectively), it does not suffer ill effects. We hypothesize this is because it is somewhat uniformly249

stretching words along the major modes of variation, and is effectively removing information not250

relevant to meaning, like frequency of occurrence. This benign effect is on contrast to other spectral251

adjustments (removing small singular values, or setting all to the same value) shown in Appendix C.252

4.2 BLI Performance across Normalization and Alignment Algorithms253

We compare and evaluate the BLI performance (MAP) of various normalization algorithms from254

previous works to our proposed algorithms. Using the MUSE translation dictionary, we trained CCA,255

PROC, PROC-B and RCSLS on 5k source words and evaluated on 1.5k source test queries. The256

following normalization algorithms were used in the comparison analysis: PR (PCA Removal) [31],257

GeoMediaN (Geometric Median Normalization), C+L (Mean centering and Length normalization,258

1 round), I-C+L (Iterative Mean centering and Length normalization, 5 rounds) [47], SN (Spectral259

Normalization, 1 round), C+SN+L (Mean centering, Spectral Normalization and Length normal-260

ization, 1 round), and I-C+SN+L (Iterative Mean centering, Spectral Normalization and Length261

normalization, 5 rounds). Specifically, we evaluated 18 language pairs, i.e., English (EN) from/to262

Bulgarian (BG), Catalan (CA), Czech (CS), German (DE), Spanish (ES), Korean (KO), Thai (TH) and263

Chinese (ZH), separate from hyperparameter tuning. The average is reported in Table 3, all results264

are in Appendix G. For almost all algorithms I-C+SN+L achieves the best scores (and especially on265

XL2−EN, often considerably better). The only exceptions are on non-rigid RCSLS when C+SN+L266

(with no iteration) or just SN (with C+L) performs slightly better. So, Spectral Normalization, and in267

particular I-C+SN+L, is shown as the best way to normalize languages before alignment.268

Table 3: BLI performance (MAP) on aligning EN−XL2
and XL2

−EN

Methods : EN−XL2
Methods : XL1

−EN
Normalization CCA PROC PROC-B RCSLS CCA PROC PROC-B RCSLS

None 0.358 0.365 0.377 0.394 0.398 0.399 0.405 0.428
PR 0.394 0.391 0.404 0.373 0.434 0.430 0.442 0.425
GeoMediaN 0.393 0.391 0.400 0.379 0.433 0.432 0.440 0.429
C+L 0.393 0.394 0.408 0.404 0.439 0.437 0.445 0.464
I-C+L 0.394 0.395 0.410 0.406 0.439 0.438 0.448 0.460
SN 0.391 0.394 0.408 0.405 0.440 0.438 0.451 0.468
C+SN+L 0.395 0.396 0.413 0.407 0.444 0.444 0.458 0.466
I-C+SN+L 0.396 0.398 0.414 0.406 0.445 0.446 0.461 0.466

We also compute the average BLI MAP score across all 28 language pair for more direct comparison269

to prior work [15], summarized in Table 4 and Appendix D. All results are in Appendix H. We270

compare I-C+SN+L (denoted with SN) against no normalization on various dictionary sizes: 1k, 3k271

and 5k source words and evaluated on 2k source test queries. In all cases, I-C+SN+L significantly272

improves over the baseline. This includes improvement over RCSLS which is non-rigid, so in273

principle could “learn" adjustments similar to our normalization in the process of alignment. We also274

tested on VECMAP, an unsupervised approach; I-C+SN+L preprocessing also improves this result275

from 0.375 to 0.410.276
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Table 4: Summary of BLI performance (MAP), average scores for all 28 language pairs.
No normalization results from [15], against I-C+SN+L (denoted SN).

Dict C
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C
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R
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R
C
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1K .289 .314 .299 .326 .379 .407 .289 .332 .331 .331
3K .378 .401 .384 .408 .398 .415 .381 .429 .415 .427
5K .400 .423 .405 .429 – – .403 .452 .437 .460

4.3 Downstream Tasks277

We conclude by demonstrating that Spectral Normalization not only improves in direct translation278

tasks, but also captures an important global structure that generalizes from a high resource language279

(i.e., English, EN) to lower resource languages. In both examples, a powerful classifier is trained280

on the EN embedding (after normalization), and then we demonstrate that after a lower resource281

language (e.g., German, DE) has been normalized and align the analysis task can be directly applied282

to that language. And in particular, adding the simple process of our normalization (I-C+SN+L)283

dramatically improves the results over not doing that step.284

Cross-lingual Document Classification (CLDC). The CLDC task builds a topic classification285

using a language model on a high resource language (in our case English EN) across 15 topics.286

The TED CLDC corpus assembled by [19] was used for training and evaluation. Following [15]287

a simple CNN was used to train. Table 5 summarizes the average F1-score for all topic classifiers288

on 5 language pairs. The CLWEs induced by PROCSN, PROC-BSN, DLVSN, and RCSLSSN (using289

I-C+SN+L) outperformed the baseline result (with no normalization) on the CLDC task, significantly290

improving the best average score from 0.421 to 0.461. Glavas et.al. [15] use only 12 of 15 topics,291

but could not confirm which, so we re-ran all baselines using all 15 topics.292

Table 5: CLDC performance (micro-averaged F1 scores). Cross-lingual transfer EN–X

Model Dict EN-DE EN-FR EN-IT EN-RU EN-TR Avg

PROC 5K .366 .258 .338 .288 .278 .306
PROCSN 5K .436 .366 .427 .517 .511 .451
PROC-B 3K .364 .304 .299 .336 .317 .324
PROC-BSN 3K .448 .396 .423 .522 .517 .461
DLV 5K .419 .336 .397 .493 .458 .421
DLVSN 5K .433 .323 .406 .499 .472 .427
RCSLS 5K .466 .397 .403 .403 .406 .415
RCSLSSN 5K .468 .500 .443 .488 .394 .459

Cross-lingual Natural Language Inference (XNLI). We evaluated the CLWE on a cross-lingual293

natural language inference (XNLI) task. We used a multi-lingual XNLI corpus created by [9], which294

is a collection of sentence pairs from the English MultiNLI corpus [44] translated into 14 languages.295

The MultiNLI corpus contains 433k sentence pairs with the labels entailment, contradiction, and296

neutral. The intersection between XNLI languages and BLI languages result in four XNLI evaluation297

pairs: EN-DE, EN-FR. EN-TR and EN-RU. We use the training setup in [15] with the Enhanced298

Sequential Inference Model [7] on English after normalization. First, we aligned normalized versions299

of each language onto the normalized EN embedding to obtain the shared cross-lingual embedding.300

Then we used the 5k test pairs from the XNLI corpus to evaluate each language alignment. Table 6301

shows the result for PROC, PROC-B, and RCSLS alignments (DLV and VECMAP transform the302

EN embedding in the process, so were omitted). We compare against the same procedure without303
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normalization from Glavas et.al. [15] (I-C+SN+L normalization denoted SN). As in other experiments,304

our normalization improves the average test accuracy with each alignment approach.305

Table 6: XNLI performance (test set accuracy)

Model Dict EN-DE EN-FR EN-TR EN-RU Avg

PROC 5K .607 .534 .568 .585 .574
PROCSN 5K .611 .638 .542 .596 .597
PROC-B 3K .615 .532 .573 .599 .580
PROC-BSN 3K .624 .638 .548 .601 .603
RCSLS 5K .390 .363 .387 .399 .385
RCSLSSN 5K .499 .482 .504 .556 .510

5 Conclusion & Discussion306

We introduce a new way to normalize embeddings, based on spectral normalization, for use in creating307

cross-lingual word embeddings. Our approach generalizes previous approaches, and effectively308

removes much of the clustering of words based on properties other than the similarity which encodes309

meaning. When used to individually preprocess monolingual embeddings, our approach allows310

any alignment procedure to find better alignments: resulting in improved performance on direct311

translation tasks as well as cross-lingual topic classification and natural language inference tasks.312

Social impacts. The vast majority of NLP research and cutting-edge advancements are in English.313

This disadvantages those who primarily operate in other languages, with less developed models, or314

less data to train models. As large language models are the cornerstone of most NLP research and315

development in English, one of this work’s main goals is to port these advances to other languages,316

and those who use them. This will help unlock this technology to many others around the world. As317

with most models, this accuracy and improvement may vary across tasks and languages.318

While language models have many positive use cases including improving accessibility, better319

recommendations, and increased automation, they have some negative effects as well. These include320

requiring potentially large computational and hence environmental cost, encoding and exacerbating321

bias, and aiding in automatically generating fake or deceitful content. While this paper is unlikely to322

change the desire to use embeddings, it aims to reduce the burden of use and increase the effectiveness323

in lower-resource settings. And in particular to port models trained in English to other languages.324

This would reduce the cost of retraining in other languages if the English model can be reused, easing325

environmental costs. We support the maturing efforts in attenuating bias in all such embeddings.326

And while we acknowledge the possibility of this work aiding in the automated creation of deceitful327

content and the harm it can cause, we believe the many benefits outweigh the harms.328

Limitations. The overarching goal in this line of work is to port the many advances built on329

embeddings from high-resource settings (like built on the English language), to lower-resource330

settings (like Turkish). This work can apply a powerful model built on an English language model331

(e.g., for natural language inference) and automatically invoke it in Turkish after the embeddings332

have been aligned. However, the alignment will not be any better than the low-resource embedding.333

If the embedding is too noisy or limited, then the analysis will likely not be effective.334

Also, this work focuses on non-contextual embeddings like FastText, but not contextual ones like335

RoBERTa which have proven almost universally more effective in NLP on English. While in principle336

a normalization function and alignment could be applied to contextual settings, we are unaware of337

any technique for learning these mappings. We believe it could be important future work.338

Data, Code, and Experiments. All existing methods are compared with publicly available code339

with publicly available data, with links above or in references. The exception is code for CLDC and340

XNLI is shared by Glavás et.al. [15]. Everything is run with default parameters; the exception is341

RCSLS were we follow the suggested hyperparameter selection strategy [21] (with learning rate in342

{1, 10, 25, 50} and epoch number in {10, 20}). Our new code for SpecNorm is in Appendix E.343
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