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Abstract

Hyperbolic neural networks (HNNs) have been proved effective in modeling complex data
structures. However, previous works mainly focused on the Poincaré ball model and the
hyperboloid model as coordinate representations of the hyperbolic space, often neglecting
the Klein model. Despite this, the Klein model offers its distinct advantages thanks to
its straight-line geodesics, which facilitates the well-known Einstein midpoint construction,
previously leveraged to accompany HNNs in other models. In this work, we introduce a
framework for hyperbolic neural networks based on the Klein model. We provide detailed
formulation for representing useful operations using the Klein model. We further study the
Klein linear layer and prove that the “tangent space construction” of the scalar multiplica-
tion and parallel transport are exactly the Einstein scalar multiplication and the Einstein
addition, analogous to the Möbius operations used in the Poincaré ball model. We show
numerically that the Klein HNN performs on par with the Poincaré ball model, providing
a third option for HNN that works as a building block for more complicated architectures.

Keywords: Hyperbolic neural network, Klein model, Einstein gyrovector space

1. Introduction

Hyperbolic spaces have shown considerable promise in embedding complex networks (Kri-
oukov et al., 2010), trees (Wilson et al., 2014; Sonthalia and Gilbert, 2020) and hierarchical
datasets (Nickel and Kiela, 2018). To leverage the inherent geometric structures within
these data types in learning neural representations, hyperbolic neural networks (HNNs)
were introduced, initially by Ganea et al. (2018a) and later expanded upon by many recent
works (Peng et al., 2021). To define neural operations in hyperbolic spaces, HNNs typically
utilize a model of hyperbolic geometry, where points are represented by Euclidean coordi-
nates. Most of the literature focuses on either the Poincaré ball model or the hyperboloid
model. Indeed, Ganea et al. (2018a); Shimizu et al. (2021) presented a set of operations for
implementing HNNs using the Poincaré ball model, which often enjoys a simple mathemat-
ical description. On the other hand, the hyperboloid model proves to be numerically more
stable than the Poincaré ball model (Nickel and Kiela, 2018; Qu and Zou, 2022; Mishne
et al., 2023) and facilitates hyperbolic “linear” layers without using tangent spaces (Chen
et al., 2022).

Despite the success of HNNs using the Poincaré ball and the hyperboloid models, HNNs
using other models remain largely unexplored. This raises problems when important opera-
tions have to be done using a certain model. Indeed, in many works (Gulcehre et al., 2019;
Zhu et al., 2020; Khrulkov et al., 2020; Zhang and Gao, 2021; Tai et al., 2021; Song et al.,
2022; Fu et al., 2024; Skrodzki et al., 2024; Li et al., 2024a), in order to use the Einstein
midpoint to perform aggregation, a mapping between the Poincaré ball/hyperboloid model
and the Klein model has to be implemented whenever aggregation is needed. This causes
unnecessary computational complexity. The Klein model also enjoys other crucial properties
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such as straight-line geodesics. However, to the best of our knowledge, no prior works have
discussed compact neural operations using the Klein model, that is, “pure Klein” HNNs.
Moreover, recently developed software packages for HNNs lack implementation in the Klein
model (van Spengler et al., 2023).

In this paper, we derive compact formulas for key operations in the Klein model. Anal-
ogous to the Möbius operations in the Poincaré ball model, we show that the Klein model
facilitates a set of operations known as Einstein scalar multiplication and Einstein addi-
tion (Ungar, 2009, 2012). For the Poincaré ball model, Ganea et al. (2018a) demonstrated
that the Möbius operations are exactly the exponential maps of “linear” operations (as used
in multilayer perceptrons for obtaining pre-activations) in tangent spaces. However, what
remains unclear is the precise relationship between Einstein operations and similar “tangent
space constructions” in the Klein model. In our paper, we prove that they are equivalent
operations. Thanks to this interpretation, we build Klein HNNs based on these Einstein
operations. Through experiments on well-known heterophilic graph datasets, we show that
the performance of Klein HNNs is on par with both Poincaré HNNs and hyperboloid HNNs.
Furthermore, Klein HNNs are efficient to implement.

2. Related Works

Hyperbolic neural networks The first HNN was introduced relatively recently by
Ganea et al. (2018a), who utilized the Poincaré ball model to develop fundamental neu-
ral operations including linear layers and recurrent layers. Importantly, they demonstrated
that the Möbius operations correspond to the tangent space operations that one would
intuitively define for neural operations in the Poincaré ball model. Later, Shimizu et al.
(2021) extended upon their work and introduced more operations. Another line of research
employed the hyperboloid model, favored for its numerical stability (Gulcehre et al., 2019;
Chen et al., 2022). More complex hyperbolic neural operations have since been designed for
a variety of applications, particularly for graph data (Chami et al., 2019; Liu et al., 2019;
Mathieu et al., 2019; Dai et al., 2021; Zhang et al., 2021; Yang et al., 2022, 2024b) and im-
age data (Khrulkov et al., 2020; Atigh et al., 2022; Ermolov et al., 2022; Desai et al., 2023;
Yang et al., 2024c). Additionally, there have been studies that focused on the numerical
stability (Mishne et al., 2023) and robustness (Li et al., 2024b) of HNNs. Despite these
advances, most models continue to rely on either the Poincaré ball or hyperboloid models,
with other hyperbolic models largely overlooked.

The Klein model in use Recently, the Klein model has been proved effective in rep-
resenting various types of data, including hierarchical graphs (McDonald and He, 2020;
Yang et al., 2024a), protein sequences (Ali et al., 2024), minimal spanning trees (Garćıa-
Castellanos et al., 2024), and scene images (Bi et al., 2017). A key advantage of the
Klein model is that its geodesics are represented as straight lines, which facilitates intuitive
constructions of Voronoi diagrams (Nielsen and Nock, 2010), Delaunay graphs (Medbouhi
et al., 2024) and SVM decision boundaries (Cho et al., 2019). Celińska-Kopczyńska and
Kopczyński (2024) studied numerical precision of hyperbolic models including the Klein
model. Moreover, properties of the Klein model are also used to assist in proofs for other
hyperbolic models (He et al., 2024). However, the above works did not explore neural
operations in the Klein model.
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Although early works (Taherian, 2010; Rostamzadeh and Taherian, 2014) studied the
algebraic structures and trigonometry of the Klein model, they did not address constructing
neural network layers. While Ungar (2009, 2012); Kim and Lawson (2013) summarized the
gyrogroup properties of the Einstein operations in connection with the Klein model, they
did not mention the properties that we introduce in this paper.

3. The Klein Model of Hyperbolic Geometry

The n-dimensional hyperbolic space, denoted as Hn, is a simply connected n-dimensional
Riemannian manifold with constant negative curvature. To represent points in Hn, there
are several isometric models including the Poincaré ball model Bn and the hyperboloid
(Lorentz) model Ln, both of which are commonly used in the HNN literature. The Klein
model (also known as Beltrami-Klein), denoted as Kn, is another notable representation.
In our paper, we consider Hn with a curvature −1 since this is used in most of the HNN
literature.

Recent works have derived compact formulas for basic operations in Bn and Ln (Ganea
et al., 2018a; Chami et al., 2019). Our derivation will use these formulas to avoid complicated
calculations of, e.g., connections. In this section, we introduce the Klein model and describe
the isometric mappings between the Klein model and the other two models. A detailed
review of Bn and Ln is provided in Appendix A.

The n-dimensional Klein model with a curvature −1 is represented as Kn = {x ∈
Rn, ∥x∥ < 1}, with the Riemannian metric tensor gKx = gK(x) expressed as:

gKij(x) =
δij

1− ∥x∥2
+

xixj

(1− ∥x∥2)2
, (1)

where ∥·∥ is the Euclidean norm. Denoting points in Rn+1 as [x0, x1, · · · , xn]⊤, the Klein
ball can be obtained by mapping x ∈ Ln to the hyperplane x0 = 1, using a gnomonic
(central) projection with rays emanating from the origin. Specifically, we review the fol-
lowing formulas for isometric mappings between hyperbolic models. We say two points are
“corresponding” if they are related by such an isometric mapping.

Mappings between models We use πL→K to denote the isometric mapping from Ln to
Kn and πK→L the isometric mapping from Kn to Ln. Namely, for xL = [xL0 , x

L
1 , · · · , xLn ]⊤ ∈

Ln and xK = [xK1 , · · · , xKn ]⊤ ∈ Kn,

πL→K(x
L) =

[
xL1
xL0

, · · · , x
L
n

xL0

]⊤
∈ Kn, πK→L(x

K) =
1√

1− ∥xK∥2
[
1,x⊤

K

]⊤
∈ Ln. (2)

We use πB→K to denote the isometric mapping from Bn to Kn and πK→B the isometric
mapping from Kn to Bn. Namely, for xB ∈ Bn and xK ∈ Kn,

πB→K(x
B) =

2

1 + ∥xB∥2
xB ∈ Kn, πK→B(x

K) =
1

1 +
√
1− ∥xK∥2

xK ∈ Bn. (3)

In Kn, the tangent space TxKKn at xK is represented as Rn where ∂
∂xK

i
is represented as

ei, the i-th canonical basis. Similar conventions are adopted for Bn and Ln. The tangent
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vectors are related using pushforward maps associated with the above isometric mappings.
We say that two vectors are “corresponding” if they are related by such a pushforward
map. We recall that a pushforward map of an isometry preserves inner products and
parallel transports.

The following lemma presents formulas for obtaining corresponding tangent vectors
between Kn and other models. The proofs of all the results are presented in Appendix B.

Lemma 1 Let xK ∈ Kn and vK ∈ TxKKn be a tangent vector at xK.

1. Let xB ∈ Bn be the corresponding point of xK and vB ∈ TxBBn be the corresponding
tangent vector of xK. Then

vK =
∂πB→K(x

B)

∂xB vB =
2

1 + ∥xB∥2
vB − 4xB · vB

(1 + ∥xB∥2)2
xB, (4)

vB =
∂πK→B(x

K)

∂xK vK

=
1

1 +
√
1− ∥xK∥2

vK +
xK · vK√

1− ∥xK∥2(1 +
√
1− ∥xK∥2)2

xK. (5)

2. Let xL ∈ Ln be the corresponding point of xK and vL ∈ TxLLn be the corresponding
tangent vector of xK. Then

vK =
∂πL→K(x

L)

∂xL vL = − vt
x2t

xs +
1

xt
vs, (6)

vL =
∂πK→L(x

K)

∂xK vK =

 xK·vK

(1−∥xK∥2)
3
2

1√
1−∥xK∥2

vK + xK·vK

(1−∥xK∥2)
3
2
xK

 . (7)

Distances The induced distance function on the Klein model can be inferred from the
one on the hyperboloid model, which we present as the following lemma.

Lemma 2 Let xK,yK ∈ Kn. Their geodesic distance is given by

dK(x
K,yK) = dL(πK→L(x

K), πK→L(y
K)) = cosh−1

(
1− xK · yK√

1− ∥xK∥2
√
1− ∥yK∥2

)
. (8)

Unit-speed geodesics The parametric expression of unit-speed geodesics in the Klein
model is given in the following lemma, which is derived based on the fact that an isometric
mapping maps geodesics in Ln to geodesics in Kn .

Lemma 3 Let xK ∈ Kn and vK ∈ TxKn with gK
xK(v

K,vK) = 1. Let γxK,vK(t) denote the

unit-speed geodesic in Kn with γxK,vK(0) = xK and γ̇xK,vK(0) = vK, then

γxK,vK(t) = xK +
sinh(t)vK

cosh(t) + λxK(xK · vK) sinh(t)
, (9)

where λxK := 1/
√

1− ∥xK∥2 is used globally in this paper.
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Accordingly, we can write out the exponential maps and logarithmic maps for the Klein
model, summarized as the following corollary.

Corollary 4 Given xK ∈ Kn and vK ∈ TxKKn, denote uK = vK/∥vK∥K with ∥ · ∥2K =
gK
xK(·, ·). Let γxK,uK(t) be the unit-speed geodesic in Kn with γxK,uK(0) = uK and γ̇xK,uK(0) =

uK, the exponential map expK
xK : TxKKn → Kn is given by

expKxK(v
K) = γxK,uK(∥vK∥K) = xK +

sinh(∥vK∥K) vK

∥vK∥K

cosh(∥vK∥K) +
λ2
xK

∥vK∥K
(xK · vK) sinh(∥vK∥K)

. (10)

The logarithmic map logKxK : Kn → TxKKn is given by

logKxK(y
K) = dK(x

K,yK)
yK − xK

∥yK − xK∥K
= cosh−1

(
1− xK · yK√

1− ∥xK∥2
√

1− ∥yK∥2

)
yK − xK

∥yK − xK∥K
,

(11)
In particular, it follows that

expKoK(v
K) = tanh(∥vK∥) vK

∥vK∥
, logKoK(y

K) = cosh−1(λyK)
yK

∥yK∥
. (12)

Parallel transport The parallel transport Px→y defines a linear isometry moving tangent
vectors along the geodesic from x to y. Unfortunately, the formula for parallel transport
between general points would be complicated in the Klein model. We only present the case
where the starting point is oK, the hyperbolic origin in Kn, which is sufficient for the use
case of hyperbolic neural networks.

Proposition 5 The parallel transport of a tangent vector vK ∈ ToKKn to the tangent space
TxKKn at an arbitrary point xK in the Klein model is

PoK→xK(vK) =
(xK · vK)(

√
1− ∥xK∥2 − 2)

1−
√
1− ∥xK∥2

xK +
√
1− ∥xK∥2vK ∈ TxKKn. (13)

4. Klein Model for Hyperbolic Neural Networks

To build HNNs in hyperbolic space, we need to define operations including weight matrix
transformation and bias translation in a way analogous to “Wx+ b”. A natural approach
is as follows. First, apply the logarithmic map to project the input to the tangent space at
the hyperbolic origin. Then for weight matrix transformation, perform the matrix-vector
multiplication in the tangent space; for bias translation, apply the parallel transport to the
hyperbolic bias vector from the origin to the input point. Finally, use the exponential map
to bring the output back to hyperbolic space. For the Poincaré ball model, Ganea et al.
(2018a) proved that these “tangent space operations” are equivalent to basic operations
in the Möbius gyrovector spaces. In the context of the Klein model, the corresponding
gyrovector space is the Einstein gyrovector space. This raises a natural question: are
the tangent space operations in the Klein model also equivalent to those in the Einstein
gyrovector space?
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In Section 4.1, we review the definitions of the Einstein gyrovector spaces. We prove

the equivalence of tangent space operations and Einstein gyrovector space operations in
Section 4.2. Finally, we derive HNNss in the Klein model in Section 4.3.

4.1. Einstein Gryogroups and Gyrovector Spaces

Einstein gyrogroup Let V be a real inner product space and let Vc = {x ∈ V : ∥x∥ < c}
be an open c-ball of V. Then the Einstein addition of x,y ∈ Vc is defined as

x⊕E y =
1

1 + x·y
c2

(
x+

1

γx
y +

1

c2
γx

1 + γx
(x · y)x

)
, (14)

where γx = (1− ∥x∥2
c2

)−
1
2 is the Lorentz factor. These designations originate from Einstein’s

theory of special relativity: if V = R3, Equation (14) represents the relativistic addition of
velocities x ,y in space rather than spacetime, where c is the speed of light.

In the general case where x ,y are not parallel, ⊕E is neither commutative nor asso-
ciative, rendering the corresponding algebraic structure merely a groupoid. As observed
by Ungar, however, this groupoid has the interesting property whereby an automorphism
gyr[x ,y] : Vc → Vc respecting ⊕E , called gyration, defines the obstruction to commutativ-
ity through x ⊕E y = gyr[x ,y]y ⊕E x as well as to associativity through x ⊕E (y ⊕E z) =
(x⊕E y)⊕E gyr[x ,y]z. This groupoid structure (Vc ,⊕E) is called a gyrocommutative gy-
rogroup, and describes Thomas precession in the example of special relativity. We refer to
(Vc ,⊕E) as Einstein gyrogroup for short, and more details on its properties can be found,
e.g., in Ungar (2009, sec. 1.2, 2.3).

Einstein gyrovector space Given an Einstein gyrogroup, we can endow it with another
operation called Einstein scalar multiplication: letting r ∈ R,x ∈ Vc, and x ̸= 0, it is

r ⊗E x = c tanh

(
r tanh−1

(
∥x∥
c

))
x

∥x∥
. (15)

This turns out to have associative and distributive properties, and we apply the notation
r ⊗E x = x⊗E r. The resulting structure (Vc ,⊕E ,⊗E) is called Einstein gyrovector space,
and see, e.g., Ungar (2009, sec. 3.1, 3.8) for relevant properties. Notably, its inherited inner
product is invariant under gyrations, that is, gyr[x ,y]u · gyr[x ,y]v = u · v for all u ,v ∈.
Einstein gyrovector space turns out to be a useful framework for hyperbolic geometry, since
we recover the Klein model of curvature −1 for V = Rn and c = 1.

4.2. Connecting the Klein Model with Einstein Gyrovector Spaces

Next, we show how Einstein gyrovector spaces facilitate the tangent space construction of
scalar multiplication and vector addition in the Klein model. We start with the geodesics in
the Klein model and their formulation using operations in the Einstein gyrovector spaces.

Geodesics The geodesic γxK→yK : R → Kn connecting points xK,yK ∈ Kn, such that

γxK→yK(0) = xK and γxK→yK(1) = yK, is shown by Ungar (2009, sec. 3.9) to be:

γxK→yK(t) = xK ⊕E

(
⊖Ex

K ⊕E yK)⊗E t, (16)

where ⊖Ex
K is the inverse of xK in the Einstein gyrogroup: ⊖Ex

K ⊕E xK = oK.
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Scaling and Einstein scalar multiplication We study the tangent space construction
of performing scalar multiplication in the Klein model and build the identity with the
Einstein addition. The following theorem summarizes our finding:

Theorem 6 For ∀r ∈ R,xK ∈ Kn, performing scalar multiplication in the Klein model,
which first uses the logarithmic map to project xK to ToKKn, then multiplies this projection
by a scalar in the tangent space and projects it back to the manifold with the exponential
map, can be achieved by directly applying the Einstein scalar multiplication, namely,

r ⊗E xK = expKoK
(
r logKoK

(
xK)) . (17)

Parallel transport and Einstein addition We also connect the parallel transport with
the Einstein addition using exponential and logarithmic maps in the following theorem:

Theorem 7 The parallel transport w.r.t. the Levi-Civita connection of a tangent vector
vK ∈ ToKKn to another tangent space TxKKn in the Klein model is given by

PoK→xK(vK) = logKxK
(
xK ⊕E expKoK(v

K)
)
. (18)

4.3. Hyperbolic Neural Networks in the Klein Model

Theorems 6 and 7 provide compact formulas for defining neural operations for HNNs using
the Klein model.

Weight matrix transformation and nonlinear activation First, thanks to Theo-
rem 6, we define the “Einstein version” of Euclidean functions that preserve the origin.

Definition 8 (Einstein version) Given f : Rn → Rm such that f(0) = (0), the Einstein
version of f , denoted as f⊗E : Kn → Km, is defined by

f⊗E(xK) := expKoK
(
f
(
logKoK(x

K)
))

. (19)

For instance, if σ : Rn → Rn is a non-linear activation function, then its Einstein version
σ⊗E can be applied to points in the Klein model. Namely,

σ⊗E(xK) := expKoK
(
σ
(
logKoK(x

K)
))

. (20)

Moreover, we identify matrix-vector multiplication as an Einstein version of linear maps.
Then the following result is straightforward.

Theorem 9 (Einstein matrix-vector multiplication) If M : Rn → Rm is a linear
map, which we identify with its matrix representation, then for xK ∈ Kn s.t. MxK ̸= 0,

M⊗E(xK) = expKoK(M logKoK(x
K))

= tanh

(
2∥MxK∥
∥xK∥

tanh−1

(
∥xK∥

1 +
√
1− ∥xK∥2

))
MxK

∥MxK∥
;

(21)

and if MxK = 0, then M⊗E(xK) = 0. Moreover, if we define the Einstein matrix-vector
multiplication of M ∈ Mm,n(R) and x ∈ Kn by M ⊗E xK := M⊗E(xK), then it shares
common properties with the matrix-vector multiplication in the Euclidean space.
1. For M ∈ Ml,m(R), M′ ∈ Mm,n(R), (MM′)⊗E xK = M⊗E (M′ ⊗E xK);
2. For r > 0, M ∈ Mm,n(R), (rM)⊗E xK = r ⊗E (M⊗E xK);
3. For M ∈ On(R), M⊗E xK = MxK.
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Bias translation Next, Theorem 7 provides a compact formula for bias translation.
Specifically, we can use the Einstein addition in place of the bias translation of a point
xK ∈ Kn with a hyperbolic bias bK ∈ Kn,

xK 7→ expKxK
(
PK
oK→xK

(
logKoK(b

K)
))

= expKxK
(
logKxK

(
xK ⊕E expKoK

(
logKoK

(
bK)))) = xK ⊕E bK.

(22)

In summary, to build Klein HNNs, Einstein operations are all we need.

5. Experiments

We perform node classification tasks on the well-known WebKB datasets including Texas,
Wisconsin and Chameleon (Craven et al., 2000), Actor datasets (Tang et al., 2009) and
citation datasets including Cora and Pubmed (Sen et al., 2008), summarized in Appendix C.
These datasets enjoy high Gromov hyperbolicities (Jonckheere et al., 2008; Adcock et al.,
2013). We compare HNNs using the three hyperbolic models we have discussed. We use
HNNs containing a hyperbolic linear layer and a Euclidean classification layer. We use
(hyperbolic version of) ReLU as the activation function. The HNNs are trained using the
Riemannian Adam (Becigneul and Ganea, 2019) for 5000 epochs with early stopping.

Table 1 presents the test accuracies. The results indicate that Klein HNNs performs on
par with both HNNs using the Poincaré ball model and the hyperboloid model.

Table 1: The test accuracy of two-layer HNNs (mean and std over 3 trials)
Dataset Texas Wisconsin Chameleon Actor Cora Pubmed

Poincaré 0.9697±0.0347 0.9506±0.0283 0.7442±0.0064 0.6436±0.0057 0.5960±0.0101 0.7270±0.0036
Hyperboloid 0.9697±0.0132 0.9444±0.0321 0.7418±0.0120 0.6342±0.0226 0.6067±0.0137 0.7293±0.0064
Klein 0.9697±0.0263 0.9568±0.0214 0.7375±0.0119 0.6509±0.0067 0.5957±0.0106 0.7230±0.0139

In Table 2, we report the average run time to train each epoch. Evidently, it takes a
longer time to train one epoch using the hyperboloid HNN compared with its Poincaré ball
and Klein counterparts. This is because no simple formulation exists for the weight matrix
transformation and bias translation in the hyperboloid model and we have to perform the
tangent space operations which involve a series of exponential and logarithmic maps, which
cause computational complexity. Thanks to the connection between the Klein model and
Einstein gyrovector spaces, we are able to implement the Klein linear layer in a simple and
elegant way. Emperically, Klein HNNs are as efficient as Poincaré HNNs and sometimes
the most efficient among all the three models.

Table 2: Average runtime for training one epoch (mean and std over 3 trials)
Dataset Texas Wisconsin Chameleon Actor Cora Pubmed

Poincaré 0.0222±0.0025 0.0205±0.0008 0.0248±0.0008 0.0263±0.0009 0.0198±0.0010 0.0220±0.0023
Hyperboloid 0.0396±0.0087 0.0341±0.0012 0.0224±0.0021 0.0420±0.0014 0.0362±0.0022 0.0351±0.0014
Klein 0.0219±0.0017 0.0208±0.0020 0.0234±0.0029 0.0238±0.0008 0.0214±0.0012 0.0222±0.0017

To study how training loss changes differently with training epochs using different mod-
els, we plot their relationships when training on some selected datasets. Figure 1 shows
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the result on the Wisconsin, Cora, and Pubmed datasets. We observe that the training
dynamics of the HNNs are very similar.
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Figure 1: Change of training loss with epochs using different models.

We also plot the hyperbolic features, i.e., output of the hyperbolic linear layer. For
illustration, we project them into the 2D-disk using hyperbolic t-SNE. Figure 2 shows the
results on the Texas and Wisconsin datasets for Poincaré and Klein HNNs. Features with
different labels are indicated by different colors. We observe that the representations show
similar patterns for the same dataset, indicating the effectiveness of our Klein HNNs.

(a) Texas (B) (b) Texas (K) (c) Wisconsin (B) (d) Wisconsin (K)

Figure 2: Features projected into the 2D-disks.

6. Conclusion

In this paper, we provide a detailed framework for Klein HNNs, addressing the gaps largely
overlooked from previous works. We derive compact formulas for key operations in the
Klein model. Subsequently, we connect the geometry of the Klein model with the Ein-
stein gyrovector spaces, providing a simple and elegant formulation for the tangent space
construction of the Klein linear layer. Our experiments show that Klein HNNs achieve com-
parable performance with Poincaré/hyperboloid HNNs while maintaining training efficiency.
Furthermore, our framework supports additional operations, such as Einstein midpoints, all
within the Klein model. Future works include extending the current operations to other
common neural operations.
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Appendix A. Hyperbolic Geometry

We review basic facts about the Poincaré ball model and the hyperboloid model of hyper-
bolic space. For readers seeking a more introductory overview of hyperbolic geometry, we
recommend Anderson (2006). We also recommend the work of Peng et al. (2021) for a
survey of HNNs. For a comprehensive study of operations within these models, including
those used in hyperbolic neural networks, we refer to the detailed work of Ganea et al.
(2018a) and Chami et al. (2019).

A.1. The Poincaré Ball Model

The n-dimensional Poincaré ball model with constant negative curvature of −1 is the Rie-
mannian manifold Bn = {x ∈ Rn | ∥x∥ < 1} with the metric tensor gBx = (ρx)

2 In, where

ρx = 2
(
1− ∥x∥2

)−1
is the conformal factor and In is the Euclidean metric. The geodesic

distance between two point x,y ∈ B is given by

dB(x,y) = cosh−1

(
1 +

2∥x− y∥2

(1− ∥x∥2) (1− ∥y∥2)

)
. (23)

Given x ∈ Bn, TxBn denotes the tangent space of Bn at x. For x,y ∈ Bn with x ̸= y
and v ∈ TxBn\{0}, the exponential map expBx : TxBn → Bn and the logarithmic map
logBx : Bn → TxBn satisfy

expBx(v) = x⊕M

(
tanh

(
ρx∥v∥

2

)
v

∥v∥

)
, (24)

logBx(y) =
2

ρx
tanh−1 (∥−x⊕M y∥) −x⊕M y

∥−x⊕M y∥
, (25)

where ⊕M is the Möbius addition, defined by

x⊕M y =

(
1 + 2x · y + ∥y|2

)
x+

(
1− ∥x∥2

)
y

1 + 2x · y + ∥x∥2∥y∥2
. (26)

In particular, the exponential and logarithmic maps at the hyperbolic origin o are given by

expBo (v) = tanh(∥v∥) v

∥v∥
, logBo (y) = tanh−1(∥y∥) y

∥y∥
. (27)

Ganea et al. (2018a) proved that, the parallel transport w.r.t. the Levi-Civita connection
of v ∈ ToBn to the tangent space TxBn at x is given by

Po→x(v) = logBx
(
x⊕M expBo (v)

)
. (28)

A.2. The Hyperboloid Model

The n-dimensional hyperboloid model with constant negative curvature −1 is represented as
Ln = {x ∈ Rn+1|⟨x,x⟩L = −1, xt > 0}, where ⟨·, ·⟩L denotes the Minkowski inner product,
⟨x,y⟩L := −x0y0+x1y1+ · · ·+xnyn. It has the metric tensor gL = diag

(
[−1,1⊤n ]

)
. From a

special relativity perspective, we may also write x ∈ Ln as [xt,x
⊤
s ]

⊤, for xt being the time
axis and xs being the spatial axes.
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The tangent space of Ln at x is the orthogonal space of Ln with respect to the Minkowski

inner product and is represented as TxLn := {v ∈ Rn+1 : ⟨v,x⟩L = 0}. Specifically, let
{e0, · · · , en} be the canonical basis of Rn+1, the tangent space is represented with the
understanding that

∂

∂xi

∣∣∣∣
x

=
x · ei√
1 + ∥x∥2

e0 + ei. (29)

The unit-speed geodesic ϕx,v(t) with ϕx,v(0) = x ∈ Ln and ϕ̇x,v(0) = v ∈ TxLn is given
by

ϕx,v(t) = x cosh(t) + v sinh(t). (30)

The geodesic distance of x,y ∈ Ln is given by dL(x,y) = cosh−1(−⟨x,y⟩L). For x,y ∈ Ln

with x ̸= y and v ∈ TxLn\{0}, the exponential map expLx : TxLn → Ln and the logarithmic
map logLx : Ln → TxLn are given by

expLx(v) = cosh (∥v∥L)x+ sinh (∥v∥L)
v

∥v∥L
, (31)

logLx(y) = dL(x,y)
y + ⟨x,y⟩Lx

∥y + ⟨x,y⟩Lx∥L
, (32)

where ∥v∥L =
√

⟨v,v⟩L is the induced norm from the Minkowski inner product.
The parallel transport of a tangent vector v ∈ ToLn at the hyperbolic origin o = [1,0⊤]⊤

to the tangent space TxLLn is given by

Po→x(v) = v − ⟨logo(x),v⟩L
dL(o,x)2

(logo(x) + logx(o)). (33)

Appendix B. Additional Proofs

B.1. Proof of Lemma 1

1. The corresponding tangent vectors vB ∈ TxBBn and vK ∈ TxKKn are related using
Jacobian matrices. Namely,

vK =
∂πB→K(x

B)

∂xB vB, vB =
∂πK→B(x

K)

∂xK vK. (34)

Since
∂πB→K(x

B)

∂xB =
2

1 + ∥xB∥2
I+ xB · −2 · 2(xB)⊤

(1 + ∥xB∥2)2
, (35)

∂πK→B(x
K)

∂xK =
1

1 +
√
1− ∥xK∥2

I+ xK · −1 · 2(xK)⊤

2
√
1− ∥xK∥2(1 +

√
1− ∥xK∥2)2

, (36)

we have

vK =
∂πB→K(x

B)

∂xB vB =
2

1 + ∥xB∥2
vB − 4xB · vB

(1 + ∥xB∥2)2
xB, (37)

vK =
∂πK→B(x

K)

∂xK vK =
1

1 +
√
1− ∥xK∥2

vK +
xK · vK√

1− ∥xK∥2(1 +
√

1− ∥xK∥2)2
xK. (38)
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2. Similarly,

vK =
∂πL→K(x

L)

∂xL vL, vL =
∂πK→L(x

K)

∂xK vK. (39)

For ∂πL→K(xL)
∂xL , let y = πL→K(x

L). Then

∂πL→K(x
L)

∂xL =
∂y

∂xL =
[
∂y
∂xt

∂y
∂xs

]
, (40)

with ∂y
∂xt

being a n×1 column vector and ∂y
∂xs

being a n×n matrix. The isometric mapping

in Equation (2) indicates that y = 1
xt
xs, and thus

∂y

∂xt
= − 1

x2t
xs,

∂y

∂xs
=

1

xt
I. (41)

Writing vL as
[
vt,v

⊤
s

]⊤
, we have

vK =
∂πL→K(x

L)

∂xL vL =
[
∂y
∂xt

∂y
∂xs

] [vt
vs

]
= vt

∂y

∂xt
+

∂y

∂xs
vs = − vt

x2t
xs +

1

xt
vs. (42)

Hence,

vK =
∂πL→K(x

L)

∂xL vL = − vt
x2t

xs +
1

xt
vs ∈ TxKKn. (43)

For ∂πK→L(x
K)

∂xK , let z = πK→L(x
K) =

[
zt, z

⊤
s

]⊤
. Then

∂πK→L(x
K)

∂xK =
∂z

∂xK =

[
∂zt
∂xK
∂zs
∂xK

]
. (44)

with ∂zt
∂xK being a 1 × n row vector and ∂zs

∂xK being a n × n matrix. From the mapping
between the hyperboloid model and the Klein model, we know

zt =
1√

1− ∥xK∥2
, zs =

1√
1− ∥xK∥2

xK. (45)

We compute ∂zt
∂xK and ∂zs

∂xK respectively:

∂zt
∂xK = −1

2

(
1− ∥xK∥2

)− 3
2 ·
(
−2(xK)⊤

)
=

(xK)⊤

(1− ∥xK∥2)
3
2

; (46)

∂zs
∂xK =

1√
1− ∥xK∥2

I+ xK · (xK)⊤

(1− ∥xK∥2)
3
2

. (47)

Putting everything together,

vL =
∂πK→L(x

K)

∂xK vK =

 xK·vK

(1−∥xK∥2)
3
2

1√
1−∥xK∥2

vK + xK·vK

(1−∥xK∥2)
3
2
xK

 ∈ TxLLn. (48)

■
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B.2. Proof of Lemma 3

The proof is analogous to that of Bn (Ganea et al., 2018b, Theorem 1). Let xL ∈ Ln and
vL ∈ TxLLn with ⟨vL,vL⟩L = 1. According to Equation (30), the unit-speed geodesic
ϕ(t) = ϕxL,vL(t) with ϕxL,vL(0) = xL and ϕ̇xL,vL(0) = vL is

ϕxL,vL(t) = xL cosh(t) + vL sinh(t). (49)

Let xK ∈ Kn and vK ∈ T K
x Kn with gxK(vK,vK) = 1. Let γ(t) = γxK,vK(t) ∈ Kn denote the

unit-speed geodesic in Kn with γxK,vK(0) = xK and γ̇xK,vK(0) = vK. Suppose xL and xK

are corresponding points in Ln and vL and vK are corresponding vectors in their tangent
spaces. Then

xL = πK→L(x
K) =

1√
1− ∥xK∥2

[
1
xK

]
= λxK

[
1
xK

]
, (50)

vL = ϕ̇(0) =
∂πK→L(y

K)

∂yK

∣∣∣∣
γ(0)

γ̇(0) =
∂πK→L(x

K)

∂xK vK. (51)

With
∂λxK

∂xK =
xK

(1− ∥xK∥2)3/2
= λ3

xKx
K, (52)

it follows that

vL =
∂πK→L(x

K)

∂xK vK =

(
∂

∂xK

([
λxK

λxKxK

]))
vK =

[
∂λ

xK
∂xK

∂λ
xK

∂xK (xK)⊤ + λxKI

]
vK

=

[
λ3
xK

(
xK · vK)

λ3
xK

(
xK · vK)xK + λxKvK

]
.

(53)

Making substitutions in Equation (49) yields

ϕ(t) = λxK

[
1
xK

]
cosh(t) +

[
λ3
xK

(
xK · vK)

λ3
xK

(
xK · vK)xK + λxKvK

]
sinh(t). (54)

Since the geodesics are preserved by the isometric mapping, γ is given by

γxK,vK(t) = πL→K ◦ ϕ(t)

=

(
λxK cosh(t) + λ3

xK

(
xK · vK) sinh(t))xK + (λxK sinh(t))vK

λxK cosh(t) + λ3
xK (xK · vK) sinh(t)

=

(
cosh(t) + λ2

xK

(
xK · vK) sinh(t))xK + sinh(t)vK

cosh(t) + λ2
xK (xK · vK) sinh(t)

= xK +
sinh(t)vK

cosh(t) + λ2
xK (xK · vK) sinh(t)

.

(55)

■
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B.3. Proof of Proposition 5

Write xL as
[
xt,x

⊤
s

]⊤
. Since oL = [1, 0, · · · , 0]⊤, we have dL(o

L,xL) = cosh−1(xt). Then

logoL(xL) = dL(o
L,xL)

xL + ⟨oL,xL⟩LoL

∥xL + ⟨oL,xL⟩LoL∥L
= cosh−1(xt)

xL − xto
L

∥xL − xtoL∥L
. (56)

Here, xL − xto
L =

[
xt,x

⊤
s

]⊤ −
[
xt,0

⊤]⊤ =
[
0,x⊤

s

]⊤
and thus ∥xL − xto

L∥L = ∥xs∥.
Therefore, logoL(xL) = cosh−1(xt)

∥xs∥
[
0,x⊤

s

]⊤
. Similarly,

logxL(oL) = dL(x
L,oL)

oL + ⟨xL,oL⟩LxL

∥oL + ⟨xL,oL⟩LxL∥L
= cosh−1(xt)

oL − xtx
L

∥oL − xtxL∥L
. (57)

Here, oL − xtx
L =

[
1,0⊤

]⊤ − xt
[
xt,x

⊤
s

]⊤
=
[
1− x2t , xtx

⊤
s

]⊤
, and thus

∥oL − xtx
L∥L =

√
−
(
1− x2t

)2
+ x2t ∥xs∥2 =

√
− (−∥xs∥2)2 + x2t ∥xs∥2

=
√

∥xs∥2(x2t − ∥xs∥2) =
√
∥xs∥2 = ∥xs∥.

(58)

Therefore, logxL(oL) =
cosh−1(xt)

∥xs∥
[
1− x2t , xtx

⊤
s

]⊤
. Since vL ∈ ToLLn, it holds that ⟨o,vL⟩L =

0. Writing vL as
[
vt,v

⊤
s

]⊤
, this indicates that vt = 0. Hence,

PL
oL→xL(v

L) = vL − ⟨logLo (xL),vL⟩L
dL(oL,xL)2

(logLoL(x
L) + logLxL(o

L))

=

[
0
vs

]
−

cosh−1(xt)
∥xs∥ xs · vs

(cosh−1(xt))
2

cosh−1(xt)

∥xs∥

([
0
xs

]
+

[
1− x2t
xtxs

])
=

[
0
vs

]
− xs · vs

∥xs∥2

[
1− x2t

(1 + xt)xs

]
=

[
xs · vs

vs − xs·vs
(xt−1)xs

]
.

(59)

Next, we use the isometric mapping in Equation (2) as well as Equations (6) and (7) to

derive PoK→xK(vK). For clarity, denote PoL→xL(vL) = wL =
[
wt,w

⊤
s

]⊤ ∈ TxLLn. Then,
by Lemma 1, the corresponding tangent vector in TxKKn is given by

wK = −wt

x2t
xs +

1

xt
ws = −xs · vs

x2t
xs +

1

xt

(
vs −

xs · vs

(xt − 1)
xs

)
. (60)

Expressing xt,xs in terms of xK, we have

xt =
1√

1− ∥xK∥2
, xs =

1√
1− ∥xK∥2

xK. (61)

We further express vL ∈ ToLLn in terms of the corresponding tangent vector vK in ToKKn.
We already know that vt = 0. Also,

vs =
1√

1− ∥oK∥2
vK +

oK · vK

(1− ∥oK∥2)
3
2

oK = vK. (62)
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Hence,

PoL→xL(vL) = wK = −xs · vs

x2t
xs +

1

xt

(
vs −

xs · vs

(xt − 1)
xs

)
= −

(
1− ∥xK∥2

) xK · vK√
1− ∥xK∥2

1√
1− ∥xK∥2

xK

+
√
1− ∥xK∥2

vK − 1
1√

1−∥xK∥2
− 1

xK · vK√
1− ∥xK∥2

1√
1− ∥xK∥2

xK


= −(xK · vK)xK +

√
1− ∥xK∥2vK − xK · vK

1−
√
1− ∥xK∥2

xK

=
(xK · vK)(

√
1− ∥xK∥2 − 2)

1−
√

1− ∥xK∥2
xK +

√
1− ∥xK∥2vK. (63)

■

B.4. Proof of Theorem 6

Recall that Corollary 4 indicates

expKoK(v
K) = tanh(∥vK∥) vK

∥vK∥
, (64)

logKoK(x
K) = cosh−1

(
1√

1− ∥xK∥2

)
xK

∥xK∥
. (65)

On the one hand,

expKoK(r log
K
oK(x

K)) = expKoK

(
r cosh−1

(
1√

1− ∥xK∥2

)
xK

∥xK∥

)

= tanh

(
|r| cosh−1

(
1√

1− ∥xK∥2

))
rxK

|r|∥xK∥

= tanh

(
r cosh−1

(
1√

1− ∥xK∥2

))
xK

∥xK∥
.

(66)

On the other hand,

r ⊗E xK = tanh
(
r tanh−1

(
∥xK∥

)) xK

∥xK∥
. (67)

Therefore, to prove r ⊗E xK = expK
oK

(
r logKoK

(
xK)), it suffices to show:

cosh−1

(
1√

1− ∥xK∥2

)
= tanh−1

(
∥xK∥

)
. (68)
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Let cosh−1

(
1√

1−∥xK∥2

)
= t, then cosh(t) = 1√

1−∥xK∥2
, i.e.,

et + e−t

2
=

1√
1− ∥xK∥2

. (69)

This implies that

∥xK∥2 = 1− 4

e2t + e−2t + 2
=

e2t + e−2t − 2

e2t + e−2t + 2
=

(
et − e−t

et + e−t

)2

. (70)

Therefore, ∥xK∥ = et−e−t

et+e−t since t > 0, i.e. tanh−1
(
∥xK∥

)
= t, completing the proof. ■

B.5. Proof of Theorem 7

Our proof is based on Equation (28) and the isometric mappings in Equations (3)–(5).

Note that proving Equation (18) is equivalent to showing that PoK→xK(vK) given by
logKxK

(
xK ⊕E expK

oK(v
K)
)
and PoB→xB(vB) given by logBxB

(
xB ⊕M expB

oB(v
B)
)
are corre-

sponding tangent vectors. This is further equivalent to showing that xK ⊕E expK
oK(v

K) and
xB ⊕M expB

oB(v
B) are corresponding points in hyperbolic space.

On the one hand, applying Equation (26), we have

xB ⊕M expBoB(v
B) = xB ⊕M

(
tanh

(
∥vB∥

) vB

∥vB∥

)

=

(
1 +

2 tanh (∥vB∥)
∥vB∥ xB · vB + tanh2

(
∥vB∥

))
xB +

(
1− ∥xB∥2

) tanh (∥vB∥)
∥vB∥ vB

1 + 2 tanh (∥vB∥)
∥vB∥ xB · vB + tanh2 (∥vB∥)∥xB∥2

=

(
∥vB∥+ 2 tanh

(
∥vB∥

)
xB · vB + tanh2

(
∥vB∥

)
∥vB∥

)
xB +

(
1− ∥xB∥2

)
tanh

(
∥vB∥

)
vB

∥vB∥+ 2 tanh (∥vB∥)xB · vB + tanh2 (∥vB∥)∥xB∥2∥vB∥
.

(71)
On the other hand, applying Equation (14), we have

xK ⊕E expKoK(v
K) = xK ⊕E

(
tanh(∥vK∥) vK

∥vK∥

)
=

1

1 + tanh(∥vK∥)
∥vK∥ xK · vK

(
xK +

√
1− ∥xK∥2 tanh(∥v

K∥)
∥vK∥

vK

+

1√
1−∥xK∥2

1 + 1√
1−∥xK∥2

tanh(∥vK∥)
∥vK∥

(xK · vK)xK

)

=
∥vK∥

∥vK∥+ tanh(∥vK∥)xK · vK

(
xK +

√
1− ∥xK∥2 tanh(∥v

K∥)
∥vK∥

vK

+
1

1 +
√

1− ∥xK∥2
tanh(∥vK∥)

∥vK∥
(xK · vK)xK

)
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=
∥vK∥

∥vK∥+ tanh(∥vK∥)xK · vKxK +
tanh(∥vK∥)xK · vK

∥vK∥+ tanh(∥vK∥)xK · vK
xK

1 +
√

1− ∥xK∥2

+
tanh(∥vK∥)

√
1− ∥xK∥2

∥vK∥+ tanh(∥vK∥)xK · vKvK.

Given xB,vB, the corresponding xK ∈ Kn,vK ∈ ToKKn are

xK =
2

1 + ∥xB∥2
xB, vK =

2

1 + ∥oB∥2
vB − 4oB · vB

(1 + ∥oB∥2)2
oB = 2vB. (72)

Writing xK ⊕E expK
oK(v

K) in terms of xB,vB yields

xK ⊕E expKoK(v
K)

=
2∥vB∥

2∥vB∥+ tanh(2∥vB∥) 2xB·2vB

1+∥xB∥2

2xB

1 + ∥xB∥2
+

tanh(2∥vB∥) 2xB·2vB

1+∥xB∥2

2∥vB∥+ tanh(2∥vB∥) 2xB·2vB

1+∥xB∥2
xB

+

tanh(2∥vB∥)
√
1− 4∥xB∥2

(1+∥xB∥2)2

2∥vB∥+ tanh(2∥vB∥) 2xB·2vB

1+∥xB∥2
2vB

=
∥vB∥

(
1 + ∥xB∥2

)
∥vB∥ (1 + ∥xB∥2) + 2 tanh(2∥vB∥)xB · vB

2xB

1 + ∥xB∥2

+
2 tanh(2∥vB∥)xB · vB

∥vB∥ (1 + ∥xB∥2) + 2 tanh(2∥vB∥)xB · vBx
B

+
tanh(2∥vB∥)

(
1− ∥xB∥2

)
∥vB∥ (1 + ∥xB∥2) + 2 tanh(2∥vB∥)xB · vBv

B

=
2∥vB∥+ 2 tanh(2∥vB∥)xB · vB

∥vB∥ (1 + ∥xB∥2) + 2 tanh(2∥vB∥)xB · vBx
B

+
tanh(2∥vB∥)

(
1− ∥xB∥2

)
∥vB∥ (1 + ∥xB∥2) + 2 tanh(2∥vB∥)xB · vBv

B

=
2∥vB∥+ 4 tanh(∥vB∥)xB·vB

1+tanh2(∥vB∥)

∥vB∥ (1 + ∥xB∥2) + 4 tanh(∥vB∥)xB·vB

1+tanh2(∥vB∥)

xB +

2 tanh(∥vB∥)(1−∥xB∥2)
1+tanh2(∥vB∥)

∥vB∥ (1 + ∥xB∥2) + 4 tanh(∥vB∥)xB·vB

1+tanh2(∥vB∥)

vB

=
2∥vB∥

(
1 + tanh2(∥vB∥)

)
+ 4 tanh(∥vB∥)xB · vB

∥vB∥ (1 + ∥xB∥2)
(
1 + tanh2(∥vB∥)

)
+ 4 tanh(∥vB∥)xB · vBx

B

+
2 tanh(∥vB∥)

(
1− ∥xB∥2

)
∥vB∥ (1 + ∥xB∥2)

(
1 + tanh2(∥vB∥)

)
+ 4 tanh(∥vB∥)xB · vBv

B

=

(
2∥vB∥+ 2 tanh2(∥vB∥)∥vB∥+ 4 tanh(∥vB∥)xB · vB)xB +

(
2 tanh(∥vB∥ − 2 tanh(∥vB∥)∥xB∥2

)
vB

∥vB∥+ ∥xB∥2∥vB∥+ tanh2(∥vB∥)∥vB∥+ tanh2(∥vB∥)∥xB∥2∥vB∥+ 4 tanh(∥vB∥)xB · vB

Meanwhile, we need to map xB⊕M expB
oB(v

B) ∈ Bn to Kn and check whether it matches
the simplified result of xK ⊕E expK

oK(v
K). Denote

∥vB∥+ 2 tanh
(
∥vB∥

)
xB · vB + tanh2

(
∥vB∥

)
∥xB∥2∥vB∥ = A, (73)
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∥vB∥+ 2 tanh
(
∥vB∥

)
xB · vB + tanh2

(
∥vB∥

)
∥vB∥ = B, (74)(

1− ∥xB∥2
)
tanh

(
∥vB∥

)
= C. (75)

Then xB ⊕M expB
oB(v

B) ∈ Bn can be written as BxB+CvB

A . Thus, the corresponding point
in Kn is given by

2BxB+CvB

A

1 + ∥BxB+CvB

A ∥2
=

2ABxB + 2ACvB

A2 + ∥BxB + CvB∥2

=
2ABxB + 2ACvB

A2 +B2∥xB∥2 + C2∥vB∥2 + 2BC(xB · vB)
.

(76)

For clarity, let ∥xB∥ = x, ∥vB∥ = v, and xB · vB = xv cos θ. We calculate:

A2 = (v + 2xv cos(θ) tanh(v) + x2v tanh2(v))2

= v2 + 4xv2 cos(θ) tanh(v) + 2x2v2 tanh2(v)

+ 4x2v2 cos2(θ) tanh2(v) + 4x3v2 cos(θ) tanh3(v) + x4v2 tanh4(v),

(77)

B2∥xB∥2 =
(
v + 2xv cos(θ) tanh(v) + v tanh2(v)

)2
x2

= x2v2 + 4x3v2 cos(θ) tanh(v) + 2x2v2 tanh2(v)

+ 4x4v2 cos2(θ) tanh2(v) + 4x3v2 cos(θ) tanh3(v) + x2v2 tanh4(v),

(78)

C2∥vB∥2 =
(
1− x2

)2
v2 tanh2(v) = v2 tanh2(v)− 2x2v2 tanh2(v) + x4v2 tanh2(v), (79)

2BC(xB · vB) = 2xv cos(θ)
(
v + 2xv cos(θ) tanh(v) + v tanh2(v)

) (
1− x2

)
tanh(v)

= 2xv2 cos(θ) tanh(v)− 2x3v2 cos(θ) tanh(v) + 4x2v2 cos2(θ) tanh2(v)

− 4x4v2 cos2(θ) tanh2(v) + 2xv2 cos(θ) tanh3(v)− 2x3v2 cos(θ) tanh3(v).
(80)

Thus, the denominator in Equation (76) is

A2 +B2∥xB∥2 + C2∥vB∥2 + 2BC(xB · vB)

= v2 + x2v2 + 6xv2 cos(θ) tanh(v) + 2x3v2 cos(θ) tanh(v)

+ v2 tanh2(v) + 2x2v2 tanh2(v) + x4v2 tanh2(v) + 8x2v2 cos2(θ) tanh2(v)

+ 2xv2 cos(θ) tanh3(v) + 6x3v2 cos(θ) tanh3(v) + x2v2 tanh4(v) + x4v2 tanh4(v).

(81)

We can factor this expression and get

A2 +B2∥xB∥2 + C2∥vB∥2 + 2BC(xB · vB)

= v2
(
1 + 2x cos(θ) tanh(v) + x2 tanh2(v)

)
·
(
1 + x2 + 4x cos(θ) tanh(v) + tanh2(v) + x2 tanh2(v)

)
.

(82)

The numerator contains the following terms:

2AB = 2
(
v + 2xv cos(θ) tanh(v) + x2v tanh2(v)

) (
v + 2xv cos(θ) tanh(v) + v tanh2(v)

)
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= 2v2

(
1 + 2x cos(θ) tanh(v) + x2 tanh2(v)

) (
1 + 2x cos(θ) tanh(v) + tanh2(v)

)
, (83)

2AC = 2
(
v + 2xv cos(θ) tanh(v) + x2v tanh2(v)

) (
1− x2

)
tanh(v)

= 2v
(
1 + 2x cos(θ) tanh(v) + x2 tanh2(v)

) (
tanh(v)− x2 tanh(v)

)
. (84)

Altogether, Equation (76) can be simplified as

2ABxB + 2ACvB

A2 +B2∥xB∥2 + C2∥vB∥2 + 2BC(xB · vB)

=
2v2

(
1 + 2x cos(θ) tanh(v) + x2 tanh2(v)

) (
1 + 2x cos(θ) tanh(v) + tanh2(v)

)
v2
(
1 + 2x cos(θ) tanh(v) + x2 tanh2(v)

) (
1 + x2 + 4x cos(θ) tanh(v) + tanh2(v) + x2 tanh2(v)

)xB

+
2v
(
1 + 2x cos(θ) tanh(v) + x2 tanh2(v)

) (
tanh(v)− x2 tanh(v)

)
v2
(
1 + 2x cos(θ) tanh(v) + x2 tanh2(v)

) (
1 + x2 + 4x cos(θ) tanh(v) + tanh2(v) + x2 tanh2(v)

)vB

=
2
(
1 + 2x cos(θ) tanh(v) + tanh2(v)

)
1 + x2 + 4x cos(θ) tanh(v) + tanh2(v) + x2 tanh2(v)

xB

+
2
(
tanh(v)− x2 tanh(v)

)
v
(
1 + x2 + 4x cos(θ) tanh(v) + tanh2(v) + x2 tanh2(v)

)vB. (85)

If we express xK ⊕E expK
oK(v

K) in terms of x, v and cos(θ), we get

xK ⊕E expKoK(v
K)

=

(
2∥vB∥+ 2 tanh2(∥vB∥)∥vB∥+ 4 tanh(∥vB∥)xB · vB)xB +

(
2 tanh(∥vB∥ − 2 tanh(∥vB∥)∥xB∥2

)
vB

∥vB∥+ ∥xB∥2∥vB∥+ tanh2(∥vB∥)∥vB∥+ tanh2(∥vB∥)∥xB∥2∥vB∥+ 4 tanh(∥vB∥)xB · vB

=
2
(
v + 2xv cos(θ) tanh(v) + v tanh2(v)

)
xB + 2

(
tanh(v)− x2 tanh(v)

)
vB

v + x2v + 4xv cos(θ) tanh(v) + tanh2(v)v + x2v tanh2(v)

=
2
(
1 + 2x cos(θ) tanh(v) + tanh2(v)

)
1 + x2 + 4x cos(θ) tanh(v) + tanh2(v) + x2 tanh2(v)

xB

+
2
(
tanh(v)− x2 tanh(v)

)
v
(
1 + x2 + 4x cos(θ) tanh(v) + tanh2(v) + x2 tanh2(v)

)vB. (86)

The expressions in Equation (85) and Equation (86) agree. Therefore, xK⊕E exp
K
oK(b

K)
and xB ⊕M expB

oB(b
B) are the corresponding points in the hyperbolic space. We conclude

that
PoK→xK(vK) = logKxK

(
xK ⊕E expKoK(v

K)
)
. (87)

■

B.6. Proof of Theorem 9

A simple application of Equation (12) yields

M⊗E(xK) = expKoK(M logKoK(x
K))

= tanh

(
2∥MxK∥
∥xK∥

tanh−1

(
∥xK∥

1 +
√
1− ∥xK∥2

))
MxK

∥MxK∥
.

(88)

■
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Appendix C. Statistics of Datasets

The following table summarizes the statistics of the datasets.

Table 3: Statistics of datasets
Dataset Texas Wisconsin Chameleon Actor Cora Pubmed

Nodes 183 251 2,277 7,600 2,708 19,717
Edges 280 466 31,421 26,752 5,278 44,327
Features 1,703 1,703 2,325 931 1,433 500
Class 5 5 5 5 7 3
Hyperbolicity 1.0 1.0 1.5 1.5 3.0 2.5
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