
STGraph: A Framework for Temporal Graph Neural

Networks

Joel Mathew Cherian
1
, Nithin Puthalath Manoj

1

Kevin Jude Concessao
2, Unnikrishnan Cheramangalath

2

1 Department of CSE, NIT Calicut, 2 Department of CSE, IIT Palakkad
joelmathewcherian@gmail.com, nithinp.manoj@gmail.com

112014001@smail.iitpkd.ac.in, unnikrishnan@iitpkd.ac.in

Abstract

Real-life graphs from various application domains like social networks, transporta-
tion networks, and citation networks evolve over time. Temporal Graph Neural
Networks (TGNNs) are used for analyzing spatial and temporal properties of graphs
from these application domains. We propose STGraph, a framework to program
TGNNs. The proposed framework extends Seastar, a vertex-centric programming
model for training static GNNs on GPUs. STGraph supports TGNNs for static
graphs with temporal signals and discrete-time dynamic graphs (DTDGs). Existing
TGNN frameworks store DTDGs as separate snapshots, incurring high memory
overhead. As an improvement, STGraph constructs each snapshot on demand
during training. This is achieved by integrating the system with dynamic graph data
structures capable of building graph snapshots from temporal updates. STGraph is
benchmarked against PyTorch Geometric Temporal (PyG-T) on an NVIDIA GPU.
For static graphs with temporal signals, STGraph shows up to 1.22⇥ speedup and
up to 2.14⇥ memory improvement over PyG-T. For DTDGs, STGraph exhibits up
to 1.70⇥ speedup and 1.52⇥ memory improvement over PyG-T.

1 Introduction

Graph Neural Networks (GNNs) have become robust tools in deep learning, revolutionizing how we
infer information from graph data structures [1–4]. They leverage the inherent structural properties
of static graphs to excel in tasks such as node classification, link prediction, and graph classification.
Unlike static graphs, temporal graphs incorporate time as an extra dimension and capture sequential
changes in graph structure and attributes. Temporal Graph Neural Networks (TGNNs) analyze these
changes by extending the traditional GNN architecture [5, 6] with a recurrent unit or an attention-
based mechanism. These models are valuable in real-life applications such as social network analysis,
traffic forecasting, and epidemic prediction.

Numerous frameworks, such as DGL [7] and PyG [8], are available for creating GNN models. How-
ever, these frameworks suffer from high memory consumption, poor data locality, and a significant
gap between the design and implementation of GNN models. Seastar [9], a vertex-centric program-
ming model for GNN training on NVIDIA GPUs, addresses the limitations of frameworks like DGL
and PyG. Additionally, GNNs are constructed in Seastar by defining the logic for a single vertex.
The Seastar system outperforms state-of-the-art GNN frameworks but lacks support for TGNNs.

We introduce STGraph, a framework written in Python and CUDA/C++, built on top of Seastar.
STGraph enables deep learning practitioners to develop TGNN models through a vertex-centric
approach. We benchmarked STGraph against PyG-T[10], a state-of-the-art framework built on top of
PyG for creating TGNN models. Similar to PyG-T, STGraph supports both static-temporal (static
graphs with temporal signals) and discrete-time dynamic graphs (dynamic graphs with both static and
dynamic signals). Overall, STGraph outperforms PyG-T, exhibiting 1.22⇥ performance improvement
Temporal Graph Learning Workshop @ NeurIPS 2023, New Orleans.



and 2.14⇥ lower memory consumption for static-temporal graphs. For discrete-time dynamic graphs,
it demonstrates 1.70⇥ performance improvement and 1.52⇥ lower memory consumption.

The primary contributions of our work can be summarized as follows:-
• STGraph, a framework to train TGNN models seamlessly on the GPU.
• Integrating STGraph with dynamic graph data structures for optimized discrete-time dy-

namic graph processing.
• Publicly releasing STGraph1 as an open-source deep learning library for graphs. The library

includes GNN and TGNN layer APIs, dataset loaders and the STGraph framework for
building custom TGNNs.

2 Proposed Work

The STGraph architecture is illustrated in Figure 1. This design uses components from Seastar

(uncolored parts of Figure 1) along with custom modules, newly introduced by STGraph, for temporal
functionality (colored parts of Figure 1). Seastar is used to generate forward and backward execution
units (CUDA kernels) by tracing, auto-differentiating and optimizing the vertex-centric function (See
Appendix A.1). The STGraph Dataloader processes datasets to generate graph objects. During the
execution of the vertex-centric function, the STGraph Backend Interface passes these graph objects
to the Temporally-aware Executor. The executor orchestrates which snapshot of the graph object is
passed to forward and backward units during forward and backward propagation respectively. This
orchestration is enabled by memory data structures such as State-Stack and Graph-Stack along with
the Graph Update and Graph Reverse module. Additionally, all features integrated into STGraph
confine their interactions with the backend through the STGraph backend interface (See Figure 1).
This interface ensures the backend-agnostic nature of the STGraph framework.

Figure 1: STGraph Architecture

2.1 TGNN Training in STGraph
The new components introduced by STGraph account for the differences in training TGNNs as
compared to training conventional GNNs. During training, TGNNs need to process a sequence of
features from consecutive timestamps before learning from that sequence. Consider that the total
number of timestamps in the input is denoted by N, with each individual timestamp being denoted by
t0, t1, ...tN�1. The total timestamps are then divided into a set of sequences S0 to Sk�1 (k < N ).
Each sequence contains a set of consecutive timestamps. For any two sequences Si and Sj with
i < j, the timestamps in Si and Sj are disjoint, and for any timestamp x 2 Si and y 2 Sj , x < y.
Forward propagation on a sequence Si (i < k) accumulates the loss for each timestamp in Si. At the
end of forward propagation, the model propagates backwards, updating its parameters repeatedly for
all the timestamps in the sequence Si. For every timestamp t in Si, the node/edge features and graph
structure used during forward and backward propagation at t must match. STGraph uses the State

Stack and Graph Stack to maintain a memory of feature vectors and graph structure respectively.

Algorithm 1 describes how TGNN models are trained using STGraph. The algorithm takes as input
G (input graph object), F (feature vectors for all timestamps), T (total number of timestamps), and
N (number of epochs to be used in training). The state-stack and graph-stack are created initially
(Lines 1- 2). M is initialized to an untrained TGNN model (See Line 3). The training happens for

1https://github.com/bfGraph/STGraph

2



N epochs (Lines 4- 14). The total timestamps T is divided into a set of sequences. Each sequence

s is considered in an ordered fashion in training (See Lines 6- 13). The forward propagation for a
sequence s happens in a for loop (See Lines 7- 9). The backward propagation happens in a while
loop till the state-stack becomes empty (See Lines 10-12).

Algorithm 1: STGraph-Train(G, F , T , N )
Input: A graph object G, list of feature

vectors F for all timestamps, total
timestamps T and total number of
epochs N

Output: Trained TGNN-model
1 state-stack = Stack()
2 graph-stack = Stack()
3 M = GNN-Model()
4 for epoch=1 to N do

5 loss = 0
6 for sequence s in T do

7 for timestamp t in s do

8 STGraph-Execute (fwd,
loss, t)

9 end for

10 while state-stack is not empty do

11 STGraph-Execute (bwd,
loss)

12 end while

13 end for

14 end for

15 return M

Algorithm 2: STGraph-Execute(D, loss,
t)
Input: The direction of propagation D,

Loss of the model loss,
Timestamp of execution t (in the
case of forward propagation)

1 g = G
2 if D is fwd then

3 if G is DTDG then

4 g = Get-Graph (G,t)
5 graph-stack.push(g)

6 end if

7 state-stack.push(Ft)

8 out = fwdprop-model-t (M, g, Ft)
9 loss += loss-fn (out)

10 end if

11 if D is bwd then

12 if G is DTDG then

13 g = graph-stack.pop()

14 gB = Get-Backward-Graph (g)
15 end if

16 Ft = state-stack.pop()

17 bwdprop-model-t (M, gB , Ft, loss)
18 end if

Algorithm 2 describes how STGraph handles forward (See Lines 2- 10) and backward (See Lines 11-
18) propagation. Initially, the graph object g is initialized to G (Line 1). If the input graph object is a
static graph, then the object g is never updated and the graph-stack is not used. If the graph object G
is a DTDG then there is a separate graph snapshot for each timestamp t 2 s. For forward propagation,
the graph object corresponding to a timestamp t is assigned to g using the Get-Graph() function
following which g is pushed to graph-stack (See Lines 3- 6). The state for each timestamp is pushed
to the state-stack (See Line 7). This is followed by forward propagation on g and an update of the loss
(See Lines 8- 9). For backward propagation, If G is a DTDG, then the graph-stack will be popped to
obtain the corresponding forward graph snapshot g. Seastar generated kernels for backpropagation
act on the reverse graph, hence the snapshot g has to be reversed. The Get-Backward-Graph() function
is used to generate the reverse graph gB for a given input graph (See Lines 12- 15). The feature
vector of the current timestamp is retrieved by popping the state-stack (See Line 16). The model
(M ), feature vector (Ft), reverse snapshot (gB) and loss are used for backpropagation on the current
timestamp t (See Line 17).

2.2 Memory Optimization for DTDGs

DTDGs consist of a series of graph snapshots, where consecutive ones typically vary by less than 10%.
Since there is a significant amount of redundancy between two adjacent snapshots, a memory-efficient
implementation would be to store DTDGs as a series of temporal updates (addition/deletion of edges).
However, when storing graphs in this format, an efficient update mechanism is required to generate
snapshots for each timestamp on demand during training. Seastar’s storage format, Compressed
Sparse Row (CSR), does not support efficient insertions/deletions. Our work considers alternative
storage formats that support faster updates.

GPMA [11] is a GPU-based data structure that uses GPU-optimized parallel algorithms for batch
insertions/deletions. Using GPMA as the underlying storage format for DTDGs can speed up
the process of generating graph snapshots on demand. STGraph-GPMA prefaces both forward and
backward propagation with a snapshot generation step. The (Graph-Update-Module) generates the
snapshot and the (Graph-Reverse-Module) reverses the snapshot (in the case of backpropagation).

3



Additionally, STGraph-GPMA’s performance is optimized using custom kernels for relabelling edges
and sorting vertices.

3 Experimental Evaluation

We perform the experimental evaluation on a total of ten graph datasets (See Table 2), with five being
static-temporal datasets (1-5) [10], and five dynamic graph datasets (6-10) [12]. Results from a few
of these tests are discussed in detail below. The experimental setup is discussed in Appendix A.3.

3.1 Static-temporal Graph Analysis

The first three plots of Figure 2 compare the per-epoch time taken by TGCN models implemented in
both PyG-T and STGraph for different static-temporal graphs. The STGraph framework performs up
to 1.22⇥ faster than PyG-T in terms of per-epoch time. This improvement is attributed to the efficient
kernels and kernel-level optimizations associated with the underlying Seastar GCN layer compared
to the PyG GCN layer used by PyG-T.

The first three plots of Figure 3 compare the memory consumption of PyG-T and STGraph on
static-temporal graphs for a fixed feature size of 8 and varying sequence lengths. It is observed that
STGraph consumes up to 2.14⇥ less memory than PyG-T. This is because PyG GCN layers employ
edge parallelism for GNN processing [13], this requires duplication of node features, which incurs a
significant memory overhead. Since PyG-T has to retain these duplications over the entire sequence
length till backpropagation occurs, its curve is steeper in comparison to that of STGraph.

20 40 60 80

10

12

14

16

18

20

22

Feature Size

T
im

e
(s

)

WINDMILL

PyG-T
STGraph

10 15 20 25 30

0.13

0.14

0.15

0.16

Feature Size

PEDALME

20 40 60 80

1.7

1.8

1.9

2

Feature Size

HUNGARYCP

10 20 30 40 50 60

1

2

3

Feature Size

STACKOVERFLOW

PyG-T
STGraph-Naive
STGraph-GPMA

100 200 300 400 500
0

2

4

6

8

Feature Size

MATH

Figure 2: Per-Epoch Time vs Feature Size

0 500 1,000 1,500 2,000 2,500 3,000

0

2,000

4,000

6,000

Sequence Length

M
e
m

o
r
y

(M
B

)

WINDMILL

PyG-T
STGraph

10 20 30 40

17.4

17.6

17.8

Sequence Length

PEDALME

100 200 300 400 500 600 700

20

22

24

26

28

Sequence Length

HUNGARYCP

2 4 6 8 10

4,000

4,500

5,000

5,500

Percentage Change

STACKOVERFLOW

PyG-T
STGraph-Naive
STGraph-GPMA

2 4 6 8 10

500

550

600

650

700

Percentage Change

MATH

Figure 3: Memory Consumption vs Sequence Length/Percentage Change between snapshots

3.2 Dynamic Graph Analysis

The fourth and fifth plot of Figure 2 compares the per-epoch time taken by TGCN models implemented
using STGraph-Naive, STGraph-GPMA, and PyG-T for DTDGs with fixed 5% change between
snapshots. It is observed that STGraph-Naive outperforms PyG-T with up to 1.70⇥ speed up. This
result follows the same reasoning for why STGraph outperformed PyG-T in static-temporal graphs.
STGraph-GPMA shows up to 1.19⇥ speed up over PyG-T for per-epoch time. The slower performance
here, in comparison to STGraph-Naive, is associated with the time taken to build graph snapshots
on demand.

The fourth and fifth plot of Figure 3 compares the performance of the three systems when varying the
percentage change between snapshots. It is observed that STGraph-GPMA consumes upto 1.30⇥ and
1.52⇥ less memory than STGraph-Naive and PyG-T respectively. Additionally, STGraph-GPMA is
barely affected by varying percentage changes, while the other two systems consume significantly
larger memory for smaller percentage changes. STGraph-GPMA is an ideal choice for graph snapshots
with small percent changes because it offers memory benefits without heavily compromising on
speed.

4 Conclusion and Future Work

This paper introduces STGraph, a novel backend-agnostic Python framework designed for training
TGNNs on real-world temporal and dynamic graph datasets. Compared to PyG-T, STGraph demon-
strates superior performance on benchmarking with real-life graph datasets. The empirical evidence
shows that STGraph is a powerful and effective tool for deep learning researchers and practitioners

4



working with temporal and dynamic graphs. In the future, this system can be extended to support
Heterogeneous graphs along with backend support for frameworks like TensorFlow and MXNet.

References

[1] T. Bian, X. Xiao, T. Xu, P. Zhao, W. Huang, Y. Rong, and J. Huang, “Rumor detection on social
media with bi-directional graph convolutional networks,” Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 34, no. 01, pp. 549–556, Apr. 2020.

[2] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph neural networks for social
recommendation,” in The World Wide Web Conference, ser. WWW ’19. New York, NY, USA:
Association for Computing Machinery, 2019, pp. 417–426.

[3] H. Dai, C. Li, C. Coley, B. Dai, and L. Song, “Retrosynthesis prediction with conditional
graph logic network,” in Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran
Associates, Inc., 2019.

[4] S. Kumar, B. Hooi, D. Makhija, M. Kumar, C. Faloutsos, and V. Subrahmanian, “Rev2: Fraud-
ulent user prediction in rating platforms,” in Proceedings of the Eleventh ACM International

Conference on Web Search and Data Mining, 2018, pp. 333–341.

[5] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,”
in International Conference on Learning Representations (ICLR), 2017.

[6] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention
networks,” 2018.

[7] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L. Yu, Y. Gai, T. Xiao,
T. He, G. Karypis, J. Li, and Z. Zhang, “Deep graph library: A graph-centric, highly-performant
package for graph neural networks,” arXiv preprint arXiv:1909.01315, 2019.

[8] M. Fey and J. E. Lenssen, “Fast graph representation learning with pytorch geometric,” arXiv

preprint arXiv:1903.02428, 2019.

[9] Y. Wu, K. Ma, Z. Cai, T. Jin, B. Li, C. Zheng, J. Cheng, and F. Yu, “Seastar: Vertex-centric
programming for graph neural networks,” 2021.

[10] B. Rozemberczki, P. Scherer, Y. He, G. Panagopoulos, A. Riedel, M. Astefanoaei, O. Kiss,
F. Beres, G. Lopez, N. Collignon, and R. Sarkar, “PyTorch Geometric Temporal: Spatiotemporal
Signal Processing with Neural Machine Learning Models,” in CIKM, 2021.

[11] M. Sha, Y. Li, B. He, and K.-L. Tan, “Accelerating dynamic graph analytics on gpus,” Proc.

VLDB Endow., vol. 11, no. 1, 2017.

[12] J. Leskovec and R. Sosič, “Snap: A general-purpose network analysis and graph-mining library,”
ACM Transactions on Intelligent Systems and Technology (TIST), vol. 8, no. 1, p. 1, 2016.

[13] K. Huang, J. Zhai, Z. Zheng, Y. Yi, and X. Shen, “Understanding and bridging the gaps in
current gnn performance optimizations,” in Proceedings of the 26th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, 2021, pp. 119–132.

[14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, PyTorch: An Imperative Style,

High-Performance Deep Learning Library, 2019.

[15] W. Jakob, J. Rhinelander, and D. Moldovan, “pybind11 – seamless operability between c++11
and python,” 2017.

[16] N. Bell and J. Hoberock, “Thrust: A productivity-oriented library for cuda,” in GPU computing

gems Jade edition. Elsevier, 2012, pp. 359–371.

[17] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li, “T-gcn: A tem-
poral graph convolutional network for traffic prediction,” IEEE transactions on intelligent

transportation systems, vol. 21, no. 9, 2019.

5


