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Group-Wise Learning for Weakly Supervised
Semantic Segmentation

Tianfei Zhou

Abstract— Acquiring sufficient ground-truth supervision to
train deep visual models has been a bottleneck over the years
due to the data-hungry nature of deep learning. This is exac-
erbated in some structured prediction tasks, such as semantic
segmentation, which require pixel-level annotations. This work
addresses weakly supervised semantic segmentation (WSSS), with
the goal of bridging the gap between image-level annotations
and pixel-level segmentation. To achieve this, we propose, for
the first time, a novel group-wise learning framework for WSSS.
The framework explicitly encodes semantic dependencies in a
group of images to discover rich semantic context for estimating
more reliable pseudo ground-truths, which are subsequently
employed to train more effective segmentation models. In par-
ticular, we solve the group-wise learning within a graph neural
network (GNN), wherein input images are represented as graph
nodes, and the underlying relations between a pair of images
are characterized by graph edges. We then formulate semantic
mining as an iterative reasoning process which propagates the
common semantics shared by a group of images to enrich node
representations. Moreover, in order to prevent the model from
paying excessive attention to common semantics, we further
propose a graph dropout layer to encourage the graph model
to capture more accurate and complete object responses. With
the above efforts, our model lays the foundation for more
sophisticated and flexible group-wise semantic mining. We con-
duct comprehensive experiments on the popular PASCAL VOC
2012 and COCO benchmarks, and our model yields state-of-
the-art performance. In addition, our model shows promising
performance in weakly supervised object localization (WSOL) on
the CUB-200-2011 dataset, demonstrating strong generalizabil-
ity. Our code is available at: https://github.com/Lixy1997/Group-
WSSS.

Index Terms—Semantic segmentation, weakly supervised
learning, group-wise learning, graph neural networks, object
localization, neural attention.
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I. INTRODUCTION

EMANTIC segmentation is a fundamental task in com-
Sputer vision, aiming to predict a semantic category for
each pixel in an image. It can benefit a wide variety of
applications including image editing [3], [4], visual analysis
and understanding [5], [6] and medical diagnosis [7], [8].
With the recent renaissance of deep neural networks, semantic
segmentation has achieved tremendous progress. However,
most leading approaches fall into a fully supervised paradigm
[9]-[11], requiring massive amounts of pixel-level anno-
tated training data, which are extremely expensive and
time-consuming to obtain. In contrast, the weak supervision
alternatives, e.g., image-level tags, scribbles or bounding-
box annotations, are less costly. Thus, it is of interest to
explore the potential of these weak supervision cues to pro-
vide a data-efficient solution for semantic segmentation. This
work aims to address weakly supervised semantic segmenta-
tion (WSSS) under the supervision of image-level tags, which
can be obtained effortlessly.

WSSS based on image tags is extremely challenging
because fine-grained pixel-level annotations, which are typi-
cally required for semantic segmentation, are difficult to obtain
from class labels. Starting from the pioneering work [12], most
studies follow a two-stage pipeline for WSSS (see Fig. 1). The
first stage aims at obtaining pseudo ground-truths by recog-
nizing the discriminative regions based on class activation
maps (CAMs), while the second stage employs these pseudo
ground-truths to train a semantic segmentation network. How-
ever, CAMs are limited in only highlighting the most dis-
criminative object parts rather than the whole object regions,
causing unsatisfactory performance. Numerous approaches
have been introduced to alleviate this problem. For example,
some approaches [13]-[15] manipulate internal feature maps
to guide the network to perceive easily ignored but essential
parts, while others [16]-[19] adopt self-ensembling or self-
supervision to improve object localization.

However, the mainstream methods mentioned above are
merely based on single images (Fig. 2 (a)), ignoring the
valuable semantic context existing in a group of images. Very
recent studies [20], [21] utilize Siamese networks to model
the relations between a pair of images, leading to a pair-wise
solution (Fig. 2 (b)). These approaches have proven effective
in locating more accurate object regions. However, seeking
relations between two images at a time is still limited when it
comes to capturing substantial semantic context. In this work,
we introduce a more promising, and fundamentally different
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Fig. 1. Mainstream two-stage pipeline for WSSS with (1) pseudo

ground-truth generation and (2) semantic segmentation. Our work follows
this pipeline, but introduces a novel group-wise learning framework to achieve
better pseudo ground-truths.

group-wise solution (Fig. 2 (c)), which comprehensively mines
richer semantics from a group of images. Our main motivation
is that the availability of image groups containing instances
of the same semantic classes can make up for the absence
of detailed supervisory information. From this perspective,
we hypothesize that it is desirable to take advantage of all
available information for WSSS, including not only individual
image properties, but also group-level synergetic relationships.

Based on the above analysis, we propose a novel deep learn-
ing model for WSSS. Unlike previous pair-wise approaches,
our model aims for group-wise semantic mining to cap-
ture more comprehensive relations among input images.
Specifically, we develop an efficient, end-to-end trainable
graph neural network (GNN), and conduct recursive reason-
ing for group-wise semantic understanding. In our graph,
the nodes represent a group of input images, and edges
describe pair-wise relations between two connected images.
We consider two images as connected only if they share
common semantic objects with each other, and their relation
is then characterized by an elaborately designed co-attention
mechanism. Through iterative message passing, the informa-
tion from individual elements can be efficiently integrated
and broadcasted over the graph structure. In this way, our
model is capable of leveraging explicit semantic dependen-
cies among images to obtain better node representations.
However, this graph reasoning strategy mainly focuses on
co-occurring semantics in input images, ignoring isolated
objects. To address this, we further introduce a graph dropout
layer, which can be seamlessly integrated into the GNN
for iterative inference. The graph dropout layer selectively
suppresses the most salient objects, forcing the network to
be biased toward other less salient counterparts.

The proposed method has two appealing characteristics
over single-image and pair-wise methods. (1) It is capable
of learning semantic relations from an arbitrary number of
images using a flexible GNN framework. The GNN also
empowers our model to inherit the complementary strengths
of neural networks in learning capability and graphical models
in structure representations. (2) Our model conducts multi-
step, iterative inference to collect contextual knowledge for
updating image representations. This is more favorable than
directly producing image representations by one-step infer-
ence, as done in previous approaches.

Since all components in our model are differentiable, the
whole network is fully end-to-end trainable. We perform

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

extensive experiments on two popular WSSS benchmarks (i.e.,
PASCAL VOC 2012 [22] and COCO [23]), and our model
achieves consistent improvement in performance over the cur-
rent state of the arts. Furthermore, we showcase the advantages
and generalizability of our group-wise learning framework via
the weakly supervised object localization (WSOL) task. Our
model again shows superior performance on the widely used
CUB-200-2011 dataset [24].

In summary, our main contributions are four-fold: (1) To the
best of our knowledge, we are the first to propose group-wise
semantic mining for WSSS, which significantly outperforms
existing single-image and pair-wise based approaches. (2) We
proffer a graph-aware solution to discover comprehensive
semantic context from a group of images within an effec-
tive iterative reasoning process. (3) We introduce edge-aware
supervision to enforce the learning of common semantics
shared by a pair of images, thereby directly propagating
group-wise errors backward to guide the network training.
(4) Our model is evaluated on WSSS and WSOL tasks, and the
results demonstrate its superiority and high generalizability.

An earlier conference version of this manuscript appeared
in [25]. This paper makes several new contributions. (1) We
demonstrate the generalizability of the proposed group-wise
learning framework to the WSOL task (Sections V and VI-B).
(2) We introduce a novel multi-granular supervision loss
(Section IV-D) which enables explicit supervision of
group-wise semantic mining, yielding consistent performance
improvements (see Table 1V)). (3) We also provide a more
through overview of the recent work on weakly supervised
semantic segmentation and object localization, graph neural
networks as well as visual learning from multiple images
(Section II). (4) We report much more experimental results and
conduct failure case analysis (Section VI-E) for comprehensive
and in-depth examinations of our model.

II. RELATED WORK

Our work is related to four lines of research, i.e., weakly
supervised semantic segmentation, weakly supervised object
localization, graph neural networks, and visual learning from
multiple images. We discuss each of them in the following.

A. Weakly Supervised Semantic Segmentation

Recent years have seen a surge of interest in seman-
tic segmentation under weak supervision (e.g., image-
level labels [14], [26]-[31], scribbles [32], [33], bounding
boxes [34]-[36] or points [37]) to reduce the expensive
up-front annotation costs. In particular, methods operating with
image-level labels have attracted the most attention since they
require minimal annotation efforts. Most of these methods
follow the two-stage pipeline shown in Fig. 1. In the first
stage, an image classification network is trained using only
image-level tags, and CAM [12] is employed to highlight
class-specific object regions, which serve as pseudo ground-
truths. In the second stage, a semantic segmentation network
is trained under the supervision of these pseudo ground-truths.
However, CAMs tend to activate to small discriminative parts
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Fig. 2.

Siamese

(b) Pair-wise Training

‘ Group-wise
‘ Classifier

Pair-wise
Classifier

Conceptual architectures of existing approaches vs ours. (a) Single-image models feed each image one by one into the network for training,

which bears high similarity with standard classifiers (e.g., VGG [1], ResNet [2]). (b) Pair-wise methods extract features from a pair of images using a Siamese
network, and make predictions using a pair-wise classifier which has learned the correlation between the two images. (c) In contrast, we devise a group-wise
method that accepts an arbitrary number of images as input. The group images are processed by a GNN within an iterative reasoning process, which enables
information propagation to improve image representations. Finally, a group-wise classifier is employed for prediction.

of objects rather than complete object regions, resulting in
inaccurate pseudo ground-truths for training semantic segmen-
tation networks. To address this problem, many studies [13],
[16], [38] hide or erase discriminative feature responses to
force the model to focus on other relevant parts. A few
methods [14], [39], [40] apply region growing to expand initial
CAM-activated responses to cover the full extent of objects.
Some recent efforts [17], [19], [41] investigate unsupervised
signal (through self-supervised learning) to enrich feature
representations and improve initial class activation maps.
In addition, some works achieve more complete activation
responses by learning pixel affinities [30], stochastic feature
selection [42], joint learning with saliency detection [43] or
casual inference [44].

All methods mentioned above consider each image indi-
vidually. Recent efforts [20], [21] extend this into a pair-wise
paradigm, employing Siamese networks to exploit correlations
within image pairs to improve activation responses. Although
impressive, we claim that these methods are still limited
in capturing contextual information from only two images,
missing higher-order relationship among image collection.

In this work, we take a further step towards discover-
ing more comprehensive relations among groups of images.
This is achieved by a graph neural network, which con-
ducts iterative reasoning to refine image representations by
propagating informative common semantics over the graph.
Iterative learning [45] has also demonstrated its effectiveness
in mining pseudo labels for semi-supervised learning. More-
over, to reduce the negative influences of unshared semantics,
we devise a graph dropout layer which performs random fea-
ture selection during the graph inference to identify unshared
object regions.

B. Weakly Supervised Object Localization

WSOL aims to predict coarse bounding boxes for each
object, instead of pixel-level semantic categories as done
WSSS. Current WSOL approaches can be roughly divided
into two categories: multiple instance learning based methods
[46]-[48] and CAM based methods [15], [16], [49]-[52].
Here, we review CAM based methods since they are more
similar to our approach. Most of these methods are also
designed to discover complete object regions rather than small
discriminative parts. For example, [49], [53] exploit adversar-
ial erasing techniques to suppress discriminative regions and

highlight other relevant parts. ADL [15] introduces an attentive
dropout layer to facilitate network learning. SPG [50] discov-
ers auxiliary supervision from high-confident response regions
and gradually improves the activation maps to cover the
whole objects. Regional dropout methods randomly remove
regions from images [52], [54] or features [55] to improve the
localization ability of CNNs. In this article, we transfer the
proposed group-wise learning framework to the WSOL task
to demonstrate its generalizability. With slight modification,
our model shows compelling performance on WSOL.

C. Graph Neural Networks

The concept of graph neural networks was first intro-
duced in [56] as a generalization of recursive neural net-
works (RNNs) that can directly deal with a more general class
of graph structure, e.g., cyclic, directed and undirected graphs.
Due to their convincing performance and high interpretability,
GNNs have gained widespread attention for graph data analy-
sis. Graph convolutional networks (GCNs) [57] directly define
convolutions on the graph, and operate on groups of spatially
close neighbors for message propagation. Graph attention
networks (GATs) [58], [59] further incorporate a self-attention
mechanism into the propagation step to compute the hidden
states of each node by attending over its neighbors, leading
to a leap in model capacity. Moreover, message passing graph
networks (MPGNs) [60] abstract the commonalities among
these popular GNN models. They model all graph elements
(i.e., nodes, edges) and iterative inference as learnable neural
networks, gaining higher flexibility and learning capacity.

GNNs have achieved tremendous success in a variety of
fields, including molecular biology [60], computer vision [61]—
[65], medical image analysis [66] and machine learning [58],
[67]. Motivated by this, we formulate group-wise learning
within a GNN, in which each node represents an image, and
each edge characterizes the semantic relations between image
pairs. Through structured modeling and iterative reasoning,
our model is able to mine comprehensive semantics from
the graph, which alleviates the insufficient-label problem in
WSSS.

D. Visual Learning From Multiple Images

A typical paradigm in computer vision is to solve prob-
lems (e.g., classification, detection, segmentation) for each
individual image (or video) independently. However, they
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Fig. 3. Overview of our group-wise learning framework during the training phase. Given a group of images (i.e., {I,-}?zl), our model uses a backbone (e.g.,
VGG16) to extract convolutional features (i.e., {g?}?= 1)> which are employed as the initial embeddings for graph construction. Next, our model conducts 7'-step
message passing (Section IV-B) to iteratively refine the features by collecting shared semantic information across the graph. At each iteration, we introduce
a graph dropout layer (Section IV-C) to force the network to focus more on unshared semantics. Finally, we apply two readout functions on graph nodes and
edges, respectively, to predict the classification results. The whole network is supervised by multi-granularity losses (Section IV-D).

neglect valuable knowledge implicitly within visual data,
which deserves careful studies to gain a more compre-
hensive understanding of scenes. Recently, [68] leverages
memory-augmented networks to store and access relevant
information of all available frames in an image sequence
for segmentation. [11] learns intrinsic structures of labeled
data by contrastive learning for fully supervised semantic
segmentation task. Additionally, some works [69]—[71] model
the interactions or matchings of multiple images in a group
to segment visually similar objects at the same time. For
example, [69] learns the relevance of group images through a
recurrent neural network, under the supervision of pixel-level
annotations. [70], [71] addresses weakly supervised object
co-segmentation by seeking for explicit matching between
common objects. However, one underlying assumption in these
co-segmentation approaches is that there is only one common
visual pattern (e.g., horse or human ride horse)ineach
group. Thus, they are susceptible to noisy data and weak to
generalize complex scenarios that multiple common object
patterns exist. In contrast, our approach provides a more
flexible and principled GNN solution, which is able to mine
complex relations for an arbitrary number of common objects
through pairwise co-attention.

III. PRELIMINARY

We start by revisiting the basic concept of GNNs. We define
a graph G=(V, £) by its node set V={v1,...,v,} and edge
set E={e; j=(vi,vj)|vi,v; € V}. We assume that each node
v; is associated with a feature embedding vector g;, and each
edge e; ; has an edge representation e; ;. During inference,
GNNGs iteratively improve the feature representations at a node
by aggregating its neighborhood features. Specifically, a GNN
maps the graph G to the node outputs through two phases:
a message passing phase and a readout phase. The message
passing phase is defined in terms of a message function
SPassing, Whose input is a node’s features and output is a
message, and an update function fypdate, Whose input is a
set of messages and output is the updated features. Suppose
we conduct 7 rounds of message passing; the ¢-th round for

a node v; can be described as:

mi= D" fhing(@ €0 )), M)
vjeN;
t __ t—1 t
8 = fUpdate(g,' ’mi)a (2)

where for v;, the message function firstly summarizes the
information (i.e., mf ) from its neighbors A;, and then uses
it to update the node state. Then, in the readout phase, a task-
specific readout function freadour Operates on the final node
representation giT to produce a node output:

li = freadour(g]). A3)

IV. GROUP-WISE LEARNING FRAMEWORK

In this section, we elaborate on the proposed group-wise
learning framework for WSSS. Given training images with
only image-level labels, current efforts operate on two stages
to achieve pixel-wise predictions. The first stage is pseudo
ground-truth generation, which relies on an image classifi-
cation network to localize object regions. The second stage
is semantic segmentation, which conducts dense predictions
using a fully convolutional network under the supervision
of the pseudo labels. Our approach also adopts this two-
stage pipeline. However, unlike previous approaches that treat
each single image independently, our model aims to mine
common semantic patterns from multiple images by iterative
graph reasoning. In this way, our model can alleviate the
incomplete-annotation problem in WSSS and produce more
accurate pseudo labels.

A. Problem Formulation

In sharp contrast to existing methods, our approach accepts
a group of semantically relevant training images as input.
Our goal is to exploit the semantic correlations of images
to earn more comprehensive object pattern understanding,
eventually yielding more accurate pseudo ground-truth for
each group image. To achieve this, we formulate the problem
as graph-based semantic co-mining from the input group.
Formally, we denote D = {(In,l,,)}f;’:1 as the training data,
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where I, € R®®3 is an image and [, € {0, 1}% is the cor-

responding image label with L possible semantic categories.
During training, we selectively sample K images {I,-}l.K: , that
at least share a common label as a mini-batch, and model their
relations as a directed graph G = (V, £), where the image I;
is denoted as node v; € V, and the relation between v; and
v; is represented by edge e; ; € £. To better capture more
comprehensive common semantics, we build a fully connected
graph, i.e., any two nodes v; and v; are linked by an edge and
each node has a self-edge itself.

Given the above definitions, our network aims to conduct
pseudo ground-truth generation in a graph learning scheme,
under the full supervision of image-level labels as well as
the implicit semantic relations among different images. In this
manner, our model can capture richer semantic information
and obtain more accurate pseudo labels. Next, we detail our
group-wise learning framework based on GNN.

B. GNN for Group-Wise Learning

1) Initial Node Embedding: As an initial step, we abstract
a high-level feature representation for each input image.
Formally, given I;, we extract features g? e RW*HXC from
the convolutional stages of a standard classification network
(e.g., VGG-16 [1]). The initial state of node v; is then set as
g?, which is a (W, H, C)-dimensional tensor preserving full
spatial details for more effective pixel-level matching.

2) Edge Embedding: For each edge e;; connecting v; to
vj, we aim to learn an edge embedding eﬁ, ;at each iteration
t to find the correct semantic correspondence between the
two nodes. This is achieved by dense matching over node
embeddings using the following bilinear model:

e;,j — ginth c RWHXWH, (4)

where g! e RWH#*C and g’j e RWHXC are flattened into matrix
representations for computational convenience. W € REC is
a trainable weight matrix. In Eq. 4, ei j encodes the similarity
between g} and g’j for all pairs of spatial locations. For the
edge e; ;, its embedding at iteration ¢ is simply calculated as
e;, P = eg.

It should be noted that Eq. 4 introduces a large number
of parameters, increasing the computational cost. To alleviate
this, W is approximately factorized into two low-rank matrices
P eR*T and 0 eRC*7 , where d (d =4) is a reduction ratio.
Then, Eq. 4 can be rewritten as:

eij — ng QTgth c RWHXWH. (5)

Eq. 5 has significant advantages over Eq. 4 in both model
parameters and computational cost: 1) it reduces the number
of parameters by 2/d times; 2) it only requires QW H C?+
W2 H?C)/d multiplication operations, instead of the W H C>+
W2H?C in Eq. 4.

In addition, for each self-edge e;;, its embedding e;;
captures the self-relation over the node representation g;.
We compute eﬁ,i at step t by self-attention [72], [73],
which can effectively capture non-local semantic dependen-
cies. In particular, the self-attention calculates the response at

a position by attending to all the positions within the same
node embedding:

e} ; =softmax(¢; (g})p, (g))¢n(g}) + g1 € RV*XC (6)

where ¢(f,¢ ny are 1 x 1 convolutional operators. We also
use a residual layer in Eq. 6, which can effectively preserve
information in the original feature map.

3) Iterative Message Passing: Given the node and edge
embeddings, our model iteratively updates the hidden states of
graph nodes by applying message functions to collect contex-
tual information from their neighboring nodes. More specif-
ically, for a node v;, it absorbs knowledge along two types
of edges: 1) a self-edge ¢;; that encodes rich context-aware
knowledge in v;; and 2) other edges {e;;}; that connect v;
to v;. For the former, our message function directly reads the
message from e;;, ie., mil = eﬁ;l, while for the latter, the
messages are summarized as:

t

m;

B :softmax(e;,;l)g;*l eRWHXC o

where softmax denotes the row-wise softmax normalization.

In Eq. 7, we accumulate knowledge from g;_l, which is

weighted based on the similarity between gfl

and g'j*l.
m; ; is then reshaped to a (W, H, C)-dimensional tensor.
Then, we can easily summarize the message for v; at the 7-th

iteration:
r_ -1 -1
mi= D m ®)
veN;

Next, the update function fypdate updates the hidden states
of nodes, as done in Eq. 2. In our method, fupdate is instan-
tiated by a ConvGRU network [74], which is an extension of
the GRU update function used in [60]. We run the message
passing algorithm for 7' steps in total to iteratively collection
messages and update node embeddings.

4) Readout Phase: Given the final node embedding giT S
RWXHXC for p;, we derive the final prediction for the corre-
sponding image through a readout phase:

q; = feam(gl) e RV*HxL [ — foap(q;) e RE,  (9)

where fcam is a class-aware convolutional layer with kernel
size 1 x 1 that produces a class-aware attention map ¢;, and
foap denotes a global average pooling layer to produce the
final classification prediction il’.g.

5) Deeply Supervised Learning: In addition to the readout
(Eq. 9) from the final embeddings, we apply an intermediate
readout phase on the initial convolutional embedding g?:

di = feam(g]) € RV XL 0 = foap(di) € RY, (10)
where l:m is the intermediate classification prediction. Then,
for each image, we ensemble the class-aware attention maps
q; and d; to obtain the final object localization estimation.
We find that the pseudo ground-truths from different out-
puts are complementary to each other, and self-ensembling
them through averaging can further improve the performance
(see Table 1V).
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C. Graph Dropout Layer

The above graph reasoning scheme enables our model
to discover common semantics present in different images
(Eq. 5). The features of these semantics can be accordingly
enriched by summarizing all the information from other
images (Eq. 8). However, standalone categories, which may
exist only in a single image, are almost entirely ignored in
this procedure. To address this, we introduce a graph dropout
layer to force the network to pay more attention to these
categories. Formally, given the feature map g} € RWXHXC gt
the z-th iteration, we average it along the channel dimension
to obtain of e R"*#_ Then, we generate a mask s’ € R"*# as
follows:

. sigmoid(o!), if r <6 (an

i 0i1(o} < max(o}) *dy), otherwise.
Here, the parameter J, € [0, 1] is a drop rate threshold,
determining whether to carry out the dropout operation or
not. The parameter r is a scalar generated from a random
generator. If r <d,, s} is an importance map which supports
the activations in g!; otherwise, the layer drops the highly
activated semantic regions to emphasize standalone semantics.
1(x) is a matrix indicator function which returns 1 for the
true elements in x, and O otherwise. The max(-) operation
calculates the maximum value for a 2D tensor. d; € [0, 1] is
a threshold controlling the dropout. Finally, we enhance the
feature maps by:

g =g s (12)

where ® denotes spatial-wise multiplication. Note that g} is
then used to replace the original embedding g§ (Egs. (59)-(7))
in the next iteration.

D. Multi-Granularity Supervision

Our model is trained in an end-to-end manner with multi-
granularity supervision:

L=i1D, Leplf 1)+ 22D Lol 1)

D IDIN RN

where Lcg denotes the standard cross-entropy loss and
{ii}?zl balances the three terms. Here, the first term evaluates
the final outputs {lAf }i (Eq. 9) to guide the learning of the GNN,
while the second term evaluates the intermediate prediction
{ilm}i (Eq. 10). For the third term, we introduce an edge-aware
supervision which encourages each edge in the graph to learn
the shared semantics of the connected nodes. Here, [;Nl; €
{0, 1}X represents a new label vector in which the items of
shared semantic categories between nodes v; and v; are 1,
and others are 0. le R denotes the prediction of edge ¢; e

I ) Edge-Aware Supervzswn For each edge e; ;, we denote
gl e RV and gT I e RWXHXC a5 the learned final
embeddings of nodes v; and v; at step 7, and g;; =
gl. g j] e RWXHX2C 49 the concatenation of the two node
features. Then, we learn a shared representation based on the
dual-attention mechanism [75], which employs two parallel

13)
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attention modules (i.e., position-aware and channel-aware) to
discover the shared semantics from g; ;.

For the position-aware attention module, we first compute
the normalized cross-correlation between each pair of spatial
feature vectors in g; ; by the following pairwise dot product:

WHxWH

ujj = softmax(gi,jgzj) e€[0,1] (14)

Here, 8ij € RWHXC is first flattened into a matrix represen-

tation for computational convenience. The affinity matrix u; ;
stores similarity scores corresponding to all pairs of features
in g; ;. Next, attention summaries are computed based on u;_;,
and used to generate a positive-attentive edge representation
bij-

WHx2C
pij=uijg;+8, €R"TT (15)
For the channel-aware attention module, we first compute
the cross-correlation between each pair of channel feature

vectors in g; ; as follows:

2Cx2C

v, j = softmax(g;;g; ;) €10,1] (16)

Here, v; ; captures the channel-wise feature interdependencies
in g; ;. Then, we obtain a channel-attentive edge feature map
(similar to Eq. 15):

cij =8 jvij+g,; €RVIC amn

The p; ; in Eq. 15 and ¢;,j in Eq. 17 capture long-range
position- and channel-aware contextual information of the
edge e; j, and we then combine them to obtain a more com-
prehensive representation. More specifically, we first reshape
pij and ¢;; into sizes of W x H x 2C, and apply two
1 x 1 convolutional layers separately to transform them into
(W, H, C)-dimensional tensors. The transformed feature maps
are fused by element-wise addition, and finally processed by
a readout phase (similar with Eq. 9 and Eq. 10) to obtain
the edge-aware prediction le i eRE. We follow this procedure
to achieve predictions for all the edges, and employ them
in Eq. 13 to guide the learning of the GNN towards better
discovering shared semantics in each group.

E. Detailed Network Architecture

Our model consists of two sub-networks: a classification
network for group-wise pseudo ground-truth generation and a
semantic segmentation network for pixe-wise segmentation.

1) Image Classification Network: We use VGGI16 [1] as
our backbone network, which is initialized using weights
pre-trained on ImageNet [76]. We replace the last convolu-
tional layer in VGG16 by dilated convolutions with a rate of 2,
and the feature maps from this layer are taken as the initial
node representations for the GNN. After training, we obtain
the CAMs for each training image from the two classification
layers mentioned earlier, and combine them to obtain fore-
ground object seeds. Moreover, we follow conventions [19],
[77], [78] to estimate background seeds using an off-the-shelf
salient object detection model [79]. The final pseudo labels
are generated by combining the foreground and background
seeds.
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2) Semantic Segmentation Network: To make a fair compar-
ison with existing methods [17], [19], [77], [78], we choose
DeepLab-V2 [10] as the semantic segmentation network.

V. GROUP-WISE LEARNING FOR WSOL

In addition to the WSSS task, our group-wise learning
framework is also applicable to the WSOL task, which predicts
the bounding box of each object using image-level labels only.

In particular, the training phase of the proposed frame-
work is exactly the same for both the WSSS and WSOL
tasks. However, during the testing phase, we need to feed
a group of images to the trained classification network for
prediction in WSOL, rather than a single image as the input
of the segmentation network in WSSS. Therefore, we first
employ another standalone VGG16 [1] to generate categorical
predictions of each image in the test set, and accordingly
sample a group of images as the input of our network for
group-wise inference. For each test image, we can obtain its
class activation map. Since the score statistics differ vastly
across images, a common practice in WSOL is to normalize
the activation maps per image. We choose the min-max
normalization method in our experiment. After normalization,
we utilize the violent searching strategy [15] to find an optimal
threshold for bounding box generation.

VI. EXPERIMENT

In this section, we first compare our method with state-
of-the-art models on the WSSS task in Section VI-A. Then,
we investigate the performance of our model on the WSOL
task in Section VI-B. For each task, we introduce the cor-
responding datasets and their performance. To gain deeper
insight into our model, we conduct detailed diagnostic exper-
iments of the crucial components in Section VI-C. Lastly,
we offer several failure cases for more comprehensive analysis
in Section VI-E.

A. Weakly Supervised Semantic Segmentation

1) Datasets: We conduct our experiments on two popular
datasets: PASCAL VOC 2012 [22] and COCO [23]. 1) PAS-
CAL VOC 2012 [22] is currently the most popular benchmark
for WSSS. The dataset contains 20 semantic categories (e.g.,
person, bicycle, cow) and one background category. Following
standard protocol [19], [40], [42], extra data from SBD [88]
are also used for training, leading to a total of 10,582 training
images. We evaluate our model on the standard validation
and test sets, which have 1,449 and 1,456 images, respec-
tively. 2) COCO [23] is a more challenging benchmark with
80 semantic classes. Since more complex contextual relations
exist among these categories, it is interesting to examine the
performance of our model in this dataset. Following [86],
we use the default train/val splits (80k images for training
and 40k for validation) in the experiment.

2) Evaluation Metric: We utilize the widely used mean
intersection-over-union (mloU) for evaluation. The scores on
the test set of PASCAL VOC 2012 are obtained from the
official evaluation server. We also consider CAM mloU on the
training set of PASCAL VOC 2012 to evaluate the qualities
of generated CAM results.

TABLE I
QUANTITATIVE COMPARISON OF DIFFERENT METHODS ON PASCAL
VOC 2012 IN TERMS OF MIOU. *: VGG BACKBONE. T: RESNET

BACKBONE
Method Publication mloU (%)
val test
single-image based methods
*MEFF [30] CVPRI8 - 55.6
*GAIN [81] CVPR18 55.3 56.8
*MDC [39] CVPR18 60.4 60.8
*RRM [82] AAAI20 60.7 61.0
TMCOF [83] CVPRI18 60.3 61.2
TSeeNet [16] NIPS18 63.1 62.8
TDSRG [40] CVPRI18 61.4 63.2
T AffinityNet [30] CVPRI18 61.7 63.7
TSS-WSSS [84] CVPR20 62.7 64.3
TSSNet [43] ICCV19 63.3 64.3
TIRNet [85] CVPR19 63.5 64.8
TFickleNet [42] CVPR19 64.9 65.3
TIAL [86] 1JICV20 64.3 65.4
TSSDD [87] ICCV19 64.9 65.5
TSEAM [19] CVPR20 64.5 65.7
TSubCat [17] CVPR20 66.1 65.9
TOAA+ [77] ICCV19 65.2 66.4
TRRM [82] AAAI20 66.3 66.5
TBES [78] ECCV20 65.7 66.6
TICD [18] CVPR20 67.8 68.0
pair-wise based methods
TCIAN [20] AAAI20 64.3 65.3
TMCIS [21] ECCV20 66.2 66.9
group-wise based methods
*Ours — 63.7 64.1
TOurs - 68.7 69.0

3) Training Details: 1) Greedy Mini-Batch Sampling. Dur-
ing training, we design a heuristic, greedy strategy to sample
K training images in each mini-batch. Starting from a ran-
domly sampled image /;, we further find another K—1 images,
each of which shares as many common semantic objects with
I; as possible. These K images are then used to build a
K-node GNN. This sampling strategy enables our model to
better explore rich relationships among groups of images and
improve the results. 2) Training Settings. For the classification
network, the number of nodes K and message passing steps
T in the GNN are separately set to 4 and 3 by default. The
input image size is 224 x 224. The entire network is trained
using the SGD optimizer with initial learning rates of 1e-3 for
the backbone and le-2 for the GNN, which are reduced by
0.1 every five epochs. The total number of epochs, momentum
and weight decay are set to 15, 0.9, and 5e-4, respectively. The
A1, A2 and A3 in Eq. 13 are set to 0.7, 0.1, 0.2, respectively.
For the segmentation network, we follow the training setting
in [10], but use the pseudo ground-truths as the supervision.

4) Performance on PASCAL VOC 2012: We evaluate the
proposed approach on PASCAL VOC 2012 against current
top-performing WSSS methods that only operate with image-
level labels. Following conventions, we evaluate the perfor-
mance of our model using VGG16 [1] and ResNet101 [2]
as the backbones, respectively. As reported in Table I, our
model with ResNet101 achieves the best performance, scoring
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Fig. 4. Qualitative results on PASCAL VOC 2012 val. From top to bottom: input images, ground-truths, and our results.

TABLE 11
QUANTITATIVE COMPARISON OF DIFFERENT METHODS ON COCO val
IN TERMS OF MIOU. ALL METHODS USE VGG16 AS THE BACKBONE

[ Method [ Publication I mloU (%) ]
BFBP [89] ECCV16 20.4
SEC [14] ECCVI16 22.4
DSRG [40] CVPR18 26.0
IAL [86] 1IJICV20 27.7
Ours - 28.7
TABLE III

QUANTITATIVE COMPARISON OF DIFFERENT METHODS ON
CUB-200-2011 test IN TERMS OF ToP-1 CLS AND TOP-1 LoOC. ALL
METHODS USE VGG 16 AS THE BACKBONE

[ Method [ Publication [[ Top-1 Cls (%) Top-1 Loc (%) |

CAM [12]| CVPRI16 69.95 37.05

AcoL [49]| CVPRI18 71.90 45.92

SPG [50] | ECCV18 75.50 48.93

HaS-32 [38] | ICCV17 76.10 49.46
DANet [51] | ICCVI19 75.40 52.52
CutMix [52] | ICCV19 - 52.53

ADL [15]] CVPR19 65.27 52.36

C [90]| ECCV20 - 55.99

EIL [53]] CVPR20 72.26 56.21

HaS-32 +RCAM [91] | ECCV20 70.12 57.37
MEIL [53] | CVPR20 74.77 57.46
GC-Net-Elli [92] | ECCV20 76.80 58.85
ADL +RCAM [91] | ECCV20 75.01 58.96
PSOL [93] | CVPR20 - 59.29

Ours - 76.44 60.18

68.7% and 69.0% on the val and test sets, respectively.
It significantly outperforms the current leading approach, i.e.,
ICD [18], by +0.9% and +1.0% on the two evaluation sets.

In addition, Table I also shows that the proposed approach
outperforms both pair-wise models (i.e., CIAN [20] and
MCIS [21]), and all single-image based models (e.g.,
RRM [82], OAA+ [77]), by a large margin. The reason lies in
that existing methods exploit limited context in image collec-
tion, while our approach can learn more effective inter-image
representations with GNNGs.

In Fig. 4, we provide sample results for representative
images in PASCAL VOC 2012 val. The images cover var-
ious challenging factors in WSSS, such as multiple objects,
different semantic categories, small objects, and cluttered
background. We see that our approach can deal with these
difficulties well, resulting in appealing segmentation results.

Fig. 6.

Qualitative results on CUB-200-2011 test. For each image,
we show its ground-truth box (in red), localization result (in green), as well
as the overlayed class activation map.

5) Performance on COCO: We further examine the per-
formance of our model on COCO. As reported in Table II,
our model achieves the best mloU score (i.e., 28.7%) on
the validation set, outperforming the second-best model, i.e.,
IAL [86], by 1.0%. This further proves the powerful capability
of our model in WSSS. Fig. 5 illustrates some representative
segmentation results of our model on COCO val. We see
that, even with only image-level labels, our approach can
produce high-quality segmentation results in many challenging
scenarios (e.g., small objects, crowded scenes).

B. Weakly Supervised Object Localization

1) Datasets: We use CUB-200-2011 [24] to evaluate the
performance of our model on WSOL. The dataset consists of
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TABLE IV
DIAGNOSTIC EXPERIMENTS OF OUR MODEL ON PASCAL VOC 2012
val IN TERMS OF MIOU. FOR ALL VARIANTS, WE USE RESNET101 AS
THE BACKBONE

Aspect [ Variant [mIoU (%)]
T=3 K=4
Full Model 5, = 0.8 0y =0.7 68.7
K=2 66.1
Graph K=3 68.6
Node Number K=5 68.3
K=6 68.1
Graph Message ; i Z 222
Reasoning| Passing Steps T _ 5 68.5
6r =0.8,04 =0.9 68.5
6r =0.8,04=0.5 68.2
Dro (:’)ﬁp]}ja o 5, =06,0,=07 673
P Y 8 = 04,8, =0.7 64.1
w/o dropout 68.2
. . . . |w/o intermediate supervision| 68.4
Multi-Granularity Supervision wlo edge-aware supervision 63.2
. intermediate output only 64.6
Self-Ensembling graph output only 68.3
Sampling Strategies random 67.1
phing g one-common 68.3

200 species of birds, with 11,788 images in total. Follow-
ing [15], [28], [49], [93], we adopt the default splits in our
experiments, including 5,994 for train and 5,794 for test.

2) Metrics: We use two standard evaluation metrics [15],
[38] for evaluation: 1) Top-1 localization accuracy (Top-1
Loc) denotes the fraction of images for which the evaluated
bounding box for the ground-truth class has more than 50%
IoU with the ground-truth bounding box, as well as the
predicted class with the highest probability is equal to the
ground-truth class. 2) Top-1 classification accuracy (Top-1 Cls)
indicates that the result is correct when the predicted class with
the highest probability is equal to the ground-truth class.

3) Performance on CUB-200-2011: Table III reports the
results of our approach in comparison with state-of-the-art
methods on CUB-200-2011 test. As can be seen, our
model achieves compelling performance on the WSOL task.
In particular, it achieves the best Top-1 Loc score (i.e.,
60.18%), leading to about 1% improvement compared with
the second-best method (i.e., PSOL [93]). For the Top-1 Cls,
our model is slightly worse than GC-Net-Elli [92] (76.44%
vs. 76.80%), but significantly outperforms all other methods.
In summary, our group-wise learning framework shows strong
robustness in the WSOL task.

Fig. 6 provides some representative localization results of
our model on CUB-200-2011 test. Benefiting from group-
wise learning, our model can obtain complete activation maps,
leading to accurate bounding box localization.

C. Diagnostic Experiment

We further conduct diagnostic analysis on PASCAL VOC
2012 val to verify the effectiveness of the essential modules
in our approach. We use ResNetl01 as the default backbone

CAMs CAMs
w/o Dropout w/ Dropout

CAMs

C
Images w/o Dropout w/ Dropout

Images

Fig. 7. Visual comparisons of CAMs generated with or without the graph
dropout layer.

for all the studies. The performance of our full model with
default parameters is given in the first row of Table IV.

1) Group-Wise Learning: We first investigate the effect
of the node number K used in the GNN, which indicates
the number of images in a group. As shown in Table IV,
the model achieves comparably high performance with three
or four nodes. However, when more nodes are added, the
performance decreases significantly. This can be attributed to
the trade-off between meaningful semantic relations and noise
brought by input group images. When K =3 or 4, the semantic
relations can be fully exploited to improve the integral regions
of objects. However, when more images are further considered,
meaningful semantic cues reach a bottleneck and noise, intro-
duced by imperfect localization of the classifier, dominates,
thus leading to performance degradation.

We further evaluate the impact of the message passing
steps by comparing the performance with different 7T ranging
from 2 to 5. From Table IV, we observe that the mloU score
is significantly improved when 7T varies from 2 to 3. The
performance decreases slightly when considering more steps.
Therefore, we set T =3 as default for message passing.

Moreover, we build a baseline model (i.e., w/o group-wise
learning in Table V) which discards the group-wise learning
mechanism. As can be seen, the CAM and segmentation
results encounter significant drops, which demonstrates the
importance of our group-wise learning mechanism.

2) Graph Dropout Layer: To examine the proposed graph
dropout layer, we design multiple experiments to search an
optimal configuration of parameters ¢, and J;. We observe
that both parameters have great influences on the performance.
As observed in Table IV, our model reaches the best perfor-
mance at J, =0.8 and J; =0.7. If the J; is higher (e.g., 0.9),
most discriminative regions will be kept, and thus inactivated
regions will remain being ignored. In contrast, if Jd, is lower,
the regions with high responses will be excessively dropped,
leading to degraded classification accuracy.

In addition, the parameter J, controls whether or not
the responses should be dropped during training. As shown
in Table IV, a J, of 0.8 helps to achieve the best mloU
score. Such a setting not only maintains the classification
ability of the network by keeping discriminative regions with
a high probability, but also drives the network to mildly
attend to other regions. We can also see that by setting J, to
smaller values (e.g., 0.6 or 0.4), the performance encounters
a significant decrease.

Moreover, we examine the performance of our model
without the graph dropout layer (i.e., w/o graph dropout in
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TABLE V

ABLATION STUDY OF CAM RESULTS ON PASCAL VOC 2012 train AS
WELL AS SEGMENTATION RESULTS ON val

CAM mloU (%)

Variant VGGI6  ResNe(3% SEG mloU (%)
w/o Group-Wise Learning 56.3 58.7 64.5
w/o Graph Dropout 61.9 64.9 68.2
Full Model 62.9 65.7 68.7

Group #2: person

Group #1: bird

Fig. 8. CAM visual comparisons. We provide results for two groups
of images. For each group, we show the input images, CAMs from the
intermediate readout layer and CAMs from the graph readout layer (from
left to right). Our model clearly yields more accurate CAMs after group-wise
graph reasoning.

Table V). We can see that all metrics consistently decrease
after discarding the graph dropout layer, revealing its necessity.

Finally, we illustrate some examples of the final CAMs
generated with or without the graph dropout layer. As shown
in Fig. 7, without the dropout layer, the network only focuses
on the most discriminative parts (e.g., heads of the cat and the
horse). This is improved with our dropout layer, which helps
to highlight non-discriminative object regions.

3) Multi-Granularity Supervision: We further study the
multi-granularity supervision in Eq. 13. We design two base-
line models, i.e., w/o intermediate supervision and w/o edge-
aware supervision. As reported in Table IV, both baseline
models show worse performance than our full model with
multi-level supervision. We can also see that by dropping the
edge-aware supervision, the baseline model encounters a great
performance degradation (i.e., 0.5%), revealing the importance
of the edge-aware constraints.

4) Self-Ensembling: In addition to the supervision on the
final outputs, we also introduce deep supervision signals on
the intermediate features. Such multi-level supervision has
proven effective for improving the performance of various
vision tasks. Besides, this enables us to combine the multi-
ple outputs with low cost to further boost the performance.
Here, we examine the self-ensembling strategy by building
three network variants, i.e., intermediate output, graph output
and self-ensembling, in which the final CAMs are separately
extracted from the intermediate readout layer, graph-aware
readout layer, and their ensemble, respectively. As shown
in Table 1V, the intermediate output only obtains an mloU
score of 64.6%, greatly lagging behind the 68.3% obtained
by the graph output. This demonstrates that through iterative
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Images CAMs Images

CAMs

person

Fig. 9.

Failure cases of CAMs on PASCAL VOC 2012 val.

Images Ground-Truths Results Images Ground-Truths Results
Fig. 10. Failure cases of segmentation results on PASCAL VOC 2012
val.

graph reasoning, our model can improve the image represen-
tations by integrating information from image groups, leading
to huge performance gains. Furthermore, the self-ensembling
strategy boosts the performance to 68.7%.

In Fig. 8, we illustrate two groups of images with their
CAMs from the intermediate readout layer and graph read-
out layer. As can be seen, in both groups, the CAMs are
well-refined to cover more complete foreground regions after
graph reasoning. Besides, in many cases, the CAMs from
two output layers complement each other well, enabling better
results to be obtained by self-ensembling.

5) Greedy Mini-Batch Sampling: We also conduct exper-
iments to verify the effectiveness of our greedy mini-batch
sampling strategy. For comparison, we design two baseline
sampling methods, i.e., random sampling and one-common
sampling. The random sampling method randomly samples
K training images as a mini-batch, while the one-common
sampling method finds K training images with at least one
common semantic category. As reported in Table IV, the
random sampling method only obtains an mloU score of
67.1%, largely lagging behind the one-common sampling and
greedy sampling methods. Moreover, our greedy sampling
method encourages more comprehensive semantic discovery,
yielding the best result (i.e., 68.7%).

D. Model Efficiency Analysis

In our approach, iterative graph reasoning is only used in the
training stage for pseudo ground-truth generation, which takes
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about eight hours for training on PASCAL VOC 2012. The
training of the segmentation network is almost same to most
existing WSSS approaches [17], [21], [78]. During inference,
only the segmentation network will be used for segmentation
prediction. Thus, the inference speed of our model is the same
with previous approaches (about 12 fps under a NVIDIA RTX
2080Ti GPU).

E. Failure Case Analysis

To gain deeper insight into our model, we provide several
typical cases where our approach fails on PASCAL VOC 2012
val. In Fig. 9, we illustrate the failure cases of generated class
activation maps for particular semantic categories. As can be
seen, the failures are mainly caused by i) incorrect recognition
due to similar appearance between some objects (e.g., sofa
and bed), ii) unrecognized small or occluded objects (e.g.,
person in bus or car), iii) background distractors (e.g., bus).
The failure of CAM estimation will directly result in poor
segmentation results (see Fig. 10).

VII. CONCLUSION

In this work, we introduce a novel group-wise learn-
ing framework for weakly supervised semantic segmentation
(WSSS). Unlike previous single-image or pair-wise based
approaches, our framework is able to capture comprehensive
semantic context to generate more accurate pseudo ground-
truths. In particular, we formulate group-wise learning within
a graph neural network, which operates on a group of images
and conducts iterative graph reasoning to discover meaningful
semantics. Moreover, we devise a graph dropout layer which
randomly hides the most discriminative parts from the model
to capture the integral extent of object regions. Extensive
experiments are conducted on the WSSS and WSOL tasks,
and our group-wise learning framework performs favorably
against the state-of-the-art approaches.
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