
Emergent Representations of Program Semantics
in Language Models Trained on Programs

Charles Jin 1 Martin Rinard 1

Abstract
We present evidence that language models (LMs)
of code can learn to represent the formal seman-
tics of programs, despite being trained only to
perform next-token prediction. Specifically, we
train a Transformer model on a synthetic corpus
of programs written in a domain-specific language
for navigating 2D grid world environments. Each
program in the corpus is preceded by a (partial)
specification in the form of several input-output
grid world states. Despite providing no further
inductive biases, we find that a probing classifier
is able to extract increasingly accurate representa-
tions of the unobserved, intermediate grid world
states from the LM hidden states over the course
of training, suggesting the LM acquires an emer-
gent ability to interpret programs in the formal
sense. We also develop a novel interventional
baseline that enables us to disambiguate what is
represented by the LM as opposed to learned by
the probe. We anticipate that this technique may
be generally applicable to a broad range of seman-
tic probing experiments. In summary, this paper
does not propose any new techniques for train-
ing LMs of code, but develops an experimental
framework for and provides insights into the ac-
quisition and representation of formal semantics
in statistical models of code.

1. Introduction
As LMs continue to improve on a range of downstream tasks,
their capabilities in the domain of programming languages
have drawn increasing attention (Bommasani et al., 2023;
Zan et al., 2023). The advancement of recent models such
as GPT-4 (OpenAI et al., 2023), Code Llama (Rozière et al.,
2023), Gemini (Gemini Team et al., 2023), and Claude 3

1CSAIL, MIT, Cambridge, MA, USA. Correspondence to:
Charles Jin <ccj@csail.mit.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

(Anthropic, 2024) has also spurred the widespread adoption
of LMs in developer workflows via mainstream commercial
products, offering functionality such as code completion, de-
bugging assistance, generating documentation and commit
messages, and writing test cases (Fan et al., 2023).

Despite these results, however, a major open question is
whether current LMs capture any information about the se-
mantics of the text that they consume and generate (Mitchell
& Krakauer, 2023). Indeed, one hypothesis—which takes
a unified view of both natural and programming language
domains—is that LMs trained purely on form (e.g., to model
the conditional distribution of tokens in a training corpus)
produce text only according to surface statistical correlations
gleaned from the training data (Bender & Koller, 2020),
with any apparently sophisticated behavior attributable to
the scale of the model and training data.

This work studies whether LMs of code learn aspects of
semantics when trained using standard textual pretraining.
We empirically evaluate the following hypothesis (MH):

Main Hypothesis. LMs of code trained only to perform next
token prediction on text do not model the formal semantics
of the underlying programming language.

To investigate MH, we apply language modeling to the
task of program synthesis, or generating a program that
implements a given (partial) specification, which we take
to be a set of input-output examples. Specifically, we ex-
plore whether an LM trained on text that encodes only the
input-output behavior of programs also learns to model the
intermediate program states specified by the small-step op-
erational semantics of the synthesized program (Plotkin,
1981). We train an LM on example programs preceded by
several input-output examples, then use small classifiers
to probe the LM’s hidden states for (abstractions of) the
intermediate states in the program execution. Despite the
text of the training corpus encoding only input-output be-
havior, we find the probe’s ability to extract intermediate
states undergoes a phase transition during training, with the
phase transition strongly correlated with the LM’s ability to
generate a correct program in response to previously unseen
specifications. We also present results from a novel inter-
ventional experiment, which indicate that the semantics are
represented by the LM (rather than learned by the probe).

1

Meaning in Language Models Trained on Programs

inputs outputs

reference program

LM prediction

 def run() {
 putMarker()
 turnRight()
 move()
 putMarker()
 move()
 }

LM

training corpus
inputs + outputs +
reference program

test prompt
inputs + outputs = ???

tokens

program tokens

putMarker()
pickMarker()
turnLeft()
turnRight()
move()

grid world tokens

robot:
markers: -
obstacles:
empty:

1 10

... ...

1

11
1

1 1
1

1

1
2 1

 def run() {
 turnLeft()
 putMarker()
 turnRight()
 turnRight()
 move()
 putMarker()
 move()
 }

1

5

1

5

1 1

Figure 1: An overview of the experimental setting. We construct training examples by sampling a random reference program,
then sampling 5 random inputs and executing the program to obtain the corresponding 5 outputs. The LM is trained for
next-token prediction on a corpus of examples consisting of the interleaved inputs and outputs, then the reference program.
At test time, we provide an unseen input-output specification to the LM, and use greedy decoding to predict a program.

We summarize our main contributions as follows:

Emergence of meaning We present results that are con-
sistent with the emergence of representations of formal se-
mantics in LMs trained to perform next token prediction
(Section 3). In particular, we use the trained LM to gener-
ate programs given input-output examples, then train small
probing classifiers to extract information about the interme-
diate program states from the hidden states of the LM. We
find that the LM states encode (1) an abstract semantics—
specifically, an abstract interpretation—that tracks the inter-
mediate states of the program through its execution and (2)
predictions of future program states corresponding to pro-
gram tokens that have yet to be generated. During training,
these representations of semantics emerge in lockstep with
the LM’s ability to generate correct programs.

Semantic probing interventions We present a novel in-
terventional technique for disentangling the contributions
of the LM and the probe when probing for semantics (Sec-
tion 4). Specifically, one possible explanation for the results
in Section 3 is that the LM states contain a (purely syntactic)
record of the inputs and generated program, from which the
probe learns to generate the abstract interpretation. Our key
insight is that, if this were true, we should be able to su-
pervise a new probe to interpret the (hypothetical) syntactic
record according to an appropriately chosen set of alterna-
tive semantics and achieve accuracies similar to the original
semantics. However, we find that probes trained on alterna-
tive semantics achieve lower accuracies, which is consistent

with the proposition that LM states are aligned with the
original semantics and inconsistent with the proposition that
the LM states simply encode a syntactic record.

Taken together, Sections 3 and 4 present evidence that re-
jects MH: we find that, contrary to MH, representations of
formal semantics emerge via next token prediction in our
setting. We therefore conclude that training LMs of code
solely to predict the next token does not imply that they
cannot develop accurate models of the underlying domain’s
semantics. More broadly, we see programs and their precise
formal semantics as a promising direction for working to-
ward a deeper understanding of the behavior of LMs, such
as whether or how LMs acquire and use semantic represen-
tations of the underlying domain more generally.

2. Background and setting
This section provides brief background of the program trace
as our chosen model of formal program semantics, intro-
duces the language modeling task and setting, and presents
qualitative results from our training run.

2.1. Program tracing as meaning

A foundational topic in the theory of programming lan-
guages, formal semantics (Winskel, 1993) is the study of
how to formally specify the meaning of programs. In this
work, we use the small step semantics (Plotkin, 1981) to
generate program traces (Cousot, 2002): given an input (i.e,

2

Meaning in Language Models Trained on Programs

an assignment of values to input variables), the trace is the
sequence of intermediate program states traversed by the
program as it executes over the input. A (syntactic) program
can then be formally assigned a (semantic) meaning, given
by the collection of all of its traces.

Beyond its amenability to formal analysis, tracing is attrac-
tive as a model of program semantics for several reasons. In
novice programmers, the ability to accurately trace a piece
a code has been directly linked to the ability to explain the
code (Lopez et al., 2008; Lister et al., 2009), and computer
science education has emphasized tracing as a method of
developing program understanding (Hertz & Jump, 2013)
and localizing reasoning errors (Sorva, 2013). Expert pro-
grammers also rely on tracing, both as a mental process
(Letovsky, 1987) and via trace-based debuggers.

Abstract interpretation Abstract interpretation (Cousot
& Cousot, 1977) is a technique for producing sound ap-
proximations of concrete program semantics. For example,
given the multiplication operator × over the integers Z, we
could define an abstract interpretation α by abstracting each
integer to its sign α : Z 7→ {−, 0,+}. In this paper, we use
abstract interpretation to establish a precise, formal connec-
tion between the concrete program states and the abstract
program states measured in our experiments.

2.2. Language modeling task and training

Karel domain Karel is an educational programming lan-
guage (Pattis, 1994) developed at Stanford in the 1970s,
which is still in use in their introductory programming
course today (Piech & Roberts, January 2019; CS106A,
2023). The domain features a robot (named Karel) navi-
gating a 2D grid world with obstacles while leaving and
picking up markers. Since being introduced by Devlin et al.
(2017), Karel has been adopted by the program synthesis
community as a standard benchmark (Bunel et al., 2018;
Shin et al., 2018; Sun et al., 2018; Chen et al., 2019; 2021b),
in which input-output examples are provided, and the task
is to produce a program which maps each input grid to its
corresponding output grid.

Figure 1 gives an overview of our domain. Each 8x8 grid
world contains 4 types of tokens: the robot controlled by
the program, which we represent graphically with an arrow
in the direction that the robot currently faces (red); markers
(blue); obstacles (brown); or an empty space (gray). We
use a subset of the language consisting of the following 5
operations: move advances the robot by one space in the
facing direction if there is not an obstacle ahead (otherwise,
the robot does not move); turnRight and turnLeft
turn the robot right and left, respectively; putMarker
and pickMarker increment and decrement the number
of markers on the space occupied by the robot (with no
effect if there are 10 and 0 markers), respectively. The

robot also obscures the number of markers on the space it
currently occupies; the obscured markers have no effect on
the correctness of the program. Note that there is no control
flow and all programs consist of straight line programs,
so that each operation produces exactly one program state
when the program is traced.

Synthetic dataset construction Our training set consists
of 500,000 randomly sampled Karel programs of lengths be-
tween 6 and 10, inclusive. For each program, we randomly
sample 5 grid worlds as input, then evaluate the program to
obtain 5 output grids. We create textual representations for
Karel grid worlds by scanning the grid in row order, with
one token per grid space. Each training sample consists of
the concatenation of the 5 input-output grid world states (the
specification), followed by the reference program. The lan-
guage modeling task thus consists of predicting a program
from a (partial) specification in the form of input-output
grid world states. Note that (1) the training set consists
only of programs which correctly implement the preceding
specification and (2) the intermediate states of the trace are
not observed in the training data. We also generate a test set
of 10,000 specifications in the same manner, except that we
sample reference programs of length between 1 and 10.

Training an LM to synthesize programs We train an
off-the-shelf Transformer (Vaswani et al., 2017) to perform
next token prediction on our dataset. Specifically, we train a
350M parameter variant of the CodeGen architecture (Ni-
jkamp et al., 2023) in the HuggingFace Transformers library
(Wolf et al., 2020) from initialization for approximately 2.5
billion tokens. Appendix A contains further details.

2.3. Results

Figure 2 plots the main results from our training run. To
measure the ability of the LM to synthesize programs, we
use the LM to generate text starting from a specification
using greedy decoding constrained to program tokens, i.e.,
the generated text is guaranteed to be a syntactically well-
formed program. The program is correct if it maps each
input in the specification to its corresponding output; we
define the generative accuracy as the percentage of cor-
rect programs over the test set. The LM reaches 92.4%
generative accuracy at the end of training.

We also track two additional metrics related to the syntax (or
form) of the LM outputs: the number of unique programs
generated by the LM over the test set (black) and the per-
plexity of the LM over different subsets of tokens in the
test set (orange). In particular, the solid orange line plots
the perplexity on the reference programs, the dashed orange
line plots the perplexity on the programs generated by the
LM, and the dotted orange line plots the perplexity over all
tokens. Note that overall perplexity improves over the entire
run, indicating that the training dynamics remain stable.

3

Meaning in Language Models Trained on Programs

Figure 2: Three distinct phases during training: babbling
(gray), syntax acquisition (orange), and semantics acquisi-
tion (yellow), based on qualitative differences in the evo-
lution of perplexity (orange), generative accuracy (blue),
and diversity of output (black). The number of unique pro-
grams is measured over the test set, which contains 10,000
specifications and 6,473 unique reference programs.

We observe 3 distinct phases during training: in the bab-
bling phase (up to 50% of training, gray background),
the generated programs are often highly repetitive, with
a plateau in perplexity on the reference programs starting
around 20%. The generative accuracy stays flat at around
10%. The next phase (50-75% of training, orange back-
ground) exhibits a sharp increase in the diversity of the
generated outputs with a corresponding decrease in perplex-
ity on the reference programs—i.e., the LM begins to model
the program tokens—with a modest increase in generative
accuracy (from 10% to 25%). In the final phase (from 75%
to the end of training, yellow background), the diversity
of the generated programs stays roughly constant, and the
perplexity on the reference programs continues to improve
at the previous rate. Conversely, the generative accuracy of
the LM increases rapidly, from 25% to over 90%. As such,
the middle phase sees the most significant change in the
syntactic properties of the LM’s generation, while the final
phase is characterized by a rapid improvement in the LM’s
ability to generate semantically correct output. We hence
identify these two phases primarily with syntax acquisition
and semantics acquisition, respectively.

Finally, while it is natural for the perplexity of the generated
programs to be lower than the reference programs (due to the
use of greedy decoding), the constant margin between the
two perplexities suggests that the LM consistently underfits
the program tokens in the training data, despite producing
increasingly correct programs; we refer to Appendix B for
further analyses. These dynamics suggest that the increase
in generative accuracy over the course of LM training cannot

be attributed entirely to the LM’s ability to model the surface
distribution of program tokens in the training corpus.

3. Emerging representations of semantics
We train small probing classifiers to extract information
about the program state from the hidden states of the LM.
The idea is to prompt the LM to generate a program given
some inputs, and check whether the LM states contain a
representation of the intermediate program states as it gen-
erates the program. A positive result is consistent with the
LM having learned to model the underlying semantics of the
programs it generates, constituting evidence against MH.

3.1. Probing for representations of the program trace

Trace dataset construction Every 4000 steps (or roughly
5%) of training, we take a snapshot of (1) the hidden states
of the LM as it generates programs using next-token predic-
tion and (2) the corresponding program states after evalu-
ating the partial program on each of the 5 specified inputs.
Specifically, starting from an input-output specification, we
generate according to the standard autoregressive loop:

(stateLM)i = LM(input, output, {(stateLM)j}i−1
j=1) (1)

tokeni = greedy(LM head((stateLM)i)) (2)
(stateprog)i = exec(tokeni, (stateprog)i−1) (3)

where each (stateLM)i is a hidden state, (stateprog)0 is the
inputs from the specification, greedy performs greedy de-
coding (constrained to program tokens), and exec executes
a program token on the program state. We generate up to 14
tokens, or until the model outputs a special end-of-sequence
token (<EOS>). Figure 3 illustrates this process.

We average the hidden state over the layer dimension, so
that the snapshot is a 1-dimensional tensor of size 1024, and
call this the model state. We repeat this process for each
of the training and test sets, producing two trace datasets
consisting of aligned pairs of (stateLM)i, (stateprog)i from
all the programs generated from the specifications in the
training and test sets, respectively

Probe training For each training trace dataset, we train
a set of probes (ranging from linear to 2-layer MLPs) to
predict features of the program state given the model state,
using standard supervised learning. The features consist of
(1) the facing direction of the robot, (2) the position of the
robot as an offset from its starting position, and (3) whether
the robot is current facing an obstacle, i.e.:

α : stateprog 7→ (position, direction, obstacle) (4)

4

Meaning in Language Models Trained on Programs

1

11
1

1

11
1

1

11
1

1

1
1
1

putMarker putMarker <EOS>turnRight

...

...

...

1

1
1
1

Figure 3: An overview of the trace dataset construction for the probe task. Given a specification consisting of input and
output for some (unobserved) reference program, we use the trained LM to generate a program using next-token prediction
(dotted blue arrows), yielding a sequence of (stateLM)i. At the same time, each token is an operation that induces a
transition in the program state to (stateprog)i. The probe is trained to predict (stateprog)i given (stateLM)i. Note that, while
the depicted generation is correct as the final (stateprog)k is equal to the specified output state, this need not be the case in
general (i.e., the LM may generate incorrect programs). For clarity, we depict the specification as a single input-output
example (rather than 5); autoregressive edges are also hidden.

As the features are an abstraction of the full program state,
we refer to them collectively as the abstract state.1 We then
evaluate the accuracy of the probe over the corresponding
test trace dataset, and define the semantic content as the
geometric mean (over the 3 features). As tracing the abstract
state is formally equivalent to performing an abstract inter-
pretation of the program, the semantic content measures, in
a precise sense, the extent to which the model states encode
an abstract interpretation of the formal semantics.

3.2. Results

This section presents a summary of the main results; Ap-
pendix B contains additional results, including results for
individual features and all 3 probes. We also evaluate several
additional hypothesis, including that the semantic content is
due to a retrieval process (i.e., the LM is simply recalling
the abstract states from previously seen data), which can be
viewed as a variation on MH. The main idea is that the train-
ing corpus contains only programs of length 6 or greater, so
the LM cannot use retrieval for shorter programs and must
learn to infer (rather than retrieve) the semantics.

Emergence of semantics is correlated with generative
accuracy Figure 4 plots the results of our probing exper-
iments. Our first observation is that the semantic content
during the babbling phase is extremely noisy, which can be
attributed to a lack of diversity in the outputs of the LM,

1To avoid introducing more notation, we use stateLM and
stateprog to refer to both (1) the full hidden states of the LM and
program state during trace dataset generation, and (2) the averaged
model state and abstract program state during probing, respectively,
whenever the distinction is clear from context.

Figure 4: The semantic content (green) measured by differ-
ent probing classifiers.

so that the probe only needs to fit a trivial set of seman-
tics. For instance, about 20% of the way through training,
the LM degenerates to generating a single program of 9
PICKMARKER tokens, regardless of the specification. Con-
versely, all 3 probes reach a minimum during the syntax
acquisition phase (where the LM outputs grow more di-
verse), and steadily increase over the semantics acquisition
phase of training. This result is consistent with the propo-
sition that the hidden states of the LM do in fact contain
(relatively) shallow encodings of the abstract state, and cru-
cially these representations emerge within an LM trained
purely to perform next token prediction on text. Regress-
ing generative accuracy against semantic content during the
second half of training also yields strong, statistically sig-

5

Meaning in Language Models Trained on Programs

Figure 5: The semantic content (1-layer MLP) for the cur-
rent and next two abstract states over the second half of
training.

0 +1 +2

linear classifier 63.2 61.1 60.1
1-layer MLP 79.1 75.1 72.5
2-layer MLP 82.3 79.2 77.3

baseline (current state) 100.0 83.9 75.6

Table 1: Probing accuracy for current and future abstract
states at the end of training vs. a baseline of predicting the
current abstract state for future abstract states.

nificant linear correlations (R2 = 0.904, 0.886, 0.821 with
p < 0.001 for the linear, 1-layer MLP, and 2-layer MLP
probes, respectively).

Representations are predictive of future program states
We next explore whether the trained LM encodes the se-
mantics of text that has yet to be generated. Specifically,
we train probes to predict future abstract states from model
states. Figure 5 displays how well a 1-layer MLP is able
to predict abstract states 1 and 2 steps into the future. As
with the previous results, the probe’s performance reaches
a minimum during syntax acquisition, then increases for
the remainder of training. We also find a strong correlation
between the semantic content of future states and the gen-
erative accuracy in the second half of training; regressing
the semantic content against the generative accuracy yields
an R2 of 0.878 and 0.874 (p < .001) for 1 and 2 abstract
states into the future, respectively.

Table 1 compares the probing results at the end of training
against a baseline which simply predicts the current abstract
state for all future abstract states (which is the Bayes-optimal
predictor absent any information about future states). We
observe that (1) the accuracy of using the baseline degrades
more rapidly than the probe, which suggests that the probes

are not simply using encodings of the current state to predict
future states, and (2) the absolute accuracy at 2 states into
the future is greater using the 2-layer MLP probe than the
baseline. These results suggest that the LM encodes infor-
mation about what it intends to say ahead of its generation.

4. Semantic probing interventions
We next evaluate the possibility that semantics are learned by
the probe instead of the LM. For example, because the probe
is explicitly supervised on intermediate states, the model
states may encode the inputs and a record of the generated
program tokens, with the probe learning to interpret the
tokens one-by-one. More generally, the semantic content
could be attributed to (1) the LM encoding only lexical and
syntactic structure while (2) the probe learns to derive the
semantics from the lexical and syntactic structure encoded
in the LM state (because it is explicitly supervised to predict
the semantics from the LM state). We refer to this as the
syntactic record hypothesis, which offers an explanation
for the results in Section 3 consistent with MH.

To test this hypothesis, we design a novel interventional
experiment that preserves the lexical and syntactic structure
of the language and intervenes only on the semantics. Then,
we re-execute the program with the alternative semantics
to obtain a new trace with new abstract states, and train
a new probe to predict the new abstract states using the
original model states. Our key insight is that, if the model
states encode only syntactic information, then the new probe
should be capable of extracting the new semantics from the
original syntactic record equally well, leaving the semantic
content unchanged.

4.1. Intervening on semantics

Concretely, we define two alternative semantics by reas-
signing the semantics of individual operations as follows:

original flip adversarial

pickMarker pickMarker turnRight
putMarker putMarker turnLeft
turnRight turnLeft move
turnLeft turnRight turnRight

move move turnLeft

For instance, exec(turnRight, ·) in the original se-
mantics would have the robot turn 90 degrees clockwise,
while execadversarial(turnRight, ·) advances the robot by
a space (i.e., according to the original semantics of move).

Next, for each sequence of program tokens in Equation (1)
from the construction of the original trace dataset, we use

6

Meaning in Language Models Trained on Programs

lexicon + syntax
program tokens

LM state contains only a record of tokens and inputs, probe learns semantics LM state contains abstract state, probe extracts trace from abstract state

lower
semantic
content

semantic
content

extract alternative trace
from original abstract state

extract trace from
abstract state

similar
semantic
content

interpret record
to infer trace

semantic
content

interpret record
to infer trace

syntactic
record

lexicon + syntax
program tokens

pr
e-

in
te

rv
en

tio
n

po
st

-in
te

rv
en

tio
n

Figure 6: The proposed semantic intervention baseline. We use green for the original semantics, red for the alternative
semantics, and gray for non-semantic components (such as syntax). We aim to distinguish between two hypotheses: (left)
the LM only maintains a syntactic record (e.g., a list of the inputs and program tokens generated thus far), while probeorig
learns to infer semantics from the record; and (right) the LM learns to represent stateprog, while probeorig just extracts the
semantics. We mark the emergent connection between the original semantics and the LM representations in the latter case by
a dashed green line. The top half depicts how, pre-intervention, both cases can lead to the high semantic content measured in
Section 3. The bottom half displays why intervening on the semantics while preserving the form of programs separates the
two hypotheses: if the LM representations contain only syntax (bottom left), then it should be possible to train probealt to
learn to interpret the record according to the alternative state′prog (bold red outcome); however, if the LM representations
encode the original abstract state (bottom right), then probealt needs to extract the alternative state′prog from the original
stateprog, yielding a lower semantic content (bold gray outcome).

Table 2: The results of our semantic intervention experiments. For each of the original, flip, and adversarial semantics, we
report the semantic content (SC) at the end of training for 2 abstract states into the past (-2, -1), the current state (0), and 2
abstract states into the future (+1, +2), using linear, 1-layer MLP, and 2-layer MLP probes. We also regress the SC against
the generative accuracy over the second half of training (R2(p)). For each of the alternative semantics, we additionally
compute the difference with respect to the original semantics (∆) and regress the difference against the generative accuracy
over the second half of training as (R2(p) of ∆). Highlighted cells are statistically significant at a level of p < 0.05 with an
R2 of at least 50%; all such correlations are positive. We reject the syntactic record hypothesis due to the magnitude (∆ and
R2 of ∆) and statistical significance (p of ∆) of the drop in semantic content when probing for the alternative semantics.

original flip adversarial
SC R2(p) SC R2(p) ∆ R2(p) of ∆ SC R2(p) ∆ R2(p) of ∆

lin
ea

r

-2 64.2 86.0 (<.001) 60.5 55.5 (0.021) 3.7 72.2 (0.004) 55.8 7.4 (0.478) 8.4 60.5 (0.014)
-1 64.4 87.1 (<.001) 59.9 66.1 (0.008) 4.5 81.4 (<.001) 54.8 2.6 (0.680) 9.7 70.7 (0.005)
0 63.2 90.4 (<.001) 57.3 52.7 (0.027) 5.9 86.9 (<.001) 53.1 0.4 (0.878) 10.1 71.9 (0.004)
1 61.1 91.3 (<.001) 55.2 38.4 (0.075) 5.9 89.3 (<.001) 52.6 0.6 (0.846) 8.5 59.4 (0.015)
2 60.1 92.3 (<.001) 54.3 23.2 (0.189) 5.7 90.7 (<.001) 52.6 0.7 (0.827) 7.5 49.4 (0.035)

M
L

P-
1

-2 82.8 83.8 (<.001) 81.2 87.1 (<.001) 1.6 23.2 (0.190) 73.8 66.3 (0.008) 9.0 66.1 (0.008)
-1 83.6 83.9 (<.001) 81.6 86.9 (<.001) 1.9 30.3 (0.125) 73.4 65.4 (0.008) 10.1 72.9 (0.003)
0 79.1 88.6 (<.001) 76.7 90.3 (<.001) 2.3 61.4 (0.012) 66.7 44.7 (0.049) 12.4 76.5 (0.002)
1 75.1 87.8 (<.001) 72.2 87.2 (<.001) 2.9 83.3 (<.001) 61.8 29.0 (0.135) 13.4 75.0 (0.003)
2 72.5 87.4 (<.001) 69.1 86.9 (<.001) 3.4 84.7 (<.001) 59.1 12.2 (0.356) 13.4 75.1 (0.002)

M
L

P-
2

-2 85.4 75.5 (0.002) 84.0 76.7 (0.002) 1.4 48.5 (0.037) 83.1 74.5 (0.003) 2.3 5.2 (0.556)
-1 85.6 78.0 (0.002) 83.9 79.3 (0.001) 1.7 64.3 (0.009) 82.5 72.6 (0.004) 3.2 20.7 (0.218)
0 82.3 82.1 (<.001) 80.6 84.3 (<.001) 1.7 63.0 (0.011) 76.1 68.1 (0.006) 6.2 25.2 (0.169)
1 79.2 82.5 (<.001) 77.6 84.5 (<.001) 1.7 62.0 (0.012) 69.8 51.7 (0.029) 9.5 48.0 (0.039)
2 77.3 83.7 (<.001) 75.6 86.0 (<.001) 1.6 58.2 (0.017) 65.6 48.0 (0.039) 11.6 59.3 (0.015)

7

Meaning in Language Models Trained on Programs

Figure 7: Excess of original over flip semantic content using
different probing classifiers.

the same tokens to define a corresponding alternative trace:

(state′prog)i = execalt(tokeni, (state′prog)i−1), (5)

where we also start from the same initial program state:
(stateprog)

′
0 = (stateprog)0 (i.e., the specification inputs).

Finally, with the new traces from Equation (5) and the origi-
nal stateLM from Equation (1), we train a new probe

probealt : stateLM 7→ state′prog, (6)

and compare its accuracy against the original probe:

probeorig : stateLM 7→ stateprog. (7)

Figure 6 illustrates our setup.

For an intervention to be a proper control, we identify two
critical properties: (1) the alternative semantics should be
limited to reassigning the semantics of individual opera-
tions in the language (as opposed to inventing completely
new semantics, e.g., “jump three spaces diagonally”) and
(2) the intervention must preserve the syntactic structure of
programs (i.e., how the individual operations are composed
when interpreting a full program). Then assuming the syn-
tactic record hypothesis is true, probealt should be able to
interpret the record according to an analogous procedure as
probeorig, yielding comparable measurements of semantic
content. Hence, rejecting the syntactic record hypothesis
reduces to measuring a statistically significant degradation
in the alternative semantic content (relative to the original
semantic content).

4.2. Results

Table 2 displays the results of our semantic intervention
baseline, where we trained probes to predict up to two ab-
stract states into the past and future using the original and

Figure 8: Excess of original over flip semantic content for
current and future abstract states (1-layer MLP) .

alternative semantics. In all 5 cases, the semantic content
for the alternative semantics is significantly degraded when
compared to the original semantics, which supports rejecting
the hypothesis that the model states only encode a syntactic
record (i.e., lexical and syntactic information only) while
the probe learns to interpret the record (i.e., semantics).

Note that the flip semantics are strongly related to the origi-
nal semantics: absent any obstacles in the robot’s path, they
only require reflecting the original path of the robot across
an axis; in contrast, the adversarial semantics completely
changes the semantics of each operator. Hence, if the syn-
tactic record hypothesis is false, then we would expect the
semantic content to be lower for adversarial vs. flip, since it
should be more challenging to map from the original to the
adversarial semantics; our results support this interpretation.

We also plot the excess of the original over the flip seman-
tic contents in Figures 7 and 8. Note that the apparently
high semantic content of the babbling phase—which was
observed pre-intervention in Figures 4 and 5, respectively,
and attributed to the probe being able to learn the semantics
of a small number of unique generated programs (black)—
disappears post-intervention. This is consistent with the
probe learning the semantics equally well for both the origi-
nal and flip semantics during the babbling phase, and demon-
strates the ability of the semantic intervention baseline to
control for the ability of the probe to learn semantics. We
conclude that a statistically significant portion of the ob-
served semantic content from Section 3 cannot be explained
as the probe learning semantics, refuting MH.

5. Related work
LMs, semantics, and interpretability While many works
have evaluated the external behavior of LMs on a range of
semantically meaningful tasks (Austin et al., 2021; Toshni-

8

Meaning in Language Models Trained on Programs

wal et al., 2022; Patel & Pavlick, 2022; Liu et al., 2023), our
work explores the internal state of the LM, falling under the
broad umbrella of efforts toward LM interpretability. For
instance, Abdou et al. (2021) find that pretrained LMs’ rep-
resentations of color terms are geometrically aligned with
CIELAB, a color space based on human perception. Li
et al. (2021) fine-tune pretrained LMs on text that describes
evolving situations, then probe whether the model states
track entity states. Unlike this research, we study an LM
trained from scratch, which (1) yields insights into how se-
mantics emerge in the representations of LMs over time and
(2) allows us to rigorously evaluate alternative explanations
of the LM behavior. Li et al. (2023) train a Transformer on
transcripts of Othello, then use probes to intervene on the
LM’s internal representations; they find that the LM’s subse-
quent generations are consistent with the edited version of
the extracted board state. In contrast, our semantic probing
interventions introduce a novel method of distinguishing
the contributions of the LM and probe. To the best of our
knowledge, we are also the first to apply probing to find
evidence that the LM encodes the meaning of text ahead of
generation.

Grounding programs from text The specific question of
whether LMs of code can ground programs from text has
received prior attention in the literature. Merrill et al. (2021)
show that there exist programs whose semantics provably
cannot be learned from text, albeit under strong assumptions
not satisfied by our setting. Bender & Koller (2020) concede
that meaning could be learned from programs paired with
unit tests, but assert this requires a “learner which has been
equipped by its human developer with the ability to identify
and interpret unit tests.” Our research, in contrast, provides
empirical evidence that LMs trained only to predict the next
token can, in fact, learn aspects of the program semantics.

Program synthesis with LMs There is a growing body
of work on training large-scale, Transformer-based LMs for
program synthesis (Austin et al., 2021; Chen et al., 2021a;
Li et al., 2022; Nijkamp et al., 2023; Fried et al., 2023;
Rozière et al., 2023), as well as program synthesis as a
benchmark for LMs (Hendrycks et al., 2021; Liang et al.,
2022). Several of these works have observed that the BLEU
score with respect to a reference solution is not a good
predictor of the LM’s competency, which complements our
results regarding the LM’s perplexity on the training corpus.

Probing Probing (Shi et al., 2016; Belinkov & Glass,
2019) is widely used as a technique to investigate the inner
workings of LMs. A key challenge is controlling for what
is learned by the probe rather than represented in the LM
(Belinkov, 2022). The standard methodology is to establish
a baseline measurement on a task for which the model states
are assumed to be meaningless. Hewitt & Liang (2019)
develop control tasks for word-level properties in the con-

text of probing for parts of speech in LM representations.
They compare against the performance of a probe that maps
from the model states to a dataset with a random part of
speech assigned to each word. In our case, the control task
approach would assign random features to each program
state; however, this also destroys the syntactic structure of
the program, and hence cannot be used to test the syntactic
record hypothesis. To address this, we introduce semantic
probing interventions, a control framework for probing that
intervenes on the semantics of individual operations while
preserving the overall syntax of programs. As our tech-
niques specifically advance the study of semantics in LMs,
we believe our contributions can be broadly applicable to fu-
ture interpretability research, particularly for investigations
involving meaning (rather just than syntactic structure).

6. Conclusion
This paper presents empirical evidence that LMs of code
can acquire the formal semantics of programs from next
token prediction. We find that, when training an LM to
model text consisting of examples of input-output specifi-
cations followed by programs, the learning process of the
LM appears to undergo 3 distinct phases, with the second
half of training characterized by a strong, linear correlation
between the emerging representations of the semantics and
the ability of the LM to synthesize programs that correctly
implement unseen specifications. We also find represen-
tations of future semantics, suggesting a notion of intent
during generation. Further explorations of these dynamics
could yield deeper insights into the behavior of LMs.

We also present semantic probing interventions, a frame-
work for the application of probes—a standard tool for inter-
preting the learned representations of, e.g., neural models—
to understanding whether representations capture informa-
tion related to the underlying semantics of a domain. Specif-
ically, we design experiments capable of distinguishing
whether the probe’s measurement is indicative of (1) the
presence of semantic information intrinsic to the representa-
tions or (2) the ability of the probe to perform the task itself,
with purely syntactic information encoded in the represen-
tations. This also allows us to justify the use of nonlinear
probes that, absent our technique, are more likely yield false
positives due to having more capacity to learn the task; we
see moving beyond shallow probes as a way to progress
toward understanding whether (and how) LMs represent
more complex concepts.

More broadly, the question of what exactly LMs are learn-
ing from text has garnered considerable interest in recent
years, driven by the increasingly impressive performance
of frontier models. We believe the techniques and insights
presented in this work can serve as a principled foundation
for future studies of the capabilities and limitations of LMs.

9

Meaning in Language Models Trained on Programs

Acknowledgements
We would like to thank Jacob Andreas, Omar Costilla-
Reyes, Kai Jia, Jason Kim, Armando Solar-Lezama, and
Yichen Yang for their helpful comments and discussions
on an earlier version of this paper. We also gratefully ac-
knowledge support from DARPA Grants HR001120C0015,
HR001120C0191, and N6600120C4025. The views ex-
pressed are those of the authors and do not reflect the offi-
cial policy or position of the Department of Defense or the
United States Government.

Impact statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

To aid in reproducibility, we open source all our
code, including the code we use to generate the train-
ing data, train the LM, and conduct the probing ex-
periments, at https://github.com/charlesjin/
emergent-semantics.

References
Abdou, M., Kulmizev, A., Hershcovich, D., Frank, S.,

Pavlick, E., and Søgaard, A. Can language models encode
perceptual structure without grounding? a case study in
color. In Proceedings of the 25th Conference on Compu-
tational Natural Language Learning, pp. 109–132, 2021.

Anthropic, A. The claude 3 model family: Opus, sonnet,
haiku. Claude-3 Model Card, 2024.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Belinkov, Y. Probing classifiers: Promises, shortcomings,
and advances. Computational Linguistics, 48(1):207–
219, March 2022. doi: 10.1162/coli a 00422. URL
https://aclanthology.org/2022.cl-1.7.

Belinkov, Y. and Glass, J. Analysis methods in neu-
ral language processing: A survey. Transactions of
the Association for Computational Linguistics, 7:49–
72, 2019. doi: 10.1162/tacl a 00254. URL https:
//aclanthology.org/Q19-1004.

Bender, E. M. and Koller, A. Climbing towards nlu: On
meaning, form, and understanding in the age of data. In
Proceedings of the 58th annual meeting of the association
for computational linguistics, pp. 5185–5198, 2020.

Bommasani, R., Liang, P., and Lee, T. Holistic evaluation
of language models. Annals of the New York Academy of
Sciences, 2023.

Bunel, R., Hausknecht, M., Devlin, J., Singh, R., and Kohli,
P. Leveraging grammar and reinforcement learning for
neural program synthesis. In International Conference
on Learning Representations, 2018. URL https://
openreview.net/forum?id=H1Xw62kRZ.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021a.

Chen, X., Liu, C., and Song, D. Execution-guided neu-
ral program synthesis. In International Conference on
Learning Representations, 2019.

Chen, X., Song, D., and Tian, Y. Latent execution for neu-
ral program synthesis beyond domain-specific languages.
Advances in Neural Information Processing Systems, 34:
22196–22208, 2021b.

Cousot, P. Constructive design of a hierarchy of semantics of
a transition system by abstract interpretation. Theoretical
Computer Science, 277(1-2):47–103, 2002.

Cousot, P. and Cousot, R. Abstract interpretation: a unified
lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In Proceedings of the
4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pp. 238–252, 1977.

CS106A. CS106A: Programming Methodologies (spring
2023). https://web.archive.org/web/
20230515003120/https://web.stanford.
edu/class/cs106a/, 2023. URL https:
//web.stanford.edu/class/cs106a/. Ac-
cessed: 2023-05-14.

Devlin, J., Bunel, R. R., Singh, R., Hausknecht, M., and
Kohli, P. Neural program meta-induction. Advances in
Neural Information Processing Systems, 30, 2017.

Fan, A., Gokkaya, B., Harman, M., Lyubarskiy, M., Sen-
gupta, S., Yoo, S., and Zhang, J. M. Large language
models for software engineering: Survey and open prob-
lems. arXiv preprint arXiv:2310.03533, 2023.

Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace,
E., Shi, F., Zhong, R., Yih, S., Zettlemoyer, L., and
Lewis, M. Incoder: A generative model for code infilling
and synthesis. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=hQwb-lbM6EL.

10

https://github.com/charlesjin/emergent-semantics
https://github.com/charlesjin/emergent-semantics
https://aclanthology.org/2022.cl-1.7
https://aclanthology.org/Q19-1004
https://aclanthology.org/Q19-1004
https://openreview.net/forum?id=H1Xw62kRZ
https://openreview.net/forum?id=H1Xw62kRZ
https://web.archive.org/web/20230515003120/https://web.stanford.edu/class/cs106a/
https://web.archive.org/web/20230515003120/https://web.stanford.edu/class/cs106a/
https://web.archive.org/web/20230515003120/https://web.stanford.edu/class/cs106a/
https://web.stanford.edu/class/cs106a/
https://web.stanford.edu/class/cs106a/
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL

Meaning in Language Models Trained on Programs

Gemini Team, Anil, R., Borgeaud, S., Wu, Y., Alayrac,
J.-B., Yu, J., Soricut, R., Schalkwyk, J., Dai, A. M.,
Hauth, A., Millican, K., Silver, D., Petrov, S., Johnson,
M., Antonoglou, I., Schrittwieser, J., Glaese, A., Chen, J.,
Pitler, E., Lillicrap, T., Lazaridou, A., Firat, O., Molloy, J.,
Isard, M., Barham, P. R., Hennigan, T., Lee, B., Viola, F.,
Reynolds, M., Xu, Y., Doherty, R., Collins, E., Meyer, C.,
Rutherford, E., Moreira, E., Ayoub, K., Goel, M., Tucker,
G., Piqueras, E., Krikun, M., Barr, I., Savinov, N., Dani-
helka, I., Roelofs, B., White, A., Andreassen, A., von
Glehn, T., Yagati, L., Kazemi, M., Gonzalez, L., Khal-
man, M., Sygnowski, J., Frechette, A., Smith, C., Culp,
L., Proleev, L., Luan, Y., Chen, X., Lottes, J., Schucher,
N., Lebron, F., Rrustemi, A., Clay, N., Crone, P., Kocisky,
T., Zhao, J., Perz, B., Yu, D., Howard, H., Bloniarz, A.,
Rae, J. W., Lu, H., Sifre, L., Maggioni, M., Alcober, F.,
Garrette, D., Barnes, M., Thakoor, S., Austin, J., Barth-
Maron, G., Wong, W., Joshi, R., Chaabouni, R., Fatiha,
D., Ahuja, A., Liu, R., Li, Y., Cogan, S., Chen, J., Jia, C.,
Gu, C., Zhang, Q., Grimstad, J., Hartman, A. J., Chad-
wick, M., Tomar, G. S., Garcia, X., Senter, E., Taropa,
E., Pillai, T. S., Devlin, J., Laskin, M., de Las Casas,
D., Valter, D., Tao, C., Blanco, L., Badia, A. P., Reitter,
D., Chen, M., Brennan, J., Rivera, C., Brin, S., Iqbal, S.,
Surita, G., Labanowski, J., Rao, A., Winkler, S., Parisotto,
E., Gu, Y., Olszewska, K., Zhang, Y., Addanki, R., Miech,
A., Louis, A., Shafey, L. E., Teplyashin, D., Brown, G.,
Catt, E., Attaluri, N., Balaguer, J., Xiang, J., Wang, P.,
Ashwood, Z., Briukhov, A., Webson, A., Ganapathy, S.,
Sanghavi, S., Kannan, A., Chang, M.-W., Stjerngren, A.,
Djolonga, J., Sun, Y., Bapna, A., Aitchison, M., Pejman,
P., Michalewski, H., Yu, T., Wang, C., Love, J., Ahn,
J., Bloxwich, D., Han, K., Humphreys, P., Sellam, T.,
Bradbury, J., Godbole, V., Samangooei, S., Damoc, B.,
Kaskasoli, A., Arnold, S. M. R., Vasudevan, V., Agrawal,
S., Riesa, J., Lepikhin, D., Tanburn, R., Srinivasan, S.,
Lim, H., Hodkinson, S., Shyam, P., Ferret, J., Hand, S.,
Garg, A., Paine, T. L., Li, J., Li, Y., Giang, M., Neitz,
A., Abbas, Z., York, S., Reid, M., Cole, E., Chowdhery,
A., Das, D., Rogozińska, D., Nikolaev, V., Sprechmann,
P., Nado, Z., Zilka, L., Prost, F., He, L., Monteiro, M.,
Mishra, G., Welty, C., Newlan, J., Jia, D., Allamanis,
M., Hu, C. H., de Liedekerke, R., Gilmer, J., Saroufim,
C., Rijhwani, S., Hou, S., Shrivastava, D., Baddepudi,
A., Goldin, A., Ozturel, A., Cassirer, A., Xu, Y., Sohn,
D., Sachan, D., Amplayo, R. K., Swanson, C., Petrova,
D., Narayan, S., Guez, A., Brahma, S., Landon, J., Patel,
M., Zhao, R., Villela, K., Wang, L., Jia, W., Rahtz, M.,
Giménez, M., Yeung, L., Lin, H., Keeling, J., Georgiev,
P., Mincu, D., Wu, B., Haykal, S., Saputro, R., Vodra-
halli, K., Qin, J., Cankara, Z., Sharma, A., Fernando,
N., Hawkins, W., Neyshabur, B., Kim, S., Hutter, A.,
Agrawal, P., Castro-Ros, A., van den Driessche, G., Wang,
T., Yang, F., yiin Chang, S., Komarek, P., McIlroy, R.,

Lučić, M., Zhang, G., Farhan, W., Sharman, M., Natsev,
P., Michel, P., Cheng, Y., Bansal, Y., Qiao, S., Cao, K.,
Shakeri, S., Butterfield, C., Chung, J., Rubenstein, P. K.,
Agrawal, S., Mensch, A., Soparkar, K., Lenc, K., Chung,
T., Pope, A., Maggiore, L., Kay, J., Jhakra, P., Wang, S.,
Maynez, J., Phuong, M., Tobin, T., Tacchetti, A., Trebacz,
M., Robinson, K., Katariya, Y., Riedel, S., Bailey, P.,
Xiao, K., Ghelani, N., Aroyo, L., Slone, A., Houlsby, N.,
Xiong, X., Yang, Z., Gribovskaya, E., Adler, J., Wirth,
M., Lee, L., Li, M., Kagohara, T., Pavagadhi, J., Bridgers,
S., Bortsova, A., Ghemawat, S., Ahmed, Z., Liu, T., Pow-
ell, R., Bolina, V., Iinuma, M., Zablotskaia, P., Besley, J.,
Chung, D.-W., Dozat, T., Comanescu, R., Si, X., Greer,
J., Su, G., Polacek, M., Kaufman, R. L., Tokumine, S.,
Hu, H., Buchatskaya, E., Miao, Y., Elhawaty, M., Sid-
dhant, A., Tomasev, N., Xing, J., Greer, C., Miller, H.,
Ashraf, S., Roy, A., Zhang, Z., Ma, A., Filos, A., Besta,
M., Blevins, R., Klimenko, T., Yeh, C.-K., Changpinyo,
S., Mu, J., Chang, O., Pajarskas, M., Muir, C., Cohen, V.,
Lan, C. L., Haridasan, K., Marathe, A., Hansen, S., Dou-
glas, S., Samuel, R., Wang, M., Austin, S., Lan, C., Jiang,
J., Chiu, J., Lorenzo, J. A., Sjösund, L. L., Cevey, S., Gle-
icher, Z., Avrahami, T., Boral, A., Srinivasan, H., Selo, V.,
May, R., Aisopos, K., Hussenot, L., Soares, L. B., Baumli,
K., Chang, M. B., Recasens, A., Caine, B., Pritzel, A.,
Pavetic, F., Pardo, F., Gergely, A., Frye, J., Ramasesh,
V., Horgan, D., Badola, K., Kassner, N., Roy, S., Dyer,
E., Campos, V., Tomala, A., Tang, Y., Badawy, D. E.,
White, E., Mustafa, B., Lang, O., Jindal, A., Vikram, S.,
Gong, Z., Caelles, S., Hemsley, R., Thornton, G., Feng,
F., Stokowiec, W., Zheng, C., Thacker, P., Çağlar Ünlü,
Zhang, Z., Saleh, M., Svensson, J., Bileschi, M., Patil,
P., Anand, A., Ring, R., Tsihlas, K., Vezer, A., Selvi, M.,
Shevlane, T., Rodriguez, M., Kwiatkowski, T., Daruki,
S., Rong, K., Dafoe, A., FitzGerald, N., Gu-Lemberg,
K., Khan, M., Hendricks, L. A., Pellat, M., Feinberg, V.,
Cobon-Kerr, J., Sainath, T., Rauh, M., Hashemi, S. H.,
Ives, R., Hasson, Y., Li, Y., Noland, E., Cao, Y., Byrd, N.,
Hou, L., Wang, Q., Sottiaux, T., Paganini, M., Lespiau,
J.-B., Moufarek, A., Hassan, S., Shivakumar, K., van
Amersfoort, J., Mandhane, A., Joshi, P., Goyal, A., Tung,
M., Brock, A., Sheahan, H., Misra, V., Li, C., Rakićević,
N., Dehghani, M., Liu, F., Mittal, S., Oh, J., Noury, S.,
Sezener, E., Huot, F., Lamm, M., Cao, N. D., Chen, C.,
Elsayed, G., Chi, E., Mahdieh, M., Tenney, I., Hua, N.,
Petrychenko, I., Kane, P., Scandinaro, D., Jain, R., Uesato,
J., Datta, R., Sadovsky, A., Bunyan, O., Rabiej, D., Wu,
S., Zhang, J., Vasudevan, G., Leurent, E., Alnahlawi, M.,
Georgescu, I., Wei, N., Zheng, I., Chan, B., Rabinovitch,
P. G., Stanczyk, P., Zhang, Y., Steiner, D., Naskar, S.,
Azzam, M., Johnson, M., Paszke, A., Chiu, C.-C., Elias,
J. S., Mohiuddin, A., Muhammad, F., Miao, J., Lee, A.,
Vieillard, N., Potluri, S., Park, J., Davoodi, E., Zhang, J.,
Stanway, J., Garmon, D., Karmarkar, A., Dong, Z., Lee,

11

Meaning in Language Models Trained on Programs

J., Kumar, A., Zhou, L., Evens, J., Isaac, W., Chen, Z., Jia,
J., Levskaya, A., Zhu, Z., Gorgolewski, C., Grabowski, P.,
Mao, Y., Magni, A., Yao, K., Snaider, J., Casagrande, N.,
Suganthan, P., Palmer, E., Irving, G., Loper, E., Faruqui,
M., Arkatkar, I., Chen, N., Shafran, I., Fink, M., Castaño,
A., Giannoumis, I., Kim, W., Rybiński, M., Sreevatsa, A.,
Prendki, J., Soergel, D., Goedeckemeyer, A., Gierke, W.,
Jafari, M., Gaba, M., Wiesner, J., Wright, D. G., Wei, Y.,
Vashisht, H., Kulizhskaya, Y., Hoover, J., Le, M., Li, L.,
Iwuanyanwu, C., Liu, L., Ramirez, K., Khorlin, A., Cui,
A., LIN, T., Georgiev, M., Wu, M., Aguilar, R., Pallo, K.,
Chakladar, A., Repina, A., Wu, X., van der Weide, T.,
Ponnapalli, P., Kaplan, C., Simsa, J., Li, S., Dousse, O.,
Yang, F., Piper, J., Ie, N., Lui, M., Pasumarthi, R., Lintz,
N., Vijayakumar, A., Thiet, L. N., Andor, D., Valenzuela,
P., Paduraru, C., Peng, D., Lee, K., Zhang, S., Greene,
S., Nguyen, D. D., Kurylowicz, P., Velury, S., Krause,
S., Hardin, C., Dixon, L., Janzer, L., Choo, K., Feng, Z.,
Zhang, B., Singhal, A., Latkar, T., Zhang, M., Le, Q.,
Abellan, E. A., Du, D., McKinnon, D., Antropova, N.,
Bolukbasi, T., Keller, O., Reid, D., Finchelstein, D., Raad,
M. A., Crocker, R., Hawkins, P., Dadashi, R., Gaffney, C.,
Lall, S., Franko, K., Filonov, E., Bulanova, A., Leblond,
R., Yadav, V., Chung, S., Askham, H., Cobo, L. C., Xu,
K., Fischer, F., Xu, J., Sorokin, C., Alberti, C., Lin, C.-C.,
Evans, C., Zhou, H., Dimitriev, A., Forbes, H., Banarse,
D., Tung, Z., Liu, J., Omernick, M., Bishop, C., Kumar,
C., Sterneck, R., Foley, R., Jain, R., Mishra, S., Xia, J.,
Bos, T., Cideron, G., Amid, E., Piccinno, F., Wang, X.,
Banzal, P., Gurita, P., Noga, H., Shah, P., Mankowitz,
D. J., Polozov, A., Kushman, N., Krakovna, V., Brown,
S., Bateni, M., Duan, D., Firoiu, V., Thotakuri, M., Natan,
T., Mohananey, A., Geist, M., Mudgal, S., Girgin, S., Li,
H., Ye, J., Roval, O., Tojo, R., Kwong, M., Lee-Thorp, J.,
Yew, C., Yuan, Q., Bagri, S., Sinopalnikov, D., Ramos,
S., Mellor, J., Sharma, A., Severyn, A., Lai, J., Wu, K.,
Cheng, H.-T., Miller, D., Sonnerat, N., Vnukov, D., Greig,
R., Beattie, J., Caveness, E., Bai, L., Eisenschlos, J., Ko-
rchemniy, A., Tsai, T., Jasarevic, M., Kong, W., Dao, P.,
Zheng, Z., Liu, F., Yang, F., Zhu, R., Geller, M., Teh,
T. H., Sanmiya, J., Gladchenko, E., Trdin, N., Sozanschi,
A., Toyama, D., Rosen, E., Tavakkol, S., Xue, L., Elkind,
C., Woodman, O., Carpenter, J., Papamakarios, G., Kemp,
R., Kafle, S., Grunina, T., Sinha, R., Talbert, A., Goyal,
A., Wu, D., Owusu-Afriyie, D., Du, C., Thornton, C.,
Pont-Tuset, J., Narayana, P., Li, J., Fatehi, S., Wieting, J.,
Ajmeri, O., Uria, B., Zhu, T., Ko, Y., Knight, L., Héliou,
A., Niu, N., Gu, S., Pang, C., Tran, D., Li, Y., Levine,
N., Stolovich, A., Kalb, N., Santamaria-Fernandez, R.,
Goenka, S., Yustalim, W., Strudel, R., Elqursh, A., Lak-
shminarayanan, B., Deck, C., Upadhyay, S., Lee, H.,
Dusenberry, M., Li, Z., Wang, X., Levin, K., Hoffmann,
R., Holtmann-Rice, D., Bachem, O., Yue, S., Arora, S.,
Malmi, E., Mirylenka, D., Tan, Q., Koh, C., Yeganeh,

S. H., Põder, S., Zheng, S., Pongetti, F., Tariq, M., Sun, Y.,
Ionita, L., Seyedhosseini, M., Tafti, P., Kotikalapudi, R.,
Liu, Z., Gulati, A., Liu, J., Ye, X., Chrzaszcz, B., Wang,
L., Sethi, N., Li, T., Brown, B., Singh, S., Fan, W., Parisi,
A., Stanton, J., Kuang, C., Koverkathu, V., Choquette-
Choo, C. A., Li, Y., Lu, T., Ittycheriah, A., Shroff, P.,
Sun, P., Varadarajan, M., Bahargam, S., Willoughby, R.,
Gaddy, D., Dasgupta, I., Desjardins, G., Cornero, M.,
Robenek, B., Mittal, B., Albrecht, B., Shenoy, A., Moi-
seev, F., Jacobsson, H., Ghaffarkhah, A., Rivière, M., Wal-
ton, A., Crepy, C., Parrish, A., Liu, Y., Zhou, Z., Farabet,
C., Radebaugh, C., Srinivasan, P., van der Salm, C., Fid-
jeland, A., Scellato, S., Latorre-Chimoto, E., Klimczak-
Plucińska, H., Bridson, D., de Cesare, D., Hudson, T.,
Mendolicchio, P., Walker, L., Morris, A., Penchev, I.,
Mauger, M., Guseynov, A., Reid, A., Odoom, S., Loher,
L., Cotruta, V., Yenugula, M., Grewe, D., Petrushkina,
A., Duerig, T., Sanchez, A., Yadlowsky, S., Shen, A.,
Globerson, A., Kurzrok, A., Webb, L., Dua, S., Li, D.,
Lahoti, P., Bhupatiraju, S., Hurt, D., Qureshi, H., Agar-
wal, A., Shani, T., Eyal, M., Khare, A., Belle, S. R., Wang,
L., Tekur, C., Kale, M. S., Wei, J., Sang, R., Saeta, B.,
Liechty, T., Sun, Y., Zhao, Y., Lee, S., Nayak, P., Fritz,
D., Vuyyuru, M. R., Aslanides, J., Vyas, N., Wicke, M.,
Ma, X., Bilal, T., Eltyshev, E., Balle, D., Martin, N., Cate,
H., Manyika, J., Amiri, K., Kim, Y., Xiong, X., Kang, K.,
Luisier, F., Tripuraneni, N., Madras, D., Guo, M., Waters,
A., Wang, O., Ainslie, J., Baldridge, J., Zhang, H., Pruthi,
G., Bauer, J., Yang, F., Mansour, R., Gelman, J., Xu, Y.,
Polovets, G., Liu, J., Cai, H., Chen, W., Sheng, X., Xue,
E., Ozair, S., Yu, A., Angermueller, C., Li, X., Wang,
W., Wiesinger, J., Koukoumidis, E., Tian, Y., Iyer, A.,
Gurumurthy, M., Goldenson, M., Shah, P., Blake, M., Yu,
H., Urbanowicz, A., Palomaki, J., Fernando, C., Brooks,
K., Durden, K., Mehta, H., Momchev, N., Rahimtoroghi,
E., Georgaki, M., Raul, A., Ruder, S., Redshaw, M., Lee,
J., Jalan, K., Li, D., Perng, G., Hechtman, B., Schuh, P.,
Nasr, M., Chen, M., Milan, K., Mikulik, V., Strohman,
T., Franco, J., Green, T., Hassabis, D., Kavukcuoglu, K.,
Dean, J., and Vinyals, O. Gemini: A family of highly
capable multimodal models, 2023.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora,
A., Guo, E., Burns, C., Puranik, S., He, H., Song, D., et al.
Measuring coding challenge competence with apps. arXiv
preprint arXiv:2105.09938, 2021.

Hertz, M. and Jump, M. Trace-based teaching in early
programming courses. In Proceeding of the 44th ACM
technical symposium on Computer science education, pp.
561–566, 2013.

Hewitt, J. and Liang, P. Designing and interpreting probes
with control tasks. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing

12

Meaning in Language Models Trained on Programs

and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 2733–2743,
Hong Kong, China, November 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1275.
URL https://aclanthology.org/D19-1275.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi,
Y. The curious case of neural text degeneration. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=rygGQyrFvH.

LeBrun, B., Sordoni, A., and O’Donnell, T. J. Evaluating
distributional distortion in neural language modeling. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=bTteFbU99ye.

Letovsky, S. Cognitive processes in program comprehen-
sion. Journal of Systems and software, 7(4):325–339,
1987.

Li, B. Z., Nye, M., and Andreas, J. Implicit representations
of meaning in neural language models. In Proceedings
of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1:
Long Papers), pp. 1813–1827, 2021.

Li, K., Hopkins, A. K., Bau, D., Viégas, F., Pfister, H.,
and Wattenberg, M. Emergent world representations:
Exploring a sequence model trained on a synthetic task.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=DeG07_TcZvT.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A., et al. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097, 2022.

Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D.,
Yasunaga, M., Zhang, Y., Narayanan, D., Wu, Y., Kumar,
A., et al. Holistic evaluation of language models. arXiv
preprint arXiv:2211.09110, 2022.

Lister, R., Fidge, C., and Teague, D. Further evidence of
a relationship between explaining, tracing and writing
skills in introductory programming. Acm sigcse bulletin,
41(3):161–165, 2009.

Liu, R., Wei, J., Gu, S. S., Wu, T.-Y., Vosoughi, S., Cui, C.,
Zhou, D., and Dai, A. M. Mind’s eye: Grounded language
model reasoning through simulation. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=4rXMRuoJlai.

Lopez, M., Whalley, J., Robbins, P., and Lister, R. Rela-
tionships between reading, tracing and writing skills in
introductory programming. In Proceedings of the fourth
international workshop on computing education research,
pp. 101–112, 2008.

Meister, C. and Cotterell, R. Language model evaluation
beyond perplexity. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 5328–
5339, 2021.

Merrill, W., Goldberg, Y., Schwartz, R., and Smith, N. A.
Provable limitations of acquiring meaning from un-
grounded form: What will future language models under-
stand? Transactions of the Association for Computational
Linguistics, 9:1047–1060, 2021.

Mitchell, M. and Krakauer, D. C. The debate over un-
derstanding in AI’s large language models. Proceed-
ings of the National Academy of Sciences, 120(13), mar
2023. doi: 10.1073/pnas.2215907120. URL https:
//doi.org/10.1073%2Fpnas.2215907120.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H.,
Zhou, Y., Savarese, S., and Xiong, C. Codegen: An
open large language model for code with multi-turn pro-
gram synthesis. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=iaYcJKpY2B_.

OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L.,
Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J.,
Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Bal-
aji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M.,
Belgum, J., Bello, I., Berdine, J., Bernadett-Shapiro, G.,
Berner, C., Bogdonoff, L., Boiko, O., Boyd, M., Brakman,
A.-L., Brockman, G., Brooks, T., Brundage, M., Button,
K., Cai, T., Campbell, R., Cann, A., Carey, B., Carlson,
C., Carmichael, R., Chan, B., Chang, C., Chantzis, F.,
Chen, D., Chen, S., Chen, R., Chen, J., Chen, M., Chess,
B., Cho, C., Chu, C., Chung, H. W., Cummings, D., Cur-
rier, J., Dai, Y., Decareaux, C., Degry, T., Deutsch, N.,
Deville, D., Dhar, A., Dohan, D., Dowling, S., Dunning,
S., Ecoffet, A., Eleti, A., Eloundou, T., Farhi, D., Fedus,
L., Felix, N., Fishman, S. P., Forte, J., Fulford, I., Gao, L.,
Georges, E., Gibson, C., Goel, V., Gogineni, T., Goh, G.,
Gontijo-Lopes, R., Gordon, J., Grafstein, M., Gray, S.,
Greene, R., Gross, J., Gu, S. S., Guo, Y., Hallacy, C., Han,
J., Harris, J., He, Y., Heaton, M., Heidecke, J., Hesse,
C., Hickey, A., Hickey, W., Hoeschele, P., Houghton, B.,
Hsu, K., Hu, S., Hu, X., Huizinga, J., Jain, S., Jain, S.,
Jang, J., Jiang, A., Jiang, R., Jin, H., Jin, D., Jomoto, S.,
Jonn, B., Jun, H., Kaftan, T., Łukasz Kaiser, Kamali, A.,
Kanitscheider, I., Keskar, N. S., Khan, T., Kilpatrick, L.,

13

https://aclanthology.org/D19-1275
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=bTteFbU99ye
https://openreview.net/forum?id=bTteFbU99ye
https://openreview.net/forum?id=DeG07_TcZvT
https://openreview.net/forum?id=DeG07_TcZvT
https://openreview.net/forum?id=4rXMRuoJlai
https://openreview.net/forum?id=4rXMRuoJlai
https://doi.org/10.1073%2Fpnas.2215907120
https://doi.org/10.1073%2Fpnas.2215907120
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_

Meaning in Language Models Trained on Programs

Kim, J. W., Kim, C., Kim, Y., Kirchner, H., Kiros, J.,
Knight, M., Kokotajlo, D., Łukasz Kondraciuk, Kondrich,
A., Konstantinidis, A., Kosic, K., Krueger, G., Kuo, V.,
Lampe, M., Lan, I., Lee, T., Leike, J., Leung, J., Levy, D.,
Li, C. M., Lim, R., Lin, M., Lin, S., Litwin, M., Lopez, T.,
Lowe, R., Lue, P., Makanju, A., Malfacini, K., Manning,
S., Markov, T., Markovski, Y., Martin, B., Mayer, K.,
Mayne, A., McGrew, B., McKinney, S. M., McLeavey, C.,
McMillan, P., McNeil, J., Medina, D., Mehta, A., Menick,
J., Metz, L., Mishchenko, A., Mishkin, P., Monaco, V.,
Morikawa, E., Mossing, D., Mu, T., Murati, M., Murk, O.,
Mély, D., Nair, A., Nakano, R., Nayak, R., Neelakantan,
A., Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki,
J., Paino, A., Palermo, J., Pantuliano, A., Parascandolo,
G., Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng,
A., Perelman, A., de Avila Belbute Peres, F., Petrov, M.,
de Oliveira Pinto, H. P., Michael, Pokorny, Pokrass, M.,
Pong, V., Powell, T., Power, A., Power, B., Proehl, E.,
Puri, R., Radford, A., Rae, J., Ramesh, A., Raymond, C.,
Real, F., Rimbach, K., Ross, C., Rotsted, B., Roussez,
H., Ryder, N., Saltarelli, M., Sanders, T., Santurkar, S.,
Sastry, G., Schmidt, H., Schnurr, D., Schulman, J., Sel-
sam, D., Sheppard, K., Sherbakov, T., Shieh, J., Shoker,
S., Shyam, P., Sidor, S., Sigler, E., Simens, M., Sitkin,
J., Slama, K., Sohl, I., Sokolowsky, B., Song, Y., Stau-
dacher, N., Such, F. P., Summers, N., Sutskever, I., Tang,
J., Tezak, N., Thompson, M., Tillet, P., Tootoonchian,
A., Tseng, E., Tuggle, P., Turley, N., Tworek, J., Uribe, J.
F. C., Vallone, A., Vijayvergiya, A., Voss, C., Wainwright,
C., Wang, J. J., Wang, A., Wang, B., Ward, J., Wei, J.,
Weinmann, C., Welihinda, A., Welinder, P., Weng, J.,
Weng, L., Wiethoff, M., Willner, D., Winter, C., Wolrich,
S., Wong, H., Workman, L., Wu, S., Wu, J., Wu, M.,
Xiao, K., Xu, T., Yoo, S., Yu, K., Yuan, Q., Zaremba,
W., Zellers, R., Zhang, C., Zhang, M., Zhao, S., Zheng,
T., Zhuang, J., Zhuk, W., and Zoph, B. GPT-4 technical
report, 2023.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Patel, R. and Pavlick, E. Mapping language models to
grounded conceptual spaces. In International Conference
on Learning Representations, 2022. URL https://
openreview.net/forum?id=gJcEM8sxHK.

Pattis, R. E. Karel the robot: a gentle introduction to the art
of programming. John Wiley & Sons, 1994.

Piech, C. and Roberts, E. Karel Reader: Python
version. https://compedu.stanford.edu/
karel-reader/docs/python/en/intro.
html, January 2019. Accessed May 8, 2023.

Plotkin, G. D. A structural approach to operational seman-
tics. Aarhus University, Report DAIMI FN-19, 1981.

Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat,
I., Tan, X. E., Adi, Y., Liu, J., Remez, T., Rapin, J.,
Kozhevnikov, A., Evtimov, I., Bitton, J., Bhatt, M., Ferrer,
C. C., Grattafiori, A., Xiong, W., Défossez, A., Copet, J.,
Azhar, F., Touvron, H., Martin, L., Usunier, N., Scialom,
T., and Synnaeve, G. Code Llama: Open foundation
models for code, 2023.

Shi, X., Padhi, I., and Knight, K. Does string-based
neural MT learn source syntax? In Proceedings of
the 2016 Conference on Empirical Methods in Natural
Language Processing, pp. 1526–1534, Austin, Texas,
November 2016. Association for Computational Lin-
guistics. doi: 10.18653/v1/D16-1159. URL https:
//aclanthology.org/D16-1159.

Shin, E. C., Polosukhin, I., and Song, D. Improving neural
program synthesis with inferred execution traces. Ad-
vances in Neural Information Processing Systems, 31,
2018.

Sorva, J. Notional machines and introductory programming
education. ACM Trans. Comput. Educ., 13(2), jul 2013.
doi: 10.1145/2483710.2483713. URL https://doi.
org/10.1145/2483710.2483713.

Sun, S.-H., Noh, H., Somasundaram, S., and Lim, J. Neural
program synthesis from diverse demonstration videos.
In International Conference on Machine Learning, pp.
4790–4799. PMLR, 2018.

Toshniwal, S., Wiseman, S., Livescu, K., and Gimpel, K.
Chess as a testbed for language model state tracking. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 11385–11393, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Winskel, G. The formal semantics of programming lan-
guages: an introduction. MIT press, 1993.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45, Online,
October 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-demos.6. URL https:
//aclanthology.org/2020.emnlp-demos.6.

14

https://openreview.net/forum?id=gJcEM8sxHK
https://openreview.net/forum?id=gJcEM8sxHK
https://compedu.stanford.edu/karel-reader/docs/python/en/intro.html
https://compedu.stanford.edu/karel-reader/docs/python/en/intro.html
https://compedu.stanford.edu/karel-reader/docs/python/en/intro.html
https://aclanthology.org/D16-1159
https://aclanthology.org/D16-1159
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2483710.2483713
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6

Meaning in Language Models Trained on Programs

Zan, D., Chen, B., Zhang, F., Lu, D., Wu, B., Guan, B.,
Yongji, W., and Lou, J.-G. Large language models meet
NL2Code: A survey. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 7443–7464, 2023.

15

Meaning in Language Models Trained on Programs

(a) Excess of original over adversarial semantic content using
different probing classifiers.

(b) Excess of original over adversarial semantic content for current
and future abstract states (1-layer MLP) .

Figure 9: Excess of original over adversarial semantic content.

A. Experimental details
A.1. Karel grammar specification

We use the same grammar as Devlin et al. (2017), except with loops and conditionals removed.

Prog p := def run():s

Stmt s := s1; s2 | a
Action a := move() | turnRight() | turnLeft() | pickMarker() | putMarker()

A.2. Language model and probe details

We train the 350M-parameter variant of the CodeGen architecture (Nijkamp et al., 2023) from the HuggingFace Transformers
library (Wolf et al., 2020), implemented in PyTorch (Paszke et al., 2019). We use the Adam optimizer, a learning rate of
5e-5, a block size of 2048, and a batch size of 32768 tokens. We train for 2.5 billion tokens, which was close to 6 passes
over our training corpus; we did not observe any instabilities with training (see the results in the main text). We use a warm
up over roughly the first 3000 batches, then linearly decay the learning rate to 0 after 80000 batches (training runs over
76000 batches). On a single NVIDIA A100 GPU with 80GB of VRAM, training takes around 8 days.

The linear probe consists of a single linear layer. The MLP probes consist of stacked linear, batch norm, and ReLU layers,
in that order. The first linear layer in both MLP probes projects to a hidden dimension of 256, and the second linear layer
(in the 2-layer MLP) projects to a hidden dimension of 1024. Probes are trained on the first 100000 aligned traces in the
training trace dataset. All probes are trained using the same recipe, which was tuned to saturate (or nearly saturate) their
performance: we use the AdamW optimizer with weight decay of 1e-4 and a learning rate of 0.01 that decays by .1 at 75%
and 90% of the way through training; and train for 10000000 steps using a batch size of 1024.

B. Additional experimental results
B.1. Plots for adversarial semantics

Figures 9a and 9b provide plots for the adversarial semantics that are analogous to those provided in the main text for
the flip semantics (specifically Figures 7 and 8, respectively). We observe that, in contrast to the flip semantics (which
achieve close to zero excess semantic content in the babbling phase), the excess of the original over adversarial semantics
exhibit significant noise during the babbling phase of the LM training, which is often negative; we attribute this to weaker
relationship between the adversarial and original semantics conjectured in Section 4: certain distributions of programs may
be easier for the adversarial vs. original semantics, and vice versa. We also note that the excess semantic content is largely
constant across the current and future states in Figure 9b, particularly in the final phases of training, which is consistent with

16

Meaning in Language Models Trained on Programs

Figure 10: The average length of generated programs over time generated from specifications sampled according to the
training distribution and compared with the corresponding reference programs.

the probe learning the same map from the original abstract state to the adversarial abstract state (and thus having roughly the
same absolute error rate, independent of how far into the future the abstract states are relative to the model state).

B.2. Generated programs become shorter than reference programs over training

Figure 10 plots the average length of programs generated by the LMs over specifications sampled from the training
distribution (i.e., where the reference programs are of length 6 to 10, inclusive). The results indicate that the LM learns to
generate programs which are, on average, shorter than the reference program length. While this can be partially explained
by the fact that we use greedy decoding to generate the outputs, we emphasize that the generated programs are also grow
increasingly correct over the second half of training, i.e., the quality of the LM’s generation continues to improve despite
diverging from the distribution of the training corpus.

These results complements our findings in the main text, which show that the LM tends to underfit the distribution of tokens
in the training data. Although prior work has explored the differences between an LM’s output and its training corpus based
on surface statistics (Meister & Cotterell, 2021; LeBrun et al., 2022), we are, to the best of our knowledge, the first to present
an account of how such syntactic divergence relate to the semantic properties of the LM generation and training data.

B.3. Semantic content of reference programs

This section explores a possible implication of the finding in Section 3 that representations contain predictions of future
program states. In particular, these future program states are defined by the tokens produced by greedy decoding, i.e., the
program is generated by taking the token that the LM models as most likely at each step in the autoregressive loop of
Equation (1). However, it has been observed in other settings that sampling from the tokens according to a distribution
derived from the logits of the LM head can improve the quality of the LM’s outputs, e.g., with multinomial or nucleus
sampling (Holtzman et al., 2020). However, if the LM states do in fact encode the future program states according to greedy
decoding, then any deviation could, in fact, force the LM states to visit “unanticipated” program states.

We perform a preliminary exploration of this hypothesis. Specifically, we measure the semantic content when decoding
from the LM according to the reference programs used to generate the specifications in our train and test datasets: we create
new reference trace datasets by replacing the greedy decoding step of Equation (2) with the tokens from the reference
programs, i.e.,

(stateLM)i = LM(input, output, {(stateLM)j}i−1
j=1) (8)

tokeni = progref[i] (9)
(stateprog)i = exec(tokeni, (stateprog)i−1) (10)

where progref is the reference program and progref[i] is the ith program token in the reference program. The idea is that,

17

Meaning in Language Models Trained on Programs

(a) Probing 2 states into the past. (b) Probing 1 state into the past. (c) Probing the current state.

(d) Probing 1 state into the future. (e) Probing 2 states into the future.

Figure 11: Plotting the difference in the semantic content when decoding according to the reference programs vs. greedy
decoding. A positive difference indicates that greedy decoding yields a higher semantic content.

because the LM is specifically trained to minimize its perplexity on the reference programs, we might expect the LM
representations to also be closely aligned with the semantics of the training corpus.

Figure 11 plots the results of this experiment. For the linear probe, extracting both past and future semantic states does
appear easier up until the beginning of the last phase of training. However, by the end of training, probing for the abstract
states from greedy decoding all exhibit higher semantic content than the reference programs, which suggests that the LM
representations are indeed better aligned with greedy decoding. We also observe that the difference is particularly large
for the present and future semantic states. This can be explained by the fact that the future program states are essentially a
random process (due to the program itself being generated according to a random sampling procedure), and hence, there is a
fundamental limit to how informative the LM’s representation can be. Note that even the “current” abstract state is a random
process, as the the current abstract state also results from a token that the LM has yet to see: the probe’s task for the current
abstract state is to predict (stateprog)i from (stateLM)i in Equation (8).

Finally, we note that the difference (between the semantic contents with respect to the reference programs vs. generated
programs) grows as the LM’s generative accuracy improves; we conjecture that the LM’s preference for greedy decoding
may increase as it becomes better calibrated to the training data as a general principle. We leave a more detailed exploration
of how different decoding strategies affect the coherence of the LM’s internal state to future work.

B.4. Semantics are inferred, not retrieved

In this section, we evaluate the retrieval hypothesis: the semantic content can be attributed entirely to the LM recalling
previously seen training data. Similar to the syntactic record hypothesis, this hypothesis offers another potential explanation
for the results in Section 3 which is consistent with MH. For instance, if we test the LM on (A) “turnRight, move,
turnLeft” and the LM was trained on (B) “turnRight, move”, then the LM may have seen the second entry in the
trace of (A) as the output of (B).

We design our experimental setting specifically to test this hypothesis: as the training corpus contains only programs of
length 6 or greater, while the test set contains programs of length 1 to 10, it is impossible for the LM to “retrieve” program
states corresponding to the first 5 entries in any trace. Hence, we argue that any representations of unseen program states

18

Meaning in Language Models Trained on Programs

Table 3: The semantic content at the end of training, separated by the depth of the program state and the 3 features in
the abstract state. The LM only observes program states at depth 6 or greater in the training corpus. We display depths
consisting of at least 1% of the training set.

depth linear MLP-1 MLP-2
direction position obstacle direction position obstacle direction position obstacle

un
se

en

1 46.7 85.0 73.7 76.7 92.9 78.6 89.1 93.3 79.5
2 47.9 71.3 73.0 76.4 85.2 77.7 87.3 85.7 78.2
3 49.8 64.0 73.5 76.7 80.1 78.2 86.8 80.3 78.5
4 50.5 61.4 74.8 78.8 76.9 79.1 87.3 77.3 79.4
5 51.5 60.1 76.0 79.7 74.9 80.2 87.1 74.9 80.4

se
en

6 59.9 60.9 74.6 82.1 73.7 79.9 87.6 73.6 80.5
7 59.2 58.8 74.3 79.1 68.6 79.3 84.3 68.2 79.3
8 51.7 57.1 76.0 69.8 62.2 79.9 75.0 62.9 80.2

(a) Probing with a linear classifier. (b) Probing with a 1-layer MLP. (c) Probing with a 2-layer MLP.

(d) Probing with a linear classifier, excess
over flip semantics.

(e) Probing with a 1-layer MLP, excess
over flip semantics.

(f) Probing with a 2-layer MLP, excess
over flip semantics.

(g) Probing with linear classifier, excess
over adversarial semantics.

(h) Probing with a 1-layer MLP, excess
over adversarial semantics.

(i) Probing with a 2-layer MLP, excess
over adversarial semantics.

Figure 12: Plotting the semantic content separated by depth over time. Note that the excess over the two alternative semantics
starts at zero during the middle phase of training, then becomes significantly positive around the final phase for all depths,
including those corresponding to unseen programs.

19

Meaning in Language Models Trained on Programs

must be inferred by the LM according to the semantics of the programming language.

Table 3 displays the accuracy of the probes at the end of training; as the probe achieves non-trivial accuracy when tracing
unseen programs (of length 5 or less), we argue that the observed semantic content cannot be fully attributed to a retrieval-like
process, and instead requires the LM to perform some degree of generalization over the semantics. We also remark that
Appendix B.3 offers another piece of evidence in support of this claim, as the semantic content is lower when using the
reference programs (whereas we would expect the ability of the LM to perform retrieval to increase when following the
training distribution more closely).

We make 2 additional observations. First, the effect of retrieval differs by feature, and appears more pronounced the “simpler”
the feature is to compute. For instance, with the direction feature, there is a local optimum in the accuracy of the linear
and 1-layer MLP probes at depth 6, which is indicative that some amount of retrieval is occurring in the representations of
the LM: as the direction of the robot depends only on the initial direction and program, the LM has likely seen the answer
previously in its training data. Conversely, the feature corresponding to the position of the robot decreases monotonically
with depth for all 3 probes (with a very small exception at depth 6 for the linear probe), which is consistent with execution
(deeper program states are harder to trace without a mistake due to compounding errors). Second, deeper probes exhibit
lower sensitivity to retrieval across all 3 features. As deeper probes can extract more complex representations, this suggests
that (1) the results of retrieval are represented more shallowly in the LM states, while (2) benefits of the shallow retrieval
representations are less important once the probe is able to extract the deeper semantic representations.

Figure 12 also plots, for all 3 probes and separated by depth across all training steps, (1) the semantic content for the original
semantics and (2) the excess semantic content with respect to the flip and adversarial semantics. The results show that the
excess over the flip and adversarial semantics begins around zero in the middle phase (for all depths), then becomes positive
by the end of training. This behavior is consistent with the results in the main text that suggest that the LM learns semantics
over the latter half of training. We also point out the excess semantic content for the flip semantics as shown in Figures 12d
to 12f increase as the depth increases from 1 to 5 (starting from close to 0 at depth 1), which we attribute to the high degree
of correlation between the flip and original semantics (which degrades as the program length increases); beyond depth 5,
the difference actually decreases, whereas we would expect the difference to be greater if the probe is simply relying on
representations of retrieved program states in the original semantics. To summarize, while we do find evidence that the LM
is performing some retrieval process, our results indicate that this process coexists with semantics in the representations of
the LM.

B.5. Interpreting programs without outputs

We conduct another series of experiments for explore whether the LM is capable of interpreting programs when only inputs
are provided in the specification, and the outputs in the specification are obscured. Specifically, for every reference program
and specification in the original trace datasets, we generate an input-only trace dataset according to the following loop (cf.
Equation (1)):

(stateLM)i = LM(input, empty, {(stateLM)j}i−1
j=1) (11)

tokeni = progref[i] (12)
(stateprog)i = exec(tokeni, (stateprog)i−1) (13)

where progref is the reference program and progref[i] is the ith program token in the reference program; input = (stateprog)0
is the input state from the specification; and we replace every output in the specification with an empty Karel grid. In other
words, we force the LM to generate the reference program given only inputs and no outputs.

We emphasize that this task is firmly outside of the distribution of the training data, and there is no guarantee that the LM
states will even be coherent. Hence, any ability to interpret programs in this setting could be considered emergent behavior
on the part of the LM. Additionally, as the text still contains the necessary information for interpreting the program (as the
output is not necessary for this task), we also expect to find that probing for the alternative semantics yields accuracies that
are no higher than the original semantics.

Table 4 displays the results. As expected, the semantic content for the original abstract states is significantly degraded
(compared to Table 2), especially when probing into the future, which we attribute mainly to obscuring the outputs. We
also see that there the performance of the 3 probes is highly compressed when probing into the future, i.e., deeper probes
do not perform much better than shallow probes. This can be explained by the same reasoning as in Appendix B.3, i.e.,

20

Meaning in Language Models Trained on Programs

Table 4: The results of our input-only probing experiments. For each of the original, flip, and adversarial semantics, we
report the semantic content (SC) at the end of training for 2 abstract states into the past (-2, -1), the current state (0), and 2
abstract states into the future (+1, +2), using linear, 1-layer MLP, and 2-layer MLP probes. We also regress the SC against
the generative accuracy over the second half of training (R2(p)). For each of the alternative semantics, we additionally
compute the difference with respect to the original semantics (∆) and regress the difference against the generative accuracy
over the second half of training as (R2(p) of ∆). Highlighted cells are statistically significant at a level of p < 0.05 with an
R2 of at least 50%; all such correlations are positive.

original flip adversarial
SC R2(p) SC R2(p) ∆ R2(p) of ∆ SC R2(p) ∆ R2(p) of ∆

lin
ea

r

-2 57.7 89.6 (<.001) 57.5 88.2 (<.001) 0.3 55.8 (0.021) 50.5 68.6 (0.006) 7.2 92.9 (<.001)
-1 60.5 83.8 (<.001) 59.8 80.4 (0.001) 0.7 84.1 (<.001) 51.5 55.5 (0.021) 9.1 87.4 (<.001)
0 54.6 85.9 (<.001) 54.2 82.7 (<.001) 0.4 92.9 (<.001) 47.6 6.3 (0.514) 7.0 86.7 (<.001)
1 52.4 81.1 (<.001) 52.2 80.7 (0.001) 0.2 75.7 (0.002) 47.5 79.0 (0.001) 4.9 84.8 (<.001)
2 51.7 70.3 (0.005) 51.6 69.1 (0.006) 0.1 62.1 (0.012) 47.6 12.0 (0.362) 4.1 74.8 (0.003)

M
L

P-
1

-2 77.3 81.2 (<.001) 77.2 81.8 (<.001) 0.0 0.8 (0.824) 62.6 54.7 (0.023) 14.7 89.8 (<.001)
-1 79.8 81.7 (<.001) 79.5 80.4 (0.001) 0.3 38.3 (0.076) 64.7 56.1 (0.020) 15.1 88.4 (<.001)
0 62.3 82.4 (<.001) 62.3 81.4 (<.001) 0.1 5.1 (0.558) 50.2 70.6 (0.005) 12.2 83.6 (<.001)
1 55.3 80.8 (<.001) 55.3 80.1 (0.001) 0.0 22.8 (0.194) 49.1 39.3 (0.071) 6.2 85.7 (<.001)
2 52.9 70.7 (0.005) 52.7 73.0 (0.003) 0.1 0.0 (0.974) 48.5 55.7 (0.021) 4.4 76.3 (0.002)

M
L

P-
2

-2 81.6 68.5 (0.006) 81.7 69.5 (0.005) -0.1 2.1 (0.710) 76.1 43.1 (0.055) 5.5 48.3 (0.038)
-1 82.5 70.1 (0.005) 82.4 70.5 (0.005) 0.1 18.7 (0.245) 77.7 52.3 (0.028) 4.8 84.8 (<.001)
0 63.8 67.6 (0.006) 63.7 69.6 (0.005) 0.2 28.3 (0.140) 51.3 59.2 (0.015) 12.5 69.0 (0.006)
1 56.7 76.1 (0.002) 56.8 69.1 (0.005) -0.1 0.4 (0.872) 49.3 47.8 (0.039) 7.4 80.5 (0.001)
2 53.9 59.4 (0.015) 53.7 59.7 (0.015) 0.2 4.6 (0.580) 48.8 49.4 (0.035) 5.1 60.8 (0.013)

21

Meaning in Language Models Trained on Programs

Table 5: The excess semantic content at the end of training when comparing the original and alternative semantics using a
linear probe on the input-only trace datasets. We separate the semantic content by the depth of the program state and the 3
features in the abstract state. The LM only observes program states at depth 6 or greater in the training corpus. We display
depths consisting of at least 1% of the training set. A positive value indicates that the original semantic content is greater
than the alternative semantic content.

depth flip adversarial
direction position obstacle all direction position obstacle all

un
se

en

1 -0.51 0.15 0.17 -0.11 9.30 1.19 1.63 4.86
2 0.36 0.31 0.50 0.40 25.35 3.58 0.97 14.08
3 1.53 0.39 0.65 0.96 20.97 4.25 -0.12 11.63
4 1.92 -0.14 0.17 0.83 20.09 4.80 -0.17 11.60
5 3.12 0.32 -0.00 1.49 16.07 4.52 -0.09 9.44

se
en

6 2.33 0.55 0.00 1.25 12.66 5.78 0.40 8.34
7 2.01 0.39 0.71 1.22 9.37 4.30 -0.04 6.17
8 1.46 -0.17 0.15 0.64 5.96 3.47 -0.33 4.17
9 1.04 -0.04 0.50 0.57 4.32 4.06 2.64 4.26

the present and future program states are subject to an inherent degree of randomness (recall that the probe’s task for the
“current” abstract state is to predict (stateprog)i from (stateLM)i in Equation (11)). Indeed, we note that the semantic content
is maximized at 1 abstract state into the past across all settings.

Nonetheless, our results suggest the LM still maintains the ability to interpret programs, even in this challenging setting;
moreover, the interventional baseline offers strong support that the representations of the LM are aligned with the original
semantics (rather than being learned by the probe). In particular, we see statistically significant correlations for all three
probes and all 5 abstract states when comparing the original semantic content against the adversarial semantic content. Note
that, even though predicting future states is difficult, the ability to predict future states is correlated with knowing the current
state, so that it is not surprisingly that the adversarial semantic content for future states would be lower, despite the lack of
information about future states.

We also observe a statistically significant positive correlation when regressing the excess of the original semantic content
over the flip semantic content over the second half of training, when using the linear probe, though this effect disappears as
we move to deeper probes. We emphasize that the flip semantics presents a very strong baseline as the semantics can often
be inferred directly from the result of the original semantics (i.e., by reflecting the robot across an axis).

Could these results could be due to retrieval? To test this hypothesis, we also reproduce the experiments from Appendix B.4
on the input-only trace dataset. We focus on 1 abstract state into the past, as it is where the semantic content is maximized
across all settings; and the linear probe, as the original semantic content and excess over the alternative semantics are all
correlated with the generative accuracy to a statistically significant degree over the course of training. Table 5 displays the
excess semantic content of the original over the flip and adversarial semantics, respectively, using a linear probe on the
input-only trace datasets when probing for 1 abstract state into the past. We see that almost every semantic content of unseen
features (and overall abstract state) is greater when probing for the original semantics compared to the alternative semantics,
confirming that the observed difference in semantic content cannot be entirely attributed to the LM performing retrieval.
We thus conclude that the LM is able to abstractly interpret programs even without seeing the final outputs of the program,
which is emergent behavior on out-of-distribution text. For completeness, Figure 13 plots results over the entire LM training.

B.6. Selected regression and residual plots

Figures 14 and 15 display selected regression and residual plots from Tables 2 and 4, respectively. Specifically, we provide
the regression and residual plots corresponding to the semantic content of the current state as measured by a linear classifier.
In all cases (including those omitted for brevity and not explicitly shown in the figures), the residual plots confirm a linear
relationship between the semantic content and generative accuracy.

22

Meaning in Language Models Trained on Programs

(a) Probing with a linear classifier. (b) Probing with a 1-layer MLP. (c) Probing with a 2-layer MLP.

(d) Probing with a linear classifier, excess
over flip semantics.

(e) Probing with a 1-layer MLP, excess
over flip semantics.

(f) Probing with a 2-layer MLP, excess
over flip semantics.

(g) Probing with linear classifier, excess
over adversarial semantics.

(h) Probing with a 1-layer MLP, excess
over adversarial semantics.

(i) Probing with a 2-layer MLP, excess
over adversarial semantics.

Figure 13: The semantic content on the input-only trace datasets, separated by depth over the full LM training run. Note
that all plots show trends which, when aggregated over depth, exhibit a statistically significant linear correlation with the
generate accuracy, except for Figures 13e and 13f.

23

Meaning in Language Models Trained on Programs

(a) Regressing semantic content vs. generative accuracy. (b) Residuals for semantic content vs. generative accuracy.

(c) Regressing excess of original over flip semantic content vs.
generative accuracy.

(d) Residuals for excess of original over flip semantic content vs.
generative accuracy.

(e) Regressing excess of original over adversarial semantic content
vs. generative accuracy.

(f) Residuals for excess of original over adversarial semantic con-
tent vs. generative accuracy.

Figure 14: Regression and residual plots for semantic content (measured by a linear classifier) vs. generative accuracy over
the second half of training.

24

Meaning in Language Models Trained on Programs

(a) Regressing semantic content vs. generative accuracy. (b) Residuals for semantic content vs. generative accuracy.

(c) Regressing excess of original over flip semantic content vs.
generative accuracy.

(d) Residuals for excess of original over flip semantic content vs.
generative accuracy.

(e) Regressing excess of original over adversarial semantic content
vs. generative accuracy.

(f) Residuals for excess of original over adversarial semantic con-
tent vs. generative accuracy.

Figure 15: Regression and residual plots for semantic content (measured by a linear classifier on the input-only trace
datasets) vs. generative accuracy over the second half of training.

25

