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Abstract

Vector Symbolic Architectures (VSAs) are one approach to developing Neuro-
symbolic AI, where two vectors in Rd are ‘bound’ together to produce a new vector
in the same space. VSAs support the commutativity and associativity of this binding
operation, along with an inverse operation, allowing one to construct symbolic-
style manipulations over real-valued vectors. Most VSAs were developed before
deep learning and automatic differentiation became popular and instead focused
on efficacy in hand-designed systems. In this work, we introduce the Hadamard-
derived linear Binding (HLB), which is designed to have favorable computational
efficiency, and efficacy in classic VSA tasks, and perform well in differentiable
systems. Code is available at https://github.com/FutureComputing4AI/
Hadamard-derived-Linear-Binding.

1 Introduction

Vector Symbolic Architectures (VSAs) are a unique approach to performing symbolic style AI.
Such methods use a binding operation B : Rd ˆ Rd ÝÑ Rd, where Bpx, yq “ z denotes that two
concepts/vectors x and y are connected to each other. In VSA, any arbitrary concept is assigned to
vectors in Rd (usually randomly). For example, the sentence “the fat cat and happy dog” would be
represented as Bpfat , catq `Bphappy , dogq “ S. One can then ask, “what was happy” by unbinding
the vector for happy, which will return a noisy version of the vector bound to happy. The unbinding
operation is denoted B˚px, yq, and so applying B˚pS, happyq « dog .

Because VSAs are applied over vectors, they offer an attractive platform for neuro-symbolic methods
by having natural symbolic AI-style manipulations via differentiable operations. However, current
VSA methods have largely been derived for classical AI tasks or cognitive science-inspired work.
Many such VSAs have shown issues in numerical stability, computational complexity, or otherwise
lower-than-desired performance in the context of a differentiable system.

As noted in [39], most VSAs can be viewed as a linear operation where Bpa, bq “ aJGb and
B˚pa, bq “ aJFb, where G and F are d ˆ d matrices. Hypothetically, these matrices could be
learned via gradient descent, but would not necessarily maintain the neuro-symbolic properties of
VSAs without additional constraints. Still, the framework is useful as all popular VSAs we are
aware fit within this framework. By choosing G and F with specified structure, we can change the
computational complexity from Opd2q, down to Opdq for a diagonal matrix.

In this work, we derive a new VSA that has multiple desirable properties for both classical VSA
tasks, and in deep-learning applications. Our method will have only Opdq complexity for the binding
step, is numerically stable, and equals or improves upon previous VSAs on multiple recent deep
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learning applications. Our new VSA is derived from the Walsh Hadamard transform, and so we term
our method the Hadamard-derived linear Binding (HLB) as it will avoid the Opd log dq normally
associated with the Hadamard transform, and has better performance than more expensive VSA
alternatives.

Related work to our own will be reviewed in Appendix A, including our baseline VSAs and their
definitions. Our new HLB will be derived in section 2, showing it theoretically desirable properties.
section 3 will empirically evaluate HLB in classical VSA benchmark tasks, and in two recent deep
learning tasks, showing improved performance in each scenario. We then conclude in section 4.

2 Methodology

In this section we review the Hadamard transform, its properties, and how we derive our new HLB via
these properties. It follows a similar intuition to the original HRR [32], followed by a projection
step as suggested by [10]. However, by choosing the Hadamard transform, we obtain a closed-form
solution that requires only linear operations, making HLB fast to apply in practice. Hadamard Hd is
a square matrix of size d ˆ d of orthogonal rows consisting of only `1s and ´1s given in Equation 1
where d “ 2n @ n P N : n ě 0.

H1 “ r1s H2 “

„

1 1
1 ´1

ȷ

¨ ¨ ¨ H2n “

„

H2n´1 H2n´1

H2n´1 ´H2n´1

ȷ

(1)

Vector symbolic architectures (VSA), such as Holographic Reduced Representations (HRR) employs
circular convolution to represent compositional structure which is computed using the Fast Fourier
Transform (FFT) [32]. However, it can be numerically unstable due to irrational multiplications of
complex numbers. Prior work [10] devised a projection step to mitigate the numerical instability of
the FFT and it’s inverse, but we instead ask if re-deriving the binding/unbinding operations may yield
better results if we use the favorable properties of the Hadamard transform as given in Lemma 2.1.

Lemma 2.1 (Hadamard Properties). Let H be the Hadamard matrix of size d ˆ d that holds the
following properties for x, y P Rd. First, HpHxq “ dx, and second Hpx ` yq “ Hx ` Hy.

The bound composition of two vectors into a single vector space is referred to as BINDING (B).
The knowledge retrieval from a bound representation is known as UNBINDING (B˚). We define
the binding function by replacing the Fourier transform in circular convolution with the Hadamard
transform given in Definition 2.1.

Definition 2.1 (Binding and Unbinding). The binding of vectors x, y P Rd in the Hadamard domain
is defined in Equation 2 where d is elementwise multiplication. The unbinding function is defined in
a similar fashion, i.e., B “ B˚.

Bpx, yq “
1

d
¨ HpHx d Hyq (2)

Composite representation in vector symbolic architectures is defined by the summation of the bound
vectors. We define a parameter ρ P N : ρ ě 1 that denotes the number of vector pairs bundled in a
composite representation. Given vectors xi, yi P Rd and @ i P N : 1 ď i ď ρ, we can define the
composite representation χ as

χ
ρ“1

“ Bpx1, y1q χ
ρ“2

“ Bpx1, y1q ` Bpx2, y2q ¨ ¨ ¨ χρ “

ρ
ÿ

i“1

Bpxi, yiq (3)

Next, we require the unbinding operation, which is defined via an inverse function in the following
theorem. This will give a symbolic form of our unbinding step that retrieves the original component
x being searched for, as well as a necessary noise component η˝, which must exist whenever ρ ě 2
items are bound together without expanding the dimension d.

Theorem 2.1 (Inverse Theorem). Given the identity function Hx ¨ Hx: “ 1 where x: is the inverse

of x in the Hadamard domain, then B˚pBpx1, y1q ` ¨ ¨ ¨ `Bpxρ, yρq, y:

i q “

"

xi if ρ “ 1

xi ` η˝
i else ρ ą 1

where xi, yi P Rd and η˝
i is the noise component.
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Proof of Theorem 2.1. We start from the identity function Hx ¨Hx: “ 1 and thus Hx: “ 1
Hx . Now

using Equation 2 we get,

B˚pBpx1, y1q ` ¨ ¨ ¨ ` Bpxρ, yρq, y:

i q “
1

d
¨ HppHx1 d Hy1 ` ¨ ¨ ¨ ` Hxρ d Hyρq d

1

Hyi
q

“
1

d
¨ HpHxi `

1

Hyi
d

ρ
ÿ

j“1
j‰i

pHxj d Hyjqq “ xi `
1

d
¨ Hp

1

Hyi
d

ρ
ÿ

j“1
j‰i

pHxj d Hyjqq Lemma 2.1

“

"

xi if ρ “ 1

xi ` η˝
i else ρ ą 1

To reduce the noise component and improve retrieval accuracy, [10, 32] proposes a projection step
to the input vectors by normalizing them by the absolute value in the Fourier domain. While such
identical normalization is not useful in the Hadamard domain since it will only transform the elements
to `1s and ´1s, we will define a projection step with only the Hadamard transformation without
normalization given in Definition 2.2.
Definition 2.2 (Projection). The projection function of x is defined by πpxq “ 1

d ¨ Hx.

If we apply the Definition 2.2 to the inputs in Theorem 2.1 then we get

B˚pBpπpx1q, πpy1qq ` ¨ ¨ ¨ ` Bpπpxρq, πpyρqq, πpyiq
:q “ B˚p

1

d
¨ Hpx1 d y1 ` ¨ ¨ ¨xρ d yρq,

1

yi
q

“
1

d
¨ Hp

1

yi
d px1 d y1 ` ¨ ¨ ¨xρ d yρqq

(4)

The retrieved value is projected onto the Hadamard domain, and to recover the original data we apply
the reverse projection. Since the Hadamard matrix is its own inverse, in the reverse projection step
we just apply the Hadamard transformation again which derives the output to

Hp
1

d
¨ Hp

1

yi
d px1 d y1 ` ¨ ¨ ¨xρ d yρqqq “

1

yi
d px1 d y1 ` ¨ ¨ ¨ ` xρ d yρq

“

$

&

%

xi if ρ “ 1

xi `
ρ
ř

j“1, j‰i

xjyj

yi
else ρ ą 1

“

"

xi if ρ “ 1

xi ` ηπi else ρ ą 1

(5)

where ηπi is the noise component due to the projection step. In expectation, ηπi ă η˝
i (see Appendix C).

Thus, the projection step diminishes the accumulated noise. More interestingly, the retrieved output
term does not contain any Hadamard matrix. Therefore, we can recast the initial binding definition
by multiplying the query vector yi to the output of Equation 5, i.e, the binding function becomes
B1px, yq “ x d y. ρ bundle of the vector pairs is χ1

ρ “
řρ

i“1pxi d yiq and the unbinding would be
B˚1

px, yq “ x d 1
y .

2.1 Initialization of HLB

For binding and unbinding operations to work, vectors need an expected value of zero. However,
dividing the bound vector by the query during unbinding can cause instability if values are too close
to zero. Thus, we define a Mixture of Normal Distribution (MiND) with a zero expected value but
a non-zero absolute mean, as given in Equation 6, where U is the Uniform distribution. Half the
elements are sampled from a normal distribution with mean ´µ, and the other half from a distribution
with mean µ, yielding a vector with a zero mean and absolute mean of µ. The properties of the
vectors sampled from a MiND distribution are given in Properties 2.1.

Ωpµ, 1{dq “

"

N p´µ, 1{dq if Up0, 1q ą 0.5

N p µ, 1{dq else Up0, 1q ď 0.5
(6)

Properties 2.1 (Initialization Properties). Let x P Rd sampled from Ωpµ, 1{dq holds the following
properties. Erxs “ 0, Er|x|s “ µ, and }x}2 “

a

µ2d
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2.2 Similarity Augmentation

In VSAs, it is common to measure the similarity with an extracted embedding x̂ with some other
vector x using the cosine similarity. For our HLB, we devise a correction term leveraging Theorem 2.2.

Theorem 2.2 (ϕ – ρ Relationship). Given xi, yi „ Ωpµ, 1{dq @ i P N : 1 ď i ď ρ, the cosine
similarity ϕ between the original xi and retrieved vector x̂i is approximately equal to the inverse
square root of the number of vector pairs in a composite representation ρ given by ϕ « 1?

ρ .

The proof of the theorem is provided in Appendix B. The experimental result of the ϕ´ρ relationship
closely follows the theoretical expectation provided in Appendix E which also indicates that the
approximation is valid. We know from Theorem 2.2 that the similarity score ϕ drops by the inverse
square root of the number of vector pairs in a composite representation ρ. Therefore, in places where
ρ is known or can be estimated from

›

›χρ

›

›

2
« µ2

?
ρ ¨ d (proof in Appendix D), it can be used to

update the cosine similarity multiplying the scores by
?
ρ. Equation 7 shows the updated similarity

score where in a positive case p`q, ϕ would be close to 1{
?
ρ and in a negative case p´q, ϕ would be

close to zero.

ϕ1 “ ϕ ˆ
?
ρ ϕ1

p`q “ ϕÑ 1?
ρ

ˆ
?
ρ « 1 ϕ1

p´q “ ϕÑ0 ˆ
?
ρ « 0 (7)

3 Empirical Results

3.1 Classical VSA Tasks

A common VSA task is, given a bundle (addition) of ρ pairs of bound vectors s “
řρ

i“1 Bpxi,yiq,
given a query xq P s, can the corresponding vector yq be correctly retrieved from the bundle. To
test this, we perform an experiment similar to one in [37]. We first create a pool P of N “ 1000
random vectors, then sample (with replacement) p pairs of vectors for p P t1, 2, ¨ ¨ ¨ , 25u. The pairs
are bound together and added to create a composite representation s. Then, we iterate through all left
pairs xq in the composite representation and attempt to retrieve the corresponding yq,@q P r1, ps. A
retrieval is considered correct if B˚ps,xqqJyq ą B˚ps,xqqJyj ,@j ‰ q. The total accuracy score
for the bundle is recorded, and the experiment is repeated for 50 trials. Experiments are performed to
compare HRR [32], VTB [13], MAP [11], and our HLB VSAs. For each VSA, the area under the
curve (AUC) of the accuracy vs. the number of bound terms plot is computed, and the results are
shown in Figure 5. In general, HLB has comparable performance to HRR and VTB, and performs
better than MAP.

The scenario we just considered looked at bindings of only two items together, summed of many
pairs of bindings. [13] proposed addition evaluations over sequential bindings that we now consider.
In the random case we have an initial vector b0, and for p rounds, we will modify it by a random
vector xt such that bt`1 “ Bpbt,xtq, after which we unbind each xt to see how well the previous bt
is recovered. In the auto binding case, we use a single random vector x for all p rounds. Figure 6
shows that HLB maintains a stable magnitude regardless of the number of bound vectors in both
cases. This property arises due to the properties of the distribution shown in Properties 2.1. As all
components have an expected absolute value of 1, the product of all components also has an expected
absolute value of 1. Thus, the norm of the binding is simply

?
d. Combined with Figure 1 that shows

the scores are near-zero when an item is not present, HLB has significant advantages in consistency
for designing VSA solutions.

3.2 Deep Learning with Hadamard-derived Linear Binding

Two recent methods that integrate HRR with deep learning are tested to further validate our approach.
The details of each method are provided in Appendix G and Appendix H. In each case, we run all
four VSAs and see that HLB either matches or exceeds the performance of other VSAs. In every
experiment, the standard method of sampling vectors from each VSA is followed as outlined in
Table 3. All the experiments are performed on a single NVIDIA TESLA PH402 GPU with 32GB
memory.
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3.2.1 Connectionist Symbolic Pseudo Secrets

Connectionist Symbolic Pseudo Secrets (CSPS) [3] is a pseudo-encryption method used to deploy
convolutional networks on untrusted platforms by binding secrets to the inputs. More details are
available in Appendix G. Experiments are performed with 5 datasets: MNIST, SVHN, CIFAR-10
(CR10), CIFAR-100 (CR100), and Mini-ImageNet (MIN). First, we look at the accuracy of each
method, which is lower due to the noise of the random vector s added at test time since no secret
VSA is ever reused. The results are shown in Table 1, where HLB outperforms all prior methods
significantly. Notably, the MAP VSA is second best despite being one of the older VSAs, indicating
its similarity to HLB in using a simple binding procedure, and thus simple gradient may be an
important factor in this scenario.

Table 1: Accuracy comparison of the proposed HLB with HRR, VTB, MAP-C, and MAP-B in CSPS.
The dimensions of the inputs along with the no. of classes are listed in the Dims/Labels column. The
last row shows the geometric mean of the results.

DATASET
DIMS/

LABELS
CSPS + HRR CSPS + VTB CSPS + MAP-C CSPS + MAP-B CSPS + HLB

Top@1 Top@5 Top@1 Top@5 Top@1 Top@5 Top@1 Top@5 Top@1 Top@5

MNIST 282{10 98.51 – 98.44 – 98.46 – 98.40 – 98.73 –
SVHN 322{10 88.44 – 19.59 – 79.95 – 92.43 – 94.53 –
CR10 322{10 78.21 – 74.22 – 76.69 – 82.83 – 83.81 –
CR100 322{100 48.84 75.82 35.87 61.79 56.77 81.52 57.76 84.63 58.82 87.50
MIN 842{100 40.99 66.99 45.81 73.52 52.22 78.63 57.91 82.81 59.48 83.35

GM 67.14 71.26 47.24 67.40 70.89 80.06 75.90 83.72 77.17 85.40

However, improved accuracy is not useful in this scenario if more information is leaked. The test in
this scenario, as proposed by [3], is to calculate the Adjusted Rand Index (ARI) after attempting to
cluster the inputs x and the outputs ŷ, which are available/visible to the snooping third-party. To be
successful, the Adjusted Rand Index (ARI) must be near zero (indicating random label assignment)
for both inputs and outputs. We use K-means, Gaussian Mixture Model (GMM), Birch [45], and
HDBSCAN [8] as the clustering algorithms and specify the true number of classes to each method to
maximize attacker success (information they would not know). The results can be found in Table 4,
where the top rows indicate the clustering of the input Bpx, sq, and the bottom rows the clustering
of the output ŷ. All the numbers are percentages p%q, showing all methods do a good job at hiding
information from the adversary (except on the MNIST dataset, which is routinely degenerate).

3.2.2 Xtreme Multi-Label Classification

Extreme Multi-label (XML) classification is a challenging task due to the large output space, which
can be in the range of hundreds of thousands, contributing to the bulk of the size of a neural network.
While many prior works focus on innovative strategies to cluster/make hierarchies/compress the
penultimate layer [20, 21, 31, 19, 44, 23], a neuro-symbolic approach was proposed by [10]. Given
K total possible classes, they assigned each class a vector ck to be each class’s representation,
and the set of all classes a “

řK
k“1 ck. More details about the XML methodology is provided in

Appendix H. The details and network sizes of [10] are followed, except we replace the original VSA
with our four candidates. The network is trained on 8 datasets listed in Table 2 from [5] and evaluated
using normalized discounted cumulative gain (nDCG) and propensity-scored (PS) based normalized
discounted cumulative gain (PSnDCG) as suggested by [20].

The classification result in terms of nDCG and PSnDCG in all the eight datasets is presented in
Table 2 where the top four datasets are comparatively easy with maximum no. of features of 5000
and no. of labels of 4000. The bottom four datasets are comparatively hard with the no. of features
and labels on the scale of 100K. The proposed HLB has attained the best results in all the datasets
on both metrics. In contrast to the prior CSPS results, here we see that the performance differences
between HRR, VTB, and MAP are more varied, with no clear “second-place” performer.
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Table 2: XML classification results in dense label representation with HRR, VTB, MAP, and HLB in
terms of nDCG and PSnDCG. The proposed HLB has attained the best nDCG and PSnDCG scores
on all the datasets setting a new SOTA.

DATASET BIBTEX DELICIOUS MEDIAMILL EURLEX-4K

METRICS nDCG PSnDCG nDCG PSnDCG nDCG PSnDCG nDCG PSnDCG
HRR 60.296 45.572 66.454 30.016 83.885 63.684 77.225 30.684
VTB 57.693 45.219 63.325 31.449 87.232 66.948 76.964 31.180
MAP-C 59.280 46.092 65.376 31.943 87.255 66.886 72.439 26.752
MAP-B 59.412 46.340 65.431 32.122 86.886 66.562 71.128 26.340
HLB 61.741 48.639 67.821 32.797 88.064 67.525 77.868 31.526

DATASET EURLEX-4.3K WIKI10-31K AMAZON-13K DELICIOUS-200K

METRICS nDCG PSnDCG nDCG PSnDCG nDCG PSnDCG nDCG PSnDCG
HRR 84.497 38.545 81.068 9.185 93.258 49.642 44.933 6.839
VTB 84.663 38.540 78.025 9.645 92.373 49.463 44.092 6.664
MAP-C 85.472 39.233 80.203 10.027 92.013 48.686 45.373 6.862
MAP-B 85.023 38.820 80.238 10.035 92.307 48.812 45.459 6.870
HLB 88.204 43.622 83.589 11.869 93.672 50.270 46.331 6.952

4 Conclusion

In this paper, a novel linear vector symbolic architecture named HLB is presented derived from
Hadamard transform. Along with an initialization condition named MiND distribution is proposed for
which we proved the cosine similarity ϕ is approximately equal to the inverse square root of the no.
of bundled vector pairs ρ which matches with the experimental results. The proposed HLB showed
superior performance in classical VSA tasks and deep learning compared to other VSAs such as
HRR, VTB, and MAP. In learning tasks, HLB is applied to CSPS and XML classification tasks. In
both of the tasks, HLB has achieved the best results in terms of respective metrics in all the datasets
showing a diverse potential of HLB in Neuro-symbolic AI.
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A Related Work

Smolensky [38] started the VSA approach with the Tensor Product Representation (TPR), where d
dimensional vectors (each representing some concept) were bound by computing an outer product.
Showing distributivity (Bpx,y ` zq “ Bpx,yq ` Bpx, zq) and associativity, this allowed specifying
logical statements/structures [14]. However, for ρ total items to be bound together, it was impractical
due to the Opdρq complexity. [36, 26, 25] have surveyed many of the VSAs available today, but
our work will focus on three specific alternatives, as outlined in Table 3. The Vector-Derived
Transformation Binding (VTB) will be a primary comparison because it is one of the most recently
developed VSAs, which has shown improvements in what we will call “classic” tasks, where
the VSA’s symbolic like properties are used to manually construct a series of binding/unbinding
operations that accomplish a desired task. Note, that the VTB is unique in it is non-symmetric
(Bpx,yq ‰ Bpy,xq). Ours, and most others, are symmetric.

Table 3: The binding and initialization mechanisms for our new HLB with baseline methods. HLB is
related to the HRR in being derived via a similar approach, but replacing the Fourier transform Fp¨q

with the Hadamard transform (which simplifies out). The MAP is most similar to our approach in
mechanics, but the difference in derived unbinding steps leads to dramatically different performance.
The VTB is the most recently developed VSA in modern use. The matrix Vy of VTB is a block-
diagonal matrix composed from the values of the y vector, which we refer the reader to [13] for
details. The TorchHD library [16] is used for implementations of prior methods.

METHOD BIND Bpx, yq UNBIND B˚px, yq INIT x

HRR F´1pFpxq d Fpyqq F´1pFpxq c Fpyqq xi „ N p0, 1{dq

VTB Vyx V J
y x x̃i „ N p0, 1q Ñ x “ x̃{}x̃}2

MAP-C x d y x d y xi „ Up´1, 1q

MAP-B x d y x d y xi „ t´1, 1u

HLB x d y x c y xu „ tN p´µ, 1{dq, N pµ, 1{dqu

Next is the Holographic Reduced Representation (HRR) [32], which can be defined via the Fourier
transform Fp¨q. One derives the inverse operation of the HRR by defining the one vector 1⃗ as the
identity vector and then solving Fpa˚qiFpaqi “ 1. We will use a similar approach to deriving
HLB but replacing the Fourier Transform with the Hadamard transform, making the HRR a key
baseline. Last, the Multiply Add Permute (MAP) [11] is derived by taking only the diagonal of
the tensor product from [38]’s TPR. This results in a surprisingly simple representation of using
element-wise multiplication for both binding/unbinding, making it a key baseline. The MAP binding
is also notable for its continuous (MAP-C) and binary (MAP-B) forms, which will help elucidate the
importance of the difference in our unbinding step compared to the initialization avoiding values near
zero. HLB differs in devising for the unbinding step, and we will later show an additional corrective
term that HLB employs for ρ different items bound together, that dramatically improve performance.

Our motivation for using the Hadamard Transform comes from its parallels to the Fourier Transform
(FT) used to derive the HRR and the HRR’s relatively high performance. The Hadamard matrix has
a simple recursive structure, making analysis tractable, and its transpose is its own inverse, which
simplifies the design of the inverse function B˚. Like the FT, WHT can be computed in log-linear
time, though in our case, the derivation results in linear complexity as an added benefit. The WHT is
already associative and distributive, making less work to obtain the desired properties. Finally, the
WHT involves only t´1, 1u values, avoiding numerical instability that can occur with the HRR/FT.
This work shows that these motivations are well founded, as they result in a binding with comparable
or improved performance in our testing.

Our interest in VSAs comes from their utility in both classical symbolic tasks and as useful priors in
designing deep learning systems. In classic tasks VSAs are popular for designing power-efficient
systems from a finite set of operations [15, 24, 18, 30]. HRRs, in particular, have shown biologically
plausible models of human cognition [22, 6, 40, 7] and solving cognitive science tasks [9]. In deep
learning the TPR has inspired many prior works in natural language processing [34, 17, 35]. To wit,
The HRR operation has seen the most use in differentiable systems [43, 41, 42, 27, 29, 33, 1, 2, 28]. To
study our method, we select two recent works that make heavy use of the neuro-symbolic capabilities
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of HRRs. First, an Extreme Multi-Label (XML) task that uses HRRs to represent an output space of
tens to hundreds of thousands of classes C in a smaller dimension d ă C [10], and an information
privacy task that uses the HRR binding as a kind of “encrypt/decrypt” mechanism for heuristic
security [4]. We will explain these methods in more detail in the experimental section.

B Similarity Augmentation Proof

Proof of Theorem 2.2. We start with the definition of cosine similarity and insert the value of x̂i. The
step-by-step breakdown is shown in Equation 8.

ϕ “

d
ř

xi ¨ x̂i

}xi}2 ¨ }x̂i}2
“

d
ř

xi ¨

˜

xi `
ρ
ř

j“1, j‰i

xjyj

yi

¸

}xi}2 ¨ }xi `
ρ
ř

j“1, j‰i

xjyj

yi
}2

“

d
ř

xi ¨ xi `
d
ř

xi ¨

˜

ρ
ř

j“1, j‰i

xjyj

yi

¸

}xi}2 ¨ }xi `
ρ
ř

j“1, j‰i

xjyj

yi
}2

(8)

Employing Properties 2.1 we can derive that }xi}2 “
a

ř

xi ¨ xi “
a

µ2d and }
xjyj

xi
} “

a

µ2d.

Thus, the square of the }xi `
ρ
ř

j“1, j‰i

xjyj

yi
}2 can be expressed as

“ }xi}
2
2 `

ρ
ÿ

j“1, j‰i

›

›

›

›

xjyj
yi

›

›

›

›

2

2

` 2 ¨

d
ÿ

xi

˜

ρ
ÿ

j“1, j‰i

xjyj
yi

¸

looooooooooooomooooooooooooon

α

`

d
ÿ

ρ´1
ÿ

j“1
j‰i

ρ´1
ÿ

l“1
l‰j

xjyj
yi

¨
xlyl
yi

loooooooooooomoooooooooooon

β

“ µ2d ` pρ ´ 1q ¨ µ2d ` 2α ` 2β “ ρ ¨ µ2d ` 2α ` 2β

(9)

Therefore, using Equation 8 and Equation 9 we can write that

Erϕs “
µ2d ` α

a

µ2d ¨
a

ρ ¨ µ2d ` 2α ` 2β
« 1 µ2d

a

µ2d ¨
a

ρ ¨ µ2d
“

µ2d
?
ρ ¨ µ2d

“
1

?
ρ
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Figure 1: Empirical comparison of the corrected cosine similarity scores between ϕ1
p`q

(on top) and
ϕ1

p´q
(on bottom) for varying n and ρ shown in heatmap. The dimension, i.e., d “ 2n is varied from

2 to 1024 pn P t1, 2, ¨ ¨ ¨ , 10uq and the number of vector pairs bundled is varied from 1 to 50. This
shows that we can accurately identify when a vector x has been bound to a VSA or not when we
keep track of how many pairs of terms ρ are included.

Empirical results of ϕ1 for varying n and ρ are visualized and verified by a heatmap. In a composite
representation χ1

ρ “
řρ

i“1pxi dyiq, when unbinding is applied using the query yi, i.e., B˚1
pχ1

ρ, yiq “

1Here, α and β are the noise terms and in expectation Erαs « 0 and Erβs « 0.

11



x̂i, a positive case is a similarity between xi and x̂i. On the contrary, similarity between x̂i and any
xj where j P t1, 2, ¨ ¨ ¨ , ρu and j ‰ i, is a negative case. Mean cosine similarity scores of 100 trials
for both positive and negative cases in presented in Figure 1 where the scores for the positive cases
are in the red p« 1q shades and the scores for the negative cases are in the blue p« 0q shades.

C Noise Decomposition

When a single vector pair is combined, one of the vector pairs can be exactly retrieved with the
help of the other component and the inverse function, recalling the retrieved output does not contain
any noise component for a single pair of vectors, i.e., ρ “ 1. However, when more than one vector
pairs are bundled, noise starts to accumulate. In this section, we will uncover the noise components
accumulated with and without the projection to the inputs and analyze their impact on expectation.
We first start with the noise component without the projection step η˝

i .

η˝
i “

1

d
¨ Hp

1

Hyi
d

ρ
ÿ

j“1
j‰i

pHxj d Hyjq (10)

Let, set the value of n to be 1 thus, d “ 2n “ 2 and the number of vector pairs ρ “ 2, i.e.,
χρ“2 “ Bpx1, y1q ` Bpx2, y2q. We want to retrieve x1 using the query y1, thereby, the expression of
η˝
i is uncovered step by step for ρ “ 2 shown in Equation 11.

η˝
i

ρ“2
“

1

d
¨ Hp

1

Hy1
d pHx2 d Hy2qq

“
1

d
¨

?
d ¨ H

˜ 1

y
p0q

1 `y
p1q

1
1

y
p0q

1 ´y
p1q

1

d
px

p0q

2 ` x
p1q

2 q ¨ py
p0q

2 ` y
p1q

2 q

px
p0q

2 ´ x
p1q

2 q ¨ py
p0q

2 ´ y
p1q

2 q

¸

“
1

d
¨ d ¨

¨

˚

˝

px
p0q

2 `x
p1q

2 q py
p0q

2 `y
p1q

2 q py
p0q

1 ´y
p1q

1 q ` px
p0q

2 ´x
p1q

2 q py
p0q

2 ´y
p1q

2 q py
p0q

1 `y
p1q

1 q

py
p0q

1 `y
p1q

1 q py
p0q

1 ´y
p1q

1 q

px
p0q

2 `x
p1q

2 q py
p0q

2 `y
p1q

2 q py
p0q

1 ´y
p1q

1 q ´ px
p0q

2 ´x
p1q

2 q py
p0q

2 ´y
p1q

2 q py
p0q

1 `y
p1q

1 q

py
p0q

1 `y
p1q

1 q py
p0q

1 ´y
p1q

1 q

˛

‹

‚

“

˜ φ1
śd

k“1pHy1qk
φ2

śd
k“1pHy1qk

¸

“
Ppx2, y2, y1q
śd

k“1pHy1qk

(11)

Here, φk @ k P N : 1 ď k ď d are the polynomials comprises of px2, y2q, and the query vector y1.
P is the vector of polynomials consisting of φk. From the noise expression, we can observe that the
numerator is a polynomial and the denominator is the product of all the elements of the Hadamard
transformation of the query vector. This is true for any value of n and ρ. Thus, in general, for any
query yi we can express η˝

i as shown in Equation 12.

η˝
i “

ρ

P
j“1, j‰i

pxj , yj , yiq

śd
k“1pHyiqk

(12)

The noise accumulated after applying the projection to the inputs is quite straightforward as given in
Equation 13.

ηπi “

ρ
ř

j“1, j‰i

pxj d yjq

yi
(13)
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Although the vectors xi, yi @ i P N : 1 ď i ď ρ are sampled from a MiND with an expected value of
0 given in Equation 6, the sample mean of xi or yi would be µ̂ « 0 but µ̂ ‰ 0. Both the numerator
of η˝

i and ηπi are the polynomials thus the expected value would be very close to 0. However, the
expected value of the denominator of η˝

i would be Er
śd

k“1pHyiqks “
śd

k“1 ErpHyiqks “ µ̂d

whereas the expected value of the denominator of ηπi is Eryis “ µ̂. Since, µ̂d ă µ̂, hence, in
expectation ηπi ă η˝

i . This is also verified by an empirical study where n, i.e., the dimension d “ 2n

is varied along with the no. of bound vector pairs ρ and the amount of absolute mean noise in retrieval
is estimated.

Figure 2 shows the heatmap visualization of the noise for both η˝
i and ηπi in natural log scale. The

amount of noise accumulated without any projection to the inputs is much higher compared to
the noise accumulation with the projection. For varying n and ρ, the maximum amount of noise
accumulated when projection is applied is 7.18 and without any projection, the maximum amount
of noise is 19.38. Also, most of the heatmap of ηπi remains in the blue region whereas as n and ρ
increase, the heatmap of η˝

i moves towards the red region. Therefore, it is evident that the projection
to the inputs diminishes the amount of accumulated noise with the retrieved output.
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Figure 2: Heatmap of the empirical comparison of the noise components η˝
i and ηπi for varying

n and ρ shown in natural logarithm scale. The dimension, i.e., d “ 2n is varied from 2 to 1024
pn P t1, 2, ¨ ¨ ¨ , 10uq and the number of vector pairs bundled is varied from 2 to 50.

D Norm Relation

Theorem D.1 (χρ – ρ Relationship). Given xi, yi „ Ωpµ, 1{dq P Rd @ i P N : 1 ď i ď ρ, the norm
of the composite representation χρ is proportional to

?
ρ and approximately equal to the µ2

?
ρ ¨ d.

Proof of Theorem D.1. Given χρ is the composite representation of the bound vectors, i.e., the
summation of ρ no. of individual bound terms. First, let’s compute the norm of the single bound term
as shown in Equation 14.

}Bpxi, yiq}2 “ }xi ¨ yi}2

“

b

px
p1q

i y
p1q

i q2 ` px
p2q

i y
p2q

i q2 ` ¨ ¨ ¨ ` px
pdq

i y
pdq

i q2

“
a

p˘µ2q2 ` p˘µ2q2 ` ¨ ¨ ¨ ` p˘µ2q2
”

Erxp1qs ¨ Eryp1qs “ ˘µ ¨ ˘µ “ ˘µ2
ı

“
a

µ4d
(14)
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Now, let’s expand and compute the square norm of the composite representation given in Equation 15.
›

›χρ

›

›

2

2
“

›

›Bpx1, y1q ` Bpx2, y2q ` ¨ ¨ ¨ ` Bpxρ, yρq
›

›

2

2

“ }Bpx1, y1q}
2
2 ` }Bpx2, y2q}

2
2 ` ¨ ¨ ¨ `

›

›Bpxρ, yρq
›

›

2

2
` ξ

where ξ is the rest of the terms of square expansion.

“ µ4d ` µ4d ` ¨ ¨ ¨ ` µ4d ` ξ

“ ρ ¨ µ4d ` ξ
›

›χρ

›

›

2
“

a

ρ ¨ µ4d ` ξ

«
a

ρ ¨ µ4d r ξ is the noise term and discarded to make an approximation s

“ µ2
a

ρ ¨ d

(15)

Thus, given the composite representation and the mean of the MiND distribution, we can estimate the
no. of bound terms bundled together by ρ «

›

›χρ

›

›

2

2
{µ4d.

Figure 3 shows the comparison between the theoretical relationship and actual experimental results
where the norm of the composite representation is computed for µ “ 0.5 and ρ “ t1, 2, ¨ ¨ ¨ , 200u.
The figure indicates that the theoretical relationship aligns with the experimental results. However, as
the no. of bundled pair increases, the variation in the norm increases. This is because of making the
approximation by discarding ξ in Equation 15.
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Figure 3: Comparison between the theoretical and experimental relationship of Theorem D.1. The
norm of the composite representation of the bound vectors is computed for no. of bundled vectors
from 1 to 200 of dimension d “ 1024. The figure shows how the experimental value of the norm
closely follows the theoretical relation between

›

›χρ

›

›

2
and ρ.

E Cosine Relation

Theorem 2.2 shows how the cosine similarity ϕ between the original xi and retrieved vector x̂i

is approximately equal to the inverse square root of the number of vector pairs in a composite
representation ρ. In this section, we will perform an empirical analysis of the theorem and compare
it with the theoretical results. For ρ “ t1, 2, ¨ ¨ ¨ , 50u, similarity score ϕ is calculated for vector
dimension d “ 512. Additionally, the theoretical cosine similarity score is also calculated using the
value of ϕ following the theorem. Figure 4 shows the comparison between the two results where the
experimental result closely follows the theoretical result. The figure also shows the standard deviation
for 100 trials indicating a minute change from the actual value.
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zoom portion shows how closely experimental results match with the theoretical conclusion.

F Classical VSA Results
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d. All the dimensions are chosen to be perfect squares due to the constraint of VTB.
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G CSPS Details and Results

Deploying deep learning networks on a remote third-party compute environment is quite common for
training and inference purposes due to the need of large computing demand. However, if the remote
third party is not trusted, a user may want to obfuscate the data and the model to prevent theft. Since
provable Homomorphic Encryption is too expensive [12], Connectionist Symbolic Pseudo Secrets
(CSPS) [3] was proposed a fast, heuristic, pseudo-encryption. It mimics a “one-time-pad” by taking
a random VSA vector s as the secret and binding it to the input x. The value Bps,xq obscures the
original x, and the third-party runs the bulk of the network on their platform. A result ỹ is returned,
and a small local network computes the final answer after unbinding with the secret B˚pỹ, sq. Other
than changing the VSA used, we follow the same training, testing, architecture size, and validation
procedure of [3].

Table 4: Clustering results of the main network inputs (top rows) and outputs (bottom rows) in terms
of Adjusted Rand Index (ARI). Because CSPS is trying to hide information, scores near zero are
better. Cell color corresponds to the cell absolute value, with blue indicating lower ARI and red
indicating higher ARI. All numbers in percentages, and show HLB is better at information hiding.

CLUSTERING
METHODS

HRR VTB

MNIST SVHN CR10 CR100 MIN MNIST SVHN CR10 CR100 MIN

K-MEANS ´0.02 ´0.01 0.18 0.54 0.42 ´0.00 ´0.01 ´0.01 0.02 0.00

0.0

0.2

0.4

0.6

0.8

1.0
GMM 0.01 0.00 0.09 0.61 0.44 4.67 1.37 ´0.01 0.02 0.01
BIRCH 0.20 0.00 0.14 0.45 0.35 0.02 0.03 0.04 0.08 0.03
HDBSCAN 0.00 ´0.24 1.23 0.01 0.02 0.00 0.00 0.00 0.00 0.00

K-MEANS 1.28 0.06 0.21 0.03 0.08 8.52 0.13 1.11 0.05 0.12
GMM 1.28 0.06 0.17 0.04 0.09 8.63 0.14 1.63 0.05 0.00
BIRCH 1.51 0.03 0.13 0.05 0.07 3.24 0.00 0.64 0.06 0.17
HDBSCAN 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00

CLUSTERING
METHODS

MAP HLB

MNIST SVHN CR10 CR100 MIN MNIST SVHN CR10 CR100 MIN

K-MEANS 0.17 0.01 0.01 0.00 0.00 0.09 0.00 0.00 0.00 0.00
GMM 3.39 ´0.01 0.01 0.00 0.00 2.53 0.00 0.00 0.00 0.00
BIRCH 0.84 ´0.00 0.00 0.01 0.00 0.83 0.00 0.00 0.01 0.00
HDBSCAN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

K-MEANS 15.91 0.09 0.00 0.03 0.01 13.67 ´0.04 0.01 0.02 ´0.00
GMM 42.43 0.11 0.00 0.03 0.00 14.96 ´0.04 0.01 0.02 0.00
BIRCH 7.09 ´0.07 ´0.02 0.01 ´0.00 18.44 ´0.07 0.00 0.01 0.02
HDBSCAN 0.48 0.00 0.00 0.00 0.00 7.60 0.01 0.00 0.00 0.00

H XML Details

Extreme Multi Label (XML) classification is possible when only a small subset of classes exist for
a given input x. The VSA trick used by [10] was to define an additional “present” class p and a
“missing” class m. Then the target output of the network fp¨q is itself a vector composed of two
parts added together. First Bpp,

ř

k ckq represents all present classes, and so the sum is over a finite
smaller set. Then the absent classes compute the missing representing Bpm,a´

ř

k ckq, which again
only needs to compute over the finite set of present classes, yet represents the set of all non-present
classes by exploiting the symbolic properties of the VSA.

For XML classification, we have a set of K classes that will be present for a given input, where
K « 10 is the norm. Yet, there will be L total possible classes where L ě 100, 000 is quite common.
Forming a normal linear layer to produce L outputs is the majority of computational work and
memory use in standard XML models, and thus the target for reduction. A VSA can be used to
side-step this cost, as shown by [10], by leveraging the symbolic manipulation of the outputs. First,
consider the target label as a vector s P Rd such that d ! L. By defining a VSA vector to represent
“present” and “missing” classes as p and m, where each class is given its own vector c1,...,L, we can
shift the computational complexity form OpLq to OpKq by manipulating the “missing” classes as
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the compliment of the present classes as shown in Equation 16.

s “

Labels PresentOpdKq
hkkkkkkkikkkkkkkj

ÿ

iPyi“1

Bpp, ciq `

Labels AbsentOpdLq
hkkkkkkkkkikkkkkkkkkj

ÿ

jPyj“´1

Bpm, cjq “

Labels PresentOpd Kq
hkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj

B
˜

p,

˜

a —
ÿ

iPyi“1

ci

¸¸

`

Labels AbsentOpdKq
hkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj

B
˜

m,

˜

a ´
ÿ

iPyi“1

ci

¸¸

(16)
Similarly, the loss to calculate the gradient can be computed based on the network’s prediction
ŝ by taking the cosine similarity between each expected class and one cosine similarity for the
representation of all missing classes. The excepted response of 1 or 0 for an item being present/absent
from the VSA is used to determine if we want the similarity to be 0 (1-cos) or 1 (just cos), as shown
in Equation 17.

loss “

Present Classes Opd Kq
hkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkj

ÿ

iPyi“1

p1 ´ cos pB˚pp, ŝq, ciqq `

Absent classes Opd Kq
hkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkj

cos

˜

B˚pm, ŝq,
ÿ

iPyi“1

ci

¸

(17)
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