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Abstract

Recent Multimodal Large Language Models (MLLMs) have typically focused
on integrating visual and textual modalities, with less emphasis placed on the
role of speech in enhancing interaction. However, speech plays a crucial role
in multimodal dialogue systems, and implementing high-performance in both
vision and speech tasks remains a challenge due to the fundamental modality
differences. In this paper, we propose a carefully designed multi-stage training
methodology that progressively trains LLM to understand both visual and speech
information, ultimately enabling fluent vision and speech interaction. Our approach
not only preserves strong vision-language capacity, but also enables efficient
speech-to-speech dialogue capabilities without separate ASR and TTS modules,
significantly accelerating multimodal end-to-end response speed. By comparing
against state-of-the-art counterparts across benchmarks for image, video, and
speech, we demonstrate that our omni model is equipped with both strong visual
and speech capabilities, making omni understanding and interaction.

1 Introduction

Recent advancements in MLLMs [1, 2, 3, 4, 5, 6, 7, 8, 9] have led to significant progress, particularly
in integration of visual and textual modalities. The introduction of visual information into LLMs has
notably enhanced model capabilities across various multimodal tasks. However, with the growing
appeal of human-computer interaction, the role of the speech modality has become increasingly
prominent, especially in multimodal dialogue systems. In such a system, speech not only serves as a
key medium for information transmission but also greatly improves the naturalness and convenience
of interactions. Consequently, integrating visual and speech modalities to achieve multimodal
interactions has emerged as a critical research focus.

The integration of vision and speech in MLLMs is not straightforward due to their inherently
differences [10]. For example, visual data, such as images, convey spatial information, while
speech data convey dynamic changes in time series. These fundamental differences pose challenges
for simultaneous optimization of both modalities, often leading to conflicts during training. For

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://youtu.be/tyi6SVFT5mM
https://github.com/VITA-MLLM/VITA

/

Figure 1: VITA-1.5 enables near real-time vision and speech interaction via an end-to-end framework.
It allows you to turn on the camera and have a fluent speech conversation. Please see our demo
video at this YouTube link.

instance, the inclusion of speech data may degrade performance on vision tasks, and vice versa.
In addition, traditional speech-to-speech systems rely on separate modules for Automatic Speech
Recognition (ASR) and Text-to-Speech, which can increase latency and reduce coherence, limiting
their practicality in real-time applications [ 1, 12, 13, 14, 15].

In this paper, we introduce VITA-1.5, a multimodal LLM that integrates vision, language, and speech
through a carefully designed three-stage training methodology. The training strategy progressively
incorporates vision and speech data, relieving modality conflicts while maintaining strong multimodal
performance. In the first stage, we focus on vision-language by training visual adapters and fine-
tuning the model with descriptive caption and visual QA data. This step establishes the model’s
foundational visual capabilities, enabling robust image and video understanding. The second stage
introduces audio input processing by training an audio encoder using speech-transcription paired
data, followed by fine-tuning with speech QA data. This stage equips the model with the ability
to understand and respond to audio inputs effectively. Finally, in the third stage, we train an audio
decoder to enable end-to-end speech output, eliminating the need for external TTS modules. This
allows VITA-1.5 to generate fluent speech replies, enhancing the naturalness and interactivity of
multimodal dialogue systems.

We have conducted extensive evaluations on various benchmarks related to image, video, and speech
understanding, comparing the results with both open-source and proprietary models. VITA-1.5
demonstrates comparable perception and reasoning capabilities comparable to leading image/video
based MLLMs, and shows significant improvements in the speech capability.

2 Related Work

Recently, thanks to the rapid development of language models such as GPTs [16, 17], LLaMA [18, 19],
Alpaca[20], Vicuna [21], and Mistral [22], researchers have successfully extended text comprehension
to multimodal understanding/reasoning through techniques like multimodal alignment and instruction
tuning. For example, models such as LLaVA [1], Qwen-VL [23], Cambrian-1 [24], Mini-Gemini [25],
MiniCPM-V 2.5 [26], DeepSeek-VL [27], and SIiME [28] have made significant advances in image
perception and reasoning, while models like LongVA [29] and Video-LLaVA [30] have showcased the
latest progress in video understanding. These models are increasingly capable of handling diverse data
types, driving the continuous improvement of multimodal perception and understanding capabilities.

Beyond visual modalities, recent years have also witnessed significant progress in incorporating
speech capabilities into LLMs, driven by the increasing demand for natural human-computer interac-
tion. The dominant approach has been to cascade ASR, LLM, and TTS modules. This text-centric
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approach faces fundamental limitations due to the loss of paralinguistic features like tones and
emotions. While works like [31] and [32] have attempted to address these issues by incorporating
speech encoders and emotion vectors, they still rely on speech transcription, resulting in substantial
latency issues that impact the user experience. The emergence of proprietary models like GPT-40 [33]
has demonstrated the possibility of end-to-end speech interaction, inspiring a new wave of research
in speech-enabled MLLMs. Following this trend, several notable works have emerged in the open-
source community. Models such as Mini-Omni2 [34], LLaMA-Omni [35], and Moshi [36] have
explored various strategies for aligning speech modality with LLMs and achieving duplex dialogue
capabilities. While these open-source efforts have successfully enabled duplex speech interaction
with LLMs, they still lack the capability to handle visual modalities as demonstrated by GPT-40,
limiting their applications in scenarios requiring both visual and speech understanding.

Despite these advances in both visual and speech modalities, a significant gap remains between
proprietary and open-source models. Compared to proprietary models that support multiple modalities,
including audio, image, and text, e.g., GPT-40 [37] and Gemini-Pro 1.5 [38], most open-source
models have primarily focused on image and text modalities [2]. Moreover, few open-source models
have involved multimodal interaction capabilities, which is a relatively unexplored area. While works
like VITA-1.0 [12] have made initial attempts to introduce speech for human-computer interaction,
introducing additional speech data poses challenges to the model’s original multimodal abilities.
Furthermore, speech generation typically relies on existing TTS systems, which often results in high
latency, thus impacting user experience. In this paper, we present VITA-1.5 that leverages refined
training strategies, excelling in perceiving data across four modalities (video, image, text, and audio),
while also realizing near real-time vision and speech interaction.

3 VITA-1.5

3.1 Model Architecture

The overall architecture of VITA-1.5 is depicted in Fig. 2. The
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Visual Encoder. VITA-1.5 adopts InternViT-300M' as the visual
encoder, with an input image size of 448x448 pixels, generating
256 visual tokens per image. For high-resolution images, VITA-1.5 gure 2: Overall Architec-
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improving the accuracy of image understanding. side consists of vision and au-

Video Processing. Videos are treated as a special type of multiple- dio encoders, along with their
image input. If the video length is shorter than 4 seconds, 4 frames adapters. The output side has
are uniformly sampled; for videos between 4 and 16 seconds, one an end-to-end speech gener-
frame per second is sampled; for videos longer than 16 seconds, 16 ation module, rather than di-
frames are uniformly sampled. No dynamic patching is applied to rectly using an TTS model.
video frames to avoid excessive visual tokens that could hinder processing efficiency.

Vision Adapter. A two-layer MLP is used to map the visual features to visual tokens suitable for the
subsequent understanding of LLM.

"https://huggingface.co/0OpenGVLab/InternViT-300M- 448px
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3.1.2 Audio Modality

Speech Encoder. Similar to [40], our audio encoding module consists of multiple downsampling
convolutional layers (4x downsampling) and 24 Transformer blocks (with a hidden size of 1024).
The downsampling layers help reduce the frame rate of the audio features, improving the processing
speed of LLM. The audio encoder has about 350M parameters and an output frame rate of 12.5Hz.
Mel-filter bank features are used as the input of the audio encoder, with a window size of 25ms and a
shift of 10ms [40].

Speech Adapter. It consists of multiple convolutional layers with 2x downsampling.

Speech Decoder. TiCodec [41] is used as our codec model, customizing a single codebook with a
size of 1024. This single-codebook design simplifies the decoding process during the inference phase.
The codec model is responsible for encoding continuous speech signals into discrete speech tokens
with the frequency of 40Hz, and at the same time has the ability to decode them back into speech
signals with the sample rate of 24,000Hz.

The current LLM can only output text tokens, and the speech generation capability requires the
LLM to be able to output speech tokens. To this end, we add two speech decoders after the text
tokens following [40]: 1) Non-Autoregressive (NAR) Speech Decoder, which processes text tokens
globally and models semantic features, with the aim of generating an initial distribution of speech
tokens; 2) Autoregressive (AR) Speech Decoder generates higher quality speech tokens step by step,
based on the speech information produced by the NAR decoder. The final sequence of speech tokens
is then decoded into a continuous speech signal flow (waveform) using the speech decoder of the
Codec model. We adopt 4 LLaMA decoder layers for both NAR and AR speech decoders, where the
hidden size is 896 and the parameter size is about 120M.

3.2 Training Data

As shown in Table |, the training data of multimodal instruction tuning encompass a wide range of
categories, such as caption data and QA data, both Chinese and English. During different training
phases, subsets of the overall dataset are selectively sampled to serve different objectives. Specifically,
the datasets are categorized as follows:

* Image Captioning Data. Datasets such as ShareGPT4V [42], ALLaVA-Caption [43],
SharedGPT4o0-Image’, and synthetic data are used to train the model to generate descriptive
languages for images.

» Image QA Data. Datasets like LLaVA-150K’, LLaVA-Mixture-sample [1], LVIS-
Instruct [44], ScienceQA [45], ChatQA [46], and subsets sampled from LLaVA-OV [47],
such as general image QA and mathematical reasoning datasets, are utilized to train the
model in answering image-based questions and performing visual reasoning tasks.

* OCR & Diagram Data. This category supports the model in understanding OCR and dia-
gram content, using datasets such as Anyword-3M [48], ICDAR2019-LSVT", UReader [49],
SynDOG”, ICDAR2019-LSVT-QA®, and corresponding data sampled from LLaVA-OV.

* Video Data. Datasets like ShareGemini [50] and synthetic data are used to train the model
to handle video inputs and perform tasks such as captioning and video-based QA.

* Pure Text Data. This category enhances the model’s capability to understand and generate
languages, facilitating text-based QA tasks.

In addition to the image and video data listed in Table 1, 110,000 hours of internal speech-transcription
paired ASR data, covering both Chinese and English, are incorporated to train the audio encoder and
align the audio encoder with the LLM. Furthermore, 3,000 hours of text-speech paired data generated
by a TTS system are used to train the speech decoder.

*https://sharegptdo.github.io/
*https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K
*http://icdar2019.org/

Snaver-clova- ix/synthdog-en

*http://icdar2019.org/
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Table 1: Training data of multimodal instruction tuning. The images of the synthetic data come from
open-source datasets like Wukong [51], LAION [52], and CC12M [53].

Data Scenario QA Type Dataset Name Questions (K)  Language
ShareGPT4V 99.50 Eng
Description ALLaVA-Caption 697.40 Eng
P ShareGTP4o-Image 55.50 Eng
Synthetic Data 593.70 CN
LLaVA-150K 218.36 CN
General Image LLaVA-Mixture-sample 1872.10 Eng
LVIS-Instruct 939.36 Eng
QA ScienceQA 12.72 Eng
ChatQA 7.39 Eng
LLaVA-OV General 1754.65 Eng
LLaVA-OV Math Reasoning 1140.92 Eng
Synthetic Data 212.68 CN
Anyword-3M 1709.30 CN
ICDAR2019-LSVT 366.30 CN
Description  UReader 100.00 Eng
. SynDOG-EN 100.00 Eng
OCR & Diagram SynDOG-CN 101.90 CN
ICDAR2019-LSVT-QA 630.08 CN
QA LLaVA-OV Doc Chart Screen 4431.50 Eng
LLaVA-OV General OCR 404.20 Eng
Description ShareGemini 205.70 CN
General Video P Synthetic Data 569.40 CN & Eng
QA Synthetic Data 4336.30 CN & Eng
Pure Text QA Synthetic Data 1574.20 CN & Eng
Total 22133.16 CN & Eng

3.3 Three Stage Training Strategies

In order to ensure that VITA-1.5 performs well in tasks involving vision, language, and audio, we
have to face a key challenge, i.e., training conflicts between different modalities. For example, adding
the speech data could negatively impact the understanding of the vision data, as the features of speech
differ significantly from those of vision, causing interference during the learning process. To address
this challenge, we devise a three-stage training strategy as shown in Fig. 3. The core idea is to
gradually introduce different modalities into the model, allowing it to increase the power of a new
modality while maintaining the power of the existing modalities.

3.3.1 Stage 1: Vision-Language Training

Stage 1.1 Vision Alignment. In this stage, our goal is to bridge the gap between vision and language.
The features of the former are extracted from the pre-trained vision encoder InternViT-300M, and the
latter is introduced through the LLM. We use 20% of the descriptive caption data from Table | for
training, where only the visual adapter is trainable, while the other modules are frozen. This approach
allows the LLM to initially align the visual modality.

Stage 1.2 Vision Understanding. In this stage, our goal is to teach the LLM to transcribe image
content. Toward this end, we use all the descriptive caption data from Table |. During this process, the
encoder and adapter of the visual module, as well as the LLM, are trainable. The focus is to enable the
model to establish a strong connection between vision and language by learning from descriptive texts
about images, allowing it to understand image content via generating natural language descriptions.

Stage 1.3 Vision SFT. Following Stage 1.2, the model has acquired a basic understanding of images
and videos. However, the instruction following ability is still limited, and it is difficult to cope with
the visual QA task. To achieve this, we use all the QA data from Table | while retaining 20% of the
descriptive caption data to increase the diversity of the dataset and the complexity of the tasks.

During training, the encoder and adapter of the visual module, as well as the LLM, are trainable. The
key objective of this stage is to enable the model not only to understand visual content but also to
answer questions following instructions.
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Figure 3: Training Pipeline of VITA-1.5. The training process is divided into three stages to
incrementally incorporate vision and audio into the LLM while relieving modality conflicts. Stage I
focuses on Vision-Language Training, including vision alignment (Stage 1.1, using 20% caption
data from Table 1), vision understanding (Stage 1.2, using 100% caption data), and instruction tuning
for visual QA (Stage 1.3, using 20% caption data and 100% QA data). Stage 2 introduces Audio
Input Tuning, with audio alignment (Stage 2.1, utilizing 11,000 hours of speech-transcription pairs)
and instruction tuning for speech QA (Stage 2.2, sampling 4% caption data and 20% QA data).
Finally, Stage 3 focuses on Audio Output Tuning, including the training of the codec model (Stage
3.1, using 3,000 hours of text-speech data) and speech decoder training (Stage 3.2). The percentages
shown in the image correspond to the data sampling ratios specified in Table 1.



3.3.2 Stage 2: Audio Input Tuning

Stage 2.1 Audio Alignment. After completing the training of Stage 1, the model has developed
a strong foundation in image and video understanding. In this stage, our goal is to reduce the
discrepancy between audio and language based on Stage 1, enabling the LLM to understand audio
inputs. The training data consists of 11,000 hours of speech-transcription pairs. We follow a two-step
approach: (a) Speech Encoder Training: We adopt a training framework used in common speech
recognition systems, using a Connectionist Temporal Classification (CTC) loss function [54] to train
the speech encoder. The aim is for the encoder to predict the transcription text from the speech
input. This step ensures that the audio encoder can extract speech features and map them to the text
representation space. (b) Speech Adapter Training: After training the speech encoder, we integrate it
with the LLM, using an audio adapter to introduce audio features into the input layer of the LLM. The
training objective at this stage is to enable the LLM to output the transcription text of the speech data.

Besides, in step (b), we introduce special trainable input tokens to guide the speech understanding
process. These tokens provide additional contextual information that guides the LLM used for the
QA task to perform the ASR task.

Stage 2.2 Audio SFT. The focus of this stage is to introduce the QA functionality with speech
questions and text answers. To achieve this, we sample 4% of the caption data and 20% of the QA
data from Table 1. In terms of data processing, approximately half of the text-based questions are
randomly replaced with their corresponding speech versions, generated using a TTS system.

In this stage, both the visual encoder and adapter, the audio encoder and adapter, as well as the LLM
are trainable, aiming to improve the model’s adaptability with multimodal inputs. In addition, we add
a classification head to the LLM’s output. This head is used to distinguish whether the input comes
from speech or text. As a result, the model can more accurately interpret speech inputs and process
different modalities efficiently and flexibly.

3.3.3 Stage 3: Audio Output Tuning

In the first two stages of training, the VITA-1.5 model has effectively developed its multimodal
understanding capabilities. However, a crucial capacity, i.e., speech output, remains absent, which
is essential for its role as an interactive assistant. To introduce speech output functionality without
compromising the model’s fundamental abilities, we draw on the strategy [40], using 3,000 hours of
text-speech data and employing a two-step training approach (see Fig. 3).

Stage 3.1 Codec Training. The goal of this step is to train a codec model with a single codebook
using speech data. The encoder of the codec model has the ability to map speech to discrete tokens,
while the decoder can map the discrete tokens back to speech stream. During the inference phase of
VITA-1.5, only the decoder is used.

Stage 3.2 NAR + AR Decoder Training. The training of this stage uses text-speech paired data,
where the text is fed into the tokenizer and the embedding later of the LLM to obtain its embedding
vectors, and the speech is fed into the encoder of the codec model to obtain its speech tokens. The
text embedding vectors are sent to the NAR speech decoder to get global semantic features, and then
the features are sent to the AR speech decoder, which predicts the corresponding speech tokens. Note
that the LLM is frozen during this stage, thus the multimodal performance is not affected.

4 Evaluation

4.1 Vision-Language Evaluation

Baselines. We compare a series of open-source MLLMs, including VILA-1.5 [55], LLaVA-Next [56],
CogVLM2 [57], InternLM-XComposer2.5 [58], Cambrian-1 [24], MiniCPM-V-2.6 [26], Ovis1.5 [59],
InternVL-Chat-1.5, InternVL-2 [60], LLaVA-OV [47], and Video-LLaVA [30], SHIME [28], and
LongVA [29], as well as 5 closed-source MLLMs, including GPT-4V’, GPT-40°, GPT-40-mini,
Gemini 1.5 Pro [38], and Claude 3.5 Sonnet.

"https://openai.com/index/gpt-4v-system-card/
$https://openai.com/index/hello-gpt-40/
*https://www.anthropic.com/news/claude-3-5-sonnet
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Table 2: Evaluation on Image Understanding Benchmarks. VITA-1.5 shows performance compa-
rable to the leading open-source models and advanced closed-source counterparts. MMB refers to
MMBench, MMS to MMStar, Hal to HallusionBench, MathV to MathVista, and OCR to OCRBench.
Note that after the training of Stages 2 (Audio Input Tuning) and 3 (Audio Output Tuning), VITA-1.5
retains almost its original visual-language capabilities in Stage 1 (Vision-Language Training).

Method LLM MMB MMS MMMU MathV Hal AI2D OCR MMVet MME Avg
VILA-1.5 Vicuna-v1.5-13B 68.5 442 41.1 42.5 393 699 460.0 45.0 17182 52.1
LLaVA-Next Yi-34b 77.8 51.6 48.8 40.4 348 789 5740 50.7 2006.5 58.3
CogVLM2 Llama3-8B-Instruct 70.7 50.5 42.6 38.6 413 734 7570 57.8 1869.5 58.8
InternLM-Xcomposer2 InternLM2-7B 77.6 56.2 41.4 59.5 41.0 812 5320 46.7 22204 61.2
Cambrian Nous-Hermes-2-Yi-34B ~ 77.8 542 50.4 50.3 416 795 5910 53.2 20499 o61.4
InternVL-Chat-1.5 InternLM2-20B 79.7 57.1 46.8 54.7 474  80.6 720.0 55.4 2189.6 65.1
Ovisl.5 Gemma2-9B-It 71.3 58.1 49.7 65.6 482 845 7520 53.8 21252 66.9
InternVL2 InternLM2.5-7b 79.4 61.5 51.2 583 450 83.6 7940 54.3 2215.1 673
MiniCPM-V 2.6 Qwen2-7B 78.0 57.5 49.8 60.6 48.1 821 852.0 60.0 2268.7 68.5
Proprietary
GPT-4V - 65.5 50.4 59.3 48.2 393 714  678.0 49.0 1790.3 58.5
GPT-40 mini - 76.0 54.8 60.0 52.4 46.1 718 785.0 66.9 2003.4 66.3
Gemini 1.5 Pro - 73.9 59.1 60.6 57.7 456 79.1  754.0 64.0 21106 67.2
GPT-40 - 82.8 61.6 62.8 56.5 51.7 774  663.0 66.5 23287 69.3
Claude3.5 Sonnet - 78.5 62.2 65.9 61.6 499 802 788.0 66.0 1920.0 69.3
Open Source
VITA-1.0 Mixtral-8x7B 71.8 46.4 47.3 449 39.7 731 678.0 41.6 2097.0 57.8
VITA-1.5 (Stage 1) Qwen2-7B 77.1 59.1 53.1 66.2 441 803 7520 51.1 2311.0 67.1
VITA-1.5-Audio (Stage 3) Qwen2-7B 76.7 59.9 52.1 66.2 449 793 7320 49.6 2352.0 66.8

Table 3: Evaluation on Video Understanding Benchmarks. Although VITA-1.5 still lags behind
models like GPT-40 and Gemini-1.5-Pro, it performs comparably to many open-source models. Note
that after the training of Stages 2 (Audio Input Tuning) and 3 (Audio Output Tuning), VITA-1.5
retains almost its original visual-language capabilities in Stage 1 (Vision-Language Training).

Method LLM Video-MME w/o sub Video-MME w/sub MVBench TempCompass
Video-LLaVA Vicuna-v1.5-13B 39.9 41.6 49.8
SIiIME Llama3-8B-Instruct 453 47.2 - -
LongVA Qwen2-7B 52.6 54.3 - 57.0
VILA-1.5 Llama3-8B-Instruct - - - 58.8
InternLM-XComposer-2.5 InternLM2-7B - - - 62.1
LLaVA-OneVision Qwen2-7B 58.2 61.5 56.7 64.2
InternVL-2 InternLM2.5-7b - - - 66.0
MiniCPM-V-2.6 Qwen2-7B 60.9 63.7 - 66.3
Proprietary
GPT-40-mini - 64.8 68.9 -
Gemini-1.5-Pro - 75.0 81.3 - 67.1
GPT-40 - 71.9 77.2 - 73.8
Open Source
VITA-1.0 Mixtral-8x7B 55.8 59.2 - 62.3
VITA-1.5 (Stage 1) Qwen2-7B 56.8 59.5 56.8 65.5
VITA-1.5 (Stage 3) Qwen2-7B 56.1 58.7 55.4 66.7

Evaluation Benchmarks. To assess the image perception and understanding capabilities of VITA-
1.5, we utilize several evaluation benchmarks, including MME [61], MMBench [62], MMStar [63],
MMMU [64], MathVista [65], HallusionBench [66], AI2D [67], OCRBench [68], and MM Vet [69].
These benchmarks cover a wide range of aspects, including general multimodal capabilities (e.g.,
MME, MMBench, and MMMU), mathematical reasoning (MathVista), hallucination detection
(HallusionBench), chart (AI2D) and OCR (OCRBench) understanding, providing a comprehensive
evaluation results. For video understanding, we use representative evaluation benchmarks including
Video-MME [70], MVBench [71], and TempCompass [72].

Vision-Language Capabilities. Table 2 presents a comparison of VITA-1.5’s image understanding
performance. After the training of the three stages, VITA-1.5 performs comparably to the most
advanced open-source models and even surpasses some closed-source models like GPT-4V and
GPT-40-mini. This result highlights the robust capabilities of VITA-1.5 in image-language tasks.
As shown in Table 3, VITA-1.5 shows comparable performance to the top open-source models in
the evaluation of video understanding. The notable gap compared to proprietary models suggests
that VITA-1.5 still has significant room for improvement and potential for further enhancement in
video understanding. Please note that after the training of Stages 2 (Audio Input Tuning) and 3
(Audio Output Tuning), VITA-1.5 retains almost its original visual-language capabilities in Stage 1
(Vision-Language Training).



Table 4: Evaluation on ASR Benchmarks. VITA-1.5 has demonstrated strong performance in both
Mandarin and English ASR tasks. It outperforms specialized speech models, achieving better results
in both languages.

Model CN (CER)) Eng (WER))
aishell-1 test net test meeting dev clean dev other test clean test other
Wav2vec2-base - - - 6.0 13.4 - -
Mini-Omni2 - - - 4.8 9.8 4.7 9.4
Freeze-Omni 2.8 12.6 14.2 4.2 10.2 4.1 10.5
VITA-1.0 - 12.2 16.5 7.6 16.6 8.1 18.4
VITA-1.5 2.2 8.4 10.0 33 7.2 34 7.5

4.2 Speech Evaluation

Baselines. The following three baseline models are used for comparison: Wav2vec2-base [73],
Mini-Omni2 [74], Freeze-Omni [40], and VITA-1.0 [12].

Evaluation Benchmarks. The Mandarin Evaluation Sets consists of three datasets: aishell-1 [75],
test net [76], and test meeting [77]. These datasets are used to evaluate the model’s performance on
Mandarin speech. The evaluation metric is the Character Error Rate (CER). The English Evaluation
Sets include four datasets: dev-clean, dev-other, test-clean, and test-other [78], which are used to
evaluate the model’s performance on English speech. The evaluation metric is Word Error Rate
(WER). The evaluation results in Table 4 indicate that VITA-1.5 achieves leading accuracy in both
Mandarin and English ASR tasks. This demonstrates that VITA-1.5 has successfully integrated
advanced speech capability to support multimodal interaction.

5 Conclusion and Future Work

In this paper, we has presented VITA-1.5, a multimodal LLM designed to integrate vision and speech
through a carefully crafted three stage training strategy. By relieving the inherent conflicts between
modalities, VITA-1.5 achieves robust capabilities in both vision and speech understanding, enabling
efficient speech-to-speech interactions without relying on separate ASR or TTS modules. Extensive
evaluations demonstrate that VITA-1.5 performs competitively across multimodal benchmarks.
We hope that VITA-1.5 can promote the progress of open-source models in the field of real-time
multimodal interaction. Although VITA-1.5 has made some contributions, such as multi-modality
joint training, end-to-end architecture, response latency, and basic performance, there are two major
areas that can be improved in our future work:

1. Personalized MLLM. Currently, VITA-1.5 is generic and do not incorporate individual preferences
during interaction. For example, after learning about personal preferences in the interaction, the
content and manner of answers can be adjusted accordingly.

2. Long-term memory. The process of human-computer interaction can last 10 minutes or even
several hours, in which case it is important for the human-computer interaction in real scenarios.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Section 4.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

15



Justification: No theorem and lemma.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Section 3.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code is open-source, and the data processing methods have been clearly
defined. The experimental settings are also included, making the experiments reproducible.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Section 3.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:|[NA|

Justification: The evaluations are performed with temperature=0, resulting in minimal
variance. Due to the high computational cost of training from scratch, it is difficult to
provide results from multiple reruns (5-10).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This work meets the requirements.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Section 5.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This work is not applicable to this.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The corresponding works are cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This work is not applicable to this.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work is not applicable to this.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work is not applicable to this.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This work is not applicable to this.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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