

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THERE AND BACK AGAIN: ON THE RELATION BETWEEN NOISE AND IMAGE INVERSIONS IN DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion Models achieve state-of-the-art performance in generating new samples but lack a low-dimensional latent space that encodes the data into editable features. Inversion-based methods address this by reversing the denoising trajectory, transferring images to their approximated starting noise. In this work, we thoroughly analyze this procedure and focus on the relation between the initial *noise*, the *generated samples*, and their corresponding *latent encodings* obtained through the DDIM inversion. First, we show that latents exhibit structural patterns in the form of less diverse noise predicted for smooth image areas (e.g., plain sky). Through a series of analyses, we trace this issue to the first inversion steps, which fail to provide accurate and diverse noise. Consequently, the DDIM inversion space is notably less manipulative than the original noise. We show that prior inversion methods do not fully resolve this issue, but our simple fix, where we replace the first DDIM Inversion steps with a forward diffusion process, successfully decorrelates latent encodings and enables higher quality editions and interpolations.

1 INTRODUCTION

Diffusion-based probabilistic models (DMs), (Sohl-Dickstein et al., 2015), have achieved state-of-the-art results in many generative domains including image (Dhariwal & Nichol, 2021), speech (Popov et al., 2021), video (Ho et al., 2022), and music (Liu et al., 2021) synthesis. Nevertheless, one of the significant drawbacks that distinguishes diffusion-based approaches from other generative models like Variational Autoencoders (Kingma & Welling, 2014) is the lack of an implicit latent space that encodes the images into low-dimensional, interpretable, or editable representations.

To mitigate this issue, several works seek meaningful relations in the approximated starting noise used for generations. This method, known as an inversion technique, was introduced by Song et al. (2021) with Denoising Diffusion Implicit Models (DDIM), and led to the proliferation of works (Garibi et al., 2024; Mokady et al., 2023; Huberman-Spiegelglas et al., 2024; Samuel et al., 2025; Hong et al., 2024; Parmar et al., 2023). The core idea is to use the noise predicted by the Diffusion Model and add it to the image instead of subtracting it. Repeating this process effectively traces the backward diffusion trajectory, approximating the *noise* that could have generated the *image*. However, due to approximation errors and biases introduced by the trained model, discrepancies arise between the original noise and its reconstruction – *latent* representation.

While recent works (Garibi et al., 2024; Mokady et al., 2023; Parmar et al., 2023; Huberman-Spiegelglas et al., 2024; Zheng et al., 2024) try to improve the inversion procedure from the perspective of tasks such as image reconstruction, editing, or interpolation, in this work, we focus on

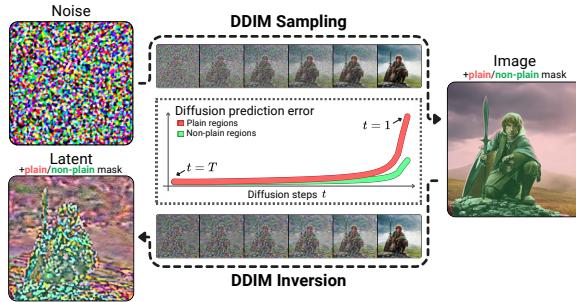


Figure 1: **DDIM inversion produces latent encodings that exhibit less diverse noise in the smooth image areas than in the non-plain one.** We attribute this problem to the errors of noise prediction in the first inversion steps.

the inversion process itself and analyze the errors DDIM inversion introduces. To that end, we analyze the relation between sampled noise, generated images, and their inverted latent encodings. First, we review existing studies and conduct additional analyses demonstrating that the reverse DDIM technique produces latent representations with pixel correlations that deviate significantly from a Normal distribution. As presented in Figure 1, we experimentally show that this deviation manifests as lower diversity in latents, particularly in regions corresponding to smooth image surfaces. We further attribute this discrepancy to the noise approximations in the first few inversion steps. We demonstrate that the inversion error is significantly higher and the predictions are notably less diverse for smooth image areas than for other regions.

To highlight the consequences of the observed divergence, we show that the DDIM-inversion-based latent space is less *manipulative* than the ground truth noise. This limitation is particularly noticeable in lower-quality image interpolations and less expressive edits, especially in smooth input image regions. Furthermore, we demonstrate that prior inversion methods, although designed to improve image reconstruction, fail to preserve the Gaussian properties of the latents. However, based on our analyses, we evaluate a simple fix, where we replace the first steps of the DDIM inversion process with a forward diffusion. In the final experiments, we show that such an approach successfully decorrelates the resulting latents, mitigating observed limitations without degrading the reconstruction quality. Our main contributions can be summarized as follows:

- We show that DDIM latents deviate from the Gaussian distribution, mostly because of less diverse noise predictions for the plain image surfaces during the first inversion steps.
- We show that, consequently, the DDIM latents are less manipulative, leading to the lower quality of image interpolations and edits.
- We demonstrate that prior inversion methods do not address this issue and propose a simple and effective fix by substituting early inversion steps with a forward diffusion.

2 BACKGROUND AND RELATED WORK

Denoising Diffusion Implicit Models. The training of DMs consists of forward and backward diffusion processes, where, in the context of Denoising Diffusion Probabilistic Models (DDPMs, Ho et al. (2020)), the former one with training image x_0 and a variance schedule $\{\beta_t\}_{t=1}^T$, can be expressed as $x_t = \sqrt{\bar{\alpha}_t}x_0 + \sqrt{1 - \bar{\alpha}_t}\epsilon_t$, with $\alpha_t = 1 - \beta_t$, $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$, and $\epsilon_t \sim \mathcal{N}(0, \mathcal{I})$.

In the backward process, the noise is gradually removed starting from a random noise $x_T \sim \mathcal{N}(0, \mathcal{I})$ for $t = T \dots 1$, with intermediate steps defined as:

$$x_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \cdot \underbrace{(x_t - \sqrt{1 - \bar{\alpha}_t} \cdot \epsilon_\theta^{(t)}(x_t, c)) / \sqrt{\bar{\alpha}_t}}_{x_0 \text{ prediction}} + \underbrace{\sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \cdot \epsilon_\theta^{(t)}(x_t, c) + \sigma_t z_t}_{\text{direction pointing to } x_t}, \quad (1)$$

where $\epsilon_\theta^{(t)}(x_t, c)$ is an output of a neural network (such as U-Net), and can be expressed as a combination of clean image (x_0) prediction, a direction pointing to previous denoising step (x_t), and a stochastic factor $\sigma_t z_t$, where $\sigma_t = \eta \sqrt{\beta_t(1 - \bar{\alpha}_{t-1}) / (1 - \bar{\alpha}_t)}$ and $z_t \sim \mathcal{N}(0, \mathcal{I})$. In the standard DDPM model, the η parameter is set to $\eta = 1$. However, changing it to $\eta = 0$ makes the whole process a deterministic Denoising Diffusion Implicit Model (DDIM, Song et al. (2021)), a class of DMs we target in this work.

One of the advantages of DDIM is that by making the process deterministic, we can encode images back to the noise space. The inversion can be obtained by rewriting Eq. (1) as

$$x_t = \sqrt{\alpha_t}x_{t-1} + (\sqrt{1 - \bar{\alpha}_t} - \sqrt{\alpha_t - \bar{\alpha}_t}) \cdot \epsilon_\theta^{(t)}(x_t, c). \quad (2)$$

However, due to circular dependency on $\epsilon_\theta^{(t)}(x_t, c)$, Dhariwal & Nichol (2021) propose to approximate this equation by assuming the local linearity between directions ($x_{t-1} \rightarrow x_t$) and ($x_t \rightarrow x_{t+1}$), so that the model’s prediction in t -th inversion step can be approximated using x_{t-1} as an input, i.e.,

$$\epsilon_\theta^{(t)}(x_t, c) \approx \epsilon_\theta^{(t)}(x_{t-1}, c). \quad (3)$$

While such approximation is often sufficient to obtain good reconstructions of images, it introduces the error dependent on the difference $(x_t - x_{t-1})$, which can be detrimental for models that sample

108 images with a few diffusion steps or use the classifier-free guidance (Ho & Salimans, 2021; Mokady
 109 et al., 2023) for better prompt adherence. As a result, also noticed by recent works (Garibi et al.,
 110 2024; Parmar et al., 2023), latents resulting from DDIM inversion do not follow the definition of
 111 Gaussian noise because of the existing correlations. In this work, we empirically study this phe-
 112 nomenon and explain its origin. We discuss the relations between the following three variables:
 113 **Gaussian noise** (x_T , an input to generate an image through a backward diffusion process), **image**
 114 **sample** (x_0 , the outcome of the diffusion model generation process), and **latent encoding** (\hat{x}_T , the
 115 result of the DDIM inversion procedure as introduced in Eq. (2)).

116
 117 **Image-to-noise inversion techniques.** The DDIM inversion, despite the noise approximation er-
 118 rors, forms the foundation for many applications, including inpainting (Zhang et al., 2023a), inter-
 119 polation (Dhariwal & Nichol, 2021; Zheng et al., 2024), and edition (Su et al., 2022; Kim et al.,
 120 2022a; Hertz et al., 2022; Ceylan et al., 2023; Deja et al., 2023). Several works (Mokady et al.,
 121 2023; Garibi et al., 2024; Huberman-Spiegelglas et al., 2024; Samuel et al., 2025; Hong et al., 2024;
 122 Miyake et al., 2023; Han et al., 2024; Cho et al., 2024; Dong et al., 2023; Zhang et al., 2023b;
 123 Parmar et al., 2023; Tang et al., 2024; Wallace et al., 2023; Pan et al., 2023; Wang et al., 2024;
 124 Brack et al., 2024; Lin et al., 2024; Ju et al., 2024) aim to reverse the denoising process in text-to-
 125 image models, where prompt embeddings can strongly affect the final latent representation through
 126 Classifier-free-guidance (CFG) (Ho & Salimans, 2021). Null-text inversion (Mokady et al., 2023)
 127 extends the DDIM inversion with additional null-embedding optimization, reducing the image re-
 128 construction error. Other techniques improve inversion for image editing through seeking embed-
 129 dings (Miyake et al., 2023; Han et al., 2024; Dong et al., 2023) or leveraging DDIM latents (Cho
 130 et al., 2024) for guidance. On the other hand, some works leverage additional numerical methods
 131 (Samuel et al., 2025; Pan et al., 2023; Garibi et al., 2024) to minimize inversion error. In particular,
 132 Renoise (Garibi et al., 2024) iteratively improves the estimation of the next point along the diffusion
 133 trajectory by averaging multiple noise predictions, incorporating an additional patch-level regular-
 134 ization term that penalizes correlations between pixel pairs to ensure the editability of the latents.
 135 Huberman-Spiegelglas et al. (2024) followed by Brack et al. (2024) propose inversion methods for
 136 DDPMs, enabling the creation of various image edition results via inversion. Finally, to reduce the
 137 discrepancy between DDIM latents and Gaussian noises, Parmar et al. (2023) propose to addition-
 138 ally regularize final DDIM Inversion outputs for better image editing, Lin et al. (2024) introduce an
 139 alternative noise scheduler to improve inversion stability, while Hong et al. (2024) propose an exact
 140 inversion procedure for higher-order DPM-Solvers, solving the optimization problem at each step.

3 ANALYSIS

141 In our experiments, we employ six different diffusion models, which we compare
 142 in Table 1. For both generation and inversion processes, we use the DDIM sam-
 143 pler with, unless stated otherwise, $T = 100$ steps. We provide more details on
 144 the number of diffusion steps in Appendix N.1.

Model	Diffusion Space		Resolution		Training Dataset	Cond?	Arch
	Image	Latent	Image	Latent			
ADM-32	Pixel	32x32	-	-	CIFAR-10	✗	U-Net
ADM-64	Pixel	64x64	-	-	ImageNet	✗	U-Net
ADM-256	Pixel	256x256	-	-	ImageNet	✗	U-Net
LDM	Latent	256x256	3x64x64	CelebA	✗	U-Net	
DiT	Latent	256x256	4x32x32	ImageNet	✓	DiT	
IF	Pixel	64x64	-	-	LAION-A	✓	U-Net
SDXL	Latent	1024	4x128x128	-	-	✓	U-Net

145 Table 1: **Overview of diffusion models used for our**
 146 **experiments.** We study both unconditioned and con-
 147 ditioned models, operating in pixel and latent spaces.
 148 More details on models are provided in Appendix J.

3.1 LATENTS VS. NOISE

149 The inversion process provides the foundation for practical methods in many applications, with the
 150 underlying assumption that by encoding the *image* back with a denoising model, we can obtain the
 151 original *noise* that can be used for reconstruction. However, this assumption is not always fulfilled,
 152 which leads to our first question:

153 **Research Question 1:** Are there any differences between sampled Gaussian noise and la-
 154 tents calculated through the DDIM inversion?

162 **Prior work and findings.** This question relates
 163 to several observations from the existing literature,
 164 which highlight that outputs of the DDIM inver-
 165 sion differ from the standard Gaussian noise (Par-
 166 mar et al., 2023; Garibi et al., 2024) and that the
 167 difference can be attributed to the approximation er-
 168 ror (Hong et al., 2024; Wallace et al., 2023). While
 169 these works notice the divergence between noise and
 170 latent encodings, they do not validate them or study
 171 the source of this issue.

172 **Experiments.** First, we consolidate existing ob-
 173 servations on the presence of correlations in the lat-
 174 ent encodings (\hat{x}_T) and validate them by running
 175 an initial experiment that compares latents to im-
 176 ages (x_0) and noises (x_T) across diverse diffusion
 177 architectures. In Table 2, we calculate a mean of
 178 top-20 Pearson correlation coefficients (their ab-
 179 solute values) inside $C \times 8 \times 8$ pixel patches, where C
 180 is the number of channels (pixel RGB colors or lat-
 181 ent space dimensions for latent models). The results
 182 confirm that latent representations have significantly
 183 more correlated pixels than the noise. In Fig. 2, we
 184 show how the measured correlations visually mani-
 185 fest themselves in the latents. For pixel models such
 186 as Deepfloyd IF, we observe clear groups of corre-
 187 lated pixels as presented in Fig. 2a. For latent dif-
 188 fusion models, we can highlight the inversion error
 189 by plotting the difference between the latent and the
 190 noise, as presented in Fig. 2b. This property also
 191 holds for LDMs with a 4-channel latent space, with
 192 the use of PCA (Fig. 2c).

193 **Conclusion.** Our initial experiments numerically validate observations from recent studies and
 194 demonstrate that latent representations computed using the DDIM inversion deviate from the ex-
 195 pected characteristics of independent Gaussian noise. Specifically, both visual analysis and quanti-
 196 tative evaluations reveal significant correlations between the neighboring pixels.

197 3.2 LOCATION OF LATENT ENCODINGS SPACE

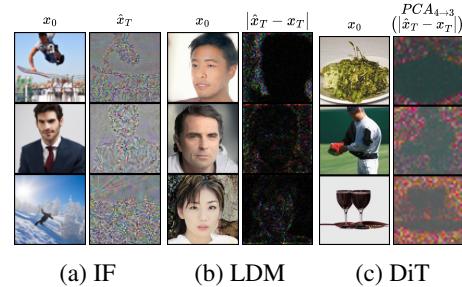
198 To delve deeper, we first propose to empirically analyze the nature of this issue, posing a question:

200 **Research Question 2:** How do DDIM inversion latents differ from the Gaussian noise?

203 **Experiments.** To answer this question, we
 204 first geometrically investigate the location of the
 205 latents with respect to the generation trajectory.
 206 To that end, we analyze the distance between
 207 the following steps $\{x_t\}_{t=T \dots 1}$ of the backward
 208 diffusion process and intermediate points on the
 209 linear interpolation path between the noise and the
 210 DDIM latent. We present the results of this
 211 experiment in Fig. 3, where each pixel, with
 212 coordinates (t, λ) , is colored according to the
 213 l_2 distance between the intermediate trajectory
 214 step x_t and the corresponding interpolation step.
 215 This distance can be expressed as $\|(1 - \lambda)x_T + \lambda\hat{x}_T - x_t\|_2$. For better clarity we normalize the
 216 distances column-wise.

Model	Noise (x_T)	Latent (\hat{x}_T)	Sample (x_0)
ADM-32	$0.039 \pm .003$	$0.382 \pm .010$	$0.964 \pm .022$
ADM-64	$0.039 \pm .003$	$0.126 \pm .008$	$0.925 \pm .021$
ADM-256	$0.039 \pm .003$	$0.161 \pm .013$	$0.960 \pm .008$
IF	$0.039 \pm .003$	$0.498 \pm .025$	$0.936 \pm .019$
LDM	$0.039 \pm .003$	$0.045 \pm .014$	$0.645 \pm .099$
DiT	$0.041 \pm .003$	$0.103 \pm .021$	$0.748 \pm .064$
SDXL	$0.036 \pm .002$	$0.155 \pm .044$	$0.637 \pm .064$

Table 2: **Mean of top-20 Pearson correlation coefficients inside 8×8 patches for random Gaussian noises, latent encodings, and generations.** DDIM Latents are much more correlated than noises.



(a) IF (b) LDM (c) DiT

Figure 2: **Latent encodings exhibit image patterns.** For small pixel-space models (a), we observe correlations directly in the inversion results. For larger models (e.g., LDMs), the same patterns can be observed in the absolute errors between the latent and noise (b). This observation also holds for LDM models operating on 4-channels, where we use PCA for visualization (c).

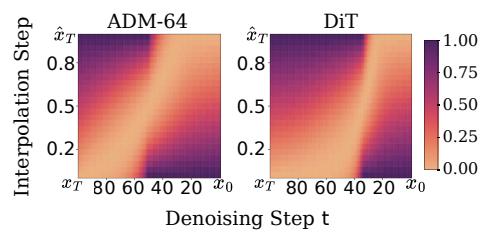


Figure 3: **l_2 -distances between intermediate denoising steps x_t and points on the linear interpolation path from noise x_T to the inverted latents \hat{x}_T .** The consecutive intermediate generation steps along the sampling trajectory consequently approach the latent.

216 We observe that, while moving from the initial noise (x_T) towards the final sample (x_0), the intermediate steps x_t approach the DDIM inversion latent (\hat{x}_T), while after the transition point around 217 50-70% (timesteps 50-30) of the generative trajectory, the distance to the latent becomes lower than 218 the distance to the starting noise. **This observation reveals that latents retain some characteristics 219 of the original samples and contain information about the source generation.**

220 Similar observation can be made on the basis of visualizations in Fig. 2, where we can distinguish the 221 coarse shape of the original objects in the latents. 222 In particular, while the pixels associated with the 223 objects have high diversity, the areas related to the 224 background are much smoother. This leads to the 225 hypothesis that the most significant difference 226 between the initial noises and latent encodings is the 227 limited variance in the areas corresponding to the 228 background of the generated images. To validate 229 it, we compare the properties of the latents between 230 plain and non-plain areas in the image. We determine 231 binary masks \mathcal{M}_p by calculating the absolute 232 difference between neighboring pixels. Pixels 233 where this local variation falls below a fixed threshold 234 ($\tau = 0.025$) across all channels are classified 235 as plain regions, effectively isolating low-texture areas 236 (see Appendix H for more details). This 237 procedure results in selection of areas, such as sky, sea, 238 plain backgrounds, or surfaces (see Fig. 12 239 for examples). In Table 3, we show that the error 240 between the starting noise x_T and the latent \hat{x}_T 241 resulting from the DDIM inversion is higher for pixels 242 corresponding to the plain areas. Across the 243 models, this trend goes along with a decrease in the standard 244 deviation of the latents' pixels related to those regions. 245 It suggests that DDIM inversion struggles with reversing 246 the plain image areas, bringing them to mean (0) and 247 reducing their diversity. Additionally, in Appendix P, we 248 present that correlations and reduced latent diversity for 249 plain image regions can be similarly observed within 250 Flow matching (Lipman et al., 2023) models.

251 **Conclusion.** Latent encodings resulting from the DDIM Inversion deviate from the Gaussian noise 252 towards zero values. This is especially true for parts of the latents corresponding to the plain image 253 surfaces. This observation reveals that latent encodings retain some characteristics of the original 254 input samples and contain information about the source generation.

255 3.3 ORIGIN OF THE DIVERGENCE

256 Given the observation from the previous section, we now investigate the source of the correlations 257 occurring in latent encodings, posing the question:

258 **Research Question 3:** What causes the spatial correlations observed in DDIM latents?

259 **Experiments.** We first recall that the DDIM Inversion error can be attributed to the approximation 260 of the diffusion model's output at step $t \in 1 \dots T$ with the output from step $t - 1$ (see Eq. (3)). 261 Hence, we can define the inversion approximation error for step t as the difference between DM's 262 output for the target and previous timesteps t and $t - 1$ as:

$$\xi(t) = \left| \underbrace{\epsilon_{\theta}^{(t)}(x_{t-1}, c)}_{\mathcal{E}_t^I} - \underbrace{\epsilon_{\theta}^{(t)}(x_t, c)}_{\mathcal{E}_t^S} \right|, \quad (4)$$

263 where \mathcal{E}_t^S is the true model prediction at step t , and \mathcal{E}_t^I is the inversion's approximation using 264 the previous step's output. Based on the observations from the previous section, we propose to 265 investigate how the inversion approximation error $\xi(t)$ differs for pixels associated with plain and 266 non-plain image areas throughout the inversion process. To that end, we average the approximation 267 errors for 4000 images for each of the $T = 50$ diffusion timesteps. To measure the error solely for 268 the analyzed step t , we start the inversion procedure from the exact latent from step $(t - 1)$ (cache 269 from the sampling path). We split the latent pixels into plain and non-plain areas according to the 270 masks calculated for clean images. More details on this setup can be found in Appendix I.

In Fig. 4a, we present the visualization of calculated differences for each inversion step. There is a significant difference in the prediction errors for plain and non-plain areas, especially in the initial steps of the inversion process. Notably, for pixels associated with plain image areas, the error predominantly accumulates within the first 10% of the inversion steps. Additionally, in Fig. 4b, we present that this error discrepancy is strongly connected to a decrease in the diversity of diffusion models' predictions. More precisely, we calculate a ratio of the predictions' standard deviations between the sampling and inversion processes for the associated timesteps. We show that, for plain image regions, there is a significant decrease in the fraction of predictions' variance preserved during the first inversion steps. Those observations can be related to recent works (Lee et al., 2023; Lin et al., 2024) analyzing why numerical solvers incur significant errors during the earliest diffusion steps (as $t \rightarrow 0$). Specifically, Lee et al. (2023) trace the error to the $1/t$ curvature blow-up of the reverse-time ODE trajectory, whereas Lin et al. (2024) attribute the predominance of early DDIM inversion approximations to a singularity arising from commonly used noise schedules. Our experiments extend those studies by showing that the error can be mainly attributed to the plain regions in the original images.

Conclusion. Early approximations during the DDIM Inversion procedure result in unequally distributed errors for pixels related to the plain and non-plain image areas, making it the origin of the structural patterns and correlations in the latents.

4 CONSEQUENCES OF THE DIVERGENCE AND HOW TO MITIGATE THEM?

After identifying the differences between the noises and latents, and highlighting the origin of this phenomenon, we finally pose the last question:

Research Question 4: What are the practical consequences of the divergence between noises and inverse DDIM latents, and how can they be mitigated?

Our findings in Section 3.3 indicate that the initial inversion steps predominantly contribute to the divergence between DDIM latent variables and Gaussian noise, in the form of insufficiently diverse approximations of diffusion model predictions. Therefore, as a simple fix to this issue, we propose to replace the first inversion steps with random noise, as in a forward diffusion process. The rationale behind this decision is twofold:

- Substituting initial steps with Gaussian noise allows us to recover the noise variance exactly when the DDIM inversion fails to do so.
- Recent studies (Deja et al., 2022; Liu et al., 2025; Li & Chen, 2024; Fesl et al., 2025) have shown that final steps of the backward diffusion do not contribute additional generative information, instead functioning as a data-agnostic denoising process. Therefore, exact inversion of those steps is less important from the perspective of accurate reconstruction.

The proposed inversion step is therefore defined as follows (see Appendix F for pseudocode):

$$x_t = \begin{cases} \sqrt{\bar{\alpha}_t}x_0 + \sqrt{1 - \bar{\alpha}_t}\epsilon, & \text{if } t \leq t' \quad (\text{forward diffusion}) \\ \sqrt{\bar{\alpha}_t}x_{t-1} + (\sqrt{1 - \bar{\alpha}_t} - \sqrt{\alpha_t - \bar{\alpha}_t}) \cdot \epsilon_\theta^{(t)}(x_{t-1}, c), & \text{if } t > t' \quad (\text{DDIM inversion}) \end{cases} \quad (5)$$

Before moving to practical applications, we first evaluate the effectiveness of this approach, with $N = 10000$ images generated with $T = 50$ steps using DiT and IF models. For such generations, we first noise them with a forward diffusion to the intermediate step t' , followed by the DDIM inversion for $T - t'$ steps, ending up with an approximation of the initial noise. In Table 4, we

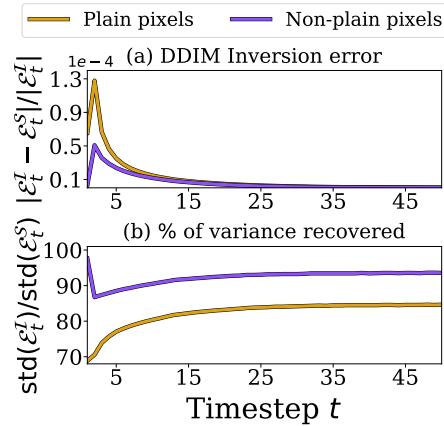


Figure 4: **Discrepancy of the DDIM noise predictions for plain and non-plain image pixels.** We show that, in the first inversion steps, the approximations are significantly (a) more erroneous and (b) less diverse for plain regions than for the rest of the image.

Inversion steps replaced by forward (%T)	DIT			IF		
	Pixel Corr.	Reconstruction Absolute Error	KL Div. $\times 10^{-3}$	Pixel Corr.	Reconstruction Absolute Error	KL Div. $\times 10^{-3}$
Noise x_T	0.04	0.00	0.20	0.05	0.00	0.40
DDIM latent \hat{x}_T	0.16	0.05	11.57	0.64	0.07	608.25
1 (2%)	0.04	0.05	0.29	0.06	0.07	0.98
1 ... 2 (4%)	0.04	0.07	0.25	0.05	0.07	0.48
1 ... 5 (10%)	0.04	0.12	0.49	0.05	0.08	0.42
1 ... 10 (20%)	0.04	0.15	0.45	0.05	0.10	0.40

Table 4: **Structures can be removed from DDIM latents by replacing inversion steps with forward diffusion.** Using forward diffusion instead of the first 4% of inversion steps brings the resulting latents closer to Gaussian noise without a major degradation in the image reconstruction.

Model	Region	Different prompt generations from:		
		Noise (baseline)	Latent DDIM Inv.	Latent w/ Forward 4%
IF	Plain	17.90	14.92 (+16.7%)	17.42 (+2.7%)
	Non-plain	18.60	17.35 (+6.7%)	18.16 (+2.4%)
DIT	Plain	13.64	11.95 (+12.4%)	13.27 (+2.7%)
	Non-plain	16.49	15.34 (+7.0%)	16.18 (+1.9%)

Table 5: **PNG bit-rate (bits / pixel) after saving only the masked pixels.** Higher compression (lower bpp) means less local variability in the pixel stream. Values in parentheses are the percentage change with respect to the noise baseline.

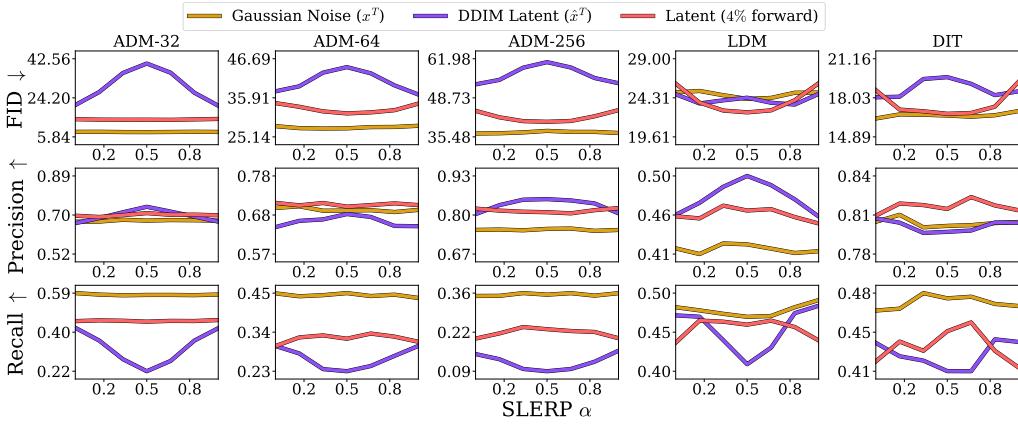


Figure 5: **The quality and diversity of images generated from interpolations of latents \hat{x}_T deteriorate along the path, as indicated by, accordingly, the FID peak and Recall decrease.** In contrast, the quality of generations from noise x_T interpolations remains stable. Our simple fix, which is replacing 4% of the first inversion steps with forward diffusion, alleviates this issue.

show that by replacing just 4% of the inversion steps, we can completely remove correlations in the latents, up to the level of random Gaussian noise. This replacement percentage allows us to navigate the trade-off between reconstruction fidelity and latent manipulability. We observe that this trade-off is highly favorable: replacing the first few steps ($t' \leq 4\%$) restores the Gaussian properties required for diverse editing, while maintaining a reconstruction error that remains within the perceptual noise floor (see Appendix N.2 for detailed analysis). To further evaluate this effect, in Table 5, we measure the size of the different parts of images (plain vs non-plain) after saving them with the PNG lossless compression. Compression is most effective in the parts related to plain images generated from the DDIM latents, which incline low diversity of their values. At the same time, replacing only 4% of inversion steps significantly reduces this issue. While our simple fix appears to effectively decorrelate the inversion latents, in the following sections, we showcase the consequences of the divergence between noise and latents in several practical use cases.

4.1 INTERPOLATION QUALITY

We start with the task of image interpolation, where the goal, for two given images, is to generate a sequence of semantically meaningful intermediary frames. Numerous methods (Dhariwal & Nichol, 2021; Song et al., 2021; Samuel et al., 2023; Zheng et al., 2024; Zhang et al., 2024b; Bodin et al., 2025) Diffusion Models with DDIM inversion technique, to calculate latents, interpolate them, and reconstruct the target image. Song et al. (2021) propose to use the spherical linear interpolation (SLERP, Shoemake (1985)), that, for two objects x and y , with a coefficient $\lambda \in [0; 1]$, is defined as $z^{(\lambda)} = \frac{\sin(1-\lambda)\theta}{\sin\theta}x + \frac{\sin\lambda\theta}{\sin\theta}y$, where $\theta = \arccos((x \cdot y) / (\|x\| \|y\|))$.

In our experiment, we compare the quality of interpolations in the noise and latent spaces. To this end, we sample $N = 20k$ noises, use DDIM with $T = 50$ diffusion steps to generate images, and invert those images back into their latents. Next, we randomly assign pairs, which we interpolate with SLERP for $\lambda \in \{0, \frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}, 1\}$ and denoise. In Fig. 5, we show that, by calculating FID-10k, generations starting from interpolations between random noises (in orange) preserve consistent

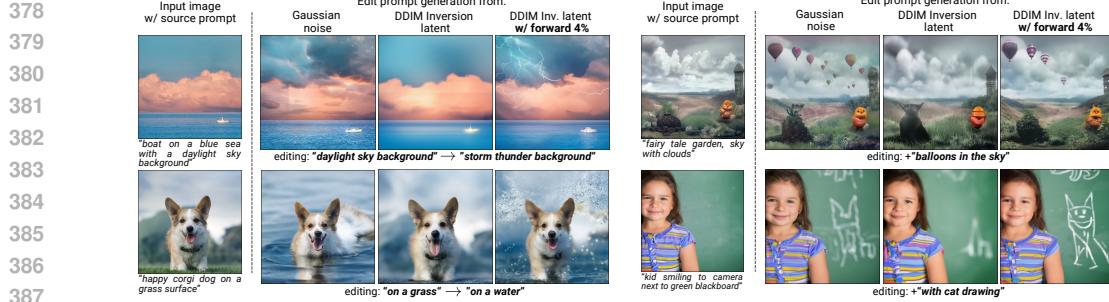


Figure 6: **Image editing by reversing the original image with a source prompt and reconstructing it with a target one.** DDIM Inversion produces less diverse image changes when the manipulation is related to plain regions in source images, contrary to when using ground-truth Gaussian noise. Replacing the first inversion steps with forward diffusion leads to more editable latents.

quality along the entire path – meaning that all interpolated images fall into the real images manifold. In contrast, this property collapses for the setting with DDIM latents as inputs (in purple). In the following rows, we show that worse interpolation results for latents stem from the decline in the variety of produced generations, as indicated by a lower recall (Kynkänniemi et al., 2019), especially when getting closer to the middle of the interpolation path. Nevertheless, as presented in Fig. 5, using our fix for the first 4% of steps mitigates this issue, enabling higher-quality interpolations with better diversity of the intermediate points. In Appendix O.1, we present qualitatively that the proposed fix leads to more diverse interpolations, especially in the image background.

4.2 DIVERSITY AND QUALITY OF IMAGE EDITION

Apart from image interpolations, text-to-image diffusion models with DDIM inversion are often used for text-based edition, where a source image is first inverted and then reconstructed with a different target prompt (Hertz et al., 2022; Mokady et al., 2023; Garibi et al., 2024; Huberman-Spiegelglas et al., 2024). However, knowing that DDIM latents are less diverse in plain areas, we hypothesize that using them as a starting point might reduce the diversity and quality of the edited samples. To evaluate this, we use DiT (Peebles & Xie, 2023) and IF (StabilityAI, 2023) as conditional DMs with $T = 50$ diffusion steps. For each model, we construct two sets of 1280 randomly selected (1) source prompts P_S , used during the generation and inversion, and (2) target prompts P_T , used for edition. Using source prompts P_S , we generate images I_S from Gaussian noise \mathbf{x}_T and invert them back into the latents $\hat{\mathbf{x}}_T$. Next, we regenerate images \hat{I}_T from the latents, changing the conditioning to the target prompts P_T . We compare the edits with ground truth targets I_T generated from the original noise \mathbf{x}_T with P_T . In Fig. 6, we present the drawback of leveraging latents as starting points for the denoising, where the structures for I_S images’ backgrounds limit editing performance in \hat{I}_T target images.

In Table 6, we quantitatively measure this effect. First, we calculate the diversity of target generations (I_T, \hat{I}_T) against source images (I_S). We use DreamSim distance (Fu et al., 2023), LPIPS (Zhang et al., 2018), SSIM (Wang et al., 2004), and cosine similarity of DINO features (Darcel et al., 2024) to measure the distance between two sets of generations. The experiment shows that edits resulting from latent encodings \hat{I}_T are characterized by higher similarity (SSIM, DINO) and lower diversity (DreamSim, LPIPS) relative to starting images I_S than the one resulting from noises I_T . At the same time, in the bottom rows of Table 6, we show that the correlations occurring in the latent encodings induce lower performance in text-alignment to target prompts P_T , which we measure by calculating cosine similarity between text embeddings and resulting image embeddings, both obtained with the CLIP (Radford et al., 2021) encoder. Additionally, to better assess image editing quality, we use directional CLIP similarity (Gal et al., 2022).

Property	Metric	DiT		Deepfloyd IF	
		Noise \mathbf{x}_T	Latent $\hat{\mathbf{x}}_T$	Noise \mathbf{x}_T	Latent $\hat{\mathbf{x}}_T$
Diversity against I_S	DreamSim \uparrow	0.71 \pm 0.12	0.68 \pm 0.13	0.67 \pm 0.10	0.61 \pm 0.11
	LPIPS \uparrow	0.59 \pm 0.12	0.56 \pm 0.12	0.38 \pm 0.11	0.33 \pm 0.11
	SSIM \downarrow	0.23 \pm 0.13	0.26 \pm 0.14	0.34 \pm 0.15	0.41 \pm 0.15
	DINO \downarrow	0.17	0.22	0.34	0.42
Text alignment	CLIP-T (P_S) \downarrow	0.465	0.480	0.273	0.353
	CLIP-T (P_T) \uparrow	0.681	0.662	0.649	0.614
	Directional \uparrow	0.570	0.541	0.776	0.676

Table 6: **Diversity of editions (generations from noise \mathbf{x}_T and latents $\hat{\mathbf{x}}_T$, conditioned on target prompt) in relation to source images I_S and their alignment with source, target, and directional prompts.** The arrows ($\uparrow\downarrow$) indicate greater generation diversity and higher text alignment to the target prompt.

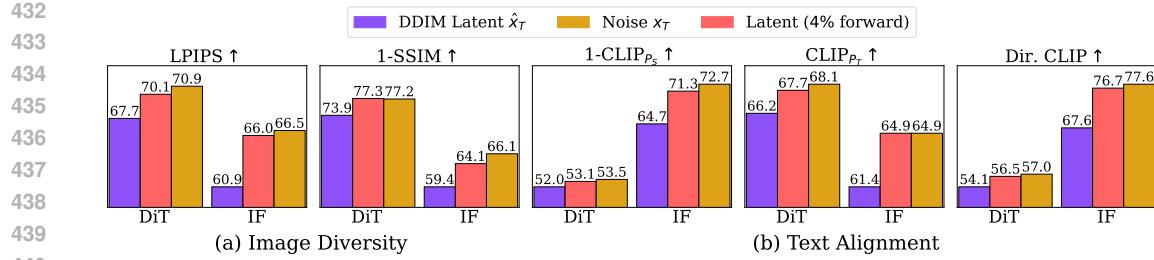


Figure 7: **Replacing first DDIM inversion steps with forward diffusion improves editions’ pixel diversity (a) and prompt-alignment (b).** For IF and DiT models, diversity of generations can be improved by leveraging the forward diffusion process in the first inversion steps, and denoising resulting latents with a different prompt. Additionally, we observe a boost in generations’ alignment to the target prompts, as indicated by the larger Directional CLIP Similarity, larger CLIP-T value for P_T , and the smaller one for P_S . We present details of the experiment in Appendix K.

We further evaluate how replacing the first inversion steps with the forward diffusion affects the diversity and text alignment of generated outputs. As shown in Fig. 7a, swapping the first 4% of DDIM inversion steps with forward diffusion improves the diversity of images generated from latents almost to the level of the samples from original noise. At the same time, as presented in Fig. 7b, replacing the first inversion steps leads to a significant decrease in generations’ alignment to the source prompt (P_S) and an increase in similarity to the target one (P_T). This can also be observed in visualizations (Fig. 6). Moreover, because of the random noise added as the initial inversion steps, as presented in Appendix O.3, our approach enables stochastic image editing, producing diverse manipulations of the same image.

4.3 DO EXISTING INVERSION METHODS FIX THE CORRELATIONS?

So far, we have demonstrated the issues of the classical DDIM inversion method. In this section, we investigate whether novel inversion methods introduced in prior work resolve the issue of selectively reduced latents’ diversity. We employ the Stable Diffusion XL (Podell et al., 2024) model, and using 2000 generations from COCO-30K prompts, we measure resulting inversions’ normality, editability, and image reconstruction performance. For fair comparison, we use the same number of NFEs. Results in Table 7 indicate that methods based on predicted noise regularization, such as Pix2Pix-Zero (Parmar et al., 2023) and ReNoise (Garibi et al., 2024), while slightly improving the latents’ quality, do not offer significantly better editability, while being two times slower than DDIM. On the other hand, replacing DDIM approximation (Eq. (3)) with reverse DPMsolver (Lu et al., 2022) leads to decorrelated latents at the cost of high image reconstruction error. We show that our fix offers the best editability of latents with minimal reconstruction loss, all at the lowest computational cost. To be more precise, thanks to the fact that selected inversions steps replaced with the randomly sampled noise are the least important in terms of accurate reconstruction, we can observe no increase in the reconstruction error when replacing 2% of forward steps (up to the 2nd decimal point of MAE), while for 4% of steps the additional error is around 1% of pixel deviations - a value below the threshold usually employed by adversarial attacks as being not noticeable by a human eye (Madry et al., 2017). This replacement percentage allows us to navigate the trade-off between reconstruction fidelity and latent manipulability.

Prior	NFE	Normality		Image Reconstruction			CLIP Text Alignment			Inv. time [s/image] \downarrow
		Corr. \downarrow	KL \downarrow	MAE \downarrow	LPIPS \downarrow	PSNR \uparrow	Source \downarrow	Target \uparrow	Direct. \uparrow	
Gaussian Noise	—	0.08 \pm .01	0.10	—	—	—	31.88 \pm 11.66	73.34 \pm 9.65	80.62 \pm 16.96	—
DDIM Inv.	50	0.16 \pm .02	0.89	0.03	0.10 \pm .05	27.58	34.99 \pm 11.36	69.58 \pm 10.17	75.59 \pm 17.86	7.17 \pm .01
Pix2Pix-Zero	50	0.19 \pm .02	0.85	0.03	0.10 \pm .05	27.35	34.86 \pm 11.39	69.73 \pm 10.12	75.83 \pm 17.87	22.07 \pm 1.84
ReNoise (T=50, K=1)	50	0.14 \pm .02	0.73	0.04	0.09 \pm .05	25.64	34.89 \pm 11.46	69.87 \pm 10.07	76.47 \pm 18.12	19.86 \pm .22
ReNoise (T=25, K=2)	50	0.14 \pm .02	0.59	0.04	0.09 \pm .04	24.81	35.21 \pm 11.61	69.68 \pm 10.09	76.17 \pm 18.15	15.36 \pm .51
ReNoise (T=17, K=3)	51	0.13 \pm .02	0.47	0.06	0.13 \pm .05	22.35	35.79 \pm 11.65	69.04 \pm 9.98	75.20 \pm 17.96	14.31 \pm .49
DPMsolver-1 (T=50)	50	0.09 \pm .01	0.50	0.06	0.30 \pm .10	22.55	34.81 \pm 11.40	70.26 \pm 10.42	74.76 \pm 18.02	7.06 \pm .00
DPMsolver-2 (T=25)	50	0.09 \pm .01	0.26	0.06	0.14 \pm .07	24.76	34.69 \pm 11.55	71.24 \pm 9.91	76.17 \pm 18.10	7.06 \pm .00
Ours (forward 2%)	49	0.14 \pm .02	0.71	0.03	0.10 \pm .05	27.12	34.32 \pm 11.49	70.21 \pm 10.13	76.76 \pm 17.79	7.00 \pm .00
Ours (forward 4%)	48	0.09 \pm .01	0.38	0.04	0.14 \pm .04	25.68	33.62 \pm 11.63	72.17 \pm 9.94	78.91 \pm 17.49	6.86 \pm .01

Table 7: **Evaluation of inversion methods across multiple metrics: latents normality, image reconstruction, prompt alignment, and speed.** DDIM with the proposed fix offers a good trade-off between latent editability and image reconstruction, while increasing the inversion speed.

486 4.4 IMPROVING STATE-OF-THE-ART EDITING ENGINES WITH OUR FIX
487

488 Finally, we evaluate the possibility of combining our simple fix with existing methods designed for
489 real image manipulation. We adapt StyleAligned (Hertz et al., 2024), the state-of-the-art method for
490 transferring a style from a reference image to new generations, and MasaCtrl (Cao et al., 2023), a
491 complex editing engine for text-based real image editing. As these methods employ Naïve DDIM
492 Inversion to find starting noise for input images, we can directly apply our simple fix to those tech-
493 niques, without changing their generation procedure.

Inversion Method	CLIP Prompt Alignment \uparrow	Set Consistency (DINO) \uparrow	Set Consistency (CSD) \uparrow	Style Similarity (DINO) \uparrow	Style Similarity (CSD) \uparrow
Naive DDIM	0.795	0.476	0.552	0.505	0.690
Ours (forward 4%)	0.795	0.471	0.554	0.510	0.697

498 Table 8: **Style transfer from reference image with StyleAligned (Hertz et al., 2024) incorporat-
499 ing Naïve DDIM Inversion and version with our fix.** Our fix improves similarity to input style.

500 We evaluate style transfer by measuring generations’ alignment to the prompt, set consistency (pair-
501 wise cosine similarities of DINO (Darcet et al., 2024) and CSD (Somepalli et al., 2025) embed-
502 dings), and style consistency to the reference image (DINO and CSD embeddings cosine similar-
503 ity). The Table 8 compares the performance of vanilla StyleAligned and the version with our fix in
504 style transfer from StyleDrop (Sohn et al., 2023) images. As presented, our approach improves the
505 alignment with the target style. Additionally, in Fig. 8, we present a qualitative comparison of both
506 inversion algorithms when combined with StyleAligned (1) for style transfer and MasaCtrl (2) for
507 real image editing. More examples can be found in Appendices O.4 and O.5.



519 Figure 8: **DDIM Inversion with our fix, when merged to popular image manipulation engines,**
520 **improves (1) style transfer with StyleAligned and (2) image editing with MasaCtrl.** We use real
521 images from, accordingly, StyleDrop (Sohn et al., 2023) and PIEBench (Ju et al., 2024) benchmarks.

522 5 CONCLUSIONS
523

534 This work demonstrates that DDIM inversion errors cause latent representations to systematically
535 deviate from a Gaussian distribution, particularly in smooth regions of the source image. We trace
536 this to high inversion error and insufficiently diverse noise during the early noising steps, and demon-
537 strate that this divergence degrades the quality of image editing and interpolation. We propose a sim-
538 ple fix by replacing initial inversion steps with forward diffusion, which successfully decorrelates
539 the latents and significantly improves sample quality in practical applications.

540 REFERENCES
541

- 542 Omri Avrahami, Or Patashnik, Ohad Fried, Egor Nemchinov, Kfir Aberman, Dani Lischinski, and
543 Daniel Cohen-Or. Stable flow: Vital layers for training-free image editing. In *Proceedings of the*
544 *Computer Vision and Pattern Recognition Conference*, pp. 7877–7888, 2025.
- 545 Erik Bodin, Alexandru I Stere, Dragos D Margineantu, Carl Henrik Ek, and Henry Moss. Linear
546 combinations of latents in generative models: subspaces and beyond. In *The Thirteenth Interna-*
547 *tional Conference on Learning Representations*, 2025.
- 549 Manuel Brack, Felix Friedrich, Katharina Kornmeier, Linoy Tsaban, Patrick Schramowski, Kristian
550 Kersting, and Apolinário Passos. Ledits++: Limitless image editing using text-to-image models.
551 *CVPR*, 2024.
- 552 Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yinjiang Zheng. Mas-
553 actrl: Tuning-free mutual self-attention control for consistent image synthesis and editing. In
554 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 22560–22570,
555 2023.
- 557 Duygu Ceylan, Chun-Hao P. Huang, and Niloy J. Mitra. Pix2video: Video edit-
558 ing using image diffusion. In *Proceedings of the IEEE/CVF International Confer-*
559 *ence on Computer Vision (ICCV)*, pp. 23206–23217, October 2023. URL https://openaccess.thecvf.com/content/ICCV2023/html/Ceylan_Pix2Video_Video_Editing_using_Image_Diffusion_ICCV_2023_paper.html.
- 562 Hansam Cho, Jonghyun Lee, Seoung Bum Kim, Tae-Hyun Oh, and Yonghyun Jeong. Noise map
563 guidance: Inversion with spatial context for real image editing. In *The Twelfth Interna-*
564 *tional Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=mhgm0IXtHw>.
- 567 Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
568 registers. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vi-*
569 *enna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=2dn03LLiJ1>.
- 572 Kamil Deja, Anna Kuzina, Tomasz Trzcinski, and Jakub Tomczak. On analyzing generative and
573 denoising capabilities of diffusion-based deep generative models. *Advances in Neural Information*
574 *Processing Systems*, 35:26218–26229, 2022.
- 575 Kamil Deja, Georgi Tinchev, Marta Czarnowska, Marius Cotescu, and Jasha
576 Droppo. Diffusion-based accent modelling in speech synthesis. In *Interspeech*
577 2023, 2023. URL <https://www.amazon.science/publications/diffusion-based-accent-modelling-in-speech-synthesis>.
- 580 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. *Ad-*
581 *vances in Neural Information Processing Systems*, 34, 2021.
- 583 Wenkai Dong, Song Xue, Xiaoyue Duan, and Shumin Han. Prompt tuning inversion for text-driven
584 image editing using diffusion models. In *Proceedings of the IEEE/CVF International Conference*
585 *on Computer Vision*, pp. 7430–7440, 2023.
- 586 Benedikt Fesl, Benedikt Böck, Florian Strasser, Michael Baur, Michael Joham, and Wolfgang
587 Utschick. On the asymptotic mean square error optimality of diffusion models. In *The*
588 *28th International Conference on Artificial Intelligence and Statistics*, 2025. URL <https://openreview.net/forum?id=XrX1AYFpvR>.
- 591 Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and
592 Phillip Isola. Dreamsim: Learning new dimensions of human visual similarity using synthetic
593 data. In *Advances in Neural Information Processing Systems*, volume 36, pp. 50742–50768,
2023.

- 594 Rinon Gal, Or Patashnik, Haggai Maron, Amit H. Bermano, Gal Chechik, and Daniel Cohen-Or.
 595 Stylegan-nada: Clip-guided domain adaptation of image generators. *ACM Trans. Graph.*, 41(4),
 596 July 2022. ISSN 0730-0301. doi: 10.1145/3528223.3530164. URL <https://doi.org/10.1145/3528223.3530164>.
- 598 Daniel Garibi, Or Patashnik, Andrey Voynov, Hadar Averbuch-Elor, and Daniel Cohen-Or. Renoise:
 599 Real image inversion through iterative noising. In *European Conference on Computer Vision*, pp.
 600 395–413. Springer, 2024.
- 602 Ligong Han, Song Wen, Qi Chen, Zhixing Zhang, Kunpeng Song, Mengwei Ren, Ruijiang Gao,
 603 Anastasis Stathopoulos, Xiaoxiao He, Yuxiao Chen, et al. Proxedit: Improving tuning-free real
 604 image editing with proximal guidance. In *Proceedings of the IEEE/CVF Winter Conference on*
 605 *Applications of Computer Vision*, pp. 4291–4301, 2024.
- 606 Amir Hertz, Ron Mokady, J. Tenenbaum, Kfir Aberman, Y. Pritch, and D. Cohen-Or. Prompt-to-
 607 prompt image editing with cross attention control. *International Conference on Learning Repre-*
 608 *sentations*, 2022. doi: 10.48550/arXiv.2208.01626.
- 609 Amir Hertz, Andrey Voynov, Shlomi Fruchter, and Daniel Cohen-Or. Style aligned image generation
 610 via shared attention. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 611 *Recognition*, pp. 4775–4785, 2024.
- 613 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS 2021 Workshop on*
 614 *Deep Generative Models and Downstream Applications*, 2021. URL <https://openreview.net/forum?id=qw8AKxfYbI>.
- 616 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
 617 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-*
 618 *ral Information Processing Systems*, volume 33, pp. 6840–6851. Curran Associates, Inc.,
 619 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.
- 621 Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
 622 Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
 623 video generation with diffusion models. *arXiv preprint arXiv:2210.02303*, 2022.
- 625 Seongmin Hong, Kyeonghyun Lee, Suh Yoon Jeon, Hyewon Bae, and Se Young Chun. On exact
 626 inversion of dpm-solvers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 627 *Pattern Recognition*, pp. 7069–7078, 2024.
- 628 Inbar Huberman-Spiegelglas, Vladimir Kulikov, and Tomer Michaeli. An edit friendly ddpm noise
 629 space: Inversion and manipulations. In *Proceedings of the IEEE/CVF Conference on Computer*
 630 *Vision and Pattern Recognition*, pp. 12469–12478, 2024.
- 631 Xuan Ju, Ailing Zeng, Yuxuan Bian, Shaoteng Liu, and Qiang Xu. Pnp inversion: Boosting
 632 diffusion-based editing with 3 lines of code. In *The Twelfth International Conference on Learning*
 633 *Representations*, 2024. URL <https://openreview.net/forum?id=FoMZ41jhVw>.
- 635 Zahra Kadkhodaie, Florentin Guth, Eero P. Simoncelli, and Stéphane Mallat. Generalization in
 636 diffusion models arises from geometry-adaptive harmonic representations. In *The Twelfth Inter-*
 637 *national Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*.
 638 OpenReview.net, 2024. URL <https://openreview.net/forum?id=ANvmVS2Yr0>.
- 639 Valentin Khrulkov and I. Oseledets. Understanding ddpm latent codes through optimal transport.
 640 *International Conference on Learning Representations*, 2022. URL <https://arxiv.org/abs/2202.07477v2>.
- 642 Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion models
 643 for robust image manipulation. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 644 *and Pattern Recognition (CVPR)*, pp. 2426–2435, June 2022a.
- 646 Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion models
 647 for robust image manipulation. In *Proceedings of the IEEE/CVF conference on computer vision*
 and pattern recognition, pp. 2426–2435, 2022b.

- 648 Young-Heon Kim and E. Milman. A generalization of caffarelli’s contraction theorem via (reverse)
 649 heat flow. *Mathematische Annalen*, 2011. doi: 10.1007/s00208-011-0749-x.
- 650
- 651 Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In *International Conference*
 652 *on Learning Representations*, 2014.
- 653 Vladimir Kulikov, Matan Kleiner, Inbar Huberman-Spiegelglas, and Tomer Michaeli. Flowedit:
 654 Inversion-free text-based editing using pre-trained flow models. In *Proceedings of the IEEE/CVF*
 655 *International Conference on Computer Vision (ICCV)*, pp. 19721–19730, October 2025.
- 656
- 657 Tuomas Kynkänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
 658 precision and recall metric for assessing generative models. *Advances in neural information*
 659 *processing systems*, 32, 2019.
- 660 Black Forest Labs. Flux.1, 2024. URL <https://blackforestlabs.ai/announcing-black-forest-labs/>.
- 661
- 662 Hugo Lavenant and Filippo Santambrogio. The flow map of the fokker–planck equation does not
 663 provide optimal transport. *Applied Mathematics Letters*, 133:108225, 2022. ISSN 0893-9659.
 664 doi: <https://doi.org/10.1016/j.aml.2022.108225>. URL <https://www.sciencedirect.com/science/article/pii/S089396592200180X>.
- 665
- 666 Sangyun Lee, Beomsu Kim, and Jong Chul Ye. Minimizing trajectory curvature of ode-based gen-
 667 erative models. In *International Conference on Machine Learning*, pp. 18957–18973. PMLR,
 668 2023.
- 669
- 670 Marvin Li and Sitan Chen. Critical windows: non-asymptotic theory for feature emergence in
 671 diffusion models. In *Forty-first International Conference on Machine Learning*, 2024. URL
 672 <https://openreview.net/forum?id=a8ZpjLJuKk>.
- 673
- 674 Xianhang Li, Haoqin Tu, Mude Hui, Zeyu Wang, Bingchen Zhao, Junfei Xiao, Sucheng Ren, Jieru
 675 Mei, Qing Liu, Huangjie Zheng, Yuyin Zhou, and Cihang Xie. What if we recaption billions of
 676 web images with LLaMA-3? In *Forty-second International Conference on Machine Learning*,
 677 2025. URL <https://openreview.net/forum?id=Hntp7s2Yff>.
- 678
- 679 Haonan Lin, Mengmeng Wang, Jiahao Wang, Wenbin An, Yan Chen, Yong Liu, Feng Tian, Guang
 680 Dai, Jingdong Wang, and Qianying Wang. Schedule your edit: A simple yet effective diffusion
 681 noise schedule for image editing. *Neural Information Processing Systems*, 2024. doi: 10.48550/
 arXiv.2410.18756.
- 682
- 683 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 684 matching for generative modeling. In *The Eleventh International Conference on Learning Repre-
 685 sentations*, 2023. URL <https://openreview.net/forum?id=PqvMRDCJT9t>.
- 686
- 687 Haozhe Liu, Wentian Zhang, Jinheng Xie, Francesco Faccio, Mengmeng Xu, Tao Xiang,
 688 Mike Zheng Shou, Juan-Manuel Perez-Rua, and Jürgen Schmidhuber. Faster diffusion through
 689 temporal attention decomposition. *Transactions on Machine Learning Research*, 2025. ISSN
 2835-8856. URL <https://openreview.net/forum?id=xXs2GKXPnH>.
- 690
- 691 Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. Diffssinger: Singing voice synthesis
 692 via shallow diffusion mechanism. *AAAI Conference on Artificial Intelligence*, 2021. doi: 10.
 1609/aaai.v36i10.21350.
- 693
- 694 Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and
 695 transfer data with rectified flow. In *The Eleventh International Conference on Learning Repre-
 696 sentations*, 2023. URL <https://openreview.net/forum?id=XVjTT1nw5z>.
- 697
- 698 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 699 ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in neural*
information processing systems, 35:5775–5787, 2022.
- 700
- 701 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 702 Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*,
 2017.

- 702 Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
 703 Sdedit: Guided image synthesis and editing with stochastic differential equations. In *The Tenth*
 704 *International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,*
 705 *2022*. OpenReview.net, 2022. URL https://openreview.net/forum?id=aBsCjcPu_tE.
- 706
- 707 Daiki Miyake, Akihiro Iohara, Yu Saito, and Toshiyuki Tanaka. Negative-prompt inversion: Fast
 708 image inversion for editing with text-guided diffusion models. *arXiv preprint arXiv: 2305.16807*,
 709 2023.
- 710
- 711 Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion
 712 for editing real images using guided diffusion models. In *Proceedings of the IEEE/CVF*
 713 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 6038–6047, June
 714 2023. URL https://openaccess.thecvf.com/content/CVPR2023/html/Mokady_NULL-Text_Inversion_for_Editing_Real_Images_Using_Guided_Diffusion_Models_CVPR_2023_paper.html.
- 715
- 716
- 717 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 718 In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021.
- 719
- 720 Zhihong Pan, Riccardo Gherardi, Xiufeng Xie, and Stephen Huang. Effective real image editing
 721 with accelerated iterative diffusion inversion. In *Proceedings of the IEEE/CVF International*
 722 *Conference on Computer Vision (ICCV)*, pp. 15912–15921, October 2023.
- 723
- 724 Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, and Jun-Yan Zhu.
 725 Zero-shot image-to-image translation. In *ACM SIGGRAPH 2023 Conference Proceedings*, pp.
 726 1–11, 2023.
- 727
- 728 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 729 *the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 4195–4205, October
 730 2023.
- 731
- 732 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 733 Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
 734 synthesis. In *The Twelfth International Conference on Learning Representations*, 2024. URL
<https://openreview.net/forum?id=di52zR8xgf>.
- 735
- 736 Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov. Grad-
 737 tts: A diffusion probabilistic model for text-to-speech. In *International Conference on Machine*
 738 *Learning*, pp. 8599–8608. PMLR, 2021.
- 739
- 740 Alec Radford, Jong Wook Kim, Chris Hallacy, A. Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
 741 Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 742 Learning transferable visual models from natural language supervision. In *ICML*, 2021.
- 743
- 744 Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and B. Ommer. High-resolution
 745 image synthesis with latent diffusion models. *Computer Vision and Pattern Recognition*, 2021.
 doi: 10.1109/CVPR52688.2022.01042.
- 746
- 747 Litu Rout, Yujia Chen, Nataniel Ruiz, Constantine Caramanis, Sanjay Shakkottai, and Wen-Sheng
 748 Chu. Semantic image inversion and editing using rectified stochastic differential equations. In
 749 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=Hu0FSOSEyS>.
- 750
- 751 Dvir Samuel, Rami Ben-Ari, Nir Darshan, Haggai Maron, and Gal Chechik. Norm-guided latent
 752 space exploration for text-to-image generation. *Advances in Neural Information Processing Systems*,
 753 36:57863–57875, 2023.
- 754
- 755 Dvir Samuel, Barak Meiri, Haggai Maron, Yoad Tewel, Nir Darshan, Shai Avidan, Gal Chechik, and
 Rami Ben-Ari. Lightning-fast image inversion and editing for text-to-image diffusion models. In
 756 *The Thirteenth International Conference on Learning Representations*, 2025.

- 756 Ken Shoemake. Animating rotation with quaternion curves. In *Proceedings of the 12th Annual*
 757 *Conference on Computer Graphics and Interactive Techniques*, SIGGRAPH '85, pp. 245–254,
 758 New York, NY, USA, 1985. Association for Computing Machinery. ISBN 0897911660. doi:
 759 10.1145/325334.325242. URL <https://doi.org/10.1145/325334.325242>.
- 760 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 761 learning using nonequilibrium thermodynamics. In *International Conference on Machine Learn-*
 762 *ing*, pp. 2256–2265. PMLR, 2015.
- 763 Kihyuk Sohn, Nataniel Ruiz, Kimin Lee, Daniel Castro Chin, Irina Blok, Huiwen Chang, Jarred
 764 Barber, Lu Jiang, Glenn Entis, Yuanzhen Li, Yuan Hao, Irfan Essa, Michael Rubinstein, and
 765 Dilip Krishnan. Styledrop: text-to-image generation in any style. In *Proceedings of the 37th*
 766 *International Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY,
 767 USA, 2023. Curran Associates Inc.
- 768 Gowthami Somepalli, Anubhav Gupta, Kamal Gupta, Shramay Palta, Micah Goldblum, Jonas Geip-
 769 ing, Abhinav Shrivastava, and Tom Goldstein. Investigating style similarity in diffusion mod-
 770 els. In *Computer Vision – ECCV 2024*, pp. 143–160, Cham, 2025. Springer Nature Switzerland.
 771 ISBN 978-3-031-72848-8. URL https://link.springer.com/chapter/10.1007/978-3-031-72848-8_9#citeas.
- 772 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Inter-
 773 national Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=St1giarCHLP>.
- 774 StabilityAI. DeepFloyd IF: a novel state-of-the-art open-source text-to-image model with a high de-
 775 gree of photorealism and language understanding. <https://github.com/deep-floyd/IF>, 2023. Retrieved on 2023-04-17.
- 776 Xu Su, Jiaming Song, Chenlin Meng, and Stefano Ermon. Dual diffusion implicit bridges for image-
 777 to-image translation. *International Conference on Learning Representations*, 2022. doi: 10.48550/arXiv.2203.08382.
- 778 Chuanming Tang, Kai Wang, and Joost van de Weijer. IterInv: Iterative Inversion for Pixel-
 779 Level T2I Models . In *2024 IEEE International Conference on Multimedia and Expo
 780 (ICME)*, pp. 1–6, Los Alamitos, CA, USA, 2024. IEEE Computer Society. doi: 10.1109/ICME57554.2024.10687547. URL <https://doi.ieee.org/10.1109/ICME57554.2024.10687547>.
- 781 Bram Wallace, Akash Gokul, and Nikhil Naik. Edict: Exact diffusion inversion via coupled trans-
 782 formations. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 783 nition*, pp. 22532–22541, 2023.
- 784 Fangyikang Wang, Hubery Yin, Yuejiang Dong, Huminhao Zhu, Chao Zhang, Han Zhao, Hui Qian,
 785 and Chen Li. Belm: Bidirectional explicit linear multi-step sampler for exact inversion in diffusion
 786 models. *Neural Information Processing Systems*, 2024. doi: 10.48550/arXiv.2410.07273.
- 787 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 788 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 789 612, 2004.
- 790 Guanhua Zhang, Jiabao Ji, Yang Zhang, Mo Yu, Tommi S. Jaakkola, and Shiyu Chang. Towards
 791 coherent image inpainting using denoising diffusion implicit models. In Andreas Krause, Emma
 792 Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *In-*
 793 *ternational Conference on Machine Learning*, ICML 2023, 23–29 July 2023, Honolulu, Hawaii,
 794 USA, volume 202 of *Proceedings of Machine Learning Research*, pp. 41164–41193. PMLR,
 795 2023a. URL <https://proceedings.mlr.press/v202/zhang23q.html>.
- 796 Huijie Zhang, Jinfan Zhou, Yifu Lu, Minzhe Guo, Liyue Shen, and Qing Qu. The emergence of
 797 reproducibility and consistency in diffusion models, 2024a. URL <https://openreview.net/forum?id=UkLSvLqiO7>.

- 810 Kaiwen Zhang, Yifan Zhou, Xudong Xu, Bo Dai, and Xingang Pan. Diffmorpher: Unleashing the
811 capability of diffusion models for image morphing. In *Proceedings of the IEEE/CVF Conference*
812 *on Computer Vision and Pattern Recognition*, pp. 7912–7921, 2024b.
- 813
- 814 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
815 effectiveness of deep features as a perceptual metric. In *CVPR*, 2018.
- 816
- 817 Yuechen Zhang, Jinbo Xing, Eric Lo, and Jiaya Jia. Real-world image variation
818 by aligning diffusion inversion chain. In A. Oh, T. Naumann, A. Globerson,
819 K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing
820 Systems*, volume 36, pp. 30641–30661. Curran Associates, Inc., 2023b. URL
821 https://proceedings.neurips.cc/paper_files/paper/2023/file/61960fdfda4d4e95fa1c1f6e64bfe8bc-Paper-Conference.pdf.
- 822
- 823 PengFei Zheng, Yonggang Zhang, Zhen Fang, Tongliang Liu, Defu Lian, and Bo Han. Noisedif-
824 fusion: Correcting noise for image interpolation with diffusion models beyond spherical linear
825 interpolation. In *The Twelfth International Conference on Learning Representations*, 2024.
- 826
- 827
- 828
- 829
- 830
- 831
- 832
- 833
- 834
- 835
- 836
- 837
- 838
- 839
- 840
- 841
- 842
- 843
- 844
- 845
- 846
- 847
- 848
- 849
- 850
- 851
- 852
- 853
- 854
- 855
- 856
- 857
- 858
- 859
- 860
- 861
- 862
- 863

864
865
866
867
868
APPENDIX869
870
871
872
873
874
875
876
877
CONTENTS

A Limitations	19
B LLM Usage	19
C Broader impact	19
D Compute resources	19
E Approximation error in DDIM Inversion	20
F Pseudocode for DDIM Inversion with Forward Diffusion	21
G Most probable triangles	22
G.1 Methodology	22
G.2 Results	22
G.3 Example histograms	23
H Plain surface thresholding	24
I Calculating inversion error	25
J Conditioning for Diffusion Models	26
K Details on diversity and alignment of edition	26
L Noise-to-image mapping	27
L.1 Smallest l_2 mapping	27
L.2 Asymmetry of Noise-to-Image mapping	28
M On Noise-Image-Latent relations during diffusion training	29
M.1 Spatial relations of noise and latents over training time	29
M.2 Image-to-noise distance mapping over training time	29
M.3 Image alignment over training time	30
N Parameter impact analysis	33
N.1 Number of inversion steps	33
N.2 Percentage of inversion steps replaced	35
N.3 Guidance scale	37
O Qualitative examples	39
O.1 Image interpolation	39
O.2 Reconstructions of real images	40
O.3 Stochastic image editing	41
O.4 Real image editing with MasaCtrl	42
O.5 Style transfer with StyleAligned	44
P Latent correlations in Flow Matching models	46

914
915
916
917

918 In the Appendix we first outline the limitations (**A**) of our experiments, LLM usage during writing
919 (**B**), discuss the broader impact (**C**) of this work fix, and list the computational resources (**D**) used.
920 Following, we describe, in detail, the DDIM approximation error (**E**), and the fix we introduce (pseudo-
921 code) in this work (**F**). Next, we describe our experiments: measuring the noise–image–latent
922 triangles (**G**), methodology for identifying plain-regions pixels (**H**) in the image, and computing the
923 inversion error (**I**). In (**J**), we demonstrate how we condition the models and, in (**K**), we present
924 more details on image diversity and prompt alignment during editing. Next, we compare Gaussian
925 noise and DDIM latents in their mappings to images (**L**) and track how these relationships evolve
926 during DM training (**M**). In section (**N**) we discuss impact of different parameters’ values: number
927 of inversion steps used, number of inversion steps replaced with forward diffusion, and impact of
928 guidance scale. In (**O**), we include additional qualitative results for image interpolation, reconstruc-
929 tion, editing, and style transfer. Finally, in section (**P**), we present that the investigated issue with
930 latents correlations’ also exists in Flow Matching models.
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 **A LIMITATIONS**
973

974 In this work, we analyzed the relation between the random noise, image generations and their latent
 975 encodings obtained through DDIM Inversion. While our studies focused on DDIM approximation
 976 error from Song et al. (2021), there exist other solvers and inversion methods, as described in Sec-
 977 tion 2, bringing their own advantages and limitations. The error of DDIM inversion strongly depends
 978 on the number of steps with which it is performed. In particular, performing the process very gran-
 979 ularly, e.g., using $T = 1000$ steps, can result in strong suppression of the correlation. Nevertheless,
 980 the default number of steps we have chosen, i.e., 100, is, according to previous works (Hong et al.,
 981 2024; Garibi et al., 2024; Kim et al., 2022b), a practical choice as a good balance between the recon-
 982 struction error and the speed of the algorithm. In Appendix N.1, we present that the latents exhibit
 983 correlations when using 1000 sampling steps, and that the proposed fix can help also in such case.
 984

985 The observations from our analytical experiments (correlations in Table 2, interpolations in Fig. 5)
 986 generalize well to all tested diffusion models, but are less evident in the LDM model trained on the
 987 CelebA-HQ images. We attribute this exemption to the specificity of the dataset on which the model
 988 was trained - photos with centered human faces, usually with uniform backgrounds. We believe that,
 989 unlike models trained on a larger number of concepts, the process of generating faces with uniform
 990 backgrounds is more stable and introduces little detail in subsequent steps, making the difference in
 991 approximation error for plain and non-plain areas less significant.
 992

993 As mentioned in Section 2, the DDIM inversion error can be detrimental when using a small num-
 994 ber of steps. Even though the solution proposed in this work (involving forward diffusion in first
 995 inversion steps) drastically removes correlations in latents and, thus, improves image interpolation
 996 and editing, it does not improve the numerical inversion error resulting from using small number of
 997 steps. In our experiments with 50 steps that are commonly used for edition, we show no significant
 998 drawbacks. However, in the extreme cases, using our fix in even a single step, might result in the
 999 loss of information necessary for correct image reconstruction, hence it may be then less preferred
 1000 than standard DDIM inversion. In Appendix N.1, we present failure cases for introduced solution.
 1001

1002 **B LLM USAGE**
1003

1004 Throughout the preparation of this manuscript, we employed a large language model (LLM) as a
 1005 writing assistant. Its use was focused on improving the clarity and readability of the text, correcting
 1006 grammar, and refining sentence structure. The authors carefully reviewed, edited, and take full
 1007 responsibility for all content, ensuring the scientific integrity and accuracy of the final paper.
 1008

1009 **C BROADER IMPACT**
1010

1011 As our work is mostly analytical, we do not provide new technologies that might have a significant
 1012 societal impact. However, our solution for improving the accuracy of DDIM inversion has potential
 1013 implications that extend beyond technical advancements in diffusion models. As our fix enables
 1014 more prompt-aligned image editing it could be combined with various editing engines and misused
 1015 to advance image manipulation techniques. The enhanced interpolation quality could make synthetic
 1016 content more convincing and harder to detect. The authors do not endorse using the method for
 1017 deceptive or malicious purposes, and discourage any application that could erode trust or cause
 1018 harm.
 1019

1020 **D COMPUTE RESOURCES**
1021

1022 For the experiments, we used a scientific cluster consisting of 110 nodes with CrayOS operating
 1023 system. Each node is powered by 288 CPU cores, stemming from 4 NVIDIA Grace processors,
 1024 each with 72 cores and a clock speed of 3.1 GHz. The nodes are equipped with substantial memory,
 1025 featuring 480 GB of RAM per node. For GPU acceleration, each node in the cluster consists of 4
 1026 NVIDIA GH200 96GB GPUs with 120 GB of RAM and 72 CPUs per GPU.
 1027

1026 Almost all the experiments we perform are based on performing a sampling process using a diffusion
 1027 model from noise, performing DDIM inversion and, possibly, image reconstruction from the latent,
 1028 where each of these processes takes the same number of steps, hence the same number of GPU-hours
 1029 on average. As our experiments differ in terms of number of sampling steps and images to generate,
 1030 we provide average GPU time **per one sampling step** per batch (with B denoting batch size) for
 1031 each model as following: ADM-32 ($B = 256$): 0.054s, ADM-64 ($B = 128$): 0.093s, ADM-256
 1032 ($B = 64$): 0.901s, LDM ($B = 128$): 0.273s, DiT ($B = 128$): 0.104s, IF ($B = 64$): 0.609s. Note
 1033 that some experiments, such as analyzing inversion approximation errors per step (Fig. 4) or sam-
 1034 pling from noise interpolations (Fig. 5), involves performing the procedures several times. Taking
 1035 into consideration all the experiments described in the main text of this work, fully reproducing them
 1036 takes roughly 110 GPU hours. However, considering the prototyping time, preliminary and failed
 1037 experiments, as well as the fact that most of the experiments must be performed sequentially (e.g.,
 1038 inversion after image generation, image reconstruction after inversion), the overall execution time
 1039 of the entire research project is multiple times longer.

E APPROXIMATION ERROR IN DDIM INVERSION

1043 Denoising Diffusion Probabilistic Models (DDPMs, Ho et al. (2020)) generate samples by reversing
 1044 the forward diffusion process, modeled as a Markov Chain, where a clean image x_0 is progressively
 1045 transformed to white Gaussian noise x_T in T diffusion steps. A partially noised image x_t , which
 1046 serves as an intermediate object in this process, is expressed as $x_t = \sqrt{\bar{\alpha}_t}x_0 + \sqrt{1 - \bar{\alpha}_t}\epsilon_t$ where
 1047 $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$, $\alpha_t = 1 - \beta_t$, $\epsilon_t \sim \mathcal{N}(0, \mathcal{I})$, and $\{\beta_t\}_{t=1}^T$ is a variance schedule, controlling how
 1048 much of the noise is contained in the image at the specific step t .

1049 To enable sampling clean images from clean Gaussian noises, the neural network ϵ_θ is trained to
 1050 predict the noise added to a clean image x_0 for a given intermediate image x_t . Such a trained model
 1051 is further utilized in the backward diffusion process by iteratively transferring a more noisy image
 1052 (x_t) to the less noisy one (x_{t-1}) as

$$1053 \quad x_{t-1} = \frac{1}{\sqrt{\bar{\alpha}_t}} \left(x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta^{(t)}(x_t) \right) + \sigma_t z, \quad (6)$$

1056 with $z \sim \mathcal{N}(0, \mathcal{I})$ being a noise portion added back for denoising controlled by $\sigma_t =$
 1057 $\sqrt{\beta_t(1 - \bar{\alpha}_{t-1})/(1 - \bar{\alpha}_t)}$.

1058 Song et al. (2021) reformulate the diffusion process as a non-Markovian, which leads to a speed-
 1059 up of the sampling process. While previously obtaining a less noisy image at x_t required all past
 1060 denoising steps from T till $(t+1)$, this approach allows skipping some steps during sampling. More
 1061 precisely, the backward diffusion process is defined as a combination of predictions of image x_0 ,
 1062 next denoising step x_t , and random noise (with $\sigma_t = \eta \sqrt{\beta_t(1 - \bar{\alpha}_{t-1})/(1 - \bar{\alpha}_t)}$ and $z_t \sim \mathcal{N}(0, \mathcal{I})$):
 1063

$$1064 \quad x_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \left(\frac{x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta^{(t)}(x_t)}{\sqrt{\bar{\alpha}_t}} \right) + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \cdot \epsilon_\theta^{(t)}(x_t) + \sigma_t z_t. \quad (7)$$

1067 While setting $\eta = 1$ makes Eq. (7) equivalent to Eq. (6), leading to a Markovian probabilistic
 1068 diffusion model, setting $\eta = 0$ removes the random component from the equation, making it a
 1069 Denoising Diffusion Implicit Model (DDIM), which prominent ability is to perform a deterministic
 1070 mapping from given noise (x_T) to image (x_0). One of the potential benefits of implicit models is the
 1071 possibility of reversing the backward diffusion process to transfer images back to the original noise.
 1072 Operating in such a space by modifying resulting inversions unlocks numerous image manipulation
 1073 capabilities, i.a., image editing (Hertz et al., 2022; Mokady et al., 2023; Huberman-Spiegelglas
 1074 et al., 2024; Parmar et al., 2023; Rout et al., 2025; Miyake et al., 2023; Brack et al., 2024; Tang
 1075 et al., 2024; Hong et al., 2024; Wallace et al., 2023; Samuel et al., 2025; Garibi et al., 2024; Pan
 1076 et al., 2023; Dong et al., 2023), image interpolation (Zheng et al., 2024; Zhang et al., 2024b; Samuel
 1077 et al., 2023; Dhariwal & Nichol, 2021), or stroke-to-image synthesis (Meng et al., 2022; Rout et al.,
 1078 2025). The inversion process can be derived from Eq. (7), leading to the formula for transferring a
 1079 less noisy image x_{t-1} to a more noisy one x_t :

$$x_t = \sqrt{\alpha_t}x_{t-1} + (\sqrt{1 - \bar{\alpha}_t} - \sqrt{\alpha_t - \bar{\alpha}_t}) \cdot \epsilon_\theta^{(t)}(x_t) \quad (8)$$

Unfortunately, a perfect image-to-noise inversion is infeasible. Due to circular dependency on x_t within Eq. (8), Dhariwal & Nichol (2021) propose to approximate this equation by assuming that the model’s prediction in t -th step for x_t is locally equivalent to the decision for x_{t-1} : $\epsilon_\theta^{(t)}(x_t) \approx \epsilon_\theta^{(t)}(x_{t-1})$. The inverted trajectory is determined in multiple steps. Hence, the error propagates further away from the image, leading to the latents that significantly deviate from the starting noise. This flaw is presented in Fig. 9.

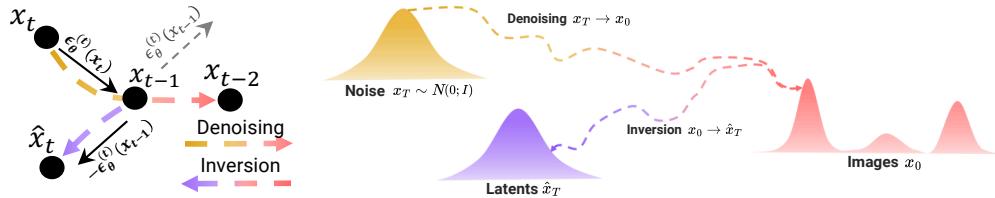


Figure 9: The DDIM inversion error, derived from approximating DM’s prediction for x_t with the output for x_{t-1} (left), propagates with the next inversion steps, leading to a distribution of latents \hat{x}^T that deviates significantly from the expected noise distribution x^T (right).

F PSEUDOCODE FOR DDIM INVERSION WITH FORWARD DIFFUSION

We present in Algorithm 1 the pseudocode for the proposed solution to the decorrelation of latent encodings by replacing the first t' inversion steps with a forward diffusion process. In Appendices N.1 to N.3, we analyze sensitivity of this fix – how it performs for: different number of inversion steps T (Appendix N.1), different percentage of inversion steps replaced with forward diffusion f (Appendix N.2), and when classifier-free guidance is applied (Appendix N.3).

Algorithm 1 Finding decorrelated DDIM latent encoding \hat{x}_T

Require: image x_0 ; diffusion model ϵ_θ ; noise schedules $\{\alpha_t\}_{t=1}^T$, $\{\bar{\alpha}_t\}_{t=1}^T$; number of inversion steps T ; forward-replacement timestep f
Ensure: decorrelated latent encoding \hat{x}_T

- 1: sample $\tilde{\epsilon} \sim \mathcal{N}(0, \mathcal{I})$
- 2: $\hat{x}_f \leftarrow \sqrt{\alpha_f} \cdot x_0 + \sqrt{1 - \bar{\alpha}_f} \cdot \tilde{\epsilon}$ ▷ forward diffusion
- 3: **for** $t \leftarrow f + 1, \dots, T$ **do**
- 4: $\hat{x}_t \leftarrow \sqrt{\alpha_t} \cdot \hat{x}_{t-1} + (\sqrt{1 - \bar{\alpha}_t} - \sqrt{\alpha_t}) \cdot \epsilon_\theta^{(t)}(\hat{x}_{t-1})$ ▷ DDIM Inversion step
- 5: **end for**
- 6: **return** \hat{x}_T

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134 **G MOST PROBABLE TRIANGLES**
11351136 In Section 3.2, we analyze where the latent encodings are distributed in relation to the initial noise
1137 and generated samples. Here, we determine the most probable angles formed by noises \mathbf{x}_T , samples
1138 \mathbf{x}_0 , and latents $\hat{\mathbf{x}}_T$ for each model.
11391140 **G.1 METHODOLOGY**
11411142 First, we determine the vectors going from each vertex to the other vertices of the noise-sample-
1143 latent ($\mathbf{x}_T - \mathbf{x}_0 - \hat{\mathbf{x}}_T$) triangle. For sample \mathbf{x}_0 , we obtain a vector leading to noise $\overrightarrow{\mathbf{x}_0 \mathbf{x}_T} = \mathbf{x}_T - \mathbf{x}_0$
1144 and to latent $\overrightarrow{\mathbf{x}_0 \hat{\mathbf{x}}_T} = \hat{\mathbf{x}}_T - \mathbf{x}_0$, and calculate the angle between them using cosine similarity as
1145

1146
$$\angle_{\mathbf{x}_0} = \arccos \frac{\overrightarrow{\mathbf{x}_0 \mathbf{x}_T} \cdot \overrightarrow{\mathbf{x}_0 \hat{\mathbf{x}}_T}}{\|\overrightarrow{\mathbf{x}_0 \mathbf{x}_T}\| \|\overrightarrow{\mathbf{x}_0 \hat{\mathbf{x}}_T}\|}, \quad (9)$$

1147
1148

1149 and convert resulting radians to degrees. Similarly, we obtain the angle next to the noise $\angle_{\mathbf{x}_T}$ and
1150 latent $\angle_{\hat{\mathbf{x}}_T}$.
11511152 Next, we determine histograms for each angle, approximating the probability density function for
1153 every angle ($p_{\angle_{\mathbf{x}_T}}, p_{\angle_{\mathbf{x}_0}}, p_{\angle_{\hat{\mathbf{x}}_T}}$) binned up to the precision of one degree, see Fig. 11. Finally, for
1154 all angles triples candidates (where $\angle_{\mathbf{x}_T} + \angle_{\mathbf{x}_0} + \angle_{\hat{\mathbf{x}}_T} = 180^\circ$), we calculate the probability of a
1155 triangle as the product of the probabilities and choose the triplet maximizing such joint probability:
1156

1157
$$\operatorname{argmax}_{(\angle_{\mathbf{x}_T}, \angle_{\mathbf{x}_0}, \angle_{\hat{\mathbf{x}}_T})} p_{\angle_{\mathbf{x}_T}} \cdot p_{\angle_{\mathbf{x}_0}} \cdot p_{\angle_{\hat{\mathbf{x}}_T}}. \quad (10)$$

1158

1159 **G.2 RESULTS**1160 Results of the experiment in Table 9 show that the angle located at the image and noise vertices
1161 (accordingly $\angle_{\mathbf{x}_0}$ and $\angle_{\mathbf{x}_T}$) are always acute and, in almost every case, the angle by the latent
1162 vertex ($\angle_{\hat{\mathbf{x}}_T}$) is obtuse. This property implies that, due to approximation errors in the reverse DDIM
1163 process, latents reside in proximity to, but with a measurable offset, from the shortest-path trajectory
1164 between the noise distribution and the generated image.
1165

Model	T	$\angle_{\mathbf{x}_0}$	$\angle_{\mathbf{x}_T}$	$\angle_{\hat{\mathbf{x}}_T}$
ADM	10	44	16	120
	100	29	28	123
	1000	20	45	115
32 × 32	10	30	31	119
	100	11	60	109
	1000	6	79	95
64 × 64	10	24	50	106
	100	24	73	83
	1000	23	73	84
ADM	10	24	50	106
	100	24	73	83
	1000	23	73	84
256 × 256	10	23	53	104
	100	2	76	102
	1000	1	83	96
LDM	10	27	47	106
	100	4	66	110
	1000	1	80	99
DiT	10	27	47	106
	100	4	66	110
	1000	1	80	99

1182 Table 9: **Impact of the number of diffusion steps T on angles in the noise \mathbf{x}_T , image \mathbf{x}_0 , and**
1183 **latent $\hat{\mathbf{x}}_T$ triangle.** Regardless of the number of diffusion steps, latents appear between Gaussian
1184 noise and generations.
11851186 In Fig. 10, we provide example triangles for ADM-32 (a), ADM-256 (b), and LDM (c), which we
1187 calculate using $N = 1000$ images with $T = 100$ diffusion steps.
1188

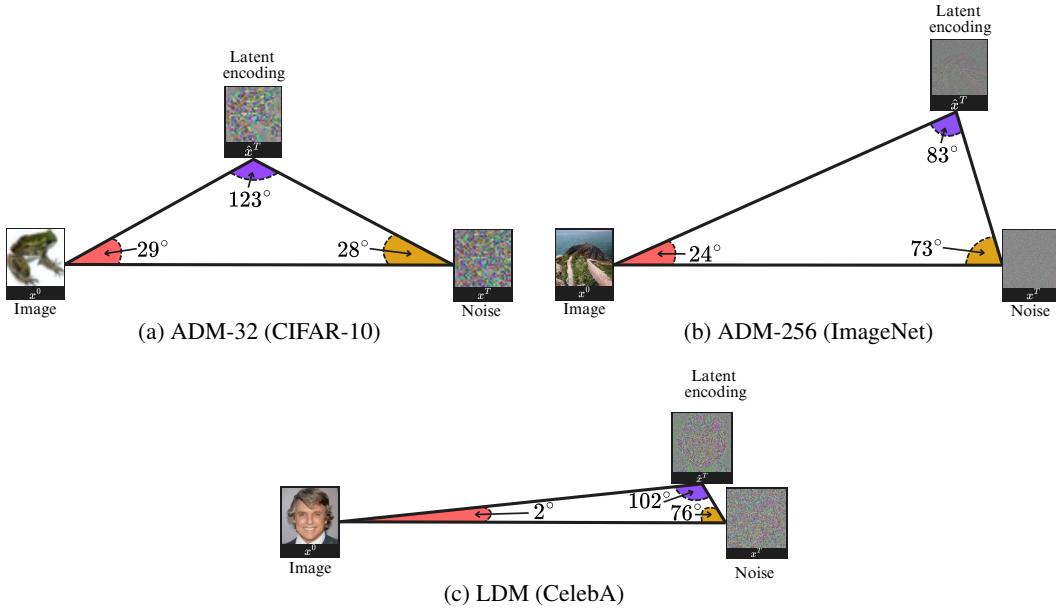


Figure 10: **Most probable triangles formed from random Gaussian noise (x_T), the images (x_0) generated, and latents (\hat{x}_T) recovered with DDIM Inversion procedure.**

G.3 EXAMPLE HISTOGRAMS

In Fig. 11 we present histograms approximating probability density functions for noise x_T , image x_0 , and DDIM latent \hat{x}_T angles.

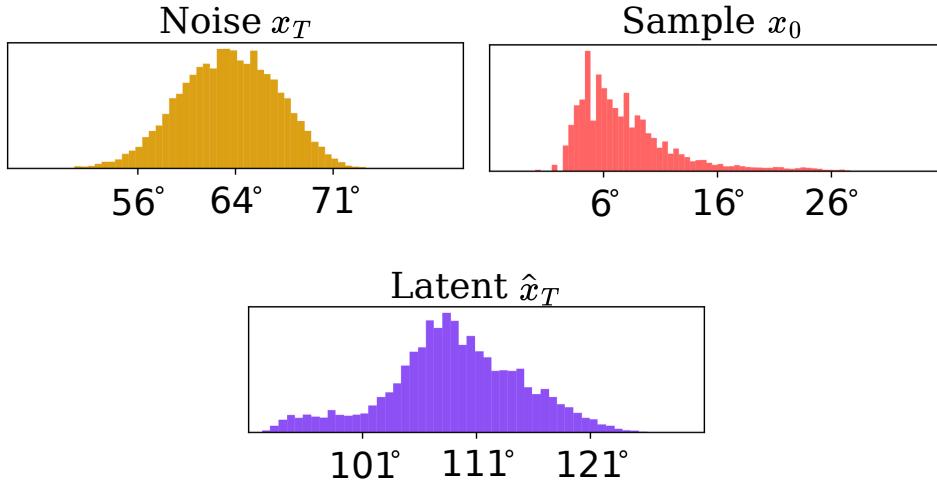


Figure 11: **Histograms approximating probability density functions of angles values for noise, sample, and latent vertices.** Example calculated for DiT model using $T = 100$ diffusion steps.

1242 H PLAIN SURFACE THRESHOLDING

1244 During our experiments, we determine binary mask \mathcal{M} to identify pixels corresponding to the plain
 1245 areas in the images. We describe this process in this section.

1246 Let $\mathbf{I} \in \mathbb{R}^{C \times H \times W}$ be the input image. For each pixel value across every channel (c, h, w) in \mathbf{I} , we
 1247 compute the absolute difference to point in the next row $D_H(c, h, w) = |I_{c, h+1, w} - I_{c, h, w}|$ and to
 1248 the pixel in the next column $D_W(c, h, w) = |I_{c, h, w+1} - I_{c, h, w}|$. We obtain $D_H \in \mathbb{R}^{C \times H-1 \times W}$ and
 1249 $D_W \in \mathbb{R}^{C \times H \times W-1}$, which we pad with zeros (last row for D_H and last column for D_W), making
 1250 them of shape $C \times H \times W$. The difference matrix D , representing how a point varies from its
 1251 neighbors, is computed as $D = (D_W + D_H)/2$.

1252 Finally, we determine a binary mask \mathcal{M}_c per each channel c , by applying threshold τ to D as

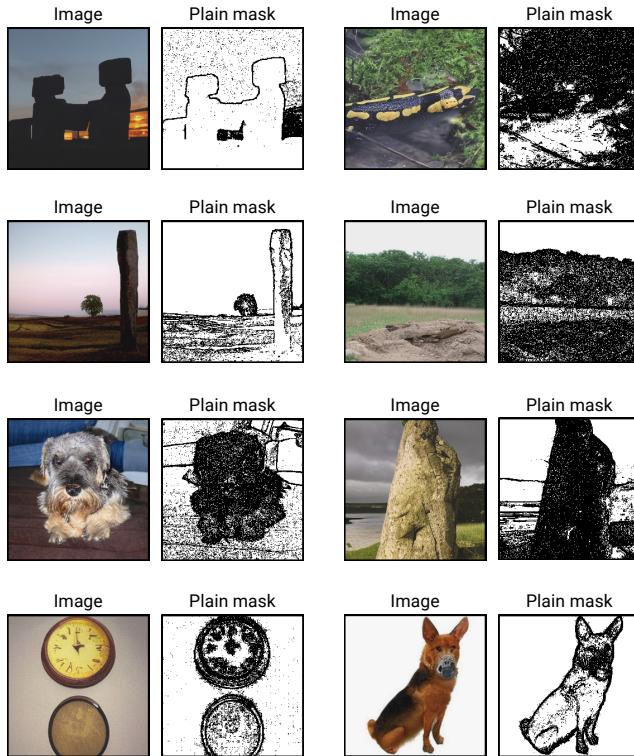
$$1255 \quad \mathcal{M}_c(h, w) = \begin{cases} 1, & \text{if } D_c(h, w) < \tau \\ 0, & \text{otherwise} \end{cases} \quad (11)$$

1257 During the experiments, we set $\tau = 0.025$.

1258 The final mask $\mathcal{M} \in \{0, 1\}^{W \times H}$ can be derived by evaluating the logical AND across all channels
 1259 for each pixel location as

$$1262 \quad \mathcal{M}(h, w) = \prod_c \mathcal{M}_c(h, w). \quad (12)$$

1264 After obtaining the final mask for plain pixels, which we denote as \mathcal{M}_p , the according mask for
 1265 non-plain image surfaces can be obtained by applying logical NOT to the mask as $\mathcal{M}_n = \neg \mathcal{M}_p$.
 1266 In Fig. 12, we present example masks determined using our methodology.



1293 **Figure 12: Examples of samples together with their masks indicating plain areas (white).** Im-
 1294 ages generated using DiT model.

1296

I CALCULATING INVERSION ERROR

1297

1298 In Section 3.3, we study how the inversion error differs for pixels related to plain and non-plain
1299 samples’ regions and investigate it across diffusion steps. In this section, we describe the method
1300 for determining the error.

1301 First, we generate $N = 4k$ images with $T = 50$ diffusion steps with both ADM-64 and DiT
1302 models, saving intermediate noise predictions $\{\mathcal{E}_t^S\}_{t=50\dots 1}$ during sampling. Next, we collect diffu-
1303 sion model outputs during the inversion process $\{\mathcal{E}_t^I\}_{t=1\dots 50}$ assuming all the previous steps were
1304 correct. While for $t = 1$, \mathcal{E}_1^I can be set to the diffusion model prediction from the first inver-
1305 sion step $\epsilon_\theta(x_0)$, for further steps, more advanced methodology is necessary. To this end, for each
1306 $t' = 2 \dots 50$, we map the images to latents with DDIM Inversion, replacing in $t = 1 \dots t' - 1$ the
1307 predicted noise $\epsilon_\theta(x_t)$ with the ground truth prediction \mathcal{E}_t^S from denoising process, and collect the
1308 model output for the t' step as $\mathcal{E}_{t'}^I := \epsilon_\theta(x_{t'})$. For step t , this methodology is equivalent to starting
1309 the inversion process from $(t + 1)$ denoising step and collecting the first diffusion model prediction.

1310 In the next step, we calculate the absolute error between outputs during inversion and ground truth
1311 predictions as $\mathcal{E}_t^E = |\mathcal{E}_t^I - \mathcal{E}_t^S|$. This way, we obtain the inversion approximation error for each
1312 timestep.

1313 Further, for the images in the dataset, we obtain binary masks \mathcal{M}_p and \mathcal{M}_n indicating, respectively,
1314 plain (p) and non-plain (n) pixels in the image, according to the procedure described in Appendix H.
1315 To ensure that the level of noise that DM predicts in each step does not bias the results, we divide the
1316 absolute errors in each step by l_1 -norm of model outputs, calculated separately for each diffusion
1317 step. For plain (p) pixels, it can be described as

1319
$$\mathcal{E}_t^{Ep} = 1/\|\mathcal{E}_t^I\|_1 \sum (\mathcal{E}_t^E \odot \mathcal{M}_p), \quad (13)$$
1320

1321 and adequately for non-plain (n) pixels as

1322
$$\mathcal{E}_t^{En} = 1/\|\mathcal{E}_t^I\|_1 \sum (\mathcal{E}_t^E \odot \mathcal{M}_n). \quad (14)$$
1323

1324 In Table 10, we present the error differences for plain and non-plain areas and how the first 10% of
1325 the diffusion steps contribute to the total inversion error. To calculate this error for plain regions in
1326 steps t_s, \dots, t_e , we sum errors for timesteps from a given interval as

1328
$$\bar{\mathcal{E}}_{(t_s, t_e)}^{Ep} = \sum_{t'=t_s}^{t_e} \mathcal{E}_t^{Ep}. \quad (15)$$
1329

1332

Pixel area	Diffusion steps		Model	
	ADM-64	DiT	ADM-64	DiT
Plain	1, 2 … 50	100%	15.11	5.67
Non-plain			12.43	3.16
Plain	1, 2 … 5	10%	9.23	3.41
Non-plain			6.80	1.42
Plain	6, 7 … 50	90%	5.87	2.23
Non-plain			5.63	1.74

1340 Table 10: **Total per-pixel inversion error (normalized) over different timestep ranges $\bar{\mathcal{E}}_{(t_s, t_e)}^E$**
1341 **for plain and non-plain areas.** Inversion approximation error is higher for pixels related to plain
1342 image areas, especially in the first 10% of inversion steps.

1344
1345
1346
1347
1348
1349

1350 **J CONDITIONING FOR DIFFUSION MODELS**
1351

1352 For a thorough analysis, we employ both unconditional (ADM-32, ADM-64, ADM-256) and
 1353 conditional (DiT, IF, SDXL) diffusion models. For conditioning, we take prompts from the Recap-
 1354 COCO-30K dataset (Li et al., 2025) for IF and Stable Diffusion XL and ImageNet class names for
 1355 DiT. However, as noted by Mokady et al. (2023), Classifier-Free Guidance introduces additional
 1356 errors to the DDIM inversion. To focus solely on the inversion approximation error, in the ex-
 1357 periments from the main part of this work, we disable CFG by setting the guidance scale to $w = 1$.
 1358 However, in Appendix N.3, we show that the proposed fix can also improve DDIM Inversion when
 1359 CFG is enabled ($w > 1$).
 1360

1361 **K DETAILS ON DIVERSITY AND ALIGNMENT OF EDITION**
1362

1363 In this section, we provide results for measuring the diversity (against source images I_S) and align-
 1364 ment to conditioning prompts (source P_S and target P_T) of images generated from Gaussian noise
 1365 \mathbf{x}_T , DDIM latents $\hat{\mathbf{x}}_T$, or the latents produced by our fix (described in Algorithm 1) with modified
 1366 prompts. We use distance-based metrics (LPIPS (Zhang et al., 2018), DreamSim (Fu et al., 2023)),
 1367 similarity metrics (SSIM (Wang et al., 2004), DINO (Darcet et al., 2024)) to measure the diversity
 1368 between source (input) images and target (edited) images, as well as the similarity between embed-
 1369 dings produced by the CLIP (Radford et al., 2021) model to calculate the alignment between the
 1370 results and prompts. The results in for introduced latent decorrelation procedure are obtained with
 1371 varying percentages of the first DDIM inversion steps replaced with forward diffusion. In Table 11,
 1372 we show that by selecting a small fraction of inversion steps to replace with forward diffusion (from
 1373 2% up to 6%), the resulting latents are more editable.
 1374

Inversion steps replaced by forward diff. (%T)	Diversity against I_S				CLIP Alignment	
	DreamSim \uparrow	LPIPS \uparrow	SSIM \downarrow	DINO \downarrow	$P_S \downarrow$	$P_T \uparrow$
Noise \mathbf{x}_T	0.709	0.591	0.228	0.174	0.465	0.681
DDIM Latent $\hat{\mathbf{x}}_T$	0.677	0.564	0.261	0.223	0.480	0.662
1 (2%)	0.696	0.580	0.239	0.187	0.470	0.676
1 ... 2 (4%)	0.701	0.587	0.227	0.179	0.469	0.677
1 ... 3 (6%)	0.705	0.594	0.216	0.173	0.468	0.678
1 ... 5 (10%)	0.711	0.605	0.198	0.165	0.466	0.679
1 ... 50 (100%)	0.805	0.801	0.013	0.085	0.465	0.680

(a) Diffusion Transformer

Inversion steps replaced by forward diff. (%T)	Diversity against I_S				CLIP Alignment	
	DreamSim \uparrow	LPIPS \uparrow	SSIM \downarrow	DINO \downarrow	$P_S \downarrow$	$P_T \uparrow$
Noise (100%)	0.665	0.380	0.339	0.344	0.273	0.649
DDIM Latent $\hat{\mathbf{x}}_T$	0.609	0.328	0.406	0.416	0.353	0.614
1 (2%)	0.666	0.376	0.359	0.335	0.281	0.646
1 ... 2 (4%)	0.660	0.369	0.359	0.351	0.287	0.649
1 ... 3 (6%)	0.661	0.370	0.353	0.349	0.285	0.650
1 ... 5 (10%)	0.662	0.372	0.341	0.346	0.282	0.649
1 ... 50 (100%)	0.733	0.521	0.004	0.272	0.274	0.649

(b) Deepfloyd IF

1394 **Table 11: Impact of first DDIM inversion errors on diversity and text-alignment of genera-
 1395 tions from resulting latent as an input.** For both DiT (a) and IF (b) models, replacing the first inversion
 1396 steps and denoising leads to more diverse generations against the source images I_S . Additionally,
 1397 we show using forward diffusion in first steps improves the alignment between generation and target
 1398 prompts, which the generation process is conditioned by, as indicated by the larger CLIP-T value
 1399 for P_T and the smaller one for P_S .
 1400
 1401
 1402
 1403

1404 **L NOISE-TO-IMAGE MAPPING**

1405

1406 We showcase an additional study showing the differences that occur between noise and latent en-
 1407 codings, from the perspective of their mapping to the images. Several works investigate interesting
 1408 properties between the initial random noise and generations that result from the training objective of
 1409 DDPMs and score-based models. Kadkhodaie et al. (2024) show that due to inductive biases of de-
 1410 noising models, different DDPMs trained on similar datasets converge to almost identical solutions.
 1411 This idea is further explored by Zhang et al. (2024a), observing that even models with different
 1412 architectures converge to the same score function and, hence, the same noise-to-image mapping.
 1413 Khrulkov & Oseledets (2022) show that diffusion models’ encoder map coincides with the optimal
 1414 transport (OT) map when modeling simple distributions. However, other works (Kim & Milman,
 1415 2011; Lavenant & Santambrogio, 2022) contradict this finding.

1416 **L.1 SMALLEST l_2 MAPPING**

1417

1418 Diffusion models converge to the same mapping between the Gaussian noise (\mathbf{x}_T) and the generated
 1419 images (\mathbf{x}_0) independently on the random seed, dataset parts (Kadkhodaie et al., 2024), or the model
 1420 architecture (Zhang et al., 2024a). We further investigate this property from the noise-sample and
 1421 latent-sample mapping perspective.

1422 In our experimental setup, we start by generating $N = 2000$ images \mathbf{x}_0 from Gaussian noise \mathbf{x}_T
 1423 with a DDIM sampler and invert the images to latents $\hat{\mathbf{x}}_T$ with naïve DDIM inversion. Next, we
 1424 predict resulting images for the starting noise samples ($\mathbf{x}_T \rightarrow \mathbf{x}_0$) by iterating over all the N noises,
 1425 and for each of them, we calculate its pixel distances to all the N generations. For given noise,
 1426 we select the image to which such l_2 -distance is the smallest. Similarly, we investigate image-to-
 1427 noise ($\mathbf{x}_0 \rightarrow \mathbf{x}_T$), image-to-latent ($\mathbf{x}_0 \rightarrow \hat{\mathbf{x}}_T$) and latent-to-image ($\hat{\mathbf{x}}_T \rightarrow \mathbf{x}_0$) mappings. We
 1428 calculate the distance between two objects as l_2 norm of the matrix of differences between them
 1429 (with $C \times H \times W$ being the dimensions of either pixel or latent space of diffusion model) as
 1430
$$\|x - y\|_2 = \sqrt{\sum_i^C \sum_j^H \sum_k^W (x_{i,j,k} - y_{i,j,k})^2}.$$

1431

1432 In Table 12, we investigate the accuracy of the procedure across varying numbers of diffusion steps
 1433 T for both image \leftrightarrow noise (a) and image \leftrightarrow latent (b) assignments. We show that assigning initial
 1434 noise to generations ($\mathbf{x}_0 \rightarrow \mathbf{x}_T$) through the distance method can be successfully done regardless
 1435 of diffusion steps. For the reverse assignment, which is noise-to-image ($\mathbf{x}_T \rightarrow \mathbf{x}_0$) mapping, we
 1436 can observe high accuracy with a low number of generation timesteps ($T = 10$), but the results
 1437 deteriorate quickly with the increase of this parameter. The reason for this is that greater values of
 1438 T allow the generation of a broader range of images, including the ones with large plain areas of
 1439 low pixel variance. When it comes to mappings between images and latents resulting from DDIM
 1440 Inversion, assignment in both directions is infeasible for pixel diffusion, regardless of T .

T	ADM-32		ADM-64		ADM-256		LDM		DiT	
	$\mathbf{x}_0 \rightarrow \mathbf{x}_T$	$\mathbf{x}_T \rightarrow \mathbf{x}_0$								
10	90.3 \pm 6.3	94.0 \pm 2.6	99.4 \pm 0.0	100 \pm 0.0	100 \pm 0.0	39.2 \pm 6.2	100 \pm 0.0	100 \pm 0.0	100 \pm 0.0	93.7 \pm 7.2
100	98.9 \pm 1.2	50.4 \pm 1.9	100 \pm 0.0	59.0 \pm 7.1	100 \pm 0.0	23.2 \pm 4.8	100 \pm 0.0	100 \pm 0.0	100 \pm 0.0	90.7 \pm 10.1
1000	99.1 \pm 1.0	46.8 \pm 3.0	99.8 \pm 0.2	44.6 \pm 6.3	100 \pm 0.0	25.0 \pm 4.4	100 \pm 0.0	100 \pm 0.0	100 \pm 0.0	96.7 \pm 4.6
4000	99.1 \pm 1.0	46.4 \pm 3.0	99.5 \pm 0.3	43.3 \pm 6.7	-	-	-	-	-	-

1447 (a) Assigning noise to the corresponding generated image ($\mathbf{x}_0 \rightarrow \mathbf{x}_T$) and vice-versa ($\mathbf{x}_T \rightarrow \mathbf{x}_0$).

T	ADM-32		ADM-64		ADM-256		LDM		DiT	
	$\mathbf{x}_0 \rightarrow \hat{\mathbf{x}}_T$	$\hat{\mathbf{x}}_T \rightarrow \mathbf{x}_0$								
10	66.4 \pm 1.7	38.2 \pm 5.1	64.4 \pm 7.1	100.0 \pm 0.0	0.7 \pm 0.2	30.8 \pm 4.3	100 \pm 0.0	100 \pm 0.0	99.8 \pm 0.6	95.1 \pm 6.4
100	16.4 \pm 6.1	33.4 \pm 2.7	8.6 \pm 9.3	57.5 \pm 7.3	4.1 \pm 1.4	23.9 \pm 5.0	100 \pm 0.0	100 \pm 0.0	99.5 \pm 1.7	90.7 \pm 10.3
1000	3.6 \pm 2.2	40.9 \pm 2.7	1.7 \pm 1.3	44.7 \pm 6.5	23.9 \pm 5.2	25.4 \pm 4.4	100 \pm 0.0	100 \pm 0.0	100.0 \pm 0.2	96.6 \pm 4.6
4000	2.8 \pm 2.2	41.9 \pm 3.0	1.9 \pm 1.4	43.5 \pm 6.5	-	-	-	-	-	-

1453 (b) Assigning images to the resulting latent encodings ($\hat{\mathbf{x}}_T \rightarrow \mathbf{x}_0$) and vice-versa ($\mathbf{x}_0 \rightarrow \hat{\mathbf{x}}_T$).

1454 **Table 12: Accuracy of the l_2 -distance based assignment for both image \leftrightarrow noise (a) and**
 1455 **image \leftrightarrow latent (b) mappings across varying number of diffusion steps T .** For pixel DMs, only
 1456 the image-to-noise ($\mathbf{x}_0 \rightarrow \mathbf{x}_T$) mapping is feasible. For the latent space models, we correctly pre-
 1457 dict assignments in all directions.

1458 For both noise x^T and latents \hat{x}^T , their assignment to images in both directions can be successfully
 1459 done when the denoising is performed in the latent space, as shown for DiT and LDM models. We
 1460 hypothesize that this fact is connected with the KL regularization term that imposes a slight penalty
 1461 towards a standard normal distribution $\mathcal{N}(0, I)$ on the latent during training (Rombach et al., 2021).
 1462

1463 L.2 ASYMMETRY OF NOISE-TO-IMAGE MAPPING

1464
 1465 Results in Table 12a indicate that, even though the l_2 -distance is symmetrical, the mapping cannot
 1466 be done in both directions. The reason behind this is that image and noise assignments are not the
 1467 same due to the one-directional many-to-one relation, e.g., there might be several noises pointing
 1468 towards the same closest image.

1469 We present examples of wrong noise-to-image ($x_T \rightarrow x_0$) assignments in Fig. 13A for ADM-64.
 1470 In Fig. 13B, we present the singular generations that lead to incorrect noise-to-image classification
 1471 (noise attractors), along with the number of noises for which they are the closest. Interestingly, in
 1472 Fig. 13C, we sort all the generations used in the experiment by the variance of pixels and show 8
 1473 least variant images. We observe that the set of singular generations leading to misclassification
 1474 partially overlaps with lowest-variance generations. In Fig. 14 we observe similar properties for
 1475 experiment with ADM-32 model.

1476 When assigning images to the initial noises, there are singular generations (with large plain areas)
 1477 located close to the mean of the random Gaussian noise in the set of generated images. Such gener-
 1478 ations tend to be the closest (in l_2 -distance) for the majority of the noises in our experiments.

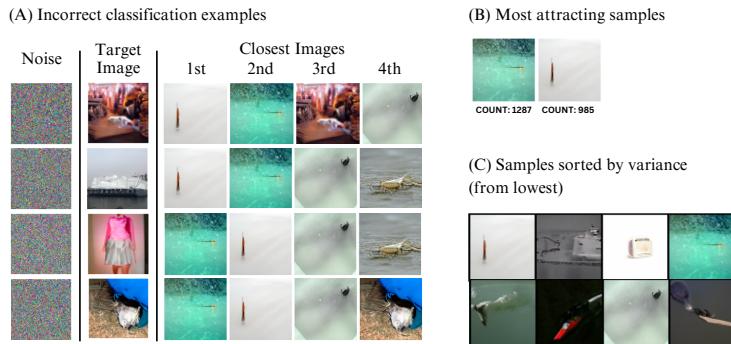


Figure 13: Examples of incorrect assignments of initial noises to resulting images (A), two most noise-attracting images (B), and samples sorted in ascending order by variance of pixels for ADM-64 model trained on the **ImageNet dataset**.

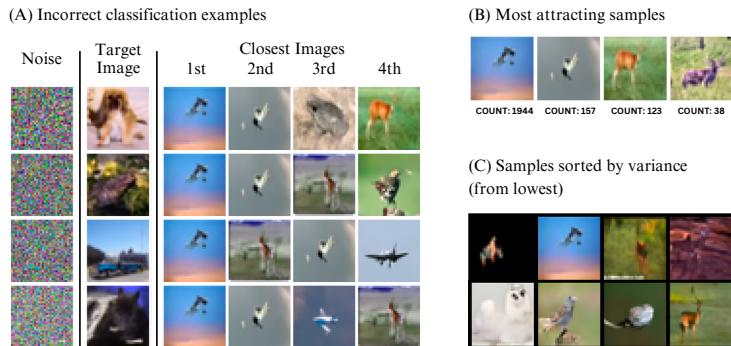


Figure 14: Examples of incorrect assignments of initial noises to resulting images (A), two most noise-attracting images (B), and samples sorted in ascending order by variance of pixels for ADM-32 model trained on the **CIFAR-10 dataset**.

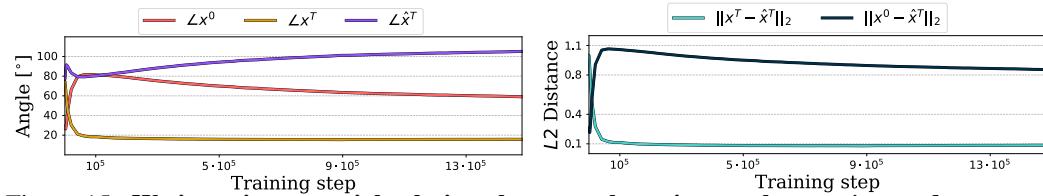
1510 **Conclusion.** Those findings, connected with the reduced diversity of latents (Table 3), suggest that
 1511 the DDIM latents, unlike noise, cannot be accurately assigned to samples, as the error brings them
 towards the mean, reducing their diversity and making them closest to most of the images.

1512 M ON NOISE-IMAGE-LATENT RELATIONS DURING DIFFUSION TRAINING 1513

1514 To further explore the relationships that exist between noises, generations, and latents, we study
1515 how the relationships between them change with the training of the diffusion model. We train
1516 two diffusion models from scratch and follow the setup from Nichol & Dhariwal (2021) for two
1517 unconditional ADMs for the ImageNet (64×64) and CIFAR-10 (32×32) datasets. The CIFAR-10
1518 model is trained for 700K steps, while the ImageNet model – for 1.5M steps, both with a batch size
1519 of 128. Models employ a cosine scheduler with 4K diffusion steps.

1520 M.1 SPATIAL RELATIONS OF NOISE AND LATENTS OVER TRAINING TIME 1521

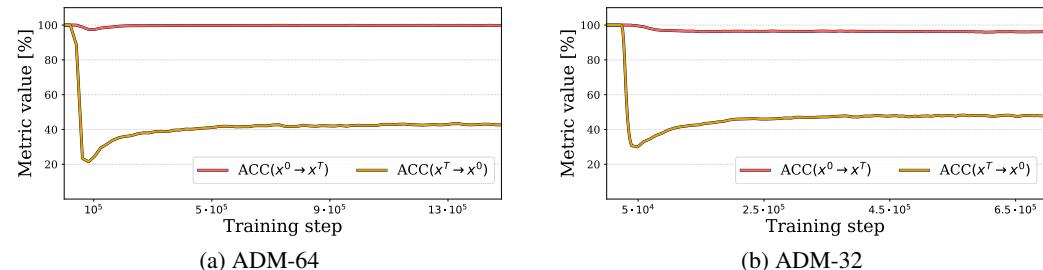
1522 We conclude our latent localization experiments (Section 3.2) by showing that our observations are
1523 persistent across the diffusion model training process. We generate $N = 2048$ images with the final
1524 model, using implicit sampling with $T = 100$ steps, and invert them to the corresponding latents
1525 using checkpoints saved during the training. In Fig. 15, we show that both the angle adjacent to the
1526 noise $\angle x_T$ and the distance between the latent and noise $\|\hat{x}_T - x_T\|_2$ quickly converge to the point
1527 that remains unchanged through the rest of the training, indicating that the relation between noises,
1528 latents, and samples is defined at the very early stage of the training. Additionally, we observe that
1529 the noise reconstruction error in DDIM Inversion does not degrade with the training progress.



1530
1531
1532
1533
1534
1535
1536 **Figure 15: We investigate spatial relations between the noise x_T , latents \hat{x}_T , and generated**
1537 **images x_0 over training process of diffusion model.** We show that those relations are defined at
1538 the early stage of the training.

1539 M.2 IMAGE-TO-NOISE DISTANCE MAPPING OVER TRAINING TIME 1540

1541 We analyze the image-noise mapping with l_2 -distance from Appendix L over diffusion model training
1542 time. We sample $N = 2000$ Gaussian noises and generate images from them using ADM models
1543 with $T = 100$ diffusion steps, calculating the accuracy of assigning images to corresponding noises
1544 (and vice versa) using the smallest l_2 -distance. In Fig. 16, we can observe, for both models, that
1545 the distance between noises and their corresponding generations accurately defines the assignment
1546 of initial noises given the generated samples ($x_0 \rightarrow x_T$) from the beginning of the training till the
1547 end. At the same time, the accurate reverse assignment ($x_T \rightarrow x_0$) can only be observed at the
1548 beginning of the training when the trained model is not yet capable of generating properly formed
1549 images. Already in the beginning phase of model training, the quality of noise to image mapping
1550 rapidly drops and does not change until the end of training.



1552
1553
1554
1555
1556
1557
1558
1559
1560 **Figure 16: Accuracy of assigning initial noise given the generated sample ($x_0 \rightarrow x_T$) and**
1561 **sample given the initial noise ($x_T \rightarrow x_0$) when training the diffusion model.** We can observe
1562 that from the very beginning of training, we can assign initial noise with a simple $L2$ distance while
1563 the accuracy of the reverse assignment rapidly drops.

1566
1567

M.3 IMAGE ALIGNMENT OVER TRAINING TIME

1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581

Inspired by the noise-image mapping experiment, we investigate how the generations resulting from the same noise visually change over DM training time. Thus, for each training step $n \in \{1 \dots 700K\}$ for CIFAR-10 and $\{1 \dots 1.5M\}$ for ImageNet, we generate 2048 samples $\{\mathbf{x}_{i,n}^0\}_{i=1}^{2048}$ from the same random noise $\mathbf{x}_T^{\text{fixed}} \sim \mathcal{N}(0, \mathcal{I})$, and compare them with generations obtained for the fully trained model. We present the visualization of this comparison in Fig. 17 using CKA, DINO, SSIM, and SVCCA as image-alignment metrics. We notice that image features rapidly converge to the level that persists until the end of the training. This means that prolonged learning does not significantly alter how the data is assigned to the Gaussian noise after the early stage of the training. It is especially visible when considering the SVCCA metric, which measures the average correlation of top-10 correlated data features between two sets of samples. We can observe that this quantity is high and stable through training, showing that generating the most important image concepts from a given noise will not be affected by a longer learning process. For visual comparison, we plot the generations sampled from the model trained with different numbers of training steps in Fig. 17 (right).

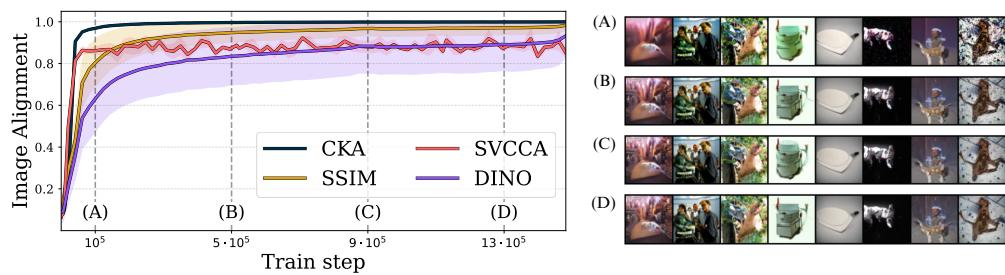
1582
1583
1584
1585
1586
1587
1588
1589
15901591
1592
1593
1594
1595
1596
1597

Figure 17: **Similarity of the generations sampled from the same random noise at different stages of diffusion model's training to the final outputs for ADM-64 model.** Only after a few epochs does the model already learn the mapping between Gaussian noise and generations. Prolonged training improves the quality of samples, adding high-frequency features without changing their content. This can be observed through different image alignment metrics (left) and visual inspection (right).

1598
1599
1600
1601
1602
1603
1604
1605

In Fig. 18, we visualize how the diffusion model learns the low-frequency features of the image already at the beginning of the training when comparing generations from the next training steps against the generations after finishing training for the ADM-32 model trained on the CIFAR-10 dataset. In Fig. 19 (ADM-64) and Fig. 20 (ADM-32), we show additional examples illustrating how generations evolve over training for the same Gaussian noise \mathbf{x}_T using a DDIM sampler. Initially, low-frequency features emerge and remain relatively stable, while continued training improves generation quality by refining only the high-frequency details.

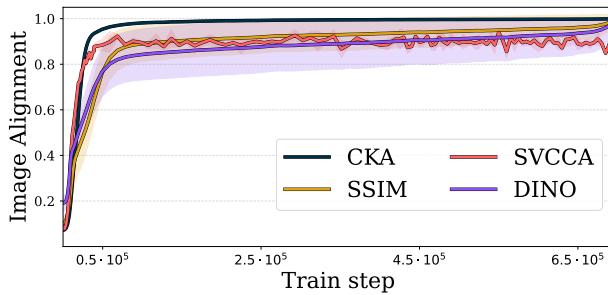
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
16161617
1618
1619

Figure 18: **Similarity of the generations sampled from the same random noise at different stages of the diffusion model's training to the final outputs for ADM-32 (CIFAR-10).** We plot CKA, SVCCA, SSIM, and DINO image alignment metrics and show that the diffusion model already learns the mapping between Gaussian noise and generations at the beginning of the training.

Figure 19: Examples of images sampled using DDIM scheduler from the same noise during the training process for the ADM-64 model trained on the ImageNet dataset.

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723

Training steps →

A 10x10 grid of 100 images illustrating the training process of a generative model. The columns are labeled at the top with step counts: 10K, 30K, 78K, 176K, 273K, 371K, 445K, 495K, 545K, 595K, 645K, and 700K. The first column (10K) shows highly noisy and distorted versions of the target images. As the step count increases, the generated images become progressively clearer and more accurate, eventually reaching high-quality versions of the objects. The images include a dog, a plane, a horse, a deer, a boat, a truck, a dog with a horse's head, a boat, a dog with a sheep's head, a truck, a horse, a dog, a truck, a horse, a boat, a dog, a truck, a horse, a boat, a dog, and a camel.

Figure 20: Examples of images sampled using DDIM scheduler from the same noise during the training process for the ADM-32 model trained on the CIFAR-10 dataset.

1728 N PARAMETER IMPACT ANALYSIS
17291730 N.1 NUMBER OF INVERSION STEPS
1731

1732 In this work, for the inversion process, we leverage the DDIM sampler with either $T = 50$ or
1733 $T = 100$ sampling steps. This choice aligns with prior works (Hong et al., 2024; Garibi et al., 2024;
1734 Kim et al., 2022b) in image edition domain, where the authors used from 50 up to 200 inversion
1735 steps as a proper balance between reconstruction quality and short algorithm runtime.

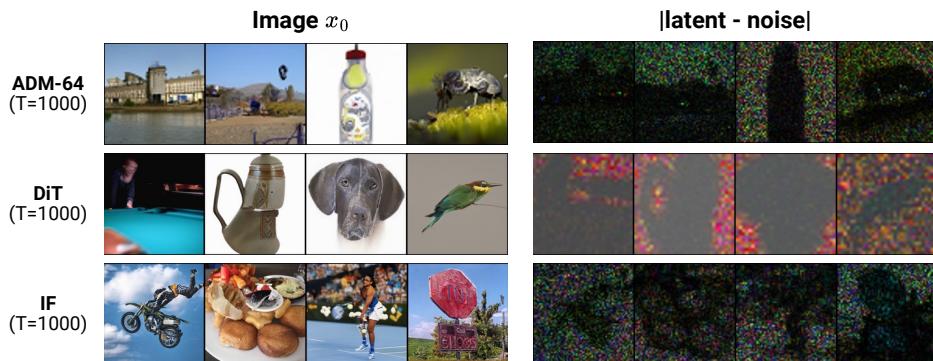
1736 However, as described in Hong et al. (2024), the naïve DDIM inversion procedure (Song et al., 2021)
1737 can be reinterpreted as solving the forward diffusion ordinary differential equation (ODE) in reverse
1738 order (along the time axis) with Euler method. With this reformulation, the inversion is correct under
1739 the assumption that, with dt being step size, noise predictions in t and $t + dt$ steps are almost exact,
1740 thus works only when performing with many iterations.

1741 Since the presence of image structures in DDIM latents can depend on the number of steps with
1742 which the inversion is performed, in Table 13 we show for ADM-64, DiT, and IF models that the
1743 observations we presented in this work generalize to cases where the number of inversion steps is
1744 several times greater (i.e., $T = 1000$, as performed during the training). Additionally, in Fig. 21 we
1745 show qualitatively by plotting the absolute error between starting Gaussian noise and DDIM latents,
1746 that also for a large number of steps, the uniform areas on the image contribute more significantly
1747 to overall inversion error.

1748 For a more thorough analysis, in Table 14 we evaluate how our fix decorraltes latents in situation
1749 where we use $T = 1000$ inversion steps. As visible, replacing just 1 step of DDIM Inversion with
1750 forward diffusion significantly reduces correlation at minimal loss in image reconstruction.

Object	Model		
	ADM-64	DiT	IF
Noise x_T (baseline)	$0.039 \pm .00$	$0.039 \pm .00$	$0.039 \pm .00$
DDIM Latent $\hat{x}_{T=10}$	$0.416 \pm .03$	$0.297 \pm .01$	$0.783 \pm .01$
DDIM Latent $\hat{x}_{T=25}$	$0.242 \pm .02$	$0.203 \pm .02$	$0.698 \pm .02$
DDIM Latent $\hat{x}_{T=50}$	$0.177 \pm .02$	$0.144 \pm .02$	$0.608 \pm .02$
DDIM Latent $\hat{x}_{T=100}$	$0.133 \pm .01$	$0.106 \pm .02$	$0.500 \pm .02$
DDIM Latent $\hat{x}_{T=250}$	$0.108 \pm .01$	$0.078 \pm .01$	$0.366 \pm .02$
DDIM Latent $\hat{x}_{T=500}$	$0.100 \pm .01$	$0.069 \pm .01$	$0.294 \pm .02$
DDIM Latent $\hat{x}_{T=1000}$	$0.095 \pm .01$	$0.065 \pm .01$	$0.249 \pm .02$

1761 **Table 13: Latent encodings resulting from the DDIM Inversion exhibit correlations, even when
1762 the procedure is performed with a lot of steps.** By dividing latent encodings into 8×8 patches
1763 and calculating the mean of top-20 Pearson coefficients, we show that DDIM latents are correlated
1764 substantially higher than Gaussian noise, even when using $T = 1000$ inversion steps.



1778 **Figure 21: Approximation errors in DDIM inversion are significantly higher for plain image
1779 surfaces than for the rest of the image.** Even when using $T = 1000$ steps, we observe image
1780 structures in DDIM latents, notably for uniform image regions.

1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795

1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817

Model	Prior	Corr. \downarrow	KL $\times 10^{-4} \downarrow$	Image Recon. \downarrow
ADM-64 (T=1000)	Noise (upper bound)	0.039 \pm .00	4.832	0.000
	DDIM Latent	0.095 \pm .01	47.015	0.014
	w/ our fix (4%)	0.055 \pm .00	5.125	0.033
	w/ our fix (2%)	0.055 \pm .00	5.363	0.024
	w/ our fix (1%)	0.055 \pm .00	5.679	0.019
	w/ our fix (0.5%)	0.055 \pm .00	6.057	0.017
	w/ our fix (0.2%)	0.055 \pm .00	6.662	0.015
DiT (T=1000)	w/ our fix (0.1%)	0.055 \pm .00	7.228	0.014
	Noise (upper bound)	0.039 \pm .00	4.832	0.000
	DDIM Latent	0.065 \pm .01	17.931	0.009
	w/ our fix (4%)	0.057 \pm .00	5.233	0.060
	w/ our fix (2%)	0.057 \pm .00	5.071	0.041
	w/ our fix (1%)	0.057 \pm .00	5.850	0.029
	w/ our fix (0.5%)	0.058 \pm .00	7.029	0.021
IF (T=1000)	w/ our fix (0.2%)	0.058 \pm .00	8.045	0.016
	w/ our fix (0.1%)	0.058 \pm .00	8.409	0.014
	Noise (upper bound)	0.039 \pm .00	4.832	0.000
	DDIM Latent	0.249 \pm .02	63.962	0.044
	w/ our fix (4%)	0.055 \pm .00	5.024	0.037
	w/ our fix (2%)	0.055 \pm .00	5.215	0.031
	w/ our fix (1%)	0.055 \pm .00	5.706	0.027

1818
 1819 Table 14: **Latent correlations, KL divergence to random Gaussian noise, and image recon-
 1820 struction error across models (ADM-64, DiT, IF) when using $T = 1000$ inversion steps.** We
 1821 show that using our simple fix in just one step of inversion process significantly decorrelates DDIM
 1822 latents with minimal loss in image reconstruction performance.
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835

1836 N.2 PERCENTAGE OF INVERSION STEPS REPLACED
1837

1838 The fix to DDIM Inversion algorithm, proposed in this work, namely replacing neural network pre-
1839 dictions with random Gaussian Noise, implies the trade-off between preserving the original image
1840 information and improving the latents' editability. In this section, we present how the number of
1841 inversion steps substituted with forward step, impacts the image reconstruction error (MAE, LPIPS,
1842 and SSIM metrics) and latent editability (correlations and KL Divergence from $\mathcal{N}(0; \mathcal{I})$) for: IF
1843 (Table 15), DiT (Table 16), and SDXL (Table 17) models. We observe that replacing only the first
1844 4% of inversion steps with forward diffusion improves latent normality to the level of Gaussian noise
1845 (100% of steps), while increases reconstruction error only slightly. In Fig. 22, we show some failure
1846 cases when replacing 10% or 20% of the first steps can introduce significant changes to images.
1847

# Steps Replaced (Percentage)	Image Reconstruction			Latent Normality	
	MAE ↓	LPIPS ↓	SSIM ↑	Correlation ↓	KL Div. $\times 10^2$ ↓
0 (0%)	0.073	0.030	0.878	0.643	60.449
1 (2%)	0.069	0.037	0.854	0.057	0.934
2 (4%)	0.071	0.038	0.845	0.050	0.352
3 (6%)	0.074	0.040	0.830	0.050	0.346
4 (8%)	0.078	0.043	0.813	0.049	0.341
5 (10%)	0.082	0.047	0.796	0.049	0.338
10 (20%)	0.099	0.066	0.713	0.049	0.344
20 (40%)	0.131	0.113	0.556	0.049	0.360
30 (60%)	0.169	0.179	0.394	0.049	0.367
40 (80%)	0.233	0.279	0.204	0.049	0.370
50 (100%)	0.487	0.437	0.009	0.049	0.374

1858 Table 15: **Impact of percentage of inversion steps replaced with forward diffusion on recon-
1859 struction quality and latent normality for DeepFloyd IF.**
1860

# Steps Replaced (Percentage)	Image Reconstruction			Latent Normality	
	MAE ↓	LPIPS ↓	SSIM ↑	Correlation ↓	KL Div. $\times 10^2$ ↓
0 (0%)	0.052	0.063	0.839	0.159	1.118
1 (2%)	0.070	0.097	0.741	0.038	0.011
2 (4%)	0.085	0.125	0.658	0.036	0.010
3 (6%)	0.097	0.151	0.594	0.036	0.023
4 (8%)	0.107	0.173	0.544	0.037	0.036
5 (10%)	0.116	0.195	0.505	0.037	0.041
10 (20%)	0.154	0.280	0.375	0.038	0.040
20 (40%)	0.231	0.437	0.235	0.037	0.020
30 (60%)	0.353	0.595	0.145	0.037	0.017
40 (80%)	0.521	0.710	0.071	0.037	0.017
50 (100%)	0.628	0.750	0.029	0.037	0.018

1873 Table 16: **Impact of percentage of inversion steps replaced with forward diffusion on recon-
1874 struction quality and latent normality for Diffusion Transformer (DiT).**
1875

# Steps Replaced (Percentage)	Image Reconstruction			Latent Normality	
	MAE ↓	LPIPS ↓	SSIM ↑	Correlation ↓	KL Div. $\times 10^2$ ↓
0 (0%)	0.027	0.099	0.814	0.166	0.800
1 (2%)	0.029	0.106	0.790	0.151	0.600
2 (4%)	0.035	0.137	0.716	0.120	0.300
3 (6%)	0.038	0.155	0.685	0.117	0.300
4 (8%)	0.041	0.171	0.663	0.116	0.300
5 (10%)	0.043	0.183	0.646	0.116	0.200
10 (20%)	0.051	0.230	0.588	0.115	0.200
20 (40%)	0.065	0.313	0.515	0.115	0.200
30 (60%)	0.082	0.389	0.460	0.115	0.200
40 (80%)	0.112	0.464	0.464	0.115	0.200
50 (100%)	0.159	0.541	0.541	0.115	0.200

1887 Table 17: **Impact of percentage of inversion steps replaced with forward diffusion on recon-
1888 struction quality and latent normality for Stable Diffusion XL.**
1889

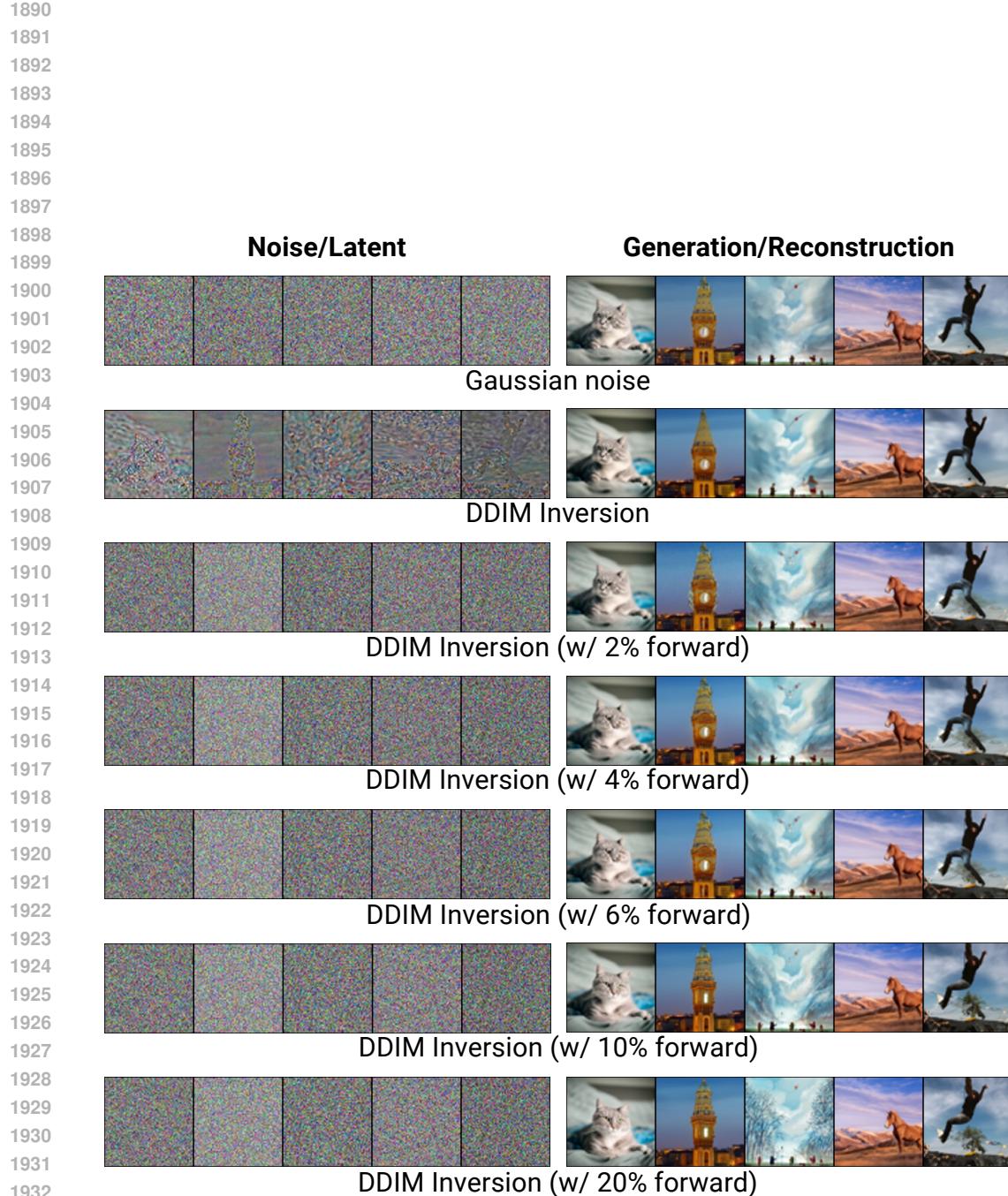


Figure 22: **Replacing first DDIM inversion steps with forward diffusion increases latents editability at the cost of a higher reconstruction error.** By replacing from 2% up to 4% of steps, we obtain reasonable image reconstructions while removing correlations from latents.

1944
1945

N.3 GUIDANCE SCALE

1946 During experiments, we fix the guidance scale to $w = 1$ to ensure that our analysis focuses solely
 1947 on the DDIM approximation error (Eq. (3)). As described in Ju et al. (2024), prior works typically
 1948 employ guidance scale between 1.0 (the most common choice) and 3.0 during inversion, as using
 1949 $w > 3$ often results in drastically worse image reconstructions.

1950 In this section, we evaluate how the proposed fix improves upon Naïve DDIM Inversion when a
 1951 higher guidance scale $w \in \{1, 2, 3, 4, 5\}$ is applied both during inversion and reconstruction. In
 1952 Table 18, we present result of this experiment with Stable Diffusion XL (Podell et al., 2024). For
 1953 scenarios with a higher guidance scale, our simple fix, similarly to $w = 1$, reduces correlations and
 1954 improves editability when comparing with Naïve DDIM Inversion. Additionally, we observe that,
 1955 when guidance is applied, our fix improves image reconstruction error (measured with LPIPS). We
 1956 hypothesize that amplifying the inversion error in Naïve DDIM with a higher guidance scale leads to
 1957 latents that are useless for image reconstruction. In such a case, replacing the first steps with random
 1958 Noise may lead to more preferable reconstructions. In Fig. 23 and Fig. 24, we present qualitative
 1959 comparison in image reconstruction between Naïve DDIM Inversion and our approach.

Guidance Scale w	Method	LPIPS \downarrow	Latent Corr. \downarrow	CLIP Alignment (Edit Prompt) \uparrow
1.0	DDIM Inv.	0.100	0.166	0.695
	w/ ours (4%)	0.137	0.120	0.722
	Δ	+0.037	-0.046	+0.027
2.0	DDIM Inv.	0.199	0.170	0.779
	w/ ours (4%)	0.179	0.120	0.807
	Δ	-0.020	-0.050	+0.028
3.0	DDIM Inv.	0.390	0.171	0.764
	w/ ours (4%)	0.267	0.121	0.815
	Δ	-0.123	-0.050	+0.051
4.0	DDIM Inv.	0.525	0.172	0.725
	w/ ours (4%)	0.372	0.121	0.800
	Δ	-0.153	-0.051	+0.075
5.0	DDIM Inv.	0.582	0.174	0.687
	w/ ours (4%)	0.452	0.121	0.770
	Δ	-0.130	-0.053	+0.083

1976 Table 18: **Performance in image reconstruction (LPIPS), inverted latent normality (correla-**
 1977 **tions) and text alignment to edit prompt for different values of guidance scale.** We show that
 1978 our forward step replacement (4%) improves DDIM Inversion algorithm.

1993 Figure 23: **Examples of image reconstruction with Naïve DDIM Inversion and DDIM Inversion**
 1994 **incorporating our fix (forward 4%) for guidance scale $w = 1$.** Examples generated with Stable
 1995 Diffusion XL.

1996
1997

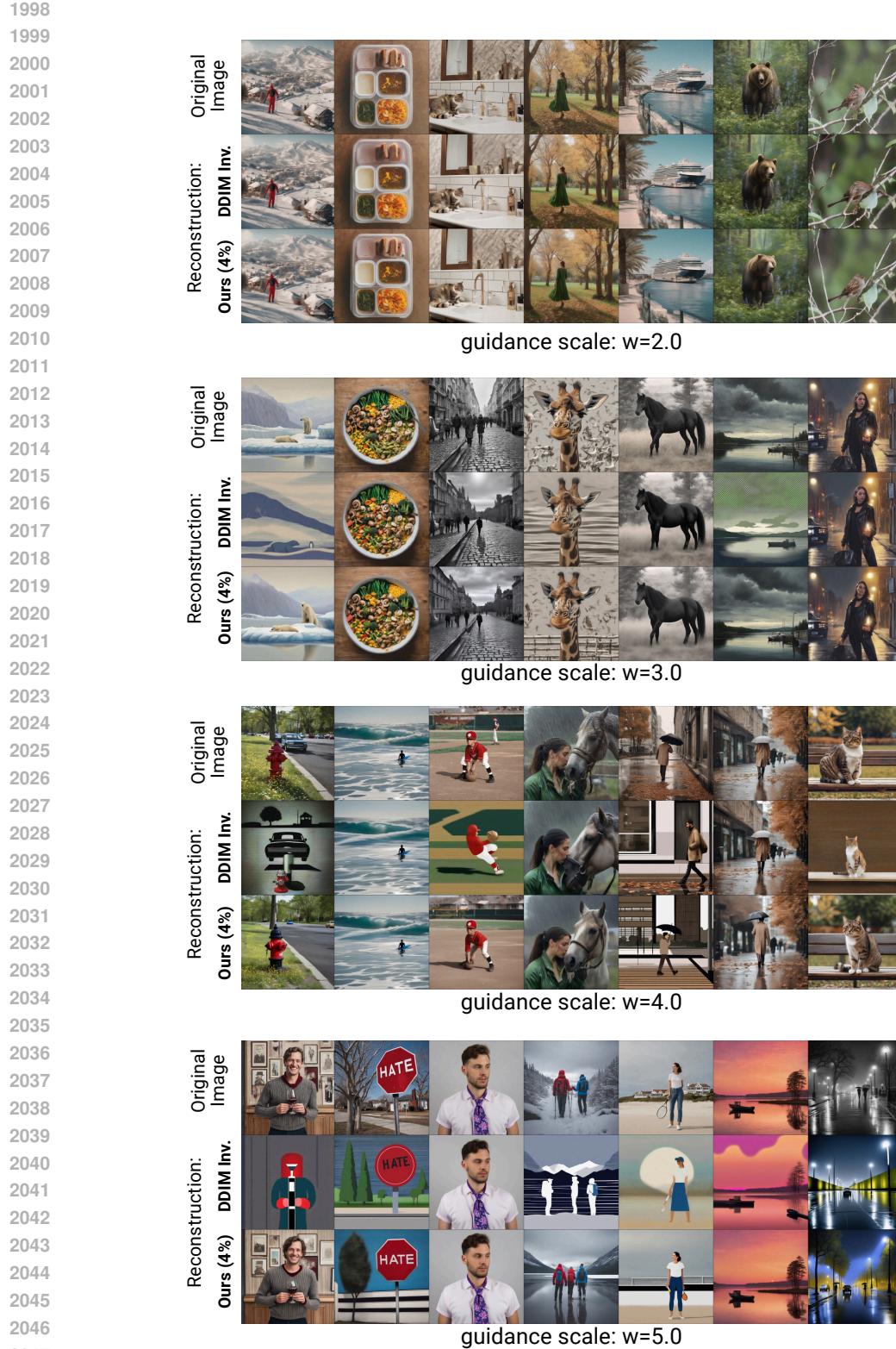
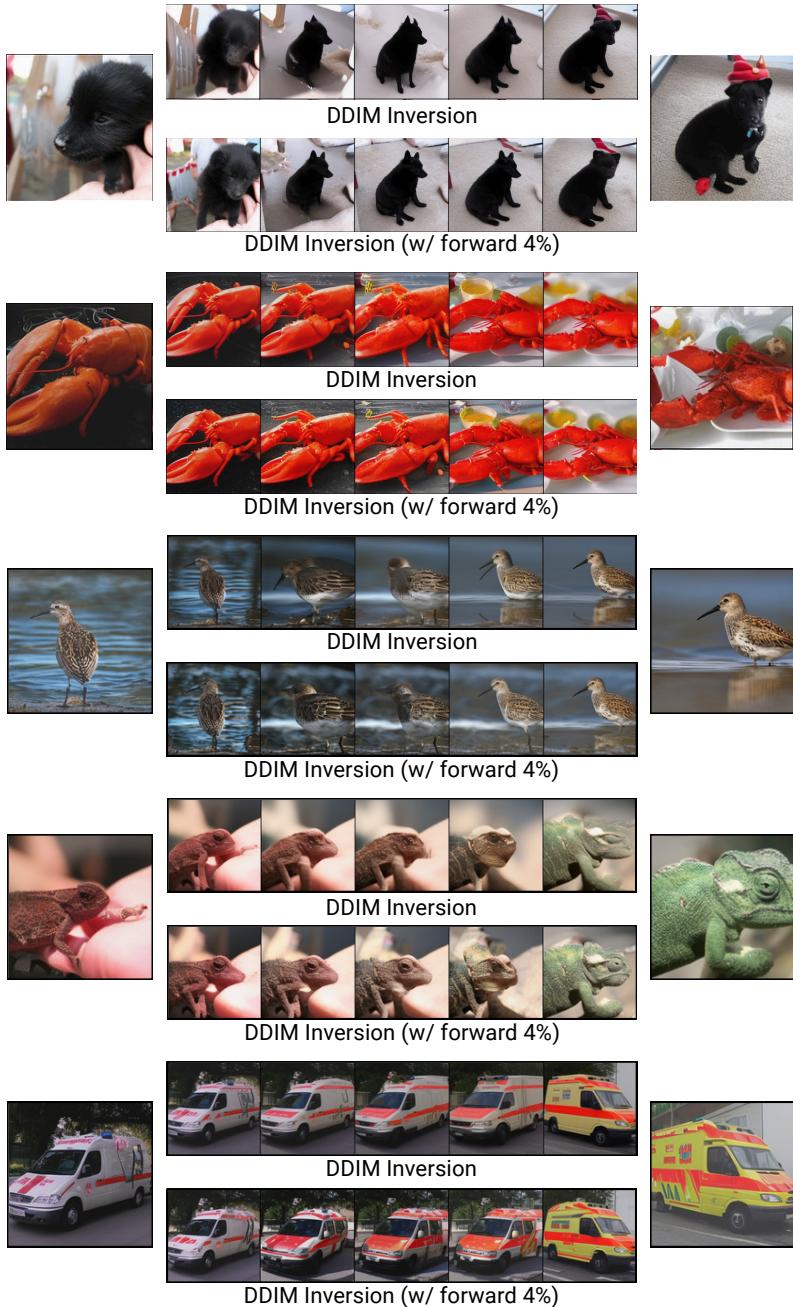


Figure 24: **Comparison of image reconstruction examples with Naive DDIM Inversion and DDIM Inversion incorporating our fix (forward 4%) across different values of guidance scale $w \in \{2, 3, 4, 5\}$.** Examples generated with Stable Diffusion XL.

2052 O QUALITATIVE EXAMPLES

2053 O.1 IMAGE INTERPOLATION

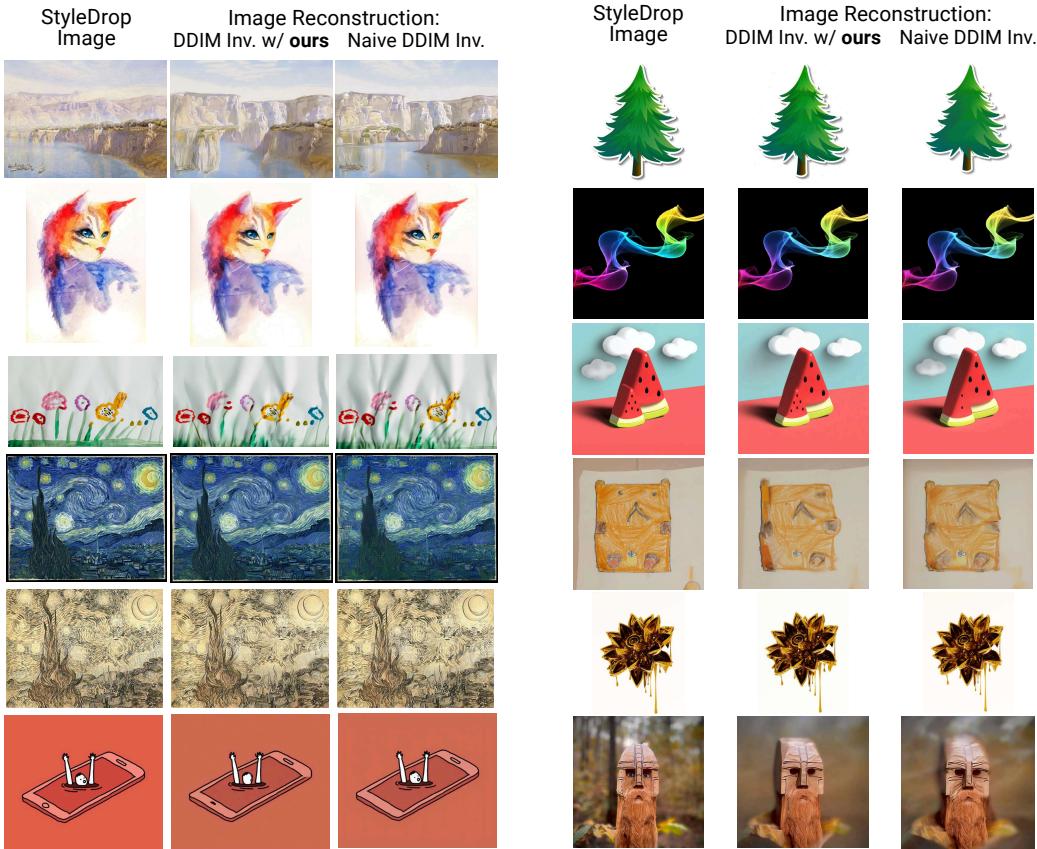
2056 In Section 4, we presented that interpolating DDIM latents with SLERP (Shoemake, 1985) leads to
 2057 a decrease in image quality and diversity when compared to Gaussian noise. In Fig. 25, we qualita-
 2058 tively compare our fix for removing correlations in latent encodings with naïve DDIM inversion in
 2059 the task of image interpolation.



2102 **Figure 25: Qualitative comparison of images generated from interpolated latents produced**
 2103 **with DDIM Inversion and our fix.** Contrary to naïve DDIM inversion, the proposed solution
 2104 enables generating high-quality objects with pixel-diverse backgrounds.
 2105

2106 O.2 RECONSTRUCTIONS OF REAL IMAGES
2107

2108 In Fig. 26, we present a qualitative comparison for reconstructions of real images from the Style-
2109 Drop (Sohn et al., 2023) dataset. We observe that DDIM Inversion with our fix sometimes provides
2110 imperfect image reconstructions. However, those failures are also observable with vanilla DDIM In-
2111 version, indicating that they stem from DDIM approximation error itself, not from our replacement.
2112

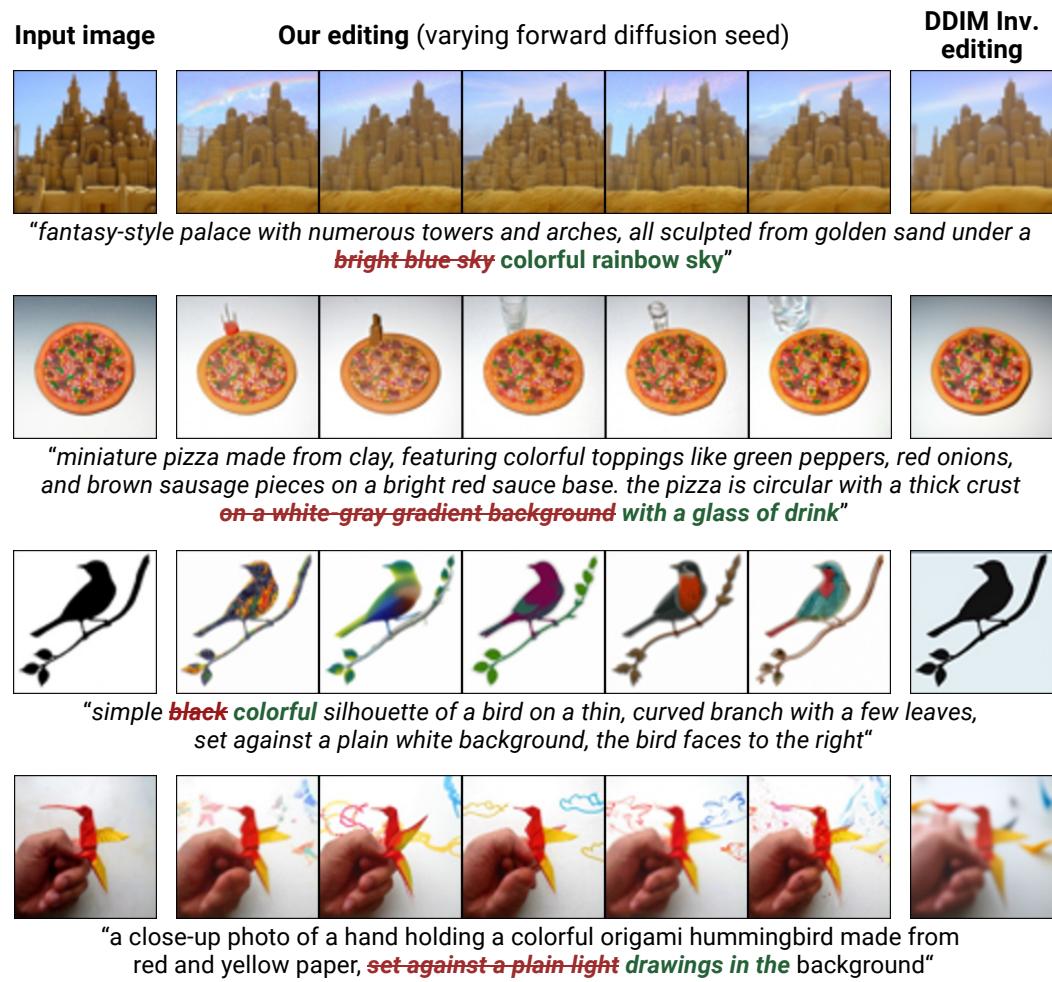


2140 **Figure 26: Examples of reconstructions of real images from the StyleDrop (Sohn et al., 2023)**
2141 **dataset with Naive DDIM Inversion and DDIM with our fix (forward diffusion in 4% of steps).**
2142 Inversion process is run with $T = 50$ steps and guidance scale $w = 1.0$. Reconstructions generated
2143 with Stable Diffusion XL.
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

2160 O.3 STOCHASTIC IMAGE EDITING
2161

2162 In this work, we propose the solution for decorrelating latent encodings resulting from DDIM inver-
2163 sion by replacing its first steps with the forward diffusion. As presented in Algorithm 1, the forward
2164 diffusion process involves sampling random Gaussian noise $\tilde{\epsilon} \sim \mathcal{N}(0, \mathcal{I})$ and interpolating it with
2165 input image. Due to the fact that, when we replace a small fraction of steps (2 – 4%), the change
2166 in image reconstruction error is insignificant, the use of different noises $\tilde{\epsilon}$ (in practice, sampled with
2167 different seeds) allows stochastic image editing, i.e. generating different manipulations of the input
2168 image, a feature not naturally available with DDIM inversion. In Fig. 27, we present examples of
2169 editing **real images** from the **ImageNet-R-TI2I** dataset (which we annotate using GPT-4o) with the
2170 IF model, showing various semantically correct modifications of the same image.
2171

2172 As preserving original image structure during editing is stated as a more difficult task for real images
2173 than the one naturally generated by diffusion model, we follow Hertz et al. (2022) by, first, denoising
2174 latent encodings with source prompt (the one used during inversion), and, after 6% of the steps, using
2175 target prompt as conditioning. The examples presented in Fig. 27 indicate, that our fix (1) enables
2176 stochastic editing of images and (2) enables image manipulations in plain image regions, contrary
2177 to editing with naïve DDIM latents.
2178



2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
Figure 27: **Replacing first DDIM inversion steps with forward diffusion enables stochastic image editing, resulting in multiple semantically correct manipulations of same input image.** Contrary to DDIM Inversion, editing with latents produced by the solution introduced in this work, enables image manipulations in uniform input image areas.

2214
2215

O.4 REAL IMAGE EDITING WITH MASACTRL

2216
2217
2218
2219
2220
2221

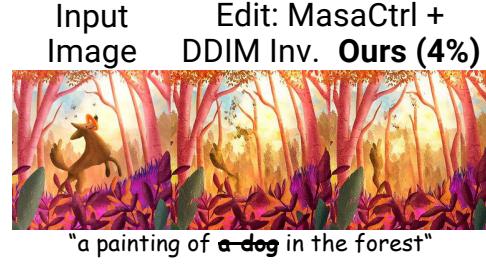
In this section, we present examples for editing real images from the PIEBench dataset (Ju et al., 2024) when our inversion method is combined with the MasaCtrl (Cao et al., 2023) editing engine. In Figs. 28 to 30, we qualitatively compare with Naïve DDIM Inversion across several editing tasks: **object replacement**, **attribute editing**, and **object removal**. We present that replacing first 4% of inversion steps with forward diffusion leads to more successful edits in prompt adherence, while not observing degradation in consistency to input images.

2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244

Figure 28: **Object replacement on real images with MasaCtrl.** Comparison for Naïve DDIM Inversion and DDIM with our fix (forward diffusion in 4% of steps). Model: Stable Diffusion 1.4.

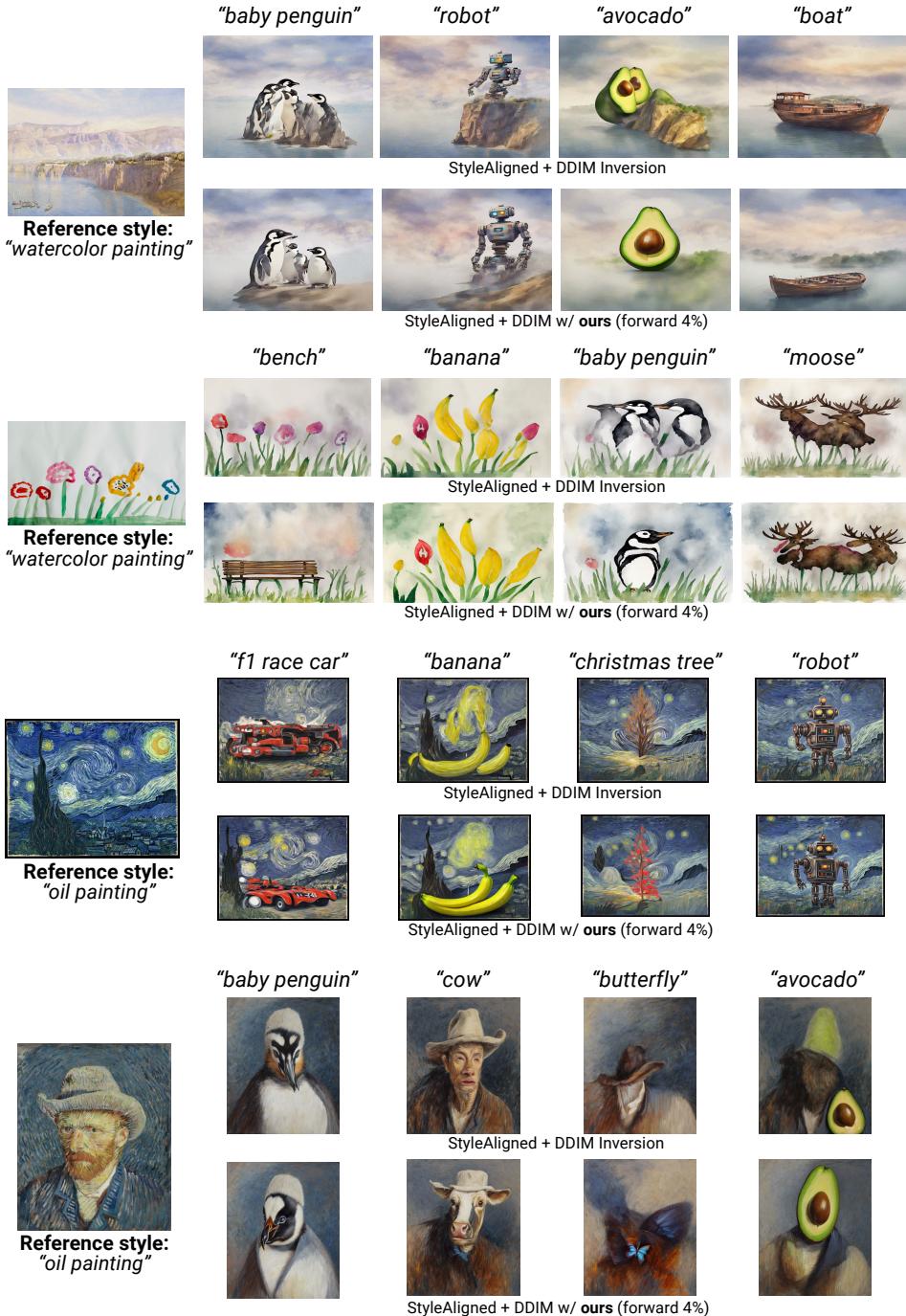
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Figure 29: **Attribute editing on real images with MasaCtrl.** Comparison for Naïve DDIM Inversion and DDIM with our fix (forward diffusion in 4% of steps). Model: Stable Diffusion 1.4.



2322 O.5 STYLE TRANSFER WITH STYLEALIGNED
2323

2324 In Figs. 31 and 32, we present a qualitative comparison of Naïve DDIM Inversion and our approach
2325 when combined with StyleAligned (Hertz et al., 2024) for the task of Style Transfer. Examples have
2326 been generated with Stable Diffusion XL using the same hyperparameters for both settings on the
2327 StyleDrop dataset (Sohn et al., 2023). We observe that replacing the first steps of DDIM Inversion
2328 with forward diffusion enables better prompt-adherence for generations.



2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Figure 31: Examples of style transfers from real images from the StyleDrop (Sohn et al., 2023) dataset. Comparison for Naive DDIM Inversion and DDIM with our fix (4% of steps replaced).

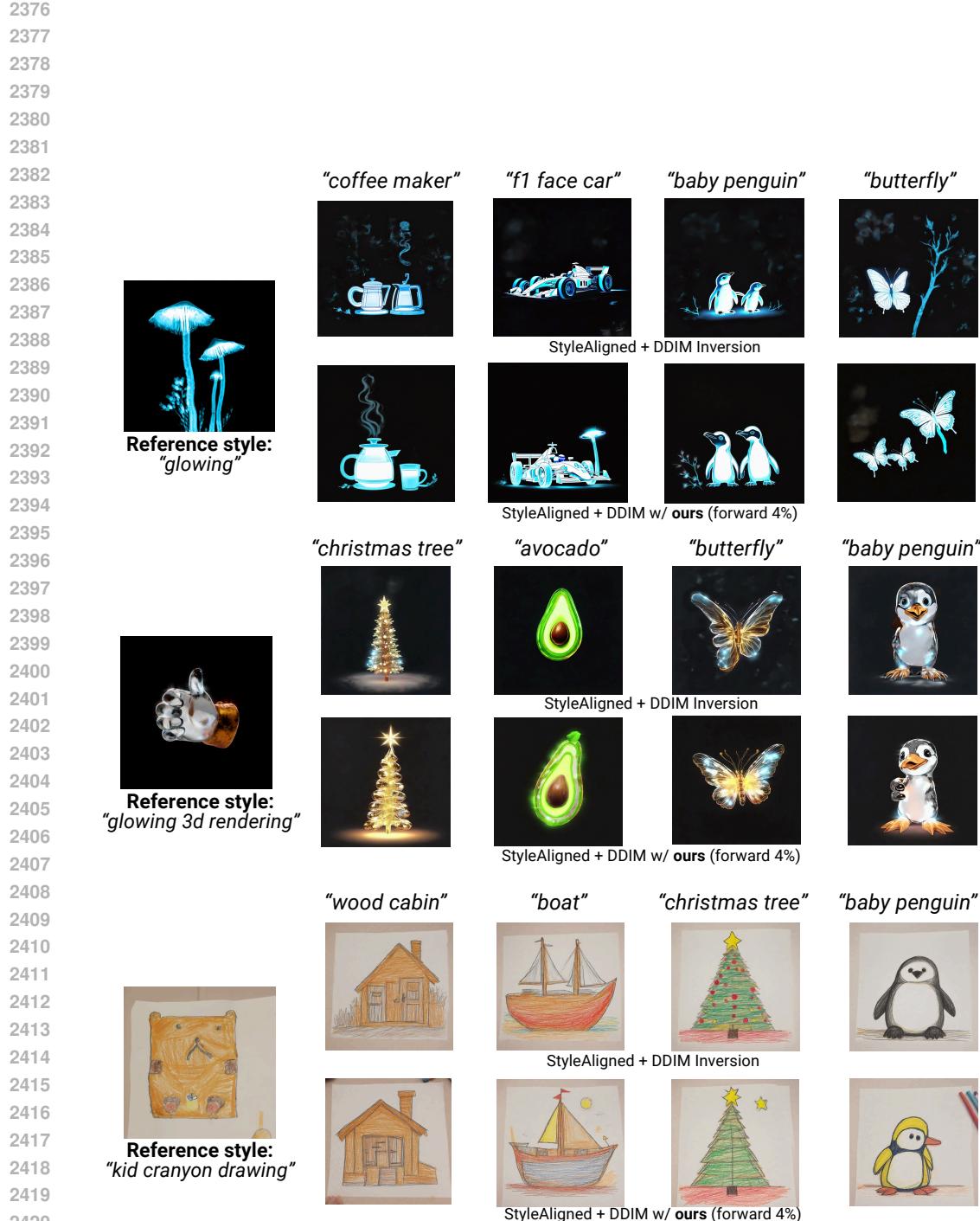


Figure 32: **Examples of style transfers from real images from the StyleDrop (Sohn et al., 2023) dataset.** Comparison for Naive DDIM Inversion and DDIM with our fix (forward diffusion in 4% of steps). Examples generated with Stable Diffusion XL.

2430 **P LATENT CORRELATIONS IN FLOW MATCHING MODELS**
 2431

2432 In this section, we analyze if, similarly to latents produced with DDIM inversion in Diffusion Mod-
 2433 els, inversion procedure with Flow Matching models leads to correlations.

2434 The inversion procedure can be incorporated into Flow Matching (FM) models (Lipman et al., 2023;
 2435 Liu et al., 2023), e.g., for image editing (Avrahami et al., 2025; Kulikov et al., 2025; Rout et al.,
 2436 2025). The generative process of FMs is defined as an ordinary differential equation (ODE) over
 2437 time $t \in [0, 1]$ with time-dependent velocity field V :

2438
$$dz_t = V(z_t, t)dt. \quad (16)$$

2439 Commonly, this ODE, given an initial condition $z_1 \sim \mathcal{N}(0; \mathcal{I})$, is solved numerically with Euler
 2440 method, leading to iterative sampling process $t \in \{T, T-1, \dots, 1\}$, defined as

2441
$$z_{t-1} = z_t + (\sigma_{t-1} - \sigma_t) \cdot \nu_\theta(z_t, t), \quad (17)$$

2442 with ν_θ being a neural network parametrizing the continuous velocity field leading to clean images
 2443 z_0 and σ_t being a noise schedule.

2444 The inverse step, as described in Avrahami et al. (2025), can be expressed as

2445
$$z_t = z_{t-1} + (\sigma_t - \sigma_{t-1}) \cdot \nu_\theta(z_{t-1}, t), \quad (18)$$

2446 with an assumption that locally $\nu_\theta(z_t, t) \approx \nu_\theta(z_{t-1}, t)$. We refer to this formulation as ODE Inver-
 2447 sion.

2448 As the approximation relies on a similar assumption as in the case of DDIM (Eq. (3)), we analyze
 2449 if the ODE Inversion, similarly, induces correlation patterns in outputted latents. In Table 19, we
 2450 report image reconstruction error, editing textual alignment (CLIP Similarity to edit prompt and
 2451 Directional Similarity (Gal et al., 2022)), and metrics validating the latents’ normality. We employ
 2452 FLUX.1 (Labs, 2024) model with $T = 50$ inversion and sampling steps. We present that latents
 2453 resulting from the ODE Inversion algorithm, similarly to the case of DDIM latents, exhibit corre-
 2454 lations and visible deviation from the Gaussian distribution. Importantly, these deviations, when
 2455 compared to using original noise, lead to a significant decrease in prompt alignment when starting
 2456 the generation process with an editing prompt. Additionally, in Table 19, we compare original noise
 2457 and ODE Inversion latent diversity for plain and non-plain input image pixel regions. Although not
 2458 as significantly visible as in DDIM latents, ODE Inversion outputs as well tend to be more erroneous
 2459 for plain image pixels and less diverse in those areas.

2460 Finally, in Fig. 33, we present qualitative examples for image reconstructions and latent correlation
 2461 when ODE Inversion is performed. As visible, after decoding with FLUX’s decoder, ODE Inversion
 2462 latents exhibit correlations in locations that represent smooth pixel areas of images. Additionally,
 2463 we plot the absolute error between original Gaussian Noise and ODE Inversion latents after applying
 2464 PCA for dimensional reduction (as FLUX operates in 16-channel latent space).

Metric		Gaussian Noise	ODE Inv. Latent
Image Reconstr.	MAE \downarrow	0.00	0.05
	LPIPS \downarrow	0.00	0.16
CLIP Text Alignment	Edit prompt \uparrow	81.49	56.40
	Directional Sim. \uparrow	87.94	55.32
Normality	Correlation \downarrow	0.14	0.27
	KL Div. $\times 10^{-2} \downarrow$	0.20	3.80
Noise Error	Plain pixels	0.00	0.31
	Non-plain pixels	0.00	0.26
Variance	Plain pixels	0.98	0.94
	Non-plain pixels	1.01	1.03

2480 **Table 19: Comparison between original Gaussian Noise and latents resulting from ODE Inver-
 2481 sion process with FLUX.1 model.** We show that ODE inversions are more correlated than Gaussian
 2482 and significantly deviate from normal distribution. This leads to worse text alignment during editing.

2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535

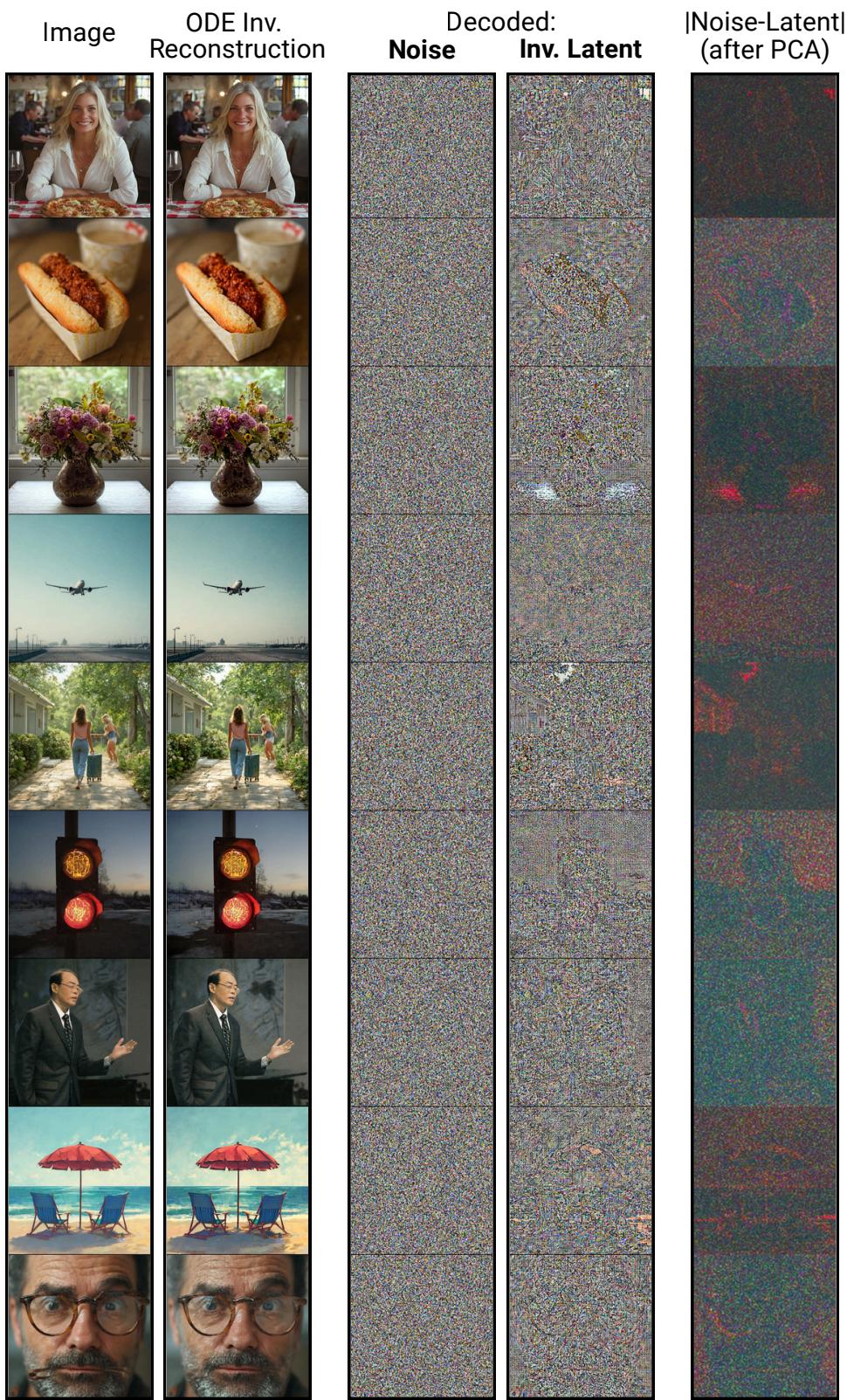


Figure 33: **ODE Inversion in Flow-Matching models, similarly as DDIM Inversion in Diffusion models, produces latent encodings with correlations.** Reconstructions performed with FLUX.