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ABSTRACT

Diffusion Models achieve state-of-the-art performance in generating new samples
but lack a low-dimensional latent space that encodes the data into editable features.
Inversion-based methods address this by reversing the denoising trajectory, trans-
ferring images to their approximated starting noise. In this work, we thoroughly
analyze this procedure and focus on the relation between the initial noise, the gen-
erated samples, and their corresponding latent encodings obtained through the
DDIM inversion. First, we show that latents exhibit structural patterns in the form
of less diverse noise predicted for smooth image areas (e.g., plain sky). Through
a series of analyses, we trace this issue to the first inversion steps, which fail to
provide accurate and diverse noise. Consequently, the DDIM inversion space is
notably less manipulative than the original noise. We show that prior inversion
methods do not fully resolve this issue, but our simple fix, where we replace the
first DDIM Inversion steps with a forward diffusion process, successfully decor-
relates latent encodings and enables higher quality editions and interpolations.

1 INTRODUCTION

Diffusion prediction error

Diffusion steps

DDIM SamplingNoise

Image

DDIM Inversion

Plain regions
Non-plain regions

+plain/non-plain mask

Latent
+plain/non-plain mask

Figure 1: DDIM inversion produces latent encodings
that exhibit less diverse noise in the smooth image
areas than in the non-plain one. We attribute this
problem to the errors of noise prediction in the first in-
version steps.

Diffusion-based probabilistic models
(DMs), (Sohl-Dickstein et al., 2015),
have achieved state-of-the-art results
in many generative domains includ-
ing image (Dhariwal & Nichol, 2021),
speech (Popov et al., 2021), video (Ho
et al., 2022), and music (Liu et al.,
2021) synthesis. Nevertheless, one of the
significant drawbacks that distinguishes
diffusion-based approaches from other
generative models like Variational Au-
toencoders (Kingma & Welling, 2014) is
the lack of an implicit latent space that
encodes the images into low-dimensional,
interpretable, or editable representations.

To mitigate this issue, several works seek meaningful relations in the approximated starting noise
used for generations. This method, known as an inversion technique, was introduced by Song
et al. (2021) with Denoising Diffusion Implicit Models (DDIM), and led to the proliferation of
works (Garibi et al., 2024; Mokady et al., 2023; Huberman-Spiegelglas et al., 2024; Samuel et al.,
2025; Hong et al., 2024; Parmar et al., 2023). The core idea is to use the noise predicted by the Diffu-
sion Model and add it to the image instead of subtracting it. Repeating this process effectively traces
the backward diffusion trajectory, approximating the noise that could have generated the image.
However, due to approximation errors and biases introduced by the trained model, discrepancies
arise between the original noise and its reconstruction – latent representation.

While recent works (Garibi et al., 2024; Mokady et al., 2023; Parmar et al., 2023; Huberman-
Spiegelglas et al., 2024; Zheng et al., 2024) try to improve the inversion procedure from the per-
spective of tasks such as image reconstruction, editing, or interpolation, in this work, we focus on
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the inversion process itself and analyze the errors DDIM inversion introduces. To that end, we an-
alyze the relation between sampled noise, generated images, and their inverted latent encodings.
First, we review existing studies and conduct additional analyses demonstrating that the reverse
DDIM technique produces latent representations with pixel correlations that deviate significantly
from a Normal distribution. As presented in Figure 1, we experimentally show that this deviation
manifests as lower diversity in latents, particularly in regions corresponding to smooth image sur-
faces. We further attribute this discrepancy to the noise approximations in the first few inversion
steps. We demonstrate that the inversion error is significantly higher and the predictions are notably
less diverse for smooth image areas than for other regions.

To highlight the consequences of the observed divergence, we show that the DDIM-inversion-based
latent space is less manipulative than the ground truth noise. This limitation is particularly no-
ticeable in lower-quality image interpolations and less expressive edits, especially in smooth input
image regions. Furthermore, we demonstrate that prior inversion methods, although designed to im-
prove image reconstruction, fail to preserve the Gaussian properties of the latents. However, based
on our analyses, we evaluate a simple fix, where we replace the first steps of the DDIM inversion
process with a forward diffusion. In the final experiments, we show that such an approach suc-
cessfully decorrelates the resulting latents, mitigating observed limitations without degrading the
reconstruction quality. Our main contributions can be summarized as follows:

• We show that DDIM latents deviate from the Gaussian distribution, mostly because of less
diverse noise predictions for the plain image surfaces during the first inversion steps.

• We show that, consequently, the DDIM latents are less manipulative, leading to the lower
quality of image interpolations and edits.

• We demonstrate that prior inversion methods do not address this issue and propose a simple
and effective fix by substituting early inversion steps with a forward diffusion.

2 BACKGROUND AND RELATED WORK

Denoising Diffusion Implicit Models. The training of DMs consists of forward and backward
diffusion processes, where, in the context of Denoising Diffusion Probabilistic Models (DDPMs,
Ho et al. (2020)), the former one with training image x0 and a variance schedule {βt}Tt=1, can be
expressed as xt =

√
ᾱtx0 +

√
1− ᾱtϵt, with αt = 1− βt, ᾱt =

∏t
s=1 αs, and ϵt ∼ N (0, I).

In the backward process, the noise is gradually removed starting from a random noise xT ∼ N (0, I)
for t = T . . . 1, with intermediate steps defined as:

xt−1 =
√
ᾱt−1 · (xt −

√
1− ᾱt · ϵ(t)θ (xt, c))/

√
ᾱt︸ ︷︷ ︸

x0 prediction

+
√
1− ᾱt−1 − σ2

t · ϵ
(t)
θ (xt, c)︸ ︷︷ ︸

direction pointing to xt

+σtzt, (1)

where ϵ
(t)
θ (xt, c) is an output of a neural network (such as U-Net), and can be expressed as a com-

bination of clean image (x0) prediction, a direction pointing to previous denoising step (xt), and a
stochastic factor σtzt, where σt = η

√
βt(1− ᾱt−1)/(1− ᾱt) and zt ∼ N (0, I). In the standard

DDPM model, the η parameter is set to η = 1. However, changing it to η = 0 makes the whole
process a deterministic Denoising Diffusion Implicit Model (DDIM, Song et al. (2021)), a class of
DMs we target in this work.

One of the advantages of DDIM is that by making the process deterministic, we can encode images
back to the noise space. The inversion can be obtained by rewriting Eq. (1) as

xt =
√
αtxt−1 + (

√
1− ᾱt −

√
αt − ᾱt) · ϵ(t)θ (xt, c). (2)

However, due to circular dependency on ϵ
(t)
θ (xt, c), Dhariwal & Nichol (2021) propose to ap-

proximate this equation by assuming the local linearity between directions (xt−1 → xt) and
(xt → xt+1), so that the model’s prediction in t-th inversion step can be approximated using xt−1

as an input, i.e.,
ϵ
(t)
θ (xt, c) ≈ ϵ

(t)
θ (xt−1, c). (3)

While such approximation is often sufficient to obtain good reconstructions of images, it introduces
the error dependent on the difference (xt − xt−1), which can be detrimental for models that sample
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images with a few diffusion steps or use the classifier-free guidance (Ho & Salimans, 2021; Mokady
et al., 2023) for better prompt adherence. As a result, also noticed by recent works (Garibi et al.,
2024; Parmar et al., 2023), latents resulting from DDIM inversion do not follow the definition of
Gaussian noise because of the existing correlations. In this work, we empirically study this phe-
nomenon and explain its origin. We discuss the relations between the following three variables:
Gaussian noise (xT, an input to generate an image through a backward diffusion process), image
sample (x0, the outcome of the diffusion model generation process), and latent encoding (x̂T, the
result of the DDIM inversion procedure as introduced in Eq. (2)).

Image-to-noise inversion techniques. The DDIM inversion, despite the noise approximation er-
rors, forms the foundation for many applications, including inpainting (Zhang et al., 2023a), inter-
polation (Dhariwal & Nichol, 2021; Zheng et al., 2024), and edition (Su et al., 2022; Kim et al.,
2022a; Hertz et al., 2022; Ceylan et al., 2023; Deja et al., 2023). Several works (Mokady et al.,
2023; Garibi et al., 2024; Huberman-Spiegelglas et al., 2024; Samuel et al., 2025; Hong et al., 2024;
Miyake et al., 2023; Han et al., 2024; Cho et al., 2024; Dong et al., 2023; Zhang et al., 2023b;
Parmar et al., 2023; Tang et al., 2024; Wallace et al., 2023; Pan et al., 2023; Wang et al., 2024;
Brack et al., 2024; Lin et al., 2024; Ju et al., 2024) aim to reverse the denoising process in text-to-
image models, where prompt embeddings can strongly affect the final latent representation through
Classifier-free-guidance (CFG) (Ho & Salimans, 2021). Null-text inversion (Mokady et al., 2023)
extends the DDIM inversion with additional null-embedding optimization, reducing the image re-
construction error. Other techniques improve inversion for image editing through seeking embed-
dings (Miyake et al., 2023; Han et al., 2024; Dong et al., 2023) or leveraging DDIM latents (Cho
et al., 2024) for guidance. On the other hand, some works leverage additional numerical methods
(Samuel et al., 2025; Pan et al., 2023; Garibi et al., 2024) to minimize inversion error. In particular,
Renoise (Garibi et al., 2024) iteratively improves the estimation of the next point along the diffusion
trajectory by averaging multiple noise predictions, incorporating an additional patch-level regular-
ization term that penalizes correlations between pixel pairs to ensure the editability of the latents.
Huberman-Spiegelglas et al. (2024) followed by Brack et al. (2024) propose inversion methods for
DDPMs, enabling the creation of various image edition results via inversion. Finally, to reduce the
discrepancy between DDIM latents and Gaussian noises, Parmar et al. (2023) propose to addition-
ally regularize final DDIM Inversion outputs for better image editing, Lin et al. (2024) introduce an
alternative noise scheduler to improve inversion stability, while Hong et al. (2024) propose an exact
inversion procedure for higher-order DPM-Solvers, solving the optimization problem at each step.

3 ANALYSIS Model Diffusion Resolution Training Cond? ArchSpace Image Latent Dataset
ADM-32 Pixel 32x32 - CIFAR-10 ✗ U-Net
ADM-64 Pixel 64x64 - ImageNet ✗ U-Net
ADM-256 Pixel 256x256 - ImageNet ✗ U-Net
LDM Latent 256x256 3x64x64 CelebA ✗ U-Net
DiT Latent 256x256 4x32x32 ImageNet ✓ DiT
IF Pixel 64x64 - LAION-A ✓ U-Net
SDXL Latent 1024 4x128x128 - ✓ U-Net

Table 1: Overview of diffusion models used for our
experiments. We study both unconditioned and con-
ditioned models, operating in pixel and latent spaces.
More details on models are provided in Appendix J.

In our experiments, we employ six differ-
ent diffusion models, which we compare
in Table 1. For both generation and in-
version processes, we use the DDIM sam-
pler with, unless stated otherwise, T =
100 steps. We provide more details on
the number of diffusion steps in Ap-
pendix N.1.

3.1 LATENTS VS. NOISE

The inversion process provides the foundation for practical methods in many applications, with the
underlying assumption that by encoding the image back with a denoising model, we can obtain the
original noise that can be used for reconstruction. However, this assumption is not always fulfilled,
which leads to our first question:

Research Question 1: Are there any differences between sampled Gaussian noise and la-
tents calculated through the DDIM inversion?

3
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Model Noise (xT) Latent (x̂T) Sample (x0)
ADM-32 0.039±.003 0.382±.010 0.964±.022

ADM-64 0.039±.003 0.126±.008 0.925±.021

ADM-256 0.039±.003 0.161±.013 0.960±.008

IF 0.039±.003 0.498±.025 0.936±.019

LDM 0.039±.003 0.045±.014 0.645±.099

DiT 0.041±.003 0.103±.021 0.748±.064

SDXL 0.036±.002 0.155±.044 0.637±.064

Table 2: Mean of top-20 Pearson correla-
tion coefficients inside 8 × 8 patches for
random Gaussian noises, latent encod-
ings, and generations. DDIM Latents are
much more correlated than noises.

(a) IF (b) LDM (c) DiT

Figure 2: Latent encodings exhibit im-
age patterns. For small pixel-space models
(a), we observe correlations directly in the
inversion results. For larger models (e.g.,
LDMs), the same patterns can be observed
in the absolute errors between the latent
and noise (b). This observation also holds
for LDM models operating on 4-channels,
where we use PCA for visualization (c).

Prior work and findings. This question relates
to several observations from the existing literature,
which highlight that outputs of the DDIM inver-
sion differ from the standard Gaussian noise (Par-
mar et al., 2023; Garibi et al., 2024) and that the
difference can be attributed to the approximation er-
ror (Hong et al., 2024; Wallace et al., 2023). While
these works notice the divergence between noise and
latent encodings, they do not validate them or study
the source of this issue.

Experiments. First, we consolidate existing ob-
servations on the presence of correlations in the la-
tent encodings (x̂T) and validate them by running
an initial experiment that compares latents to im-
ages (x0) and noises (xT) across diverse diffusion
architectures. In Table 2, we calculate a mean of
top-20 Pearson correlation coefficients (their abso-
lute values) inside C × 8× 8 pixel patches, where C
is the number of channels (pixel RGB colors or la-
tent space dimensions for latent models). The results
confirm that latent representations have significantly
more correlated pixels than the noise. In Fig. 2, we
show how the measured correlations visually mani-
fest themselves in the latents. For pixel models such
as Deepfloyd IF, we observe clear groups of corre-
lated pixels as presented in Fig. 2a. For latent dif-
fusion models, we can highlight the inversion error
by plotting the difference between the latent and the
noise, as presented in Fig. 2b. This property also
holds for LDMs with a 4-channel latent space, with
the use of PCA (Fig. 2c).

Conclusion. Our initial experiments numerically validate observations from recent studies and
demonstrate that latent representations computed using the DDIM inversion deviate from the ex-
pected characteristics of independent Gaussian noise. Specifically, both visual analysis and quanti-
tative evaluations reveal significant correlations between the neighboring pixels.

3.2 LOCATION OF LATENT ENCODINGS SPACE

To delve deeper, we first propose to empirically analyze the nature of this issue, posing a question:

Research Question 2: How do DDIM inversion latents differ from the Gaussian noise?
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Figure 3: l2-distances between intermediate
denoising steps xt and points on the linear in-
terpolation path from noise xT to the inverted
latents x̂T. The consecutive intermediate gener-
ation steps along the sampling trajectory conse-
quently approach the latent.

Experiments. To answer this question, we
first geometrically investigate the location of the
latents with respect to the generation trajectory.
To that end, we analyze the distance between
the following steps {xt}t=T ...1 of the backward
diffusion process and intermediate points on the
linear interpolation path between the noise and
the DDIM latent. We present the results of this
experiment in Fig. 3, where each pixel, with
coordinates (t, λ), is colored according to the
l2 distance between the intermediate trajectory
step xt and the corresponding interpolation step.
This distance can be expressed as ∥(1−λ)xT +
λx̂T − xt∥2. For better clarity we normalize the
distances column-wise.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We observe that, while moving from the initial noise (xT) towards the final sample (x0), the inter-
mediate steps xt approach the DDIM inversion latent (x̂T), while after the transition point around
50-70% (timesteps 50-30) of the generative trajectory, the distance to the latent becomes lower than
the distance to the starting noise. This observation reveals that latents retain some characteris-
tics of the original samples and contain information about the source generation.

Model Absolute Error Standard Deviation
Plain Non-plain Plain Non-plain

Noise (def.) – – 1.0 1.0
ADM-32 0.49 0.43 0.34 0.46
ADM-64 0.22 0.15 0.49 0.64
ADM-256 0.39 0.29 0.53 0.66
IF 0.56 0.40 0.46 0.72
LDM 0.13 0.03 0.45 0.59
DiT 0.12 0.06 0.43 0.54
SDXL 0.30 0.26 0.87 0.96

Table 3: Average per-pixel absolute error
(between noise and latent) and standard
deviation of the latents’ pixels correspond-
ing to the plain and non-plain image areas.
The error for plain pixels, where latents are
less diverse, is higher than for other regions.

Similar observation can be made on the basis of vi-
sualizations in Fig. 2, where we can distinguish the
coarse shape of the original objects in the latents.
In particular, while the pixels associated with the
objects have high diversity, the areas related to the
background are much smoother. This leads to the
hypothesis that the most significant difference be-
tween the initial noises and latent encodings is the
limited variance in the areas corresponding to the
background of the generated images. To validate
it, we compare the properties of the latents between
plain and non-plain areas in the image. We deter-
mine binary masks Mp by calculating the abso-
lute difference between neighboring pixels. Pixels
where this local variation falls below a fixed thresh-
old (τ = 0.025) across all channels are classified
as plain regions, effectively isolating low-texture areas (see Appendix H for more details). This
procedure results in selection of areas, such as sky, sea, plain backgrounds, or surfaces (see Fig. 12
for examples). In Table 3, we show that the error between the starting noise xT and the latent x̂T

resulting from the DDIM inversion is higher for pixels corresponding to the plain areas. Across the
models, this trend goes along with a decrease in the standard deviation of the latents’ pixels related
to those regions. It suggests that DDIM inversion struggles with reversing the plain image areas,
bringing them to mean (0) and reducing their diversity. Additionally, in Appendix P, we present that
correlations and reduced latent diversity for plain image regions can be similarly observed within
Flow matching (Lipman et al., 2023) models.

Conclusion. Latent encodings resulting from the DDIM Inversion deviate from the Gaussian noise
towards zero values. This is especially true for parts of the latents corresponding to the plain image
surfaces. This observation reveals that latent encodings retain some characteristics of the original
input samples and contain information about the source generation.

3.3 ORIGIN OF THE DIVERGENCE

Given the observation from the previous section, we now investigate the source of the correlations
occurring in latent encodings, posing the question:

Research Question 3: What causes the spatial correlations observed in DDIM latents?

Experiments. We first recall that the DDIM Inversion error can be attributed to the approximation
of the diffusion model’s output at step t ∈ 1 . . . T with the output from step t − 1 (see Eq. (3)).
Hence, we can define the inversion approximation error for step t as the difference between DM’s
output for the target and previous timesteps t and t− 1 as:

ξ(t) = |ϵ(t)θ (xt−1, c)︸ ︷︷ ︸
EI
t

− ϵ
(t)
θ (xt, c)︸ ︷︷ ︸

ES
t

|, (4)

where ESt is the true model prediction at step t, and EIt is the inversion’s approximation using
the previous step’s output. Based on the observations from the previous section, we propose to
investigate how the inversion approximation error ξ(t) differs for pixels associated with plain and
non-plain image areas throughout the inversion process. To that end, we average the approximation
errors for 4000 images for each of the T = 50 diffusion timesteps. To measure the error solely for
the analyzed step t, we start the inversion procedure from the exact latent from step (t − 1) (cache
from the sampling path). We split the latent pixels into plain and non-plain areas according to the
masks calculated for clean images. More details on this setup can be found in Appendix I.
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In Fig. 4a, we present the visualization of calculated differences for each inversion step. There
is a significant difference in the prediction errors for plain and non-plain areas, especially in the
initial steps of the inversion process. Notably, for pixels associated with plain image areas, the error
predominantly accumulates within the first 10% of the inversion steps. Additionally, in Fig. 4b, we
present that this error discrepancy is strongly connected to a decrease in the diversity of diffusion
models’ predictions. More precisely, we calculate a ratio of the predictions’ standard deviations

5 15 25 35 45
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0.9
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|
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t|/
|

t| (a) DDIM Inversion error1e 4

Plain pixels Non-plain pixels

5 15 25 35 45
70
80
90

100

st
d(

t)/
st

d(
t) (b) % of variance recovered

Timestep t
Figure 4: Discrepancy of the DDIM noise
predictions for plain and non-plain image
pixels. We show that, in the first inversion
steps, the approximations are significantly
(a) more erroneous and (b) less diverse for
plain regions than for the rest of the image.

between the sampling and inversion processes for
the associated timesteps. We show that, for plain
image regions, there is a significant decrease in the
fraction of predictions’ variance preserved during
the first inversion steps. Those observations can be
related to recent works (Lee et al., 2023; Lin et al.,
2024) analyzing why numerical solvers incur sig-
nificant errors during the earliest diffusion steps (as
t → 0). Specifically, Lee et al. (2023) trace the er-
ror to the 1/t curvature blow-up of the reverse-time
ODE trajectory, whereas Lin et al. (2024) attribute
the predominance of early DDIM inversion approxi-
mations to a singularity arising from commonly used
noise schedules. Our experiments extend those stud-
ies by showing that the error can be mainly attributed
to the plain regions in the original images.

Conclusion. Early approximations during the
DDIM Inversion procedure result in unequally dis-
tributed errors for pixels related to the plain and non-
plain image areas, making it the origin of the struc-
tural patterns and correlations in the latents.

4 CONSEQUENCES OF THE DIVERGENCE AND HOW TO MITIGATE THEM?

After identifying the differences between the noises and latents, and highlighting the origin of this
phenomenon, we finally pose the last question:

Research Question 4: What are the practical consequences of the divergence between
noises and inverse DDIM latents, and how can they be mitigated?

Our findings in Section 3.3 indicate that the initial inversion steps predominantly contribute to the
divergence between DDIM latent variables and Gaussian noise, in the form of insufficiently diverse
approximations of diffusion model predictions. Therefore, as a simple fix to this issue, we propose
to replace the first inversion steps with random noise, as in a forward diffusion process. The rationale
behind this decision is twofold:

• Substituting initial steps with Gaussian noise allows us to recover the noise variance exactly
when the DDIM inversion fails to do so.

• Recent studies (Deja et al., 2022; Liu et al., 2025; Li & Chen, 2024; Fesl et al., 2025) have
shown that final steps of the backward diffusion do not contribute additional generative
information, instead functioning as a data-agnostic denoising process. Therefore, exact
inversion of those steps is less important from the perspective of accurate reconstruction.

The proposed inversion step is therefore defined as follows (see Appendix F for pseudocode):

xt =

{√
ᾱtx0 +

√
1− ᾱtϵ, if t ≤ t′ (forward diffusion)

√
αtxt−1 + (

√
1− ᾱt −

√
αt − ᾱt) · ϵ(t)θ (xt−1, c), if t > t′ (DDIM inversion)

(5)

Before moving to practical applications, we first evaluate the effectiveness of this approach, with
N = 10000 images generated with T = 50 steps using DiT and IF models. For such generations,
we first noise them with a forward diffusion to the intermediate step t′, followed by the DDIM
inversion for T − t′ steps, ending up with an approximation of the initial noise. In Table 4, we
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Inversion steps DiT IF
replaced by Pixel Reconstruction KL Div. Pixel Reconstruction KL Div.
forward (%T ) Corr. Absolute Error ×10−3 Corr. Absolute Error ×10−3

Noise xT 0.04 0.00 0.20 0.05 0.00 0.40
DDIM latent x̂T 0.16 0.05 11.57 0.64 0.07 608.25
1 (2%) 0.04 0.05 0.29 0.06 0.07 0.98
1 . . . 2 (4%) 0.04 0.07 0.25 0.05 0.07 0.48
1 . . . 5 (10%) 0.04 0.12 0.49 0.05 0.08 0.42
1 . . . 10 (20%) 0.04 0.15 0.45 0.05 0.10 0.40

Table 4: Structures can be removed from DDIM
latents by replacing inversion steps with forward
diffusion. Using forward diffusion instead of the
first 4% of inversion steps brings the resulting latents
closer to Gaussian noise without a major degradation
in the image reconstruction.

Different prompt generations from:
Model Region Noise Latent Latent

(baseline) DDIM Inv. w/ Forward 4%

IF Plain 17.90 14.92 ( +16.7%) 17.42 ( +2.7%)
Non-plain 18.60 17.35 ( + 6.7%) 18.16 ( +2.4%)

DiT Plain 13.64 11.95 ( +12.4%) 13.27 ( +2.7%)
Non-plain 16.49 15.34 ( + 7.0%) 16.18 ( +1.9%)

Table 5: PNG bit-rate (bits / pixel) after
saving only the masked pixels. Higher
compression (lower bpp) means less local
variability in the pixel stream. Values in
parentheses are the percentage change with
respect to the noise baseline.
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Figure 5: The quality and diversity of images generated from interpolations of latents x̂T

deteriorate along the path, as indicated by, accordingly, the FID peak and Recall decrease. In
contrast, the quality of generations from noise xT interpolations remains stable. Our simple fix,
which is replacing 4% of the first inversion steps with forward diffusion, alleviates this issue.
show that by replacing just 4% of the inversion steps, we can completely remove correlations in the
latents, up to the level of random Gaussian noise. This replacement percentage allows us to navigate
the trade-off between reconstruction fidelity and latent manipulability. We observe that this trade-off
is highly favorable: replacing the first few steps (t′ ≤ 4%) restores the Gaussian properties required
for diverse editing, while maintaining a reconstruction error that remains within the perceptual noise
floor (see Appendix N.2 for detailed analysis). To further evaluate this effect, in Table 5, we measure
the size of the different parts of images (plain vs non-plain) after saving them with the PNG lossless
compression. Compression is most effective in the parts related to plain images generated from
the DDIM latents, which incline low diversity of their values. At the same time, replacing only
4% of inversion steps significantly reduces this issue. While our simple fix appears to effectively
decorrelate the inversion latents, in the following sections, we showcase the consequences of the
divergence between noise and latents in several practical use cases.

4.1 INTERPOLATION QUALITY

We start with the task of image interpolation, where the goal, for two given images, is to generate a
sequence of semantically meaningful intermediary frames. Numerous methods (Dhariwal & Nichol,
2021; Song et al., 2021; Samuel et al., 2023; Zheng et al., 2024; Zhang et al., 2024b; Bodin et al.,
2025) Diffusion Models with DDIM inversion technique, to calculate latents, interpolate them, and
reconstruct the target image. Song et al. (2021) propose to use the spherical linear interpolation
(SLERP, Shoemake (1985)), that, for two objects x and y, with a coefficient λ ∈ [0; 1], is defined as
z(λ) = sin (1−λ)θ

sin θ x+ sinλθ
sin θ y, where θ = arccos ((x · y)/(∥x∥∥y∥)).

In our experiment, we compare the quality of interpolations in the noise and latent spaces. To this
end, we sample N = 20k noises, use DDIM with T = 50 diffusion steps to generate images, and
invert those images back into their latents. Next, we randomly assign pairs, which we interpolate
with SLERP for λ ∈ {0, 1

6 ,
1
3 ,

1
2 ,

2
3 ,

5
6 , 1} and denoise. In Fig. 5, we show that, by calculating FID-

10k, generations starting from interpolations between random noises (in orange) preserve consistent
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“boat on a blue sea
with a daylight sky
background”

editing: “daylight sky background“        ”storm thunder background“

“happy corgi dog on a
grass surface” editing: “on a grass“         ”on a water“

“fairy tale garden, sky
with clouds”

“kid smiling to camera
next to green blackboard”

Gaussian 
noise

DDIM Inversion 
latent

DDIM Inv. latent 
w/ forward 4%

Input image
w/ source prompt

Edit prompt generation from:  
Gaussian 

noise
DDIM Inversion 

latent
DDIM Inv. latent 
w/ forward 4%

Edit prompt generation from:  

editing: +“balloons in the sky” 

editing: +“with cat drawing” 

Input image
w/ source prompt

Figure 6: Image editing by reversing the original image with a source prompt and reconstruct-
ing it with a target one. DDIM Inversion produces less diverse image changes when the manip-
ulation is related to plain regions in source images, contrary to when using ground-truth Gaussian
noise. Replacing the first inversion steps with forward diffusion leads to more editable latents.

quality along the entire path – meaning that all interpolated images fall into the real images man-
ifold. In contrast, this property collapses for the setting with DDIM latents as inputs (in purple).
In the following rows, we show that worse interpolation results for latents stem from the decline
in the variety of produced generations, as indicated by a lower recall (Kynkäänniemi et al., 2019),
especially when getting closer to the middle of the interpolation path. Nevertheless, as presented
in Fig. 5, using our fix for the first 4% of steps mitigates this issue, enabling higher-quality interpo-
lations with better diversity of the intermediate points. In Appendix O.1, we present qualitatively
that the proposed fix leads to more diverse interpolations, especially in the image background.

4.2 DIVERSITY AND QUALITY OF IMAGE EDITION

Apart from image interpolations, text-to-image diffusion models with DDIM inversion are often
used for text-based edition, where a source image is first inverted and then reconstructed with a
different target prompt (Hertz et al., 2022; Mokady et al., 2023; Garibi et al., 2024; Huberman-
Spiegelglas et al., 2024). However, knowing that DDIM latents are less diverse in plain areas,
we hypothesize that using them as a starting point might reduce the diversity and quality of the
edited samples. To evaluate this, we use DiT (Peebles & Xie, 2023) and IF (StabilityAI, 2023)
as conditional DMs with T = 50 diffusion steps. For each model, we construct two sets of 1280
randomly selected (1) source prompts PS , used during the generation and inversion, and (2) target
prompts PT , used for edition. Using source prompts PS , we generate images IS from Gaussian
noise xT and invert them back into the latents x̂T. Next, we regenerate images ÎT from the latents,
changing the conditioning to the target prompts PT . We compare the edits with ground truth targets
IT generated from the original noise xT with PT . In Fig. 6, we present the drawback of leveraging
latents as starting points for the denoising, where the structures for IS images’ backgrounds limit
editing performance in ÎT target images.

Property Metric DiT Deepfloyd IF
Noise xT Latent x̂T Noise xT Latent x̂T

Diversity
DreamSim ↑ 0.71±0.12 0.68±0.13 0.67±0.10 0.61±0.11

against IS
LPIPS ↑ 0.59±0.12 0.56±0.12 0.38±0.11 0.33±0.11

SSIM ↓ 0.23±0.13 0.26±0.14 0.34±0.15 0.41±0.15

DINO ↓ 0.17 0.22 0.34 0.42

Text
alignment

CLIP-T (PS) ↓ 0.465 0.480 0.273 0.353
CLIP-T (PT ) ↑ 0.681 0.662 0.649 0.614
Directional ↑ 0.570 0.541 0.776 0.676

Table 6: Diversity of editions (generations from
noise xT and latents x̂T, conditioned on tar-
get prompt) in relation to source images IS and
their alignment with source, target, and directional
prompts. The arrows (↑/↓) indicate greater generation
diversity and higher text alignment to the target prompt.

In Table 6, we quantitatively measure this
effect. First, we calculate the diversity of
target generations (IT ,ÎT ) against source
images (IS). We use DreamSim distance
(Fu et al., 2023), LPIPS (Zhang et al.,
2018), SSIM (Wang et al., 2004), and co-
sine similarity of DINO features (Darcet
et al., 2024) to measure the distance be-
tween two sets of generations. The experi-
ment shows that edits resulting from latent
encodings ÎT are characterized by higher
similarity (SSIM, DINO) and lower diver-
sity (DreamSim, LPIPS) relative to starting images IS than the one resulting from noises IT . At
the same time, in the bottom rows of Table 6, we show that the correlations occurring in the latent
encodings induce lower performance in text-alignment to target prompts PT , which we measure by
calculating cosine similarity between text embeddings and resulting image embeddings, both ob-
tained with the CLIP (Radford et al., 2021) encoder. Additionally, to better assess image editing
quality, we use directional CLIP similarity (Gal et al., 2022).
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67.7
70.170.9

60.9

66.066.5

DiT IF

LPIPS

73.9
77.377.2

59.4
64.1

66.1

DiT IF

1-SSIM

52.053.153.5

64.7

71.372.7

DiT IF

1-CLIPPS

66.2
67.768.1

61.4

64.964.9

DiT IF

CLIPPT

54.1
56.557.0

67.6

76.777.6

DiT IF

Dir. CLIP

(a) Image Diversity (b) Text Alignment

DDIM Latent xT Noise xT Latent (4% forward)

Figure 7: Replacing first DDIM inversion steps with forward diffusion improves editions’ pixel
diversity (a) and prompt-alignment (b). For IF and DiT models, diversity of generations can
be improved by leveraging the forward diffusion process in the first inversion steps, and denoising
resulting latents with a different prompt. Additionally, we observe a boost in generations’ alignment
to the target prompts, as indicated by the larger Directional CLIP Similarity, larger CLIP-T value for
PT , and the smaller one for PS . We present details of the experiment in Appendix K.

We further evaluate how replacing the first inversion steps with the forward diffusion affects the
diversity and text alignment of generated outputs. As shown in Fig. 7a, swapping the first 4%
of DDIM inversion steps with forward diffusion improves the diversity of images generated from
latents almost to the level of the samples from original noise. At the same time, as presented in
Fig. 7b, replacing the first inversion steps leads to a significant decrease in generations’ alignment to
the source prompt (PS) and an increase in similarity to the target one (PT ). This can also be observed
in visualizations (Fig. 6). Moreover, because of the random noise added as the initial inversion steps,
as presented in Appendix O.3, our approach enables stochastic image editing, producing diverse
manipulations of the same image.

4.3 DO EXISTING INVERSION METHODS FIX THE CORRELATIONS?

So far, we have demonstrated the issues of the classical DDIM inversion method. In this section, we
investigate whether novel inversion methods introduced in prior work resolve the issue of selectively
reduced latents’ diversity. We employ the Stable Diffusion XL (Podell et al., 2024) model, and using
2000 generations from COCO-30K prompts, we measure resulting inversions’ normality, editability,
and image reconstruction performance. For fair comparison, we use the same number of NFEs.
Results in Table 7 indicate that methods based on predicted noise regularization, such as Pix2Pix-
Zero (Parmar et al., 2023) and ReNoise (Garibi et al., 2024), while slightly improving the latents’
quality, do not offer significantly better editability, while being two times slower than DDIM. On the
other hand, replacing DDIM approximation (Eq. (3)) with reverse DPMSolver (Lu et al., 2022) leads
to decorellated latents at the cost of high image reconstruction error. We show that our fix offers the
best editability of latents with minimal reconstruction loss, all at the lowest computational cost. To
be more precise, thanks to the fact that selected inversions steps replaced with the randomly sampled
noise are the least important in terms of accurate reconstruction, we can observe no increase in the
reconstruction error when replacing 2% of forward steps (up to the 2nd decimal point of MAE),
while for 4% of steps the additional error is around 1% of pixel deviations - a value below the
threshold usually employed by adversarial attacks as being not noticeable by a human eye (Madry
et al., 2017). This replacement percentage allows us to navigate the trade-off between reconstruction
fidelity and latent manipulability.

Prior NFE Normality Image Reconstruction CLIP Text Alignment Inv. time
Corr. ↓ KL ↓ MAE ↓ LPIPS ↓ PSNR ↑ Source ↓ Target ↑ Direct. ↑ [s/image] ↓

Gaussian Noise — 0.08±.01 0.10 – – – 31.88±11.66 73.34±9.65 80.62±16.96 –
DDIM Inv. 50 0.16±.02 0.89 0.03 0.10±.05 27.58 34.99±11.36 69.58±10.17 75.59±17.86 7.17±.01

Pix2Pix-Zero 50 0.15±.02 0.85 0.03 0.10±.05 27.35 34.86±11.39 69.73±10.12 75.83±17.87 22.07±1.84

ReNoise (T=50, K=1) 50 0.14±.02 0.73 0.04 0.09±.05 25.64 34.89±11.46 69.87±10.07 76.47±18.12 19.86±.22

ReNoise (T=25, K=2) 50 0.14±.02 0.59 0.04 0.09±.04 24.81 35.21±11.61 69.68±10.09 76.17±18.15 15.36±.51

ReNoise (T=17, K=3) 51 0.13±.02 0.47 0.06 0.13±.05 22.35 35.79±11.65 69.04±9.98 75.20±17.96 14.31±.49

DPMSolver-1 (T=50) 50 0.09±.01 0.50 0.06 0.30±.10 22.55 34.81±11.40 70.26±10.42 74.76±18.02 7.06±.00

DPMSolver-2 (T=25) 50 0.09±.01 0.26 0.06 0.14±.07 24.76 34.69±11.55 71.24±9.91 76.17±18.10 7.06±.00

Ours (forward 2%) 49 0.14±.02 0.71 0.03 0.10±.05 27.12 34.32±11.49 70.21±10.13 76.76±17.79 7.00±.00

Ours (forward 4%) 48 0.09±.01 0.38 0.04 0.14±.04 25.68 33.62±11.63 72.17±9.94 78.91±17.49 6.86±.01

Table 7: Evaluation of inversion methods across multiple metrics: latents normality, image
reconstruction, prompt alignment, and speed. DDIM with the proposed fix offers a good trade-
off between latent editability and image reconstruction, while increasing the inversion speed.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

4.4 IMPROVING STATE-OF-THE-ART EDITING ENGINES WITH OUR FIX

Finally, we evaluate the possibility of combining our simple fix with existing methods designed for
real image manipulation. We adapt StyleAligned (Hertz et al., 2024), the state-of-the-art method for
transferring a style from a reference image to new generations, and MasaCtrl (Cao et al., 2023), a
complex editing engine for text-based real image editing. As these methods employ Naı̈ve DDIM
Inversion to find starting noise for input images, we can directly apply our simple fix to those tech-
niques, without changing their generation procedure.

Inversion Method CLIP Prompt
Alignment ↑

Set Consistency
(DINO) ↑

Set Consistency
(CSD) ↑

Style Similarity
(DINO) ↑

Style Similarity
(CSD) ↑

Naive DDIM 0.795 0.476 0.552 0.505 0.690
Ours (forward 4%) 0.795 0.471 0.554 0.510 0.697

Table 8: Style transfer from reference image with StyleAligned (Hertz et al., 2024) incorporat-
ing Naı̈ve DDIM Inversion and version with our fix. Our fix improves similarity to input style.

We evaluate style transfer by measuring generations’ alignment to the prompt, set consistency (pair-
wise cosine similarities of DINO (Darcet et al., 2024) and CSD (Somepalli et al., 2025) embed-
dings), and style consistency to the reference image (DINO and CSD embeddings cosine similar-
ity). The Table 8 compares the performance of vanilla StyleAligned and the version with our fix in
style transfer from StyleDrop (Sohn et al., 2023) images. As presented, our approach improves the
alignment with the target style. Additionally, in Fig. 8, we present a qualitative comparison of both
inversion algorithms when combined with StyleAligned (1) for style transfer and MasaCtrl (2) for
real image editing. More examples can be found in Appendices O.4 and O.5.

DDIM Inversion

Ours (forward 4%)

Reference style:
“oil painting”

“baby penguin” “cow” “butterfly” “avocado”

“a ... wearing a pink ...”  
cat → tiger / hat → scarf 

“a puppy is sitting in a field of dandelions“

Input DDIM Inv. Ours (4%) Input DDIM Inv. Ours (4%)

“an astronaut standing on the water with 
the moon and clouds in the background“

“painting of ... sitting in a laundry room”  
shepherd dog → poodle dog

(1) Style transfer with StyleAligned

(2) Image editing with MasaCtrl

Figure 8: DDIM Inversion with our fix, when merged to popular image manipulation engines,
improves (1) style transfer with StyleAligned and (2) image editing with MasaCtrl. We use real
images from, accordingly, StyleDrop (Sohn et al., 2023) and PIEBench (Ju et al., 2024) benchmarks.

5 CONCLUSIONS

This work demonstrates that DDIM inversion errors cause latent representations to systematically
deviate from a Gaussian distribution, particularly in smooth regions of the source image. We trace
this to high inversion error and insufficiently diverse noise during the early noising steps, and demon-
strate that this divergence degrades the quality of image editing and interpolation. We propose a sim-
ple fix by replacing initial inversion steps with forward diffusion, which successfully decorrelates
the latents and significantly improves sample quality in practical applications.
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In the Appendix we first outline the limitations (A) of our experiments, LLM usage during writing
(B), discuss the broader impact (C) of this work fix, and list the computational resources (D) used.
Following, we describe, in detail, the DDIM approximation error (E), and the fix we introduce (pseu-
docode) in this work (F). Next, we describe our experiments: measuring the noise–image–latent
triangles (G), methodology for identifying plain-regions pixels (H) in the image, and computing the
inversion error (I). In (J), we demonstrate how we condition the models and, in (K), we present
more details on image diversity and prompt alignment during editing. Next, we compare Gaussian
noise and DDIM latents in their mappings to images (L) and track how these relationships evolve
during DM training (M). In section (N) we discuss impact of different parameters’ values: number
of inversion steps used, number of inversion steps replaced with forward diffusion, and impact of
guidance scale. In (O), we include additional qualitative results for image interpolation, reconstruc-
tion, editing, and style transfer. Finally, in section (P), we present that the investigated issue with
latents correlations’ also exists in Flow Matching models.
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A LIMITATIONS

In this work, we analyzed the relation between the random noise, image generations and their latent
encodings obtained through DDIM Inversion. While our studies focused on DDIM approximation
error from Song et al. (2021), there exist other solvers and inversion methods, as described in Sec-
tion 2, bringing their own advantages and limitations. The error of DDIM inversion strongly depends
on the number of steps with which it is performed. In particular, performing the process very gran-
ularly, e.g., using T = 1000 steps, can result in strong suppression of the correlation. Nevertheless,
the default number of steps we have chosen, i.e., 100, is, according to previous works (Hong et al.,
2024; Garibi et al., 2024; Kim et al., 2022b), a practical choice as a good balance between the recon-
struction error and the speed of the algorithm. In Appendix N.1, we present that the latents exhibit
correlations when using 1000 sampling steps, and that the proposed fix can help also in such case.

The observations from our analytical experiments (correlations in Table 2, interpolations in Fig. 5)
generalize well to all tested diffusion models, but are less evident in the LDM model trained on the
CelebA-HQ images. We attribute this exemption to the specificity of the dataset on which the model
was trained - photos with centered human faces, usually with uniform backgrounds. We believe that,
unlike models trained on a larger number of concepts, the process of generating faces with uniform
backgrounds is more stable and introduces little detail in subsequent steps, making the difference in
approximation error for plain and non-plain areas less significant.

As mentioned in Section 2, the DDIM inversion error can be detrimental when using a small num-
ber of steps. Even though the solution proposed in this work (involving forward diffusion in first
inversion steps) drastically removes correlations in latents and, thus, improves image interpolation
and editing, it does not improve the numerical inversion error resulting from using small number of
steps. In our experiments with 50 steps that are commonly used for edition, we show no significant
drawbacks. However, in the extreme cases, using our fix in even a single step, might result in the
loss of information necessary for correct image reconstruction, hence it may be then less preferred
than standard DDIM inversion. In Appendix N.1, we present failure cases for introduced solution.

B LLM USAGE

Throughout the preparation of this manuscript, we employed a large language model (LLM) as a
writing assistant. Its use was focused on improving the clarity and readability of the text, correcting
grammar, and refining sentence structure. The authors carefully reviewed, edited, and take full
responsibility for all content, ensuring the scientific integrity and accuracy of the final paper.

C BROADER IMPACT

As our work is mostly analytical, we do not provide new technologies that might have a significant
societal impact. However, our solution for improving the accuracy of DDIM inversion has potential
implications that extend beyond technical advancements in diffusion models. As our fix enables
more prompt-aligned image editing it could be combined with various editing engines and misused
to advance image manipulation techniques. The enhanced interpolation quality could make synthetic
content more convincing and harder to detect. The authors do not endorse using the method for
deceptive or malicious purposes, and discourage any application that could erode trust or cause
harm.

D COMPUTE RESOURCES

For the experiments, we used a scientific cluster consisting of 110 nodes with CrayOS operating
system. Each node is powered by 288 CPU cores, stemming from 4 NVIDIA Grace processors,
each with 72 cores and a clock speed of 3.1 GHz. The nodes are equipped with substantial memory,
featuring 480 GB of RAM per node. For GPU acceleration, each node in the cluster consists of 4
NVIDIA GH200 96GB GPUs with 120 GB of RAM and 72 CPUs per GPU.
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Almost all the experiments we perform are based on performing a sampling process using a diffusion
model from noise, performing DDIM inversion and, possibly, image reconstruction from the latent,
where each of these processes takes the same number of steps, hence the same number of GPU-hours
on average. As our experiments differ in terms of number of sampling steps and images to generate,
we provide average GPU time per one sampling step per batch (with B denoting batch size) for
each model as following: ADM-32 (B = 256): 0.054s, ADM-64 (B = 128): 0.093s, ADM-256
(B = 64): 0.901s, LDM (B = 128): 0.273s, DiT (B = 128): 0.104s, IF (B = 64): 0.609s. Note
that some experiments, such as analyzing inversion approximation errors per step (Fig. 4) or sam-
pling from noise interpolations (Fig. 5), involves performing the procedures several times. Taking
into consideration all the experiments described in the main text of this work, fully reproducing them
takes roughly 110 GPU hours. However, considering the prototyping time, preliminary and failed
experiments, as well as the fact that most of the experiments must be performed sequentially (e.g.,
inversion after image generation, image reconstruction after inversion), the overall execution time
of the entire research project is multiple times longer.

E APPROXIMATION ERROR IN DDIM INVERSION

Denoising Diffusion Probabilistic Models (DDPMs, Ho et al. (2020)) generate samples by reversing
the forward diffusion process, modeled as a Markov Chain, where a clean image x0 is progressively
transformed to white Gaussian noise xT in T diffusion steps. A partially noised image xt, which
serves as an intermediate object in this process, is expressed as xt =

√
ᾱtx0 +

√
1− ᾱtϵt where

ᾱt =
∏t

s=1 αs, αt = 1 − βt, ϵt ∼ N (0, I), and {βt}Tt=1 is a variance schedule, controlling how
much of the noise is contained in the image at the specific step t.

To enable sampling clean images from clean Gaussian noises, the neural network ϵθ is trained to
predict the noise added to a clean image x0 for a given intermediate image xt. Such a trained model
is further utilized in the backward diffusion process by iteratively transferring a more noisy image
(xt) to the less noisy one (xt−1) as

xt−1 =
1
√
αt

(xt −
βt√
1− ᾱt

ϵ
(t)
θ (xt)) + σtz, (6)

with z ∼ N (0, I) being a noise portion added back for denoising controlled by σt =√
βt(1− ᾱt−1)/(1− ᾱt).

Song et al. (2021) reformulate the diffusion process as a non-Markovian, which leads to a speed-
up of the sampling process. While previously obtaining a less noisy image at xt required all past
denoising steps from T till (t+1), this approach allows skipping some steps during sampling. More
precisely, the backward diffusion process is defined as a combination of predictions of image x0,
next denoising step xt, and random noise (with σt = η

√
βt(1− ᾱt−1)/(1− ᾱt) and zt ∼ N (0, I)):

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱt ϵ

(t)
θ (xt)√

ᾱt

)
+
√
1− ᾱt−1 − σ2

t · ϵ
(t)
θ (xt) + σtzt. (7)

While setting η = 1 makes Eq. (7) equivalent to Eq. (6), leading to a Markovian probabilistic
diffusion model, setting η = 0 removes the random component from the equation, making it a
Denoising Diffusion Implicit Model (DDIM), which prominent ability is to perform a deterministic
mapping from given noise (xT ) to image (x0). One of the potential benefits of implicit models is the
possibility of reversing the backward diffusion process to transfer images back to the original noise.
Operating in such a space by modifying resulting inversions unlocks numerous image manipulation
capabilities, i.a., image editing (Hertz et al., 2022; Mokady et al., 2023; Huberman-Spiegelglas
et al., 2024; Parmar et al., 2023; Rout et al., 2025; Miyake et al., 2023; Brack et al., 2024; Tang
et al., 2024; Hong et al., 2024; Wallace et al., 2023; Samuel et al., 2025; Garibi et al., 2024; Pan
et al., 2023; Dong et al., 2023), image interpolation (Zheng et al., 2024; Zhang et al., 2024b; Samuel
et al., 2023; Dhariwal & Nichol, 2021), or stroke-to-image synthesis (Meng et al., 2022; Rout et al.,
2025). The inversion process can be derived from Eq. (7), leading to the formula for transferring a
less noisy image xt−1 to a more noisy one xt:

xt =
√
αtxt−1 + (

√
1− ᾱt −

√
αt − ᾱt) · ϵ(t)θ (xt) (8)
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Unfortunately, a perfect image-to-noise inversion is infeasible. Due to circular dependency on xt

within Eq. (8), Dhariwal & Nichol (2021) propose to approximate this equation by assuming that
the model’s prediction in t-th step for xt is locally equivalent to the decision for xt−1: ϵ(t)θ (xt) ≈
ϵ
(t)
θ (xt−1). The inverted trajectory is determined in multiple steps. Hence, the error propagates

further away from the image, leading to the latents that significantly deviate from the starting noise.
This flaw is presented in Fig. 9.
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Figure 9: The DDIM inversion error, derived from approximating DM’s prediction for xt with the
output for xt−1 (left), propagates with the next inversion steps, leading to a distribution of latents
x̂T that deviates significantly from the expected noise distribution xT (right).

F PSEUDOCODE FOR DDIM INVERSION WITH FORWARD DIFFUSION

We present in Algorithm 1 the pseudocode for the proposed solution to the decorrelation of latent en-
codings by replacing the first t′ inversion steps with a forward diffusion process. In Appendices N.1
to N.3, we analyze sensitivity of this fix – how it performs for: different number of inversion steps
T (Appendix N.1), different percantage of inversion steps replaced with forward diffusion f (Ap-
pendix N.2), and when classifier-free guidance is applied (Appendix N.3).

Algorithm 1 Finding decorrelated DDIM latent encoding x̂T

Require: image x0; diffusion model ϵθ; noise schedules {αt}Tt=1, {ᾱt}Tt=1; number of inversion
steps T ; forward-replacement timestep f

Ensure: decorrelated latent encoding x̂T

1: sample ϵ̃ ∼ N (0, I)
2: x̂f ←

√
ᾱf · x0 +

√
1− ᾱf · ϵ̃ ▷ forward diffusion

3: for t← f + 1, . . . , T do
4: x̂t ←

√
αt · x̂t−1 + (

√
1− ᾱt −

√
αt) · ϵ(t)θ (x̂t−1) ▷ DDIM Inversion step

5: end for
6: return x̂T
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G MOST PROBABLE TRIANGLES

In Section 3.2, we analyze where the latent encodings are distributed in relation to the initial noise
and generated samples. Here, we determine the most probable angles formed by noises xT, samples
x0, and latents x̂T for each model.

G.1 METHODOLOGY

First, we determine the vectors going from each vertex to the other vertices of the noise-sample-
latent (xT-x0-x̂T) triangle. For sample x0, we obtain a vector leading to noise −−−→x0xT = xT − x0

and to latent
−−−→
x0x̂T = x̂T − x0, and calculate the angle between them using cosine similarity as

∠x0 = arccos
−−−→x0xT ·

−−−→
x0x̂T

∥−−−→x0xT∥∥
−−−→
x0x̂T∥

, (9)

and convert resulting radians to degrees. Similarly, we obtain the angle next to the noise ∠xT and
latent ∠x̂T.

Next, we determine histograms for each angle, approximating the probability density function for
every angle (p∠xT

,p∠x0 ,p∠x̂T
) binned up to the precision of one degree, see Fig. 11. Finally, for

all angles triples candidates (where ∠xT + ∠x0 + ∠x̂T = 180◦), we calculate the probability of a
triangle as the product of the probabilities and choose the triplet maximizing such joint probability:

argmax
(∠xT,∠x0,∠x̂T)

p∠xT
· p∠x0 · p∠x̂T

. (10)

G.2 RESULTS

Results of the experiment in Table 9 show that the angle located at the image and noise vertices
(accordingly ∠x0 and ∠xT) are always acute and, in almost every case, the angle by the latent
vertex (∠x̂T) is obtuse. This property implies that, due to approximation errors in the reverse DDIM
process, latents reside in proximity to, but with a measurable offset, from the shortest-path trajectory
between the noise distribution and the generated image.

Model T ∠x0 ∠xT ∠x̂T

ADM

32× 32

10 44 16 120
100 29 28 123
1000 20 45 115

ADM

64× 64

10 30 31 119
100 11 60 109
1000 6 79 95

ADM

256× 256

10 24 50 106
100 24 73 83
1000 23 73 84

LDM

256× 256

10 23 53 104
100 2 76 102
1000 1 83 96

DiT

256× 256

10 27 47 106
100 4 66 110
1000 1 80 99

Table 9: Impact of the number of diffusion steps T on angles in the noise xT, image x0, and
latent x̂T triangle. Regardless of the number of diffusion steps, latents appear between Gaussian
noise and generations.

In Fig. 10, we provide example triangles for ADM-32 (a), ADM-256 (b), and LDM (c), which we
calculate using N = 1000 images with T = 100 diffusion steps.
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Noise Image

Latent 
encoding

(a) ADM-32 (CIFAR-10)
Noise Image

Latent 
encoding

(b) ADM-256 (ImageNet)

Latent 
encoding

Image Noise 
(c) LDM (CelebA)

Figure 10: Most probable triangles formed from random Gaussian noise (xT), the images (x0)
generated, and latents (x̂T) recovered with DDIM Inversion procedure.

G.3 EXAMPLE HISTOGRAMS

In Fig. 11 we present histograms approximating probabiliy density functions for noise xT, image
x0, and DDIM latent x̂T angles.

56 64 71

Noise 

6 16 26

Sample 

101 111 121

Latent ^

Figure 11: Histograms approximating probability density functions of angles values for noise,
sample, and latent vertices. Example calculated for DiT model using T = 100 diffusion steps.
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H PLAIN SURFACE THRESHOLDING

During our experiments, we determine binary maskM to identify pixels corresponding to the plain
areas in the images. We describe this process in this section.

Let I ∈ RC×H×W be the input image. For each pixel value across every channel (c, h, w) in I, we
compute the absolute difference to point in the next row DH(c, h, w) = |Ic,h+1,w − Ic,h,w| and to
the pixel in the next column DW (c, h, w) = |Ic,h,w+1− Ic,h,w|. We obtain DH ∈ RC×H−1×W and
DW ∈ RC×H×W−1, which we pad with zeros (last row for DH and last column for DW ), making
them of shape C × H × W . The difference matrix D, representing how a point varies from its
neighbors, is computed as D = (DW +DH)/2.

Finally, we determine a binary maskMc per each channel c, by applying threshold τ to D as

Mc(h,w) =

{
1, if Dc(h,w) < τ

0, otherwise
(11)

During the experiments, we set τ = 0.025.

The final maskM ∈ {0, 1}W×H can be derived by evaluating the logical AND across all channels
for each pixel location as

M(h,w) =
∏
c

Mc(h,w). (12)

After obtaining the final mask for plain pixels, which we denote as Mp, the according mask for
non-plain image surfaces can be obtained by applying logical NOT to the mask asMn = ¬Mp.
In Fig. 12, we present example masks determined using our methodology.

Image Plain mask Image Plain mask

Image Plain mask Image Plain mask

Image Plain mask Image Plain mask

Image Plain mask Image Plain mask

Figure 12: Examples of samples together with their masks indicating plain areas (white). Im-
ages generated using DiT model.
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I CALCULATING INVERSION ERROR

In Section 3.3, we study how the inversion error differs for pixels related to plain and non-plain
samples’ regions and investigate it across diffusion steps. In this section, we describe the method
for determining the error.

First, we generate N = 4k images with T = 50 diffusion steps with both ADM-64 and DiT
models, saving intermediate noise predictions {ESt }t=50...1 during sampling. Next, we collect diffu-
sion model outputs during the inversion process {EIt }t=1...50 assuming all the previous steps were
correct. While for t = 1, EI1 can be set to the diffusion model prediction from the first inver-
sion step ϵθ(x0), for further steps, more advanced methodology is necessary. To this end, for each
t′ = 2 . . . 50, we map the images to latents with DDIM Inversion, replacing in t = 1 . . . t′ − 1 the
predicted noise ϵθ(xt) with the ground truth prediction ESt from denoising process, and collect the
model output for the t′ step as EIt′ := ϵθ(xt′). For step t, this methodology is equivalent to starting
the inversion process from (t+1) denoising step and collecting the first diffusion model prediction.

In the next step, we calculate the absolute error between outputs during inversion and ground truth
predictions as EEt = |EIt − ESt |. This way, we obtain the inversion approximation error for each
timestep.

Further, for the images in the dataset, we obtain binary masksMp andMn indicating, respectively,
plain (p) and non-plain (n) pixels in the image, according to the procedure described in Appendix H.
To ensure that the level of noise that DM predicts in each step does not bias the results, we divide the
absolute errors in each step by l1-norm of model outputs, calculated separately for each diffusion
step. For plain (p) pixels, it can be described as

EEp
t = 1/∥EI

t ∥1

∑
(EEt ⊙Mp), (13)

and adequately for non-plain (n) pixels as

EEn
t = 1/∥EI

t ∥1

∑
(EEt ⊙Mn). (14)

In Table 10, we present the error differences for plain and non-plain areas and how the first 10% of
the diffusion steps contribute to the total inversion error. To calculate this error for plain regions in
steps ts, . . . , te, we sum errors for timesteps from a given interval as

ĒEp
(ts,te)

=

te∑
t′=ts

EEp
t . (15)

Pixel area Diffusion steps Model
ADM-64 DiT

Plain
1, 2 . . . 50 100%

15.11 5.67
Non-plain 12.43 3.16

Plain
1, 2 . . . 5 10%

9.23 3.41
Non-plain 6.80 1.42
Plain

6, 7 . . . 50 90%
5.87 2.23

Non-plain 5.63 1.74

Table 10: Total per-pixel inversion error (normalized) over different timestep ranges ĒE(ts,te)
for plain and non-plain areas. Inversion approximation error is higher for pixels related to plain
image areas, especially in the first 10% of inversion steps.
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J CONDITIONING FOR DIFFUSION MODELS

For a thorough analysis, we employ both unconditional (ADM-32, ADM-64, ADM-256) and con-
ditional (DiT, IF, SDXL) diffusion models. For conditioning, we take prompts from the Recap-
COCO-30K dataset (Li et al., 2025) for IF and Stable Diffusion XL and ImageNet class names for
DiT. However, as noted by Mokady et al. (2023), Classifier-Free Guidance introduces additional
errors to the DDIM inversion. To focus solely on the inversion approximation error, in the exper-
iments from the main part of this work, we disable CFG by setting the guidance scale to w = 1.
However, in Appendix N.3, we show that the proposed fix can also improve DDIM Inversion when
CFG is enabled (w > 1).

K DETAILS ON DIVERSITY AND ALIGNMENT OF EDITION

In this section, we provide results for measuring the diversity (against source images IS) and align-
ment to conditioning prompts (source PS and target PT ) of images generated from Gaussian noise
xT, DDIM latents x̂T, or the latents produced by our fix (described in Algorithm 1) with modified
prompts. We use distance-based metrics (LPIPS (Zhang et al., 2018), DreamSim (Fu et al., 2023)),
similarity metrics (SSIM (Wang et al., 2004), DINO (Darcet et al., 2024)) to measure the diversity
between source (input) images and target (edited) images, as well as the similarity between embed-
dings produced by the CLIP (Radford et al., 2021) model to calculate the alignment between the
results and prompts. The results in for introduced latent decorrelation procedure are obtained with
varying percentages of the first DDIM inversion steps replaced with forward diffusion. In Table 11,
we show that by selecting a small fraction of inversion steps to replace with forward diffusion (from
2% up to 6%), the resulting latents are more editable.

Inversion steps replaced Diversity against IS CLIP Alignment
by forward diff. (%T ) DreamSim ↑ LPIPS ↑ SSIM ↓ DINO ↓ PS ↓ PT ↑
Noise xT 0.709 0.591 0.228 0.174 0.465 0.681
DDIM Latent x̂T 0.677 0.564 0.261 0.223 0.480 0.662
1 (2%) 0.696 0.580 0.239 0.187 0.470 0.676
1 . . . 2 (4%) 0.701 0.587 0.227 0.179 0.469 0.677
1 . . . 3 (6%) 0.705 0.594 0.216 0.173 0.468 0.678
1 . . . 5 (10%) 0.711 0.605 0.198 0.165 0.466 0.679
1 . . . 50 (100%) 0.805 0.801 0.013 0.085 0.465 0.680

(a) Diffusion Transformer

Inversion steps replaced Diversity against IS CLIP Alignment
by forward diff. (%T ) DreamSim ↑ LPIPS ↑ SSIM ↓ DINO ↓ PS ↓ PT ↑
Noise (100%) 0.665 0.380 0.339 0.344 0.273 0.649
DDIM Latent x̂T 0.609 0.328 0.406 0.416 0.353 0.614
1 (2%) 0.666 0.376 0.359 0.335 0.281 0.646
1 . . . 2 (4%) 0.660 0.369 0.359 0.351 0.287 0.649
1 . . . 3 (6%) 0.661 0.370 0.353 0.349 0.285 0.650
1 . . . 5 (10%) 0.662 0.372 0.341 0.346 0.282 0.649
1 . . . 50 (100%) 0.733 0.521 0.004 0.272 0.274 0.649

(b) Deepfloyd IF

Table 11: Impact of first DDIM inversion errors on diversity and text-alignment of generations
from resulting latent as an input. For both DiT (a) and IF (b) models, replacing the first inversion
steps and denoising leads to more diverse generations against the source images IS . Additionally,
we show using forward diffusion in first steps improves the alignment between generation and target
prompts, which the generation process is conditioned by, as indicated by the larger CLIP-T value
for PT and the smaller one for PS .
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L NOISE-TO-IMAGE MAPPING

We showcase an additional study showing the differences that occur between noise and latent en-
codings, from the perspective of their mapping to the images. Several works investigate interesting
properties between the initial random noise and generations that result from the training objective of
DDPMs and score-based models. Kadkhodaie et al. (2024) show that due to inductive biases of de-
noising models, different DDPMs trained on similar datasets converge to almost identical solutions.
This idea is further explored by Zhang et al. (2024a), observing that even models with different
architectures converge to the same score function and, hence, the same noise-to-imape mapping.
Khrulkov & Oseledets (2022) show that diffusion models’ encoder map coincides with the optimal
transport (OT) map when modeling simple distributions. However, other works (Kim & Milman,
2011; Lavenant & Santambrogio, 2022) contradict this finding.

L.1 SMALLEST l2 MAPPING

Diffusion models converge to the same mapping between the Gaussian noise (xT) and the generated
images (x0) independently on the random seed, dataset parts (Kadkhodaie et al., 2024), or the model
architecture (Zhang et al., 2024a). We further investigate this property from the noise-sample and
latent-sample mapping perspective.

In our experimental setup, we start by generating N = 2000 images x0 from Gaussian noise xT

with a DDIM sampler and invert the images to latents x̂T with naı̈ve DDIM inversion. Next, we
predict resulting images for the starting noise samples (xT → x0) by iterating over all the N noises,
and for each of them, we calculate its pixel distances to all the N generations. For given noise,
we select the image to which such l2-distance is the smallest. Similarly, we investigate image-to-
noise (x0 → xT), image-to-latent (x0 → x̂T) and latent-to-image (x̂T → x0) mappings. We
calculate the distance between two objects as l2 norm of the matrix of differences between them
(with C × H × W being the dimensions of either pixel or latent space of diffusion model) as
||x− y||2 =

√
ΣC

i Σ
H
j ΣW

j (xi,j,k − yi,j,k)2.

In Table 12, we investigate the accuracy of the procedure across varying numbers of diffusion steps
T for both image↔noise (a) and image↔latent (b) assignments. We show that assigning initial
noise to generations (x0 → xT) through the distance method can be successfully done regardless
of diffusion steps. For the reverse assignment, which is noise-to-image (xT → x0) mapping, we
can observe high accuracy with a low number of generation timesteps (T = 10), but the results
deteriorate quickly with the increase of this parameter. The reason for this is that greater values of
T allow the generation of a broader range of images, including the ones with large plain areas of
low pixel variance. When it comes to mappings between images and latents resulting from DDIM
Inversion, assignment in both directions is infeasible for pixel diffusion, regardless of T .

T ADM-32 ADM-64 ADM-256 LDM DiT
x0 → xT xT → x0 x0 → xT xT → x0 x0 → xT xT → x0 x0 → xT xT → x0 x0 → xT xT → x0

10 90.3±6.3 94.0±2.6 99.4±0.0 100±0.0 100±0.0 39.2±6.2 100±0.0 100±0.0 100±0.0 93.7±7.2

100 98.9±1.2 50.4±1.9 100±0.0 59.0±7.1 100±0.0 23.2±4.8 100±0.0 100±0.0 100±0.0 90.7±10.1

1000 99.1±1.0 46.8±3.0 99.8±0.2 44.6±6.3 100±0.0 25.0±4.4 100±0.0 100±0.0 100±0.0 96.7±4.6

4000 99.1±1.0 46.4±3.0 99.5±0.3 43.3±6.7 - - - - - -

(a) Assigning noise to the corresponding generated image (x0 → xT) and vice-versa (xT → x0).

T ADM-32 ADM-64 ADM-256 LDM DiT
x0 → x̂T x̂T → x0 x0 → x̂T x̂T → x0 x0 → x̂T x̂T → x0 x0 → x̂T x̂T → x0 x0 → x̂T x̂T → x0

10 66.4±1.7 38.2±5.1 64.4±7.1 100.0±0.0 0.7±0.2 30.8±4.3 100±0.0 100±0.0 99.8±0.6 95.1±6.4

100 16.4±6.1 33.4±2.7 8.6±9.3 57.5±7.3 4.1±1.4 23.9±5.0 100±0.0 100±0.0 99.5±1.7 90.7±10.3

1000 3.6±2.2 40.9±2.7 1.7±1.3 44.7±6.5 23.9±5.2 25.4±4.4 100±0.0 100±0.0 100.0±0.2 96.6±4.6

4000 2.8±2.2 41.9±3.0 1.9±1.4 43.5±6.5 - - - - - -

(b) Assigning images to the resulting latent encodings (x̂T → x0) and vice-versa (x0 → x̂T).

Table 12: Accuracy of the l2-distance based assignment for both image↔noise (a) and
image↔latent (b) mappings across varying number of diffusion steps T . For pixel DMs, only
the image-to-noise (x0 → xT) mapping is feasible. For the latent space models, we correctly pre-
dict assignments in all directions.
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For both noise xT and latents x̂T , their assignment to images in both directions can be successfully
done when the denoising is performed in the latent space, as shown for DiT and LDM models. We
hypothesize that this fact is connected with the KL regularization term that imposes a slight penalty
towards a standard normal distributionN (0, I) on the latent during training (Rombach et al., 2021).

L.2 ASYMMETRY OF NOISE-TO-IMAGE MAPPING

Results in Table 12a indicate that, even though the l2-distance is symmetrical, the mapping cannot
be done in both directions. The reason behind this is that image and noise assignments are not the
same due to the one-directional many-to-one relation, e.g., there might be several noises pointing
towards the same closest image.

We present examples of wrong noise-to-image (xT → x0) assignments in Fig. 13A for ADM-64.
In Fig. 13B, we present the singular generations that lead to incorrect noise-to-image classification
(noise attractors), along with the number of noises for which they are the closest. Interestingly, in
Fig. 13C, we sort all the generations used in the experiment by the variance of pixels and show 8
least variant images. We observe that the set of singular generations leading to misclassification
partially overlaps with lowest-variance generations. In Fig. 14 we observe similar properties for
experiment with ADM-32 model.

When assigning images to the initial noises, there are singular generations (with large plain areas)
located close to the mean of the random Gaussian noise in the set of generated images. Such gener-
ations tend to be the closest (in l2-distance) for the majority of the noises in our experiments.

Noise Target
Image

Closest Images
1st 2nd 3rd 4th

COUNT: 1287 COUNT: 985

(A) Incorrect classification examples (B) Most attracting samples

(C) Samples sorted by variance
(from lowest)

Figure 13: Examples of incorrect assignments of initial noises to resulting images (A), two most
noise-attracting images (B), and samples sorted in ascending order by variance of pixels for ADM-
64 model trained on the ImageNet dataset.

Noise Target
Image

Closest Images
1st 2nd 3rd 4th

COUNT: 1944 COUNT: 157 COUNT: 123 COUNT: 38

(A) Incorrect classification examples (B) Most attracting samples

(C) Samples sorted by variance
(from lowest)

Figure 14: Examples of incorrect assignments of initial noises to resulting images (A), two most
noise-attracting images (B), and samples sorted in ascending order by variance of pixels for ADM-
32 model trained on the CIFAR-10 dataset.

Conclusion. Those findings, connected with the reduced diversity of latents (Table 3), suggest that
the DDIM latents, unlike noise, cannot be accurately assigned to samples, as the error brings them
towards the mean, reducing their diversity and making them closest to most of the images.
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M ON NOISE-IMAGE-LATENT RELATIONS DURING DIFFUSION TRAINING

To further explore the relationships that exist between noises, generations, and latents, we study
how the relationships between them change with the training of the diffusion model. We train
two diffusion models from scratch and follow the setup from Nichol & Dhariwal (2021) for two
unconditional ADMs for the ImageNet (64× 64) and CIFAR-10 (32× 32) datasets. The CIFAR-10
model is trained for 700K steps, while the ImageNet model – for 1.5M steps, both with a batch size
of 128. Models employ a cosine scheduler with 4K diffusion steps.

M.1 SPATIAL RELATIONS OF NOISE AND LATENTS OVER TRAINING TIME

We conclude our latent localization experiments (Section 3.2) by showing that our observations are
persistent across the diffusion model training process. We generate N = 2048 images with the final
model, using implicit sampling with T = 100 steps, and invert them to the corresponding latents
using checkpoints saved during the training. In Fig. 15, we show that both the angle adjacent to the
noise ∠xT and the distance between the latent and noise ∥x̂T−xT∥2 quickly converge to the point
that remains unchanged through the rest of the training, indicating that the relation between noises,
latents, and samples is defined at the very early stage of the training. Additionally, we observe that
the noise reconstruction error in DDIM Inversion does not degrade with the training progress.

Figure 15: We investigate spatial relations between the noise xT, latents x̂T, and generated
images x0 over training process of diffusion model. We show that those relations are defined at
the early stage of the training.

M.2 IMAGE-TO-NOISE DISTANCE MAPPING OVER TRAINING TIME

We analyze the image-noise mapping with l2-distance from Appendix L over diffusion model train-
ing time. We sample N = 2000 Gaussian noises and generate images from them using ADM models
with T = 100 diffusion steps, calculating the accuracy of assigning images to corresponding noises
(and vice versa) using the smallest l2-distance. In Fig. 16, we can observe, for both models, that
the distance between noises and their corresponding generations accurately defines the assignment
of initial noises given the generated samples (x0 → xT) from the beginning of the training till the
end. At the same time, the accurate reverse assignment (xT → x0) can only be observed at the
beginning of the training when the trained model is not yet capable of generating properly formed
images. Already in the beginning phase of model training, the quality of noise to image mapping
rapidly drops and does not change until the end of training.
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(a) ADM-64
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(b) ADM-32

Figure 16: Accuracy of assigning initial noise given the generated sample (x0 → xT) and
sample given the initial noise (xT → x0) when training the diffusion model. We can observe
that from the very beginning of training, we can assign initial noise with a simple L2 distance while
the accuracy of the reverse assignment rapidly drops.
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M.3 IMAGE ALIGNMENT OVER TRAINING TIME

Inspired by the noise-image mapping experiment, we investigate how the generations resulting from
the same noise visually change over DM training time. Thus, for each training step n ∈ {1 . . . 700K}
for CIFAR-10 and {1 . . . 1.5M} for ImageNet, we generate 2048 samples {x0

i,n}2048i=1 from the same
random noise xfixed

T ∼ N (0, I), and compare them with generations obtained for the fully trained
model. We present the visualization of this comparison in Fig. 17 using CKA, DINO, SSIM, and
SVCCA as image-alignment metrics. We notice that image features rapidly converge to the level that
persists until the end of the training. This means that prolonged learning does not significantly alter
how the data is assigned to the Gaussian noise after the early stage of the training. It is especially
visible when considering the SVCCA metric, which measures the average correlation of top-10
correlated data features between two sets of samples. We can observe that this quantity is high
and stable through training, showing that generating the most important image concepts from a
given noise will not be affected by a longer learning process. For visual comparison, we plot the
generations sampled from the model trained with different numbers of training steps in Fig. 17
(right).
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Figure 17: Similarity of the generations sampled from the same random noise at different
stages of diffusion model’s training to the final outputs for ADM-64 model. Only after a few
epochs does the model already learn the mapping between Gaussian noise and generations. Pro-
longed training improves the quality of samples, adding high-frequency features without changing
their content. This can be observed through different image alignment metrics (left) and visual in-
spection (right).

In Fig. 18, we visualize how the diffusion model learns the low-frequency features of the image
already at the beginning of the training when comparing generations from the next training steps
against the generations after finishing training for the ADM-32 model trained on the CIFAR-10
dataset. In Fig. 19 (ADM-64) and Fig. 20 (ADM-32), we show additional examples illustrating
how generations evolve over training for the same Gaussian noise xT using a DDIM sampler. Ini-
tially, low-frequency features emerge and remain relatively stable, while continued training improves
generation quality by refining only the high-frequency details.
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Figure 18: Similarity of the generations sampled from the same random noise at different
stages of the diffusion model’s training to the final outputs for ADM-32 (CIFAR-10). We plot
CKA, SVCCA, SSIM, and DINO image alignment metrics and show that the diffusion model al-
ready learns the mapping between Gaussian noise and generations at the beginning of the training.
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Training steps

20K 165K 310K 454K 584K 729K 873K 1.02M 1.16M 1.30M 1.44M 1.50M

Figure 19: Examples of images sampled using DDIM scheduler from the same noise during the
training process for the ADM-64 model trained on the ImageNet dataset.
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Training steps

10K 30K 78K 176K 273K 371K 445K 495K 545K 595K 645K 700K

Figure 20: Examples of images sampled using DDIM scheduler from the same noise during the
training process for the ADM-32 model trained on the CIFAR-10 dataset.
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N PARAMETER IMPACT ANALYSIS

N.1 NUMBER OF INVERSION STEPS

In this work, for the inversion process, we leverage the DDIM sampler with either T = 50 or
T = 100 sampling steps. This choice aligns with prior works (Hong et al., 2024; Garibi et al., 2024;
Kim et al., 2022b) in image edition domain, where the authors used from 50 up to 200 inversion
steps as a proper balance between reconstruction quality and short algorithm runtime.

However, as described in Hong et al. (2024), the naı̈ve DDIM inversion procedure (Song et al., 2021)
can be reinterpreted as solving the forward diffusion ordinary differential equation (ODE) in reverse
order (along the time axis) with Euler method. With this reformulation, the inversion is correct under
the assumption that, with dt being step size, noise predictions in t and t+ dt steps are almost exact,
thus works only when performing with many iterations.

Since the presence of image structures in DDIM latents can depend on the number of steps with
which the inversion is performed, in Table 13 we show for ADM-64, DiT, and IF models that the
observations we presented in this work generalize to cases where the number of inversion steps is
several times greater (i.e., T = 1000, as performed during the training). Additionally, in Fig. 21 we
show qualitatively by plotting the absolute error between starting Gaussian noise and DDIM latents,
that also for a large number of steps, the uniform areas on the image contribute more significantly
to overall inversion error.

For a more thorough analysis, in Table 14 we evaluate how our fix decorraltes latents in situation
where we use T = 1000 inversion steps. As visible, replacing just 1 step of DDIM Inversion with
forward diffusion significantly reduces correlation at minimal loss in image reconstruction.

Object Model
ADM-64 DiT IF

Noise xT (baseline) 0.039±.00 0.039±.00 0.039±.00

DDIM Latent x̂T=10 0.416±.03 0.297±.01 0.783±.01

DDIM Latent x̂T=25 0.242±.02 0.203±.02 0.698±.02

DDIM Latent x̂T=50 0.177±.02 0.144±.02 0.608±.02

DDIM Latent x̂T=100 0.133±.01 0.106±.02 0.500±.02

DDIM Latent x̂T=250 0.108±.01 0.078±.01 0.366±.02

DDIM Latent x̂T=500 0.100±.01 0.069±.01 0.294±.02

DDIM Latent x̂T=1000 0.095±.01 0.065±.01 0.249±.02

Table 13: Latent encodings resulting from the DDIM Inversion exhibit correlations, even when
the procedure is performed with a lot of steps. By dividing latent encodings into 8 × 8 patches
and calculating the mean of top-20 Pearson coefficients, we show that DDIM latents are correlated
substantially higher than Gaussian noise, even when using T = 1000 inversion steps.

Image |latent - noise|

DiT
(T=1000)

ADM-64
(T=1000)

IF
(T=1000)

Figure 21: Approximation errors in DDIM inversion are significantly higher for plain image
surfaces than for the rest of the image. Even when using T = 1000 steps, we observe image
structures in DDIM latents, notably for uniform image regions.
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Model Prior Corr. ↓ KL ×10−4 ↓ Image Recon. ↓
Noise (upper bound) 0.039±.00 4.832 0.000
DDIM Latent 0.095±.01 47.015 0.014
w/ our fix (4%) 0.055±.00 5.125 0.033

ADM-64 w/ our fix (2%) 0.055±.00 5.363 0.024
(T=1000) w/ our fix (1%) 0.055±.00 5.679 0.019

w/ our fix (0.5%) 0.055±.00 6.057 0.017
w/ our fix (0.2%) 0.055±.00 6.662 0.015
w/ our fix (0.1%) 0.055±.00 7.228 0.014
Noise (upper bound) 0.039±.00 4.832 0.000
DDIM Latent 0.065±.01 17.931 0.009
w/ our fix (4%) 0.057±.00 5.233 0.060

DiT w/ our fix (2%) 0.057±.00 5.071 0.041
(T=1000) w/ our fix (1%) 0.057±.00 5.850 0.029

w/ our fix (0.5%) 0.058±.00 7.029 0.021
w/ our fix (0.2%) 0.058±.00 8.045 0.016
w/ our fix (0.1%) 0.058±.00 8.409 0.014
Noise (upper bound) 0.039±.00 4.832 0.000
DDIM Latent 0.249±.02 63.962 0.044
w/ our fix (4%) 0.055±.00 5.024 0.037

IF w/ our fix (2%) 0.055±.00 5.215 0.031
(T=1000) w/ our fix (1%) 0.055±.00 5.706 0.027

w/ our fix (0.5%) 0.055±.00 6.117 0.026
w/ our fix (0.2%) 0.055±.00 5.562 0.025
w/ our fix (0.1%) 0.056±.00 5.349 0.024

Table 14: Latent correlations, KL divergence to random Gaussian noise, and image recon-
struction error across models (ADM-64, DiT, IF) when using T = 1000 inversion steps. We
show that using our simple fix in just one step of inversion process significantly decorellates DDIM
latents with minimal loss in image reconstruction performance.
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N.2 PERCENTAGE OF INVERSION STEPS REPLACED

The fix to DDIM Inversion algorithm, proposed in this work, namely replacing neural network pre-
dictions with random Gaussian Noise, implies the trade-off between preserving the original image
information and improving the latents’ editability. In this section, we present how the number of
inversion steps substituted with forward step, impacts the image reconstruction error (MAE, LPIPS,
and SSIM metrics) and latent editability (correlations and KL Divergence from N (0; I)) for: IF
(Table 15), DiT (Table 16), and SDXL (Table 17) models. We observe that replacing only the first
4% of inversion steps with forward diffusion improves latent normality to the level of Gaussian noise
(100% of steps), while increases reconstruction error only slightly. In Fig. 22, we show some failure
cases when replacing 10% or 20% of the first steps can introduce significant changes to images.

# Steps Replaced Image Reconstruction Latent Normality
(Percentage) MAE ↓ LPIPS ↓ SSIM ↑ Correlation ↓ KL Div. ×102 ↓

0 (0%) 0.073 0.030 0.878 0.643 60.449
1 (2%) 0.069 0.037 0.854 0.057 0.934
2 (4%) 0.071 0.038 0.845 0.050 0.352
3 (6%) 0.074 0.040 0.830 0.050 0.346
4 (8%) 0.078 0.043 0.813 0.049 0.341

5 (10%) 0.082 0.047 0.796 0.049 0.338
10 (20%) 0.099 0.066 0.713 0.049 0.344
20 (40%) 0.131 0.113 0.556 0.049 0.360
30 (60%) 0.169 0.179 0.394 0.049 0.367
40 (80%) 0.233 0.279 0.204 0.049 0.370
50 (100%) 0.487 0.437 0.009 0.049 0.374

Table 15: Impact of percentage of inversion steps replaced with forward diffusion on recon-
struction quality and latent normality for DeepFloyd IF.

# Steps Replaced Image Reconstruction Latent Normality
(Percentage) MAE ↓ LPIPS ↓ SSIM ↑ Correlation ↓ KL Div. ×102 ↓

0 (0%) 0.052 0.063 0.839 0.159 1.118
1 (2%) 0.070 0.097 0.741 0.038 0.011
2 (4%) 0.085 0.125 0.658 0.036 0.010
3 (6%) 0.097 0.151 0.594 0.036 0.023
4 (8%) 0.107 0.173 0.544 0.037 0.036

5 (10%) 0.116 0.195 0.505 0.037 0.041
10 (20%) 0.154 0.280 0.375 0.038 0.040
20 (40%) 0.231 0.437 0.235 0.037 0.020
30 (60%) 0.353 0.595 0.145 0.037 0.017
40 (80%) 0.521 0.710 0.071 0.037 0.017
50 (100%) 0.628 0.750 0.029 0.037 0.018

Table 16: Impact of percentage of inversion steps replaced with forward diffusion on recon-
struction quality and latent normality for Diffusion Transformer (DiT).

# Steps Replaced Image Reconstruction Latent Normality
(Percentage) MAE ↓ LPIPS ↓ SSIM ↑ Correlation ↓ KL Div. ×102 ↓

0 (0%) 0.027 0.099 0.814 0.166 0.800
1 (2%) 0.029 0.106 0.790 0.151 0.600
2 (4%) 0.035 0.137 0.716 0.120 0.300
3 (6%) 0.038 0.155 0.685 0.117 0.300
4 (8%) 0.041 0.171 0.663 0.116 0.300

5 (10%) 0.043 0.183 0.646 0.116 0.200
10 (20%) 0.051 0.230 0.588 0.115 0.200
20 (40%) 0.065 0.313 0.515 0.115 0.200
30 (60%) 0.082 0.389 0.460 0.115 0.200
40 (80%) 0.112 0.464 0.464 0.115 0.200
50 (100%) 0.159 0.541 0.541 0.115 0.200

Table 17: Impact of percentage of inversion steps replaced with forward diffusion on recon-
struction quality and latent normality for Stable Diffusion XL.
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Gaussian noise

Noise/Latent Generation/Reconstruction

DDIM Inversion

DDIM Inversion (w/ 2% forward)

DDIM Inversion (w/ 4% forward)

DDIM Inversion (w/ 6% forward)

DDIM Inversion (w/ 10% forward)

DDIM Inversion (w/ 20% forward)

Figure 22: Replacing first DDIM inversion steps with forward diffusion increases latents ed-
itability at the cost of a higher reconstruction error. By replacing from 2% up to 4% of steps, we
obtain reasonable image reconstructions while removing correlations from latents.
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N.3 GUIDANCE SCALE

During experiments, we fix the guidance scale to w = 1 to ensure that our analysis focuses solely
on the DDIM approximation error (Eq. (3)). As described in Ju et al. (2024), prior works typically
employ guidance scale between 1.0 (the most common choice) and 3.0 during inversion, as using
w > 3 often results in drastically worse image reconstructions.

In this section, we evaluate how the proposed fix improves upon Naı̈ve DDIM Inversion when a
higher guidance scale w ∈ {1, 2, 3, 4, 5} is applied both during inversion and reconstruction. In
Table 18, we present result of this experiment with Stable Diffusion XL (Podell et al., 2024). For
scenarios with a higher guidance scale, our simple fix, similarly to w = 1, reduces correlations and
improves editability when comparing with Naive DDIM Inversion. Additionally, we observe that,
when guidance is applied, our fix improves image reconstruction error (measured with LPIPS). We
hypothesize that amplifying the inversion error in Naı̈ve DDIM with a higher guidance scale leads to
latents that are useless for image reconstruction. In such a case, replacing the first steps with random
Noise may lead to more preferable reconstructions. In Fig. 23 and Fig. 24, we present qualitative
comparison in image reconstruction between Naı̈ve DDIM Inversion and our approach.

Guidance Method LPIPS ↓ Latent CLIP Alignment
Scale w Corr. ↓ (Edit Prompt) ↑

1.0
DDIM Inv. 0.100 0.166 0.695

w/ ours (4%) 0.137 0.120 0.722
∆ +0.037 -0.046 +0.027

2.0
DDIM Inv. 0.199 0.170 0.779

w/ ours (4%) 0.179 0.120 0.807
∆ -0.020 -0.050 +0.028

3.0
DDIM Inv. 0.390 0.171 0.764

w/ ours (4%) 0.267 0.121 0.815
∆ -0.123 -0.050 +0.051

4.0
DDIM Inv. 0.525 0.172 0.725

w/ ours (4%) 0.372 0.121 0.800
∆ -0.153 -0.051 +0.075

5.0
DDIM Inv. 0.582 0.174 0.687

w/ ours (4%) 0.452 0.121 0.770
∆ -0.130 -0.053 +0.083

Table 18: Performance in image reconstruction (LPIPS), inverted latent normality (correla-
tions) and text alignment to edit prompt for different values of guidance scale. We show that
our forward step replacement (4%) improves DDIM Inversion algorithm.
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Figure 23: Examples of image reconstruction with Naı̈ve DDIM Inversion and DDIM Inversion
incorporating our fix (forward 4%) for guidance scale w = 1. Examples generated with Stable
Diffusion XL.
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Figure 24: Comparison of image reconstruction examples with Naı̈ve DDIM Inversion and
DDIM Inversion incorporating our fix (forward 4%) across different values of guidance scale
w ∈ {2, 3, 4, 5}. Examples generated with Stable Diffusion XL.
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O QUALITATIVE EXAMPLES

O.1 IMAGE INTERPOLATION

In Section 4, we presented that interpolating DDIM latents with SLERP (Shoemake, 1985) leads to
a decrease in image quality and diversity when compared to Gaussian noise. In Fig. 25, we qualita-
tively compare our fix for removing correlations in latent encodings with naı̈ve DDIM inversion in
the task of image interpolation.

DDIM Inversion

DDIM Inversion (w/ forward 4%)

DDIM Inversion

DDIM Inversion (w/ forward 4%)

DDIM Inversion

DDIM Inversion (w/ forward 4%)

DDIM Inversion

DDIM Inversion (w/ forward 4%)

DDIM Inversion (w/ forward 4%)

DDIM Inversion

Figure 25: Qualitative comparison of images generated from interpolated latents produced
with DDIM Inversion and our fix. Contrary to naı̈ve DDIM inversion, the proposed solution
enables generating high-quality objects with pixel-diverse backgrounds.
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O.2 RECONSTRUCTIONS OF REAL IMAGES

In Fig. 26, we present a qualitative comparison for reconstructions of real images from the Style-
Drop (Sohn et al., 2023) dataset. We observe that DDIM Inversion with our fix sometimes provides
imperfect image reconstructions. However, those failures are also observable with vanilla DDIM In-
version, indicating that they stem from DDIM approximation error itself, not from our replacement.

StyleDrop
Image DDIM Inv. w/ ours

Image Reconstruction:
Naive DDIM Inv.

StyleDrop
Image DDIM Inv. w/ ours

Image Reconstruction:
Naive DDIM Inv.

Figure 26: Examples of reconstructions of real images from the StyleDrop (Sohn et al., 2023)
dataset with Naive DDIM Inversion and DDIM with our fix (forward diffusion in 4% of steps).
Inversion process is run with T = 50 steps and guidance scale w = 1.0. Reconstructions generated
with Stable Diffusion XL.
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O.3 STOCHASTIC IMAGE EDITING

In this work, we propose the solution for decorrelating latent encodings resulting from DDIM inver-
sion by replacing its first steps with the forward diffusion. As presented in Algorithm 1, the forward
diffusion process involves sampling random Gaussian noise ϵ̃ ∼ N (0, I) and interpolating it with
input image. Due to the fact that, when we replace a small fraction of steps (2 − 4%), the change
in image reconstruction error is insignificant, the use of different noises ϵ̃ (in practice, sampled with
different seeds) allows stochastic image editing, i.e. generating different manipulations of the input
image, a feature not naturally available with DDIM inversion. In Fig. 27, we present examples of
editing real images from the ImageNet-R-TI2I dataset (which we annotate using GPT-4o) with the
IF model, showing various semantically correct modifications of the same image.

As preserving original image structure during editing is stated as a more difficult task for real images
than the one naturally generated by diffusion model, we follow Hertz et al. (2022) by, first, denoising
latent encodings with source prompt (the one used during inversion), and, after 6% of the steps, using
target prompt as conditioning. The examples presented in Fig. 27 indicate, that our fix (1) enables
stochastic editing of images and (2) enables image manipulations in plain image regions, contrary
to editing with naı̈ve DDIM latents.

“fantasy-style palace with numerous towers and arches, all sculpted from golden sand under a 
bright blue sky colorful rainbow sky”

Input image Our editing (varying forward diffusion seed) DDIM Inv.
editing

“miniature pizza made from clay, featuring colorful toppings like green peppers, red onions, 
and brown sausage pieces on a bright red sauce base. the pizza is circular with a thick crust 

on a white-gray gradient background with a glass of drink”

“simple black colorful silhouette of a bird on a thin, curved branch with a few leaves, 
set against a plain white background, the bird faces to the right“

“a close-up photo of a hand holding a colorful origami hummingbird made from 
red and yellow paper, set against a plain light drawings in the background“

Figure 27: Replacing first DDIM inversion steps with forward diffusion enables stochastic
image editing, resulting in multiple semantically correct manipulations of same input image.
Contrary to DDIM Inversion, editing with latents produced by the solution introduced in this work,
enables image manipulations in uniform input image areas.
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O.4 REAL IMAGE EDITING WITH MASACTRL

In this section, we present examples for editing real images from the PIEBench dataset (Ju et al.,
2024) when our inversion method is combined with the MasaCtrl (Cao et al., 2023) editing engine.
In Figs. 28 to 30, we qualitatively compare with Naı̈ve DDIM Inversion across several editing tasks:
object replacement, attribute editing, and object removal. We present that replacing first 4% of
inversion steps with forward diffusion leads to more successful edits in prompt adherence, while not
observing degradation in consistency to input images.

Input
Image

Edit: MasaCtrl +
DDIM Inv. Ours (4%)

Input
Image

Edit: MasaCtrl +
DDIM Inv. Ours (4%)

“a ... wearing a pink ...”  
cat → tiger / hat → scarf 

“a ... on the roof at night”  
cat → dog 

“a cute little ... with big ...”  
bunny → pig / eyes → ears 

“a ... wearing a colorful goggles”  
monkey → man 

“a ... and ...”  
chair → sofa / lamp → umbrella 

“a fluffy ... with yellow eyes sitting on a floor”  
cat → panda 

Figure 28: Object replacement on real images with MasaCtrl. Comparison for Naı̈ve DDIM
Inversion and DDIM with our fix (forward diffusion in 4% of steps). Model: Stable Diffusion 1.4.

Input
Image

Edit: MasaCtrl +
DDIM Inv. Ours (4%)

Input
Image

Edit: MasaCtrl +
DDIM Inv. Ours (4%)

“a colorful parrot with its wings ...”  
spread out → fold in

“a cartoon painting of a fox with ... in a car”
big eyes → blue eyes

“painting of ... sitting in a laundry room”  
shepherd dog → poodle dog

“a ... cat looking up at something”  
long haired → short haired

“a beautiful white ... wolf”  
furry → bald

“a ... man”  
serious → smile happy

Figure 29: Attribute editing on real images with MasaCtrl. Comparison for Naı̈ve DDIM Inver-
sion and DDIM with our fix (forward diffusion in 4% of steps). Model: Stable Diffusion 1.4.
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“a puppy is sitting in a field of dandelions“

“a cartoon of woman is painting a 
pumpkin with a cat”

“an astronaut standing on the water with 
the moon and clouds in the background“

“”a painting of an orange chair
 and a lamp in a living room“

“a girl in red dress standing in a field 
surrounded by balloons and trees“

“a painting of a dog in the forest“

“a big ship in a bottle on the dark ocean“

“a poster of a bus driving down a road
with mountains and moon in the background“

Input
Image

Edit: MasaCtrl +
DDIM Inv. Ours (4%)

Input
Image

Edit: MasaCtrl +
DDIM Inv. Ours (4%)

Figure 30: Object removal on real images with MasaCtrl. Qualitative comparison for Naı̈ve
DDIM Inversion and DDIM with our fix (forward diffusion in 4% of steps). Examples generated
with Stable Diffusion 1.4.
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O.5 STYLE TRANSFER WITH STYLEALIGNED

In Figs. 31 and 32, we present a qualitative comparison of Naı̈ve DDIM Inversion and our approach
when combined with StyleAligned (Hertz et al., 2024) for the task of Style Transfer. Examples have
been generated with Stable Diffusion XL using the same hyperparameters for both settings on the
StyleDrop dataset (Sohn et al., 2023). We observe that replacing the first steps of DDIM Inversion
with forward diffusion enables better prompt-adherence for generations.

Reference style:
“watercolor painting”

StyleAligned + DDIM w/ ours (forward 4%)

StyleAligned + DDIM Inversion

“baby penguin” “robot” “avocado” “boat”

StyleAligned + DDIM w/ ours (forward 4%)

StyleAligned + DDIM Inversion

Reference style:
“watercolor painting”

“bench” “banana” “baby penguin” “moose”

StyleAligned + DDIM w/ ours (forward 4%)

StyleAligned + DDIM Inversion

Reference style:
“oil painting”

“f1 race car” “banana” “christmas tree” “robot”

StyleAligned + DDIM Inversion

StyleAligned + DDIM w/ ours (forward 4%)

Reference style:
“oil painting”

“baby penguin” “cow” “butterfly” “avocado”

Figure 31: Examples of style transfers from real images from the StyleDrop (Sohn et al., 2023)
dataset. Comparison for Naive DDIM Inversion and DDIM with our fix (4% of steps replaced).
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StyleAligned + DDIM w/ ours (forward 4%)

StyleAligned + DDIM Inversion

Reference style:
“glowing”

“coffee maker” “f1 face car” “baby penguin” “butterfly”

StyleAligned + DDIM w/ ours (forward 4%)

StyleAligned + DDIM Inversion

Reference style:
“glowing 3d rendering”

“christmas tree” “avocado” “butterfly” “baby penguin”

StyleAligned + DDIM Inversion

StyleAligned + DDIM w/ ours (forward 4%)

Reference style:
“kid cranyon drawing”

“wood cabin” “boat” “christmas tree” “baby penguin”

Figure 32: Examples of style transfers from real images from the StyleDrop (Sohn et al., 2023)
dataset. Comparison for Naive DDIM Inversion and DDIM with our fix (forward diffusion in 4%
of steps). Examples generated with Stable Diffusion XL.
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P LATENT CORRELATIONS IN FLOW MATCHING MODELS

In this section, we analyze if, similarly to latents produced with DDIM inversion in Diffusion Mod-
els, inversion procedure with Flow Matching models leads to correlations.

The inversion procedure can be incorporated into Flow Matching (FM) models (Lipman et al., 2023;
Liu et al., 2023), e.g., for image editing (Avrahami et al., 2025; Kulikov et al., 2025; Rout et al.,
2025). The generative process of FMs is defined as an ordinary differential equation (ODE) over
time t ∈ [0, 1] with time-dependent velocity field V :

dzt = V (zt, t)dt. (16)

Commonly, this ODE, given an initial condition z1 ∼ N (0; I), is solved numerically with Euler
method, leading to iterative sampling process t ∈ {T, T − 1, . . . , 1}, defined as

zt−1 = zt + (σt−1 − σt) · νθ(zt, t), (17)

with νθ being a neural network parametrizing the continuous velocity field leading to clean images
z0 and σt being a noise schedule.

The inverse step, as described in Avrahami et al. (2025), can be expressed as

zt = zt−1 + (σt − σt−1) · νθ(zt−1, t), (18)

with an assumption that locally νθ(zt, t) ≈ νθ(zt−1, t). We refer to this formulation as ODE Inver-
sion.

As the approximation relies on a similar assumption as in the case of DDIM (Eq. (3)), we analyze
if the ODE Inversion, similarly, induces correlation patterns in outputed latents. In Table 19, we
report image reconstruction error, editing textual alignment (CLIP Similarity to edit prompt and
Directional Similarity (Gal et al., 2022)), and metrics validating the latents’ normality. We employ
FLUX.1 (Labs, 2024) model with T = 50 inversion and sampling steps. We present that latents
resulting from the ODE Inversion algorithm, similarly to the case of DDIM latents, exhibit corre-
lations and visible deviation from the Gaussian distribution. Importantly, these deviations, when
compared to using original noise, lead to a significant decrease in prompt alignment when starting
the generation process with an editing prompt. Additionally, in Table 19, we compare original noise
and ODE Inversion latent diversity for plain and non-plain input image pixel regions. Although not
as significantly visible as in DDIM latents, ODE Inversion outputs as well tend to be more erroneous
for plain image pixels and less diverse in those areas.

Finally, in Fig. 33, we present qualitative examples for image reconstructions and latent correlation
when ODE Inversion is performed. As visible, after decoding with FLUX’s decoder, ODE Inversion
latents exhibit correlations in locations that represent smooth pixel areas of images. Additionally,
we plot the absolute error between original Gaussian Noise and ODE Inversion latents after applying
PCA for dimensional reduction (as FLUX operates in 16-channel latent space).

Metric Gaussian Noise ODE Inv. Latent
Image MAE ↓ 0.00 0.05

Reconstr. LPIPS ↓ 0.00 0.16
CLIP Text Edit prompt ↑ 81.49 56.40
Alignment Directional Sim. ↑ 87.94 55.32

Normality Correlation ↓ 0.14 0.27
KL Div. ×10−2 ↓ 0.20 3.80

Noise Plain pixels 0.00 0.31
Error Non-plain pixels 0.00 0.26

Variance Plain pixels 0.98 0.94
Non-plain pixels 1.01 1.03

Table 19: Comparison between original Gaussian Noise and latents resulting from ODE Inver-
sion process with FLUX.1 model. We show that ODE inversions are more correlated than Gaussian
and significantly deviate from normal distribution. This leads to worse text alignment during editing.
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Image ODE Inv. 
Reconstruction Noise Inv. Latent

Decoded: |Noise-Latent|
(after PCA)

Figure 33: ODE Inversion in Flow-Matching models, similarly as DDIM Inversion in Diffusion
models, produces latent encodings with correlations. Reconstructions performed with FLUX.
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