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Abstract: Learning to move is a primary goal for animals and robots, where en-
suring safety is often important when optimizing control policies on the embodied
systems. For complex tasks such as the control of human or humanoid control, the
high-dimensional parameter space adds complexity to the safe optimization effort.
Current safe exploration algorithms exhibit inefficiency and may even become
infeasible with large high-dimensional input spaces. Furthermore, existing high-
dimensional constrained optimization methods neglect safety in the search process.
In this paper, we propose High-dimensional Safe Bayesian Optimization with
local optimistic exploration (HDSAFEBO), a novel approach designed to handle
high-dimensional sampling problems under probabilistic safety constraints. We
introduce a local optimistic strategy to efficiently and safely optimize the objec-
tive function, providing a probabilistic safety guarantee and a cumulative safety
violation bound. Through the use of isometric embedding, HDSAFEBO addresses
problems ranging from a few hundred to several thousand dimensions while main-
taining safety guarantees. To our knowledge, HDSAFEBO is the first algorithm
capable of optimizing the control of high-dimensional musculoskeletal systems
with high safety probability. We also demonstrate the real-world applicability of
HDSAFEBO through its use in the safe online optimization of neural stimulation
induced human motion control.
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1 Introduction

Some robotics applications require online optimization of control policies for performance while
avoiding unsafe parameter tuning that could potentially damage the systems. These scenarios
correspond to the problem of safe exploration, which involves the sequential optimization of an
unknown objective function under the constraint of satisfying unknown safety conditions. Bayesian
optimization (BO) is an effective paradigm in optimizing black-box functions, and safe BO methods
have been successfully used to tune control parameters for various robotic systems [1, 2, 3]. Most
existing safe BO methods use the Gaussian process (GP) to model the underlying safety function,
and discriminate safe regions with estimated function’s lower confidence bound to ensure safety with
high probability [4]. Such conservative strategies are inefficient for objective optimization, and even
infeasible in high-dimensional input settings, such as human or humanoid system control.

A motivating application of our work is the control of musculoskeletal (tendon-driven) systems, where
complex motions are driven by dozens to hundreds of muscle-tendon units rather than joints. Such
overactuated embodied systems introduce additional control challenges within a large-scale parameter
space. Under this high-dimensional input setting, efficiently optimizing the task function while
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maintaining safety remains a formidable challenge for existing safe optimization algorithms. Despite
considerable efforts to leverage BO for solving high-dimensional constrained optimization problems,
these methods often fail to incorporate safety considerations into the optimization procedure [5, 6, 7].
To our best knowledge, there are currently no methods that guarantee safety, or probabilistic safety
during the high-dimensional optimization.

In this paper, we introduce High-dimensional Safe Bayesian Optimization with local optimistic
exploration (HDSAFEBO) to address probabilistic safety in high-dimensional sequential optimization
problems, as shown in Figure 1. To achieve efficient and safe optimization, we propose a local
optimistic strategy with probabilistic safety guarantee and cumulative safety violation bound. By
using isometric embedding for dimension reduction, we enable HDSAFEBO to handle even higher
dimensional problems, ranging from a few hundred to several thousand dimensions, while maintaining
the probabilistic safety guarantee. Our experimental results show that HDSAFEBO efficiently learns
to control a musculoskeletal system with high safety probability - a task where all baseline methods
fail. We also demonstrate the success of HDSAFEBO in real-world experiments to safely optimize the
control of neural stimulation induced human motion. Our project page is at https://lnsgroup.
cc/research/hdsafebo
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Figure 1: Workflow of HDSAFEBO. Local optimistic safe optimization is employed to efficiently optimize
the objective function while guaranteeing probabilistic safety. We utilize isometric embedding to reduce the
problem dimension to deal with high-dimensional inputs.

2 Related Work

2.1 Safe Bayesian Optimization

The sequential decision-making problem with safety constraints has been extensively studied, varied
by the definition of safety. To achieve full safety during exploratory sampling, algorithms have been
proposed with theoretical guarantee in near-optimality and safety with high probability [4, 8, 1, 9, 10].
These methods have been applied in safe parameter tuning of quadrotor [11], robot arm [2] and
quadruped robots [3]. These safe optimization algorithms conservatively estimate and expand the
safe region, leading to inefficient optimization performance.

In contrast to a zero-tolerance approach to unsafe actions, an alternative approach allows for limited
constraint violations within a predefined budget, trading safety for more efficient optimization[12, 13,
14]. A recent work CONFIG uses upper confidence bound to optimistically estimate the safe region,
enjoying global optimal guarantee as unconstrained methods [15].

Another extreme case, called constrained Bayesian optimization, has also been used for finding
safe controller parameters [16, 17, 18, 19, 20]. However, this line of methods aim only to find the
best feasible solution, neglecting the safety during the optimization process. Constrained expected
improvement (cEI) is a popular constrained BO algorithm that introduces feasibility constraints to
acquisition function formulation [21, 16].

All of the aforementioned methods fall in the framework of Bayesian optimization, which is typically
limited to low-dimensional problems[22, 23]. LineBO demonstrates success in optimizing problems
with dimension up to 40 via searching over 1-dimensional subspace at each iteration [24, 25]. When
parameter size exceeds 10, safe optimization algorithms might even struggle to expand the safe region
due to sparse discretization of the input space.
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2.2 High-dimensional Bayesian Optimization

Recent research efforts have delved into the utilization of Bayesian optimization in high-dimensional
problems [26, 27]. In the main paper, our focus lies on dimension reduction-based and local BO
methods. Further discussion about other relevant works can be found in Appendix D.

A large body of literature leverages dimension reduction to apply BO over a low-dimensional
subspace. Several works use variable selection to identify and optimize important dimensions during
optimization [28, 29, 30]. Another popular approach for reducing the search space is random linear
embedding, which has been proven to contain the optimal solution with a certain probability relative to
the objective function’s effective dimension[31, 32, 33, 34, 35]. Many works also use autoencoder to
learn a non-linear mapping between the original space and the latent space [36, 37, 38, 39, 40, 41, 6].

Another line of works utilizes local search to address the over-exploration issue in high-dimensional
optimization [42], achieving better empirical performance than global BO methods [43, 44, 45, 46].
This local optimization strategy is also able to be combined with dimension reduction [47] and
extended to constrained setting (SCBO [7]). Local BO methods have also been deployed for
optimizing locomotion control in simulation [48, 30].

Besides BO methods, evolutionary algorithms such as CMA-ES are competitive to solve high-
dimensional problems [49] and can be extended to constrained setting[50, 51]. Although many works
attempt to solve high-dimensional constrained optimization problems, to the best of our knowledge,
there lacks work that addresses safety in high-dimensional sequential optimization with at least
hundreds of variables.

3 Problem Formulation

We aim to optimize an unknown objective function f : X → R by sequentially sampling points
x1, . . . ,xt ∈ X . We can also get observations of safety measurement from another unknown function
g : X → R. We define a point x is safe when g(x) > 0. We can formally write our optimization
problem as follows:

max
xt∈X

f(xt) subject to g(xt) ≥ 0,∀t ≥ 1, (1)

We consider the above problem formulation widely exists in the application of robotic control, where
x represents a parameterized controller, and f(x), g(x) are the utility and safety measurement
of the controller in a single experimental trial. In our target applications such as the control of
embodied systems, the input space X ∈ RD is high-dimensional, encompassing dozens to thousands
of variables.

In Bayesian optimization, Gaussian process is usually used as the surrogate model to learn the
unknown functions. Taking g as an example, for samples at points Xt = [x1...xt]

T , we have
noise-perturbed observations yt = [yg1 ...y

g
t ]

T . The GP posterior over g is also Gaussian with mean
µt(x), covariance kt(x,x

′) and variance σ2
t (x,x

′) under kernel function k:
µt(x) = kt(x)

T (Kt + σ2I)−1yt

kt(x,x
′) = k(x,x′)− kt(x)

T (Kt + σ2I)−1kt(x
′)

σ2
t (x) = kt(x,x),

(2)

where kt(x) = [k(x1,x), ..., k(xt,x)] is the covariance between x and sampled points, Kt is the
covariance of sampled positions: [k(x,x′)]x,x′∈Xt

. Similarly we can use GP to derive posterior
of f . Using the posterior of GP, we can define define ut(x) := µt−1(x) + βtσt−1(x) as the upper
confidence bound (UCB) of the function estimation, where βt is a scalar which can be properly set
to contain g(x) with desired probability. we make the following regularity assumptions that are
commonly used in the field of Bayesian optimization:
Assumption 3.1. g and f are samples of two Gaussian processes defined by the kernels k(·, ·), k′(·, ·)
respectively. The observations are perturbed by i.i.d. Gaussian noise: yg(xt) = g(xt) + nt,
yf (xt) = f(xt) + n′

t where nt ∼ N (0, σ2), n′
t ∼ N (0, σ′2)
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Algorithm 1 HDSAFEBO

Input Sample set X , GP priors GP f , GP g, safety
threshold h, acquisition function A, initial dataset
DX

0 , trust region length l0, isometric encoder Π and
decoder Π−1

1: cs, cf ← 0
2: x∗, y∗ ← argmax{x,yf}∈D0,yg(x)>0y

f (x)
3: for t = 1 to . . . do
4: DZ

t−1 ← Π(DX
t−1)

5: Update GP f , GP g using DZ
t−1

6: Lt ← {z ∈ Z | Π(x∗)− lt ≤ z ≤ Π(x∗) + lt}

7: St ← {z′ ∈ Lt | µt−1(z) + βtσt−1(z) ≥ 0}
8: zt ← argmaxz∈St

(A(z))

9: xt ← Π−1(zt)

10: yft ← f (xt) + nt

11: ygt ← g (xt) + nt

12: Dt ← Dt−1

⋃
{xt, y

f
t , y

g
t }

13: x∗, y∗, cs, cf , lt ←
SAFEUPDATE(xt, y

f
t ,x

∗, y∗, cs, cf , lt)
14: end for

Algorithm 2 SAFEUPDATE

Input Current sample xt, y
f
t , current best

sample x∗, y∗, current counters cs, ct cur-
rent trust region length lt, success tol-
erance τs, failure tolerance τf , initial
trust region length l0, trust region limits
lmax, lmin

1: if ygt (xt) > 0 and yft > y∗ then
2: x∗, y∗ ← xt, y

f
t ; cs ← cs+1; cf ← 0

3: else
4: cs ← 0; cf ← cf + 1
5: end if
6: if cs = τs then
7: lt ← min(2lt−1, lmax); cs, cf ← 0
8: else if cf = τf then
9: lt ← max( 12 lt−1, lmin); cs, cf ← 0

10: if lt = lmin then
11: lt ← l0
12: end if
13: else
14: lt ← lt−1

15: end if

4 High-dimensional Safe Bayesian Optimization

In high-dimensional space, existing safe optimization methods are too conservative to efficiently
optimize the objective function, and would be infeasible due to sparse discretization. Therefore we
aim to improve sample efficiency by slightly relaxing the safety constraint to a probabilistic version.
The probabilistic safety means each sample point is safe with a probability above predefined threshold
α, that is Pr(g(xt) ≥ 0) ≥ α,∀t ≤ T . In this sense, we introduce HDSAFEBO, an innovative
algorithm designed for ensuring probabilistic safety while optimizing in a high-dimensional space.
The workflow of this algorithm is illustrate in Figure 1 and Algorithm 1.

HDSAFEBO first uses the isometric encoder Π to reduce the problem dimension, converting the
original dataset from X to the low-dimensional latent space Z ∈ Rd (Line 4). Isometry means
the embedded subspace is able to preserve the distance of the original space according to the
corresponding metric dX , dZ , i.e. dX (x,x′) = dZ(Π(x),Π(x′)). Leveraging the historical record
of function observations, we compute the posterior and confidence interval of both the objective and
safety functions through distinct Gaussian processes. (Line 5). Then we define a local region to search
over (Line 6), and identify the safe space within the local region using GP upper confidence bound
(Line 7). We optimize the acquisition function over the safe space, and project the recommended
latent point back to original input space using the decoder Π−1 (line 8-9). Thompson sampling (TS)
[52] was selected as the acquisition function A due to its compatibility with the discrete nature of our
safety estimation and search space, and its innate ability for batch optimization by sampling the GP
posterior—an appropriate choice for high-dimensional tasks that support parallel evaluations. Finally
the history data is updated via evaluating new inputs. (Line 10-12), and the local region parameters
are updated based on the sample results (Line 13).

In conjunction with isometric embedding, we highlight two important components to improve the
efficiency and safety: Optimistic Safety Identification and Local Search via Trust Region. For clear
illustration, we first introduce algorithm details under identity mapping I(x) = x, which is a special
case of isometric embedding. In this way, the embedded subspace is equivalent to the original space
X , and inherits all the assumptions defined in Section 3.
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4.1 Optimistic safety identification

To mitigate inefficiency concerns, HDSAFEBO distinguishes the safe region through the Gaussian
process upper confidence bound of the safety function. This optimistic strategy allows for optimization
over distinct safe regions and is viable in high-dimensional problems. In many real-world applications,
the search space is inherently constrained by domain priors, where a certain proportion of decisions
are safe even under random search. Therefore, we contend that optimistic safety identification is a
more practical strategy. Here we derive the appropriate choice of the scalar βt to ensure step-wise
probabilistic safety.

Proposition 4.1. Let Assumptions 3.1 holds for the latent safety function g, and set βt satisfying
Φ(βt) ≤ 1− α. Then at every time step t:

Pr(g(x) ≥ µt−1(x) + βtσt−1(x)) ≥ α,∀x ∈ X , (3)

where Φ(·) is the cumulative distribution function (CDF) of the standard normal distributionN (0, 1).

Our use of βt here is different from the common-used setting [53], which would make ut(xt) > g(x)
with a high probability and violate the probabilistic requirement. Our results indicate that the upper
confidence bound is permissible when the probability threshold is less than 0.5, representing the
maximum acceptable level of safety violation. Otherwise, the algorithm reverts to a more conservative
strategy, utilizing the lower confidence bound to identify safety. We also derive the upper bound of
cumulative safety violation VT =

∑T
t=1 max(0,−g(xt)) of our optimistic strategy, where the proper

choice of βt contributes to the reduction of safety violations:

Theorem 4.2. Let assumptions 3.1 holds for safety function g. Define βc
T := 2log(|X |T 2π2/6δ) and

C1 := 8/ log(1 + σ−2). With probability at least 1− δ, the sample points of Algorithm 1 at time step
T satisfy

E[VT ] ≤ (1− α)
√
C1Tβc

T γT , (4)

where γT is the maximum information gain for g over X .

4.2 Local search via trust region

In addition to optimistic safety identification, a trust region method is employed to dynamically
pinpoint local search regions, which has demonstrated impressive empirical performance over high-
dimensional problems [43, 48, 7]. At each optimization round, a local search space is defined as
a hypercube trust region around the current best safe point in the sample dataset. We design a
safety sensitive strategy to update the trust region state, as illustrated in Algorithm 2. Specifically, a
sampling round is considered “successful” if it finds a better reward while maintaining comprehensive
safety (line 1-2). Conversely, it is labeled a “failure” if any unsafe points are found or if there is
no discernible improvement (line 3-5). The side length is adjusted—increased for successes and
decreased for failures—upon reaching a preset threshold (line 6-9). Unlike conventional local BO
methods that discard all data and restart when the side length reaches its minimum, our approach
resets lt to its initial length and retains all previous samples, ensuring a different, safer trajectory
sampling than the initial instance (line 10-12).

We also provide the theoretical implications of our local search strategy in reducing the safety
violations. The maximum information gain γT is positively correlated with the size of search space
X . During the optimization, the actual search region of HDSAFEBO is restricted by the adaptive trust
region, resulting in a lower maximum information gain compared to entire input space. Therefore the
safety violation bound in Theorem 4.2 can be further reduced compared to global search.

4.3 Safe optimization with isometric embedding

In addition to identity mapping, when applying safe optimization over the subspace of other embed-
dings, a pertinent question arises regarding whether safety guarantees persist in the original space.
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Here we demonstrate that, through the use of isometric embedding, the probabilistic safety guarantee
in the embeded subspace can still be fulfilled in the original space when using stationary kernels.
Proposition 4.3. Define dX (x,x′) = |x − x′|, dZ(z, z′) = |z − z′|, and uZ

t (z) := µt−1(z) +
βtσt−1(z) is the upper confidence bound estimated from GP over the embeded subspace Z . Suppose
the GP kernel is stationary and dZ(z, z

′) = dX (Π−1(z),Π−1(z′)). At every time step t, if the point
z satisfies that Pr(uZ

t (z) ≥ 0) ≥ α, then we have Pr(g(Π−1(z)) ≥ 0) ≥ α

The choice of the isometry embedding can be some linear mapppings, such as principal component
analysis (PCA) when the number of principal components exceeds the effective dimension of the
problem. Recent research efforts have also explored the utilization of deep neural networks to learn a
subspace with both good representation and approximated distance-preserving property. We will show
in experiment that HDSAFEBO is still able to maintain high safe probability when using approximated
isometric embeddings.

5 Experiments

In this section, we first utilize synthetic functions to evaluate the algorithm performance. Then
we apply HDSAFEBO to safely optimize the control of high-dimensional musculoskeletal system.
Finally we demonstrate the potential of HDSAFEBO in optimizing neural stimulation induced human
motion control through both simulation and real experiments. Additional experiments are presented
in Appendix C.

Evaluation metrics. We assess the performance of the algorithm according to three metrics: the best
feasible objective function value (Objective), the safe decision ratio of all samples (Safety), and the
cumulative safety violation (Violation). The presented plots and tables display the means along with
one standard error.

Isometric embedding. We utilize PCA in synthetic function and musculoskeletal system control
tasks. In the neural stimulation induced human motion control task, we explore the use of isometric
regularized variational autoencoder (IRVAE [54]) as the dimension reduction component.

5.1 Synthetic Function Optimization

To evaluate the algorithm performance under full assumption satisfaction, we sample both objective
and safety functions from Gaussian processes, with an effective dimension de = 40, which is much
lower than the input dimension D = 1000. We contrast the optimization performance with the
following competitive algorithms target for high-dimensional constrained optimization: LineBO
[24], SCBO [7], CONFIG [15], cEI [21] and CMA-ES [49]. We attempted to run SafeOpt [4], but it
failed to expand the safe region from the initial points. We set PCA subspace dimension as d = 50.
We show the optimization result in Table 1. HDSAFEBO achieves significantly better optimization
performance, higher safety decision ratio, and lower cumulative safety violation compared against all
baselines.

Table 1: Algorithm performance on GP synthetic functions. The total sample budget is 500 including 200 initial
points. We show the averaged performance over 100 independent runs.

Metric HDSAFEBO LineBO SCBO CONFIG cEI CMAES

Objective (↑) 3.96 ± 0.15 3.07± 0.04 2.97± 0.06 2.91± 0.05 2.9± 0.03 2.7± 0.04
Safety (↑) 0.81 ± 0.02 0.78± 0.0 0.77± 0.0 0.77± 0.0 0.77± 0.0 0.78± 0.01

Violation (↓) 27.42 ± 4.01 36.59± 0.82 39.05± 0.92 38.96± 0.96 39.61± 0.58 38.65± 1.89

5.2 Optimization for the Control of a Musculoskeletal System

We establish an upper limb control task utilizing a musculoskeletal system [55]. The objective is
to optimize the activities of 55 hand-related muscles to rotate and hold a bottle in vertical position
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Figure 2: Optimization for the control of a musculoskeletal system. (a) Task illustration. (b) Optimization
performance averaged over 50 independent runs. Arrows indicate the better direction.

(Figure 2 (a)). As in Mania et al. [56], we formulate the original reinforcement learning (RL) problem
as a sampling problem, where the algorithms need to optimize a linear policy: x ∈ R|a|×|o|, where
|a| = 55 and |o| = 65 are the dimensions of the action space (number of muscles) and the observation
space, respectively. The policy to be optimized has D = 3575 parameters, making it a very high-
dimensional task. The objective function is set as the accumulated reward from the environment, and
the safety function is defined as the landing speed of the bottle (see Appendix B.5). We collected
muscle activation and use PCA to build the muscle synergies of performing the task, reducing action
dimension from 55 to 5 (3575 to 325 for policy dimension). While the search space is significantly
reduced, the remaining optimization problem is still high-dimensional.

We find that all baselines fail to improve the objective when optimizing over the original parameter
space. Therefore we conducted baseline runs over the subspace derived from PCA (denoted with
(L)), where dimension reduction facilitated effective optimization. The optimization results are
presented in Figure 2 (b). SCBO (L) and LineBO (L) are omitted from the figure as they fail
to attain a positive reward. We observe even within the PCA subspace, all the shown baselines
demonstrated lower efficiency and sampled more unsafe parameters compared to HDSAFEBO. Our
proposed method stands as the pioneering algorithm to achieve efficient and safe optimization over
high-dimensional musculoskeletal system control. We also conducted an ablation study on the
components of HDSAFEBO in Appendix C.2, where both optimistic safe identification and local
search were shown to contribute to a safer optimization process.

Figure 3: Optimization for the control of neural stimulation induced human motion. (a) Task illustration.
IL, RF, TA, BF, ST, GA are different group of target muscle on the lower limb. (b) Optimization performance
on the control of neuromuscular model for semitendinosus (ST), and gastrocnemius (GA), averaged over 10
independent runs. Arrows indicate the better direction.

5.3 Optimization for the Control of Neural Stimulation Induced Human Motion

Apart from direct activation of muscle-tendon units, locomotion of musculoskeletal systems can
also be governed by muscle synergies arising from spinal cord stimulation, as observed in the
central nervous system of vertebrates and certain neuromuscular robotic designs [57, 58]. While
the neuromuscular system holds the potential to achieve robust control performance with higher
energy efficiency compared to direct muscle actuation, the mapping from stimulation inputs to motion
becomes less straightforward under complex neural systems. In this section, we showcase the success
of HDSAFEBO in optimizing the control of intricate neural stimulation-actuated human motion
through simulation and real experiments.
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As shown in Figure 3 (a), we want to improve the control of lower limb muscles via an electrode
array implanted in the human spinal cord. By setting different parameters, the electrical stimulation
delivered by the electrode array can induce patient’s muscle activities, allowing us to control the
lower limb movements of the patient. The stimulation parameter space consists of 16-contact spatial
configuration (discrete) and current intensity (continuous). Our optimization goal is the selectivity
index of target muscle groups (see Appendix B.6). A higher selectivity index indicates better control
over the target muscle group and less influence over non-target muscles. To enhance the physical
interpretability of discrete input representation, we transformed 17-dimensional vectors into an
electric field map with 52 × 14 pixels using simplified computation. Subsequently, we generate
unlabeled synthetic data with clinical priors and train an IRVAE with a 16-dimensional latent space
to embed and reconstruct the electric field map, with distance-preserving checks in Appendix C.3.

Simulation over neuromuscular model. In simulation, we use a human neuromuscular model as
the function oracle, which is capable of computing the evoked electric field around the spinal cord
given certain stimulation parameter, and inferring the lower limb muscle activation (see Appendix
B.6). The maximum induced muscle activation is used as the safety function to avoid causing harm
to the patient during optimization. We choose to optimize the selectivity of emitendinosus (ST) and
gastrocnemius (GA) for their importance during human walking. The simulation results are depicted
in Figure 3 (b). Despite the subspace space dimensions being comparable to the original space,
HDSAFEBO achieves safe exploration by optimizing on the continuous manifold, which obtains the
best control performance while maintaining the highest safety selection ratio and lowest cumulative
safety violation compared to other algorithms.

Real-world experiments on paraplegic patient. We further applied HDSAFEBO to improve the
motor function of a paraplegic patient with the same electrode array implanted. Starting with 132
initial configurations from clinical prior, a total of 504 additional trials were conducted with the
patient over a 1-month period. We observed selectivity improvement of 7 out of 8 target muscles
compared to the baseline (left IL: 0.112, left RF: 0.143, left TA: 0.097, left BF: 0.380, right IL:
0.00, right RF: 0.266, right TA: 0.216, right BF: 0.141). During the whole experimental procedure,
only three configurations recommended by HDSAFEBO were rated as unsafe, which evoked large
lower limb movements but no physical damage or pain. Our real-world experiment underscores the
practicality of HDSAFEBO in safely optimize the control of complex neuromuscular systems.

6 Conclusion

We develop HDSAFEBO for optimizing of the control over high-dimensional embodied systems under
safety constraints. Our proposed method employs a local optimistic safe strategy to optimize the
objective function and expand the safe region, with probabilistic safety guarantee and cumulative
safety violation bound. HDSAFEBO is able to optimize high-dimensional input ranging from a few
dozen to several thousand variables with safety guarantee. The algorithm can efficiently optimize
the control of high-dimensional human musculoskeletal systems with high safety probability, and
successfully optimize human motion control via neural stimulation in real clinical experiments. HD-
SAFEBO has great potential to safely optimize the control of real-world high-dimensional embodied
systems online.

Limitations. While we provide the probabilistic safety guarantee for HDSAFEBO, real-world ap-
plications may fail to fully satisfy the theoretical assumptions regarding function regularity. The
imperfection of the trained embedding could lead to unsafe behavior when optimizing over a reduced
subspace. It is important to pre-check the distance-preserving quality of this subspace before conduct-
ing online optimization, and improvements can be made by synthesizing additional unsupervised data
based on domain knowledge. The parameter space in our real human experiment has been restricted
by domain prior. Directly applying HDSAFEBO to a completely unexplored problem may cause
more unsafe decisions due to its optimism to safety. The total evaluation number of HDSAFEBO is
constrained by cubic complexity of Gaussian process. The computational complexity prevents the
use of HDSAFEBO in very long time horizon optimization problems.
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A Theoretical Analysis

A.1 Proof of Proposition 4.1

Proof. Fix t ≥ 1 and z ∈ Z . Conditioned on yt−1 = (yg1 , . . . , y
g
t−1), {z1, . . . ,zt−1} are determin-

istic, and g(z) ∼ N (µt−1(z), σt−1(z))). For r ∼ N (0, 1), Pr(r > c) = 1− Φ(c).

Therefore, by applying r = (g(z)− µt−1(z))/σt−1(z) and c = βt, the statement holds.

A.2 Proof of Theorem 4.2

We first introduce the results in Chowdhury and Gopalan [59] which prove the selection of confidence
scalar to contain the function with high probability, and the upper bound of cumulative standard
deviations.

Lemma A.1. (Lemma 5.1 in Srinivas et al. [53]) Let assumptions 3.1 and ?? hold for g. For any
δ ∈ (0, 1), with probability at least 1− δ, the following holds for all x ∈ X and 1 ≤ t ≤ T, T ∈ N,

|g(x)− µt−1(x)| ≤ (βc
t )

1
2σt−1(x), (5)

where βc
t = 2log(|X |t2π2/6δ)

Then we can bound the instantaneous safety violation of HDSAFEBO.

Lemma A.2. Let assumptions 3.1 hold for safety function g. With probability at least 1 − δ, the
sample points of Algorithm 1 for all time steps 1 ≤ t ≤ T satisfy

E[vt] = E[max(0,−g(xt))] ≤ 2(1− α)(βc
t )

1
2σt−1(xt). (6)

Proof. We denote [·]+ := max(·, 0). Then we have

E[vt] = E[[−g(xt)]
+] (7)

= E[[−g(xt)− ut(xt) + ut(xt)]
+] (8)

≤ E[[−g(xt) + ut(xt)]
+ + [−ut(xt)]

+] (9)
= E[[−g(xt) + ut(xt)]

+] (10)
= E[[−g(xt) + ut(xt)]

+
1{g(xt) ≥ ut(xt)}+ [−g(xt) + ut(xt)]

+
1{g(xt) < ut(xt)}]

(11)

= (1− α)[−g(xt) + ut(xt)]
+ (12)

≤ (1− α)[−(µt−1(xt)− (βc
t )

1
2σt−1(xt)) + µt−1(xt) + (βc

t )
1
2σt−1(xt)] (13)

= 2(1− α)(βc
t )

1
2σt−1(xt), (14)

where the inequality (9) follows by the fact that [a+ b]+ ≤ [a]+ + [b]+,∀a, b ∈ R, the equality (10)
is derived from the fact that ut(xt) ≥ 0, the equality (12) is derived from Proposition 4.1, and the
inequality (13) is derived from Lemma A.1.

Lemma A.3. (Theorem 1 in Srinivas et al. [53].) Let x1, · · · ,xT be the points selected by the
algorithms. With C1 := 8/ log(1 + σ−2),

T∑
t=1

2(βc
t )

1
2σt−1(xt) ≤

√
C1Tβc

T γT (15)

Finally we bound the summation of instantaneous safety violations.
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Proof.

E[VT ] = E[
T∑

t=1

vt] (16)

=

T∑
t=1

E[vt] (17)

≤
T∑

t=1

2(1− α)(βc
t )

1
2σt−1(xt) (18)

≤
T∑

t=1

2(1− α)(βc
T )

1
2σt−1(xt) (19)

≤ (1− α)
√

C1Tβc
T γT , (20)

where the inequality (18) follows by Lemma A.2, the inequality (19) follows by the monotonicity of
βc
t , and the inequality (20) follows by Lemma A.3.

A.3 Proof of Proposition 4.3

Proof. Define kX , kZ are the kernel function of GP with same hyperparameter over X and Z
respectively. For stationary kernel, the kernel function value between x and x′ is only depend on
|x− x′|, therefore we can write the kX , kZ as a function of metric dX , dZ :

kX (x,x′) = kX (dX (x,x′)), kZ(z, z′) = kZ(dZ(z, z
′)). (21)

We define kX as the kernel function of GP over X , and uX
t as the estimated upper confidence bound

of GP over X . Utilizing the property of isometric embedding, we can obtain equivalent GP estimation
between original space and embeded subspace:

kZ(dZ(z, z
′)) = kX (dX (Π−1(z),Π−1(z′))). (22)

Therefore the estimated upper confidence bound is also equivalent. For every sample z from
HDSAFEBO, we have

Pr(g(Π−1(z)) ≥ 0) ≥ Pr(uX
t (Π−1(z)) ≥ 0) (23)

= Pr(uZ
t (z) ≥ 0) (24)

≥ α, (25)

the statement holds.

B Experimental Details

The full implementation of our experiments can be found on our project page: https://lnsgroup.
cc/research/hdsafebo. Our musculoskeletal model will be released soon. In the meantime, the
model can be accessed for research purposes upon request (ysui@tsinghua.edu.cn).

B.1 PCA training

We employ PCA using the scikit-learn library 1 with default parameter settings.

1https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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B.2 Autoencoder training

We employ IRVAE on neural stimulation task and digital generation task by directly using the paper’s
original repository2. We use MLP as the VAE module for all tasks, and list the model detail in Table
2. We train all models for 300 epochs using Adam[60] optimizer with a learning rate of 0.0001.

Task Layer number Hiddien number Latent dimension

Neural stimulation 4 256 16
Digital generation 4 256 6

Table 2: Autoencoder model detail.

B.3 Algorithm Implementation

For implementation of HDSAFEBO, We use BoTorch as the GP inference component [61]. We also
use BoTorch to replicate LineBO, SCBO, CONFIG, cEI and cEI-Prob. For LineBO, we choose to
implement the random line embedding version shown in the main paper. We use the package pycma3

to run CMA-ES on benchmarks.

All GP-based methods uses matérn kernel and fits kernel parameters after each iteration. During
the experiment, we set τs, τf , l0, lmax, lmin for HDSAFEBO and SCBO (the default setting of SCBO).
We use Thompson sampling for LineBO and CONFIG, and use inherent acquisition function for
other BO baselines. Confidence scalar β is set as 2 for HDSAFEBO, LineBO and CONFIG across all
experiments. We set the latent optimization bound as the upper bound and lower bound of training
points in the latent space. Other baseline parameters are set to default values as in the original
implementation.

During the experiment, we set the sample size to 10 for all tasks in the main paper, and sample one
point each iteration in constrained digital generation task.

B.4 Synthetic Function

We sample objective and safety function from separate Gaussian process with Matérn kernel and
length scale as 0.05, which is implemented using GPyTorch4. We set the safety threshold to −0.75.
For each independent run, we use a random linear projection Πrand ∈ RD×d to create d-dimensional
latent space, and randomly select de variables as the function effective dimension.

B.5 Musculoskeletal Model Control

We use a full-body musculoskeletal model which actuates locomotion by controlling muscle activation.
Here we only control the right hand part (below elbow), and fix other joints, leading to 55 muscles
and 28 joints. The primary task is to control hand muscles to maintain a steady vertical grip on a
bottle. At the beginning of the episode, the bottle is initially positioned horizontally in the hand. The
initial task involves first rotating the bottle to achieve and maintain a vertical orientation. At each
time step, the reward from the environment is computed as follows:

r = rpose + rbonus − 10 ∗ rpenalty + rgrasp + 2 ∗ rsurvive − ractivation − 100 ∗ rdrop (26)

where rpose is the difference between the bottle and vertical orientation, computed by Euler angle.
rbonus is the reward when the difference falls below a predefined threshold. rpenalty is positive when
the bottle position is out of from the predefined range. rgrasp is the distance between the centroid of

2https://github.com/Gabe-YHLee/IRVAE-public
3https://github.com/CMA-ES/pycma
4https://gpytorch.ai/
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the bottle and palm joints. rsurvive is the reward for not dropping the bottle during the current time
step. ractivation is the penalty for large muscle activations. rdrop is the penalty when the bottle drop
from hand. The overall simulation is based on Mujoco [62].

When the height of the bottle is below 0.4m, we consider it to be dropped from the hand and the
episode concludes. We record the speed of episode ending as the landing speed of the bottle. We use a
safety threshold of 4.4, which is the average landing speed when randomly sampling the environment.
We train a Soft Actor-Critic agent [63] for 150k time steps under different observation setting, and
rollout for 1000 episode to build a muscle activation dataset with 107, 439 datapoints.

The performance video of HDSAFEBO and other baselines (in the subspace from PCA) is shown in
the supplementary file. HDSAFEBO is capable of quickly rotating the bottle and hold vertically and
steadily, while other algorithms either hold the bottle non-vertically, or learn drop the bottle safely to
avoid penalty of wrong orientation.

B.6 Modeling of the human neuromuscular system

We developed an average model of the human spinal cord based on anatomical statistics(model
paper under review, [64, 65, 66, 67, 68]). The model contains gray matter, white matter, nerve
roots, cerebrospinal fluid (CSF), and dura mater of T12-S2 segments of the spinal cord which are
related with the motor control of lower limbs. The specific conductivity values of the modeled
tissues were set refer to [69]. Electric fields induced by different stimulation parameters were derived
using finite element method (FEM). To calculate the stimulation effects for different muscles, we
redistricted the cord model according to reported results of the segmental innervation for lower limb
muscles([70, 71]). Six groups of muscles of bilateral lower limbs were studied: iliopsoas (IL), vastus
lateralis and rectus femoris (VL&RF), tibialis anterior (TA), biceps femoris muscle and gluteus
maximus (BF&GM), semitendinosus (ST), and gastrocnemius (GA).

To evaluate the selectivity of stimulation for certain muscle, we used a selectivity index (SI) to
characterize the distribution of the electric field. The selectivity index for the ith muscle was defined
as follows:

SIi = µi −
1

mneighbor − 1

mneighbor∑
j ̸=i

µj (27)

where mneighbor represents the number of muscles whose motor neuron pools are adjacent to the ith
muscle’s. The selectivity index ranges from -1 to 1, where -1 represents the maximum of activation
of all undesired muscles with a complete absence of activation of the targeted muscle, 0 indicates
that all muscles are activated at the same level, and 1 means the targeted muscle is activated at the
greatest extent while no undesired muscles are activated. And µi is the normalized activation of the
ith muscle and is defined as follows in the simulation:

µi =

∫∫∫
Ωi

f(x, y, z)dxdydz∫∫∫
Ωi

1dxdydz
(28)

f(x, y, z) =

{
1, if AF (x, y, z) > AFthreshold

0, if AF (x, y, z) ≤ AFthreshold
(29)

Ωi is the segmental volume of the ith muscle in the cord. AF is the activating function, defined as
the second spatial derivative of extracellular voltage along an axon([72, 73]).

We use the spinal model to traverse all stimulation parameters with 1 cathode with anodes no more
than 3, and 2 cathodes with anodes no more than 2, leading to a spinal cord stimulation (SCS) dataset
with 218,000 stimulation parameters and predicted muscle activation. We compute the objective
function using 27, and compute the safety function as g(x) = 1−maxi(µi). The selectivity index
distribution is shown in Figure 4. We set the safe threshold as 0.05, with nearly half of the traversed
parameters are safe.
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We convert electrode parameters from 17d vector to a 2d electric field image using simplified
computation. In concrete, we map contact combinations to the spatial position in the electrode,
linearly compute the diffusion of electrical field from each cathode and anode, and multiply the map
by current intensity. One example of generated electric field image is shown in Figure 5.

We use the constructed SCS dataset as the function oracle. For a given 2d map, we set its function
value as the function value of the nearest unevaluated point in the dataset measured by the electrical
field map.

SI distribution of IL SI distribution of RF SI distribution of TA

SI distribution of BF SI distribution of ST SI distribution of GA

Figure 4: Distribution of SI for six muscle groups of different configurations used in SCS simulation experiment

Figure 5: 2d electrical map computation.

B.7 Clinical experiment of neuromuscular system control

We employ HDSAFEBO in the treatment of spinal cord stimulation to find more selective stimulation
parameters for different muscles. The clinical experiments received approval from the Institutional
Review Board (IRB) of the hospital. All the trials were conducted under the supervision of therapists.
The patient was seated in the wheelchair in a comfortable way and was told to relax. During the first
period, typical parameters which were usually used in the therapy (e.g. bipolar stimulation) were
delivered to the patient while the evoked muscle activities were recorded using EMG. These data
(132 trials) were used to initialize HDSAFEBO. Except for the first 132 trials as the initial data, 441
out of 504 trials are recommended by HDSAFEBO. The other trials were conducted by the therapist.
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We focus on 8 groups of muscles: iliopsoas (IL), rectus femoris (RF), tibialis anterior (TA), and
biceps femoris (BF) for both sides. The clinical selectivity index was defined as following:

SIi =
µi

1 +
∑m

j ̸=i µj
(30)

where µi represents the normalized peak-to-peak value of the evoked EMG for the ith muscle and m
is the total number of the target muscles.

During the optimization, We restrict the number of cathodes and anodes to only evaluate configura-
tions consistent with clinical priors. We used the Electromyography (EMG) to compute the selectivity
index and queried safety scores from the patient and the therapists. For each trial, our algorithm
recommended the parameter based on the history data and configured it onto the stimulator, which
would deliver electrical stimulation to the patient for 800 ms at a frequency of 10 Hz. Peak-to-peak
values were averaged and normalized to obtain selectivity indices of different muscles after stimu-
lation. The calculated feedback and queried safety score were used to update the optimizer and it
would recommend a new parameter. The tasks were refined sequentially and all the history data were
reused when optimizing a new task.

C Additional Experiment

C.1 Baselines performance over embeded subspace

We run baselines on the same embedded space as HdSafeBO in optimizing GP synthetic functions
(Table 3). We observe that, overall, the optimization and safety performances slightly improved.
However, HdSafeBO still outperforms these baselines, as the reduced space remains too high-
dimensional for them.
Table 3: Algorithm performance on GP synthetic functions. We show the averaged performance of 500
evaluations over 100 independent runs. ”L” indicates baselines optimize over the embeded latent space, ”O”
indicates baselines optimize over the original input space.

Method HdSafeBO LineBO SCBO CONFIG cEI CMAES
L O L O L O L O L O

Objective (↑) 3.96 ± 0.15 3.03± 0.05 3.07± 0.04 3.15± 0.06 2.95± 0.04 2.99± 0.04 2.91± 0.05 2.92± 0.03 2.9± 0.03 2.69± 0.04 2.7± 0.04
Safety (↑) 0.81 ± 0.02 0.79± 0.0 0.78± 0.0 0.77± 0.0 0.77± 0.0 0.77± 0.0 0.77± 0.0 0.77± 0.0 0.77± 0.0 0.77± 0.01 0.78± 0.01

Violation (↓) 27.42 ± 4.01 36.26± 1.28 36.59± 0.82 38.51± 0.64 38.47± 0.69 39.08± 0.6 38.96± 0.96 39.15± 0.64 39.61± 0.58 38.01± 1.94 38.65± 1.89

C.2 Ablation on algorithm components

In the musculoskeletal system control task, we conducted an ablation study of two components in
HdSafeBO: local search and optimistic safe identification (Figure 6). We observed that without local
search, the algorithm tends to over-explore, leading to degraded optimization and safety performance
in this high-dimensional problem. Without optimistic safe identification, the algorithm makes more
unsafe selections during the early stages of optimization. Combining these two components enables a
safe and efficient optimization procedure.

Figure 6: Ablation on components of HdSafeBO. Optimization performance averaged over 50 independent runs.
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C.3 Distance Preserving of IRVAE

In the implementation of HDSAFEBO, we explore the use of IRVAE to learn a mapping with distance-
preserving property. We randomly sample 10,000 datapoints from SCS dataset. Using conventional
VAE and IRVAE trained from same dataset, we compute the point-wise distance as well as GP
estimation difference between the original and latent space, as shown in Table 4. The results

Using the 218,000 synthetic training data in human neural stimulation control, we plotted the pair-
wise distance of points in both original input space and latent space learns by IRVAE (Figure 7). We
can observe that the learned embedding space exhibits approximately scaled isometry.

Model Linear correlation of distance (↑) GP mean estimation difference (↓) GP variance estimation difference (↓)
IRVAE 0.9729 1.2936 2.9953

conventional VAE 0.8923 2.1839 4.5608

Table 4: Distance preserving comparison between IRVAE and conventional VAE

Figure 7: Pair-wise Distance of training data points in neural stimulation induced human motion control task.

C.4 Ablation on Confidence Bound Scalar

Here we run HDSAFEBO with β = 0, 2, 4, 8, 16 on musculoskeletal model control task, and shown
the results in Figure 8. The safety and violation metric may become slightly worse as β increases. We
observe the algorithm performance is similar under a wide range choice of β on this high-dimensional
task.

(a) (b) (c)

Figure 8: Ablation study on confidence bound scalar β.

C.5 Comparison with random-embedding BO

We additionally run HesBO and BAxUS on the musculoskeletal model control task and the neural
stimulation task with no safety constraints in simulation. Due to the algorithmic mechanism of
HesBO and BAxUS, we cannot directly use the same initial point as HDSAFEBO. Therefore we
randomly sample initial points from their corresponding latent space. In HesBO, we set the same
latent dimension number as in HDSAFEBO. Table 5 shows the best objective function values found
by algorithms (shown as mean ± 1 std).
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Table 5: Best objective function values found by algorithms.

Algorithm SCS-ST SCS-GA

HDSAFEBO 0.26 ± 0.02 0.22 ± 0.01
HesBO 0.23± 0.0 0.19± 0.02
BAxUS 0.24± 0.03 0.19± 0.05

We observe HDSAFEBO still outperforms HesBO and BAxUS across all tasks, even when optimizing
under safety constraint. We think using IRVAE enables utilizing the pre-collected unlabeled data to
learn a better representation than random projection.

C.6 Hand-writing Digital Generation

In hand-writing digital generation task, the goal is to generate images of target digit as thick as
possible, while keeping the image valid for the required number. Using this task we can test the
algorithm performances when the latent dimension is low. We trained a fully-connected IRVAE with
a latent dimension of 6 and use a two-layer CNN model as the predictor. We set the objective function
as the sum of image pixel intensities and the safety function as the prediction probability of target
number. Since the CNN prediction is very sharp, we wrap the CNN output via a softmax layer with
temperature as 200. We set the sample budget as 200 including with 20 images of target digit as the
initial data.

We summarize the averaging performance in Table 6. We observed HDSAFEBO outperforms all
baselines in terms of optimization performance and safety violation. Note that while HDSAFEBO effi-
ciently finds highest objective, its safety violations is 63% less than the second best method original
SCBO.

Table 6: Experiment results of constrained hand-writing digital generation. We evaluate algorithm performance
of generating digital from 0 to 9 in terms of best found feasible objective value (higher is better) and cumulative
safety violation (lower is better). Objective values are normalized by best feasible point in the MNIST dataset.
The results are shown as mean performance ± one standard deviation across ten tasks.

Metric HDSAFEBO SCBO CONFIG cEI CMAES

Objective 1.14 ± 0.12 1.08± 0.18 0.77± 0.26 0.77± 0.26 0.68± 0.12
Violation 18.99 ± 10.82 52.01± 20.28 72.09± 17.85 72.04± 17.82 72.01± 7.06

C.7 Run time performance

We ran HdSafeBO and baseline algorithms on the human neural stimulation control problem and
recorded the average run-time of each iteration in Table 7. Most baseline algorithms have a processing
time of around 10 seconds.

In our problem setting, we consider the run-time difference to be marginal compared to the actual
experiment time for each trial. For instance, in our real experiments, applying recommended stimu-
lation parameters typically takes 1-2 minutes. Therefore, we compared optimization performances
based on the number of evaluations.

Method HdSafeBO LineBO SCBO CONFIG cEI CMAES

Iteration time 11.75± 1.35s 9.88± 1.01s 11.99± 1.21s 9.49± 1.05s 20.38± 1.21s 9.59± 0.72s
Table 7: Run-time per iteration in neural induced human motion control task. Results show mean ± 1 std
averaged over 80 iterations.
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D Additional Related Work

Here we additionally discuss more works about high-dimensional Bayesian optimization besides
dimension-reduction based BO and local BO.

Due to the inversion of kernel function matrix, the complexity of GP inference scales exponentially
with the sample number, limiting the search budget of high-dimensional problems. Sparse GP or
variational GP is used to achieve scalable sampling over the high-dimensional space [74, 75, 76].

Another line of work assume the addictive structure of the objective functions, and decomposes the
function to solve the low-dimensional sub-problem decentrally[77, 78, 79, 80].

To overcome over-exploration issue over the high-dimensional space, several works also propose to
shape kernel prior to sample points near the search center [42, 81].
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