Lower-level Duality Based Penalty Methods for Bilevel Hyperparameter Optimization

Anonymous Author(s)

Affiliation Address email

Abstract

Hyperparameter optimization (HO) is a critical task in machine learning and can be formulated as a bilevel optimization problem. However, many existing algorithms for addressing nonsmooth lower-level problems involve solving sequential subproblems, which are computationally expensive. To address this challenge, we propose penalty methods for solving HO, leveraging strong duality between the lower-level problem and its dual. We show that the penalized problem closely approximates the optimal solutions of the original HO under certain conditions. Moreover, we develop first-order single-loop algorithms to solve the penalized problems efficiently. Theoretically, we establish the convergence of the proposed algorithms. Numerical experiments demonstrate the efficiency and superiority of our method.

Introduction

2

3

4 5

6

7 8

9

10

11

12

20

Hyperparameter optimization (HO) arises in many diverse fields, neural architecture search [16, 29, 13 57], feature learning [35], ensemble models [25], semi-supervised learning [42] and sample-weighting 14 schemes [34, 77, 74, 82]. The hyperparameters control model complexity, training stability and 15 convergence. Unlike model parameters, they need to be chosen externally. A poor choice can cripple 16 performance, whereas good hyperparameters greatly enhance accuracy, robustness and generalization. 17 Regularization is a common way to guide hyperparameter tuning, especially in regression and 18 classification [32]. By adding a penalty term to the empirical risk, one trades off data fitting against 19 model complexity to curb overfitting. The general framework can be formulated as

$$\min_{\mathbf{x}} l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}), \tag{1}$$

where $l(\mathbf{x})$ represents the loss function and $\lambda = (\lambda_1, \lambda_2, ..., \lambda_{M+1})$ encompasses hyperparameters. 21 Meanwhile, $R_i(\mathbf{x})$, i=1,2,...,M+1 denotes the regularizers related to norms, which can be 22 categorized as follows:

$$R_i(\mathbf{x}) = \|\mathbf{x}\|_{(i)}, \ i = 1, 2, ..., M, \ R_{M+1}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2.$$
 (2)

For each $i, \|\cdot\|_{(i)}$ represents a specific norm, such as the $\ell_1, \ell_2, \ell_\infty, \ell_{1,2}$ norm for vectors, the spectre or nuclear norm for matrices, or other commonly used norms. Note that these two types of regularizers may appear simultaneously or individually. 27 Based on the formulation (1), training/validation approach is involved as a sophisticated method. This

method optimizes parameters in the form (1) on the training set and observes the corresponding error 28 on the validation set. The approach can be summarized as bilevel optimization framework [57, 9] and Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

has demonstrated outstanding performance in practical applications [66, 31, 35, 15]. In essence, the process can be outlined in the following bilevel optimization (BLO) [72, 28]:

$$\min_{\mathbf{x} \in \mathbb{R}^n, \boldsymbol{\lambda} \in \mathbb{R}_+^{M+1}} L(\mathbf{x}) \quad \text{s.t. } \mathbf{x} \in \arg\min_{\hat{\mathbf{x}}} \left\{ l(\hat{\mathbf{x}}) + \sum_{i=1}^{M+1} \lambda_i R_i(\hat{\mathbf{x}}) \right\}, \tag{3}$$

where $L, l, R_i : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ are proper, closed functions, \mathbf{x} is the parameter to learn, and λ is hyperparameter. In BLO (3), the lower-level (LL) problem serves as a base learner, aiming to determine the optimal hypothesis on the training set for a given hyperparameter configuration. In contrast, the upper-level (UL) problem aims to identify the hyperparameter and corresponding hypothesis that minimizes the given criteria on the validation set. We explain the mathematical forms of the component functions in problem (3) using several illustrative examples listed in Table 1, including elastic net [100], sparse group Lasso [83], logistic regression [68, 46], low-rank matrix completion [20] and smoothed support vector machine [78, 65].

Table 1: Examples of bilevel hyperparameter optimization [48, 31, 46] in the form (3).

Machine learning algorithm	Upper Criteria	Base Learner
Elastic net	$\frac{1}{2}\sum_{i \in I_{val}} b_i - \mathbf{x}^T \mathbf{a}_i ^2$	$\frac{1}{2} \sum_{i \in I_{tr}} b_i - \mathbf{x}^T \mathbf{a}_i ^2 + \lambda_1 \mathbf{x} _1 + \frac{\lambda_2}{2} \mathbf{x} _2^2$
Sparse group Lasso	$\frac{1}{2}\sum_{i\in I_{val}} b_i - \mathbf{x}^T \mathbf{a}_i ^2$	$\frac{1}{2} \sum_{i \in I_{tr}} b_i - \mathbf{x}^T \mathbf{a}_i ^2 + \sum_{m=1}^{M} \lambda_m \mathbf{x}^{(m)} _2 + \lambda_{M+1} \mathbf{x} _1$
Smoothed support vector machine	$\sum_{i \in I_{n-1}} l_h(b_i \mathbf{w}^T \mathbf{a}_i)$	$\sum_{i \in I_{tr}} \frac{1}{h} (b_i \mathbf{w}^T \mathbf{a}_i) + \frac{\lambda}{2} \ \mathbf{w}\ ^2 \text{ (with constraint } -\bar{\mathbf{w}} \leq \mathbf{w} \leq \bar{\mathbf{w}}.)$
Low-rank matrix completion	$\sum_{(i,j)\in\Omega} \frac{1}{2} M_{ij} - \mathbf{x}_i \theta - \mathbf{z}_j \beta - \Gamma_{ij} ^2$	$\sum_{(i,j)\in\Omega_{tr}} \frac{1}{2} M_{ij} - \mathbf{x}_i \theta - \mathbf{z}_j \beta - \Gamma_{ij} ^2 + \lambda_0 \Gamma _* + \sum_{g=1}^G \lambda_g \theta^{(g)} _2 + \sum_{g=1}^G \lambda_{g+G} \beta^{(g)} _2$
Logistic regression	$\sum_{j \in I_{val}} \log(1 + e^{-b_j \mathbf{x}^T \mathbf{a}_j})$	$\sum_{j \in I_{tr}} \log(1 + e^{-b_j \mathbf{x}^T \mathbf{a}_j}) + \frac{\lambda}{2} \mathbf{x} ^2$

 l_h denotes the smoothed hinge loss given by $l_h(x) = \frac{1}{2} - x$ if $x \le 0$, $\frac{1}{2}(1-x)^2$ if $0 \le x \le 1$ and 0 else.

1.1 Related Work

Hyperparameter Optimization. A variety of approaches have been developed for hyperparameter optimization (HO) [44]. The simplest model-free techniques include grid search [45] and random search [12]. More advanced methods such as Bayesian optimization [11, 84] iteratively select evaluation points based on prior observations. However, these approaches often struggle with scalability when faced with high-dimensional parameter spaces.

Bilevel Optimization. Bilevel optimization (BLO) underpins many machine learning tasks, including meta-learning [33], adversarial learning [19, 86, 87], reinforcement learning [80, 85, 93, 89], model selection [47, 39], generative adversarial networks [38, 40], and game theory [55]. Early methods primarily relied on gradient-based algorithms, which can be broadly classified into two categories: Iterative Differentiation (ITD) and Approximate Implicit Differentiation (AID). ITD methods unroll the lower-level problem and compute hypergradients via backpropagation [34, 35, 41, 61, 5, 77], while AID methods derive gradients from the lower-level optimality conditions [72, 73, 63, 92, 91].

Recent advances include fully first-order methods that avoid Hessian and implicit gradient computations [23, 54, 24]. To address the challenge of multiple lower-level minima, [59] introduce a value-function-based reformulation, leading to penalization-based algorithms [60]. This line of work has grown into a prominent direction, with various penalty-based single-level reformulations proposed in [79, 64, 50, 49, 56]. Another promising direction leverages the Moreau envelope to smooth the bilevel structure, yielding single-loop, Hessian-free algorithms capable of converging to well-defined KKT points [37, 95, 94].

For BLO with nonsmooth lower-level problems, [14] propose an implicit differentiation framework based on block coordinate descent, which is later extended to general nonsmooth settings [15]. Other approaches include DC methods [96, 97] and penalized DC formulations [36], both requiring the computation of the lower-level value function. Smoothing-based strategies have also been explored to handle nonsmoothness [3, 2, 71]. Additionally, [23] present a gradient-free method with inexact subproblem solutions, while [22] reformulate BLO via duality, avoiding the value function entirely and solving the problem through cone programming. [62] further extend the Moreau envelope approach to nonsmooth lower-level problems, offering efficient single-loop algorithms.

1.2 Motivations and Contributions

In this work, we focus on solving the bilevel optimization (3). We extend the reformulation initially proposed by [22] and incorporate penalty strategy. We demonstrate that our framework is applicable to commonly used hyperparameter optimization problems schemed in (3). Moreover, we propose

the Lower-level **D**uality Based **P**enalty **M**ethods (LDPM), which are first-order algorithms specifically designed for the penalized problem. The algorithms efficiently handle the nonsmooth norm components with epigraphic projections. Notably, our algorithms are single-loop and Hessian-free, relying solely on the first-order information of the functions in (3). Theoretically, we establish the convergence results of the algorithms under mild conditions. We summarize our contributions as follows.

- We propose a penalty method based on lower-level duality for hyperparameter optimization (3), which is in the form of BLO with nonsmooth LL problem.
- We introduce two first-order *single-loop* algorithms to solve the penalized problem and provide theoretical proof of the convergence.
- We evaluate the efficiency of our algorithms with numerical experiments on synthetic and real-world data. Experimental results validate superiority of our algorithm in practical scenarios.

2 Penalty-based Approach

78

79 80

81

82

83

84

85

In this section, we propose our penalization framework for the original problem (3). Prior to this, we observe that the loss functions of base learners in Table 1 share a unified structure of the form $\varphi(A\mathbf{x} - \mathbf{b})$, where $A\mathbf{x} - \mathbf{b}$ abstracts the data-sample relationship. Accordingly, we denote that

$$l(\mathbf{x}) = \varphi(A_t \mathbf{x} - \mathbf{b}_t),\tag{4}$$

where $l(\mathbf{x})$ corresponds to the loss on validation and training sets as described in (3). We now provide a detailed discussion of the mathematical forms of the function φ for problems in Table 1, along with the expressions A_t , \mathbf{b}_t :

92 **Least squares loss**: $\varphi(t) = \frac{1}{2}t^2$, with $A_t\mathbf{x} - \mathbf{b}_t = A_{tr}\mathbf{x} - \mathbf{b}_{tr}$.

Smoothed hinge loss: $\varphi(t) = l_h(t)$ with $A_t \mathbf{w} - \mathbf{b}_t = (\mathbf{b}_{tr} A_{tr}) \mathbf{w}$.

Logistic loss: $\varphi(t) = \log(1 + e^{-t})$, with $A_t \mathbf{x} - \mathbf{b}_t = (\mathbf{b}_{tr} A_{tr}) \mathbf{x}$.

Building on the inner structure of φ and R_i , our approach is grounded in a reformulation based on the duality of LL problem. We embrace the idea initially proposed by [22] and summarize the following lemma, which is a modification and extension of [22, Theorem 2.1].

Lemma 2.1. Given the convex lower semi-continuous functions l and R_i , if $\operatorname{ri}(\operatorname{dom}\ l \cap (\bigcap_{i=1}^{M+1} \operatorname{dom}\ R_i)) \neq \emptyset^1$, then problem (3) has the following equivalent form:

$$\min_{\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \boldsymbol{\xi}} L(\mathbf{x}) \quad s.t. \quad \begin{cases}
l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) + \varphi^*(\boldsymbol{\xi}) + \sum_{i=1}^{M+1} \lambda_i R_i^* \left(\frac{\rho_i}{\lambda_i}\right) + \boldsymbol{\xi}^\top \mathbf{b}_t \leq 0, \\
A_t \, \boldsymbol{\xi} + \sum_{i=1}^{M+1} \rho_i = \mathbf{0}.
\end{cases} \tag{5}$$

where $\rho = (\rho_1, ..., \rho_{M+1})$ and $A_t, \mathbf{b}_t, \varphi$ are consistent with those in (4) and φ^* and R_i^* are the conjugate functions of φ and R_i for i=1,2,...,M+1, respectively. ²

Remark 2.2. Slater's condition is broadly satisfied by all examples in Table 1, ensuring strong duality for the LL problem in (3) without requiring strong convexity. For instance, the least squares loss is not strongly convex, yet strong duality still holds under this condition.

We present a detailed proof of Lemma 2.1 in the Appendix A.1. Notably, each problem listed in Table 1 can be reformulated into the structure of (5). For clarity, we calculate the **closed-form** expressions of the conjugate functions in Appendix A.3. We remark that our reformulation utilizes the structure of $l(\mathbf{x})$ in (4), which is different from the one in [22, Theorem 2.1]. Notably, each problem listed in Table 1 can be reformulated into the structure of (5).

To elaborate, we discuss the terms R_i^* in (5) as follows. For i=1,2,...,M, R_i denotes a norm, i.e., $R_i(\mathbf{x}) = \|\mathbf{x}\|_{(i)}$. In this case, we know that $R_i^*(\mathbf{y})$ is the indicator function of the set $\{\|\mathbf{y}\|_{*(i)} \leq 1\}$

¹This condition is commonly known as Slater's condition. $ri(\cdot)$ denotes the relative interior of the set.

²We define the conjugate $h^*(\mathbf{y}) = \sup_{\mathbf{x}} \{\mathbf{y}^T \mathbf{x} - h(\mathbf{x})\}$ for a function h.

where $\|\cdot\|_{*(i)}$ denoted the dual norm of $\|\cdot\|_{(i)}$ [18, Example 3.26]. The term R_{M+1} denotes the squared ℓ_2 -norm, i.e., $R_{M+1}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$. In this case, we can compute that $\lambda_{M+1} R_{M+1}^*(\frac{\rho_{M+1}}{\lambda_{M+1}}) = \frac{1}{2} \|\mathbf{x}\|_2^2$.

 $\frac{\|\rho_{M+1}\|_2^2}{2\lambda_{M+1}}$ [18, Example 3.27]. To refine the intricate constraints of (5), we introduce auxiliary

variables r_i and s satisfying $R_i(\mathbf{x}) \leq r_i$ and $\frac{\|\rho_{M+1}\|_2^2}{2\lambda_{M+1}} \leq s$. This results in a further reformulation 115

based on Lemma 2.1. 116

Proposition 2.3. The original problem (3) can be reformulated as 117

$$\min_{\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \mathbf{r}, \boldsymbol{\xi}, s} L(\mathbf{x})$$
s.t.
$$l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i r_i + \varphi^*(\boldsymbol{\xi}) + \boldsymbol{\xi}^T \mathbf{b}_t + s \leq 0, \ A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i = \mathbf{0}, \\
\|\mathbf{x}\|_{(i)} \leq r_i, \|\boldsymbol{\rho}_i\|_{*(i)} \leq \lambda_i, \ i = 1, 2, ..., M, \\
\frac{1}{2} \|\mathbf{x}\|_2^2 \leq r_{M+1}, \|\boldsymbol{\rho}_{M+1}\|_2^2 \leq 2\lambda_{M+1} s.$$
we rewrite the left hand of the first inequality constraint in (6) as:

For simplicity, we rewrite the left-hand of the first inequality constraint in (6) as:

$$p(\mathbf{x}, \lambda, \mathbf{r}, \boldsymbol{\xi}, s) = l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i r_i + \varphi^*(\boldsymbol{\xi}) + \boldsymbol{\xi}^T \mathbf{b}_t + s.$$
 (7)

Now we consider the penalization of problem (6) as follows

$$\min_{\mathbf{z}} F_k(\mathbf{z}) \quad \text{s.t.} \quad \begin{cases} \|\mathbf{x}\|_{(i)} \le r_i, & \|\boldsymbol{\rho}_i\|_{*(i)} \le \lambda_i, \quad i = 1, 2, \dots, M, \\ \frac{1}{2} \|\mathbf{x}\|_2^2 \le r_{M+1}, & \|\boldsymbol{\rho}_{M+1}\|_2^2 \le 2\lambda_{M+1}s. \end{cases}$$
(8)

where
$$F_k(\mathbf{z}) := L(\mathbf{x}) + \beta_k p(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{r}, \boldsymbol{\xi}, s) + \frac{\beta_k}{2} \|A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i\|^2$$
 with $\mathbf{z} := (\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \mathbf{r}, \boldsymbol{\xi}, s)$ for

convenience, and β_k serves as the penalty parameter. This penalty strategy is commonly employed 121

in bilevel optimization [79, 62, 95, 94, 59]. Inspired by [70, Theorem 17.1], the following theorem 122

reveals the relationship between the optimal solutions of penalization and reformulation (6). 123

Theorem 2.4. Assume L, l and R_i are lower semi-continuous, with the loss function l and the 124 regularization term R_i in LL objective being convex. Suppose the penalty parameter satisfying $\beta_k \to \infty$. If \mathbf{z}^{k+1} is the minimizer of penalized problem (8) with β_k , then every limit point \mathbf{z}^* of the sequence $\{\mathbf{z}^k\}$ is a solution to the reformulation (6). 125

126

127

131

The proof of Theorem 2.4 is provided in Appendix A.2. From the equivalence between (5) and (6), it 128

follows that if z is the solution of (6), then (x, λ, ρ, ξ) is the corresponding solution of (5). Thus, 129

Theorem 2.4 also reveals the connection between (5) and (8). 130

Epigraphical Projection-based First-order Algorithms

We develop our algorithms based on the penalized formulation (8), beginning with general assump-132 tions on the original problem (3) to support analysis and algorithm design. 133

Assumption 3.1. The UL objective L is α_L -smooth with respect to LL variable x. Additionally, as a 134

loss function, L is non-negative, i.e., $L(\mathbf{x}) \geq 0$ for all \mathbf{x} . 135

Assumption 3.2. The function φ is convex. Moreover, the function φ and its conjugate φ^* is α_p -136 and α_d -smooth, respectively. 137

Remark 3.3. Assumptions 3.1 and 3.2 are satisfied by commonly used loss functions. Specifically, 138

the problems listed in Table 1 adhere to Assumptions 3.1 and 3.2. We remark the UL objective L can 139

be nonconvex, which remains compatible with our framework. 140

Remark 3.4. The smoothness properties of l are naturally inherited by φ . Therefore, Assumption 3.2 141

implies that l is convex and Lipschitz smooth. Combined with the definition of R_i in (2), Assumption 142

3.2 ensures that the LL problem in (3) is convex. Importantly, our framework relies only on the 143

first-order differentiability and does not require the LL objective in (3) to exhibit strong convexity. 144

However, the primary challenges of solving (8) stem from the nonsmooth nature of the constraints,

particularly when different norms are involved. We define corresponding sets for the constraints in

problem (8) in the form of cones as follows:

$$\mathcal{K}_{i} := \{ (\mathbf{x}, \mathbf{r}) \mid ||\mathbf{x}||_{(i)} \leq r_{i} \}, \ \mathcal{K}_{i}^{d} := \{ (\boldsymbol{\rho}_{i}, \lambda_{i}) \mid ||\boldsymbol{\rho}_{i}||_{*(i)} \leq \lambda_{i} \}, \quad i = 1, 2, ..., M,
\mathcal{K}_{M+1} := \{ (\mathbf{x}, \mathbf{r}) \mid ||\mathbf{x}||_{2}^{2} \leq 2r_{M+1} \}, \ \mathcal{K}_{M+1}^{d} := \{ (\boldsymbol{\rho}_{M+1}, \lambda_{M+1}, s) \mid ||\boldsymbol{\rho}_{M+1}||_{2}^{2} \leq 2\lambda_{M+1} s \}.$$
(9)

Furthermore, each set in (9) is projection-friendly, which facilitates efficient epigraphic projection of corresponding norms. The details of the projection operations are discussed in Appendix B.

Given these insights, a natural approach to manage the constraints in (8) is through projections onto \mathcal{K}_i and \mathcal{K}_i^d . To address problems with different regularizers, we discuss the proposed algorithms in various scenarios. Section 3.1 focuses on problem (3) with single-round global regularization applied to the entire vector \mathbf{x} . Section 3.2 extends this to problems with multiple interacting regularizers. This division provides a structured approach to handling varying constraints and regularization terms.

155 3.1 Separable Regularizers

In this subsection, we explore the algorithm for (3) when the LL problem incorporates separate regularizers, structured as a single group of component-wise terms. Specifically, the LL problem in (3) can be expressed as

$$\mathbf{x} \in \operatorname*{arg\,min}_{\hat{\mathbf{x}}} \left\{ l(\hat{\mathbf{x}}) + \sum_{i=1}^{M} \lambda_i \|\hat{\mathbf{x}}^{(i)}\|_{(t)} \right\},$$

where $\mathbf{x}^{(i)}$ represents the *i*-th subvector of \mathbf{x} with $\mathbf{x} = (\mathbf{x}^{(1)}, ..., \mathbf{x}^{(M)})$ and $\|\cdot\|_{(t)}$ represents a prescribed norm applied to each group.

When M=1, the LL problem of (3) involves a single regularizer $R_1(\mathbf{x})$, corresponding to simpler models such as toy Lasso or logistic regression. In this case, the constraints of (8) simplify as follows. If $R_1(\mathbf{x}) = \|\mathbf{x}\|_{(t)}$ and $\|\cdot\|_{(t)}$ is a norm, the constraints of (8) reduce to:

$$\|\mathbf{x}\|_{(t)} \le r_1, \ \|\boldsymbol{\rho}\|_{*(t)} \le \lambda_1.$$
 (10)

If $R_1(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||_2^2$, the constraints of (8) simplify to:

$$\frac{1}{2} \|\mathbf{x}\|_{2}^{2} \le r_{1}, \ \frac{1}{2} \|\boldsymbol{\rho}\|_{2}^{2} \le \lambda_{1} s. \tag{11}$$

The constraints (10)-(11) are consistent with the structure in (9) and can be compactly expressed as

$$\mathbf{z} \in \mathcal{K} := \mathcal{K}_1 \times \mathcal{K}_1^d. \tag{12}$$

When M>1, the LL problem of (3) incorporates group regularization, where group-wise ℓ_2 regularization is the most common choice. This setting is widely adopted in practice, as illustrated by
examples such as group Lasso in Table 1. Although the problem may appear to involve multiple regularization terms and hyperparameters, it essentially amounts to applying a single-round regularization
process over the entire variable \mathbf{x} . Under this structure, the constrains of (8) simplifies to:

$$\|\mathbf{x}^{(i)}\|_{(t)} \le r_i, \|\boldsymbol{\rho}^{(i)}\|_{(t)} \le \lambda_i, \ i = 1, \dots, M,$$
 (13)

where $\rho^{(i)}$ is the *i*-th subvector of ρ with $\rho = (\rho^{(1)}, ..., \rho^{(M)})$. Since constraints of (13) are independent for each *i*, they can be equivalently expressed as:

$$(\mathbf{x}, \mathbf{r}) \in \mathcal{K}_1 \times \cdots \times \mathcal{K}_M, \ (\boldsymbol{\rho}, \boldsymbol{\lambda}) \in \mathcal{K}_1^d \times \cdots \times \mathcal{K}_M^d,$$

which implies that

$$\mathbf{z} \in \mathcal{K} := (\mathcal{K}_1 \times \dots \times \mathcal{K}_M) \times (\mathcal{K}_1^d \times \dots \times \mathcal{K}_M^d).$$
 (14)

Importantly, we observe that K in (12) and (14) remains projection-friendly, facilitating efficient implementation. Accordingly, we adopt a gradient projection method to solve the penalized problem (8), as outlined in Algorithm 1. In each iteration, we update z as

$$\mathbf{z}^{k+1} = \operatorname{proj}_{\mathcal{K}}(\mathbf{z}^k - e_k \nabla_{\mathbf{z}} F_k(\mathbf{z}^k)), \tag{15}$$

where $e_k > 0$ is the step size, and $\operatorname{proj}_{\mathcal{K}}(\mathbf{x})$ is the projection of \mathbf{x} onto \mathcal{K} .

Algorithm 1 First-order Projection-based Method

- 1: Input λ^0, ξ^0 , sequences $\{\beta_k\}, \{e_k\}$. Initialize $\mathbf{x}^0, \mathbf{r}^0, \boldsymbol{\rho}^0, s^0$.
- 2: **for** k = 0, 1, 2, ... **do**
- 3: Update \mathbf{z}^{k+1} with projection gradient descent as (15).
- 4: end for

189

197

201

In Algorithm 1, we choose the penalty parameter as $\beta_k = \underline{\beta}(1+k)^p$ with a constant $\underline{\beta}>0$ and 0< p<1/2, which corresponds to Theorem 2.4. Such a selection strategy is common in penalty method and augmented Lagrangian methods [70, 69, 27, 62, 95, 94]. The initialization of Algorithm 1 is detailed in Appendix C.1. We remark that Algorithm 1 is a single loop algorithm that does not require solving any subproblem.

Next, we proceed to the convergence analysis of Algorithm 1, specifically investigating the non-asymptotic convergence properties of the sequence $\{\mathbf{z}^k\}$ generated by Algorithm 1. By leveraging the reformulation in Lemma 2.1 and the definition of p, it follows that $p(\mathbf{x}, \lambda, \mathbf{r}, \boldsymbol{\xi}, s) \geq 0$ and no interior point exists for the feasible set [98, 59, 22]. In this case, the classical KKT condition for nonsmooth constrained optimization [76] are unsuitable for our analysis. Instead, we adopt the approximation KKT conditions introduced in [4]. We denote merit functions below,

$$\phi_{res}^{k}(\mathbf{z}) := \operatorname{dist}\left(0, \nabla_{\mathbf{z}} F_{k}(\mathbf{z}) + \mathcal{N}_{\mathcal{K}}(\mathbf{z})\right), \tag{16}$$

$$\phi_{fea}(\mathbf{z}) := \max\{p(\mathbf{x}, \lambda, \mathbf{r}, \boldsymbol{\xi}, s), \|A_t \boldsymbol{\xi} + \boldsymbol{\rho}\|^2\}.$$
(17)

The residual function $\phi^k_{res}(\mathbf{z})$ quantifies the stationarity for (8), because $\phi^k_{res}(\mathbf{z})=0$ if and only if \mathbf{z} is a stationary point of (8). Meanwhile, the function $\phi_{fea}(\mathbf{z})$ is interpreted as a feasibility measure for the penalized constraints of problem (6) [67]. Indeed, the merit functions in (16) and (17) are associated with the reformulation (5). Combined with the structure of BLO, $\phi_{fea}(\mathbf{z})$ regulates optimality conditions of LL problem of (3). We clarify corresponding conclusions in Proposition C.1.

Theorem 3.5. Suppose Assumptions 3.1 and 3.2 hold. If the step size $\{e_k\}$ in Algorithm 1 satisfies $0 < e_k \le \min\{\frac{1}{\alpha_L + \beta_k \|A_t\|_2^2 \alpha_p}, \frac{1}{\beta_k}, \frac{1}{\beta_k (\alpha_d + \|A_t\|_2^2})\}$, the sequence $\{\mathbf{z}^k\}$ generated by Algorithm 1

$$\min_{0 \leq k \leq K} \phi_{res}^k(\mathbf{z}^{k+1}) = \mathcal{O}(\frac{1}{K^{\frac{1}{2}-p}}).$$

Furthermore, if the sequence $\{F_k(\mathbf{z}^k)\}$ is bounded, then it holds that

$$0 \le \min_{0 \le k \le K} \phi_{fea}(\mathbf{z}^k) = \mathcal{O}(\frac{1}{K^p}).$$

We remark that boundedness assumptions on $\{F_k(\mathbf{z}^k)\}$ are widely adopted in relevant literature [95, 94, 62]. We provide explanations, proofs and more details in Appendix C.3.

3.2 Nonseparable Regularizers

In this subsection, we focus on developing a first-order algorithm for solving (3) in scenarios involving multiple interacting regularizers. These cases arise when the LL problem of (3) incorporates multiple regularization terms applied to the entire vector \mathbf{x} , such as elastic net or sparse group Lasso. Our discussion centers on addressing the penalized formulation in this setting, leveraging the reformulation (8). Using the definitions of \mathcal{K}_i and \mathcal{K}_i^d from (9), the constraints of (8) can be written as

$$(\mathbf{x}, \mathbf{r}) \in \mathcal{K}_i, (\boldsymbol{\rho}_i, \lambda_i) \in \mathcal{K}_i^d, i = 1, 2, ..., M, \\ (\mathbf{x}, \mathbf{r}) \in \mathcal{K}_{M+1}, (\boldsymbol{\rho}_{M+1}, \lambda_{M+1}, s) \in \mathcal{K}_{M+1}^d,$$

which can be further expressed as

$$(\mathbf{x}, \mathbf{r}) \in \mathcal{K}_1 \cap \dots \cap \mathcal{K}_{M+1}, \ (\boldsymbol{\rho}, \boldsymbol{\lambda}, s) \in \mathcal{K}_1^d \times \dots \times \mathcal{K}_{M+1}^d.$$
 (18)

We denote $\mathcal{K}^d_* := \mathcal{K}^d_1 \times \cdots \times \mathcal{K}^d_{M+1}$. (18) can be equivalently expressed as

$$\mathbf{z} \in (\mathcal{K}_1 \cap \cdots \cap \mathcal{K}_{M+1}) \times \mathcal{K}_1^d \times \cdots \mathcal{K}_{M+1}^d = (\mathcal{K}_1 \cap \cdots \cap \mathcal{K}_{M+1}) \times \mathcal{K}_*^d$$

Since each \mathcal{K}_i^d is projection-friendly, the product set \mathcal{K}_*^d inherits this property. In contrast, the intersection $\bigcap_{i=1}^{M+1} \mathcal{K}_i$ defined over the shared variable (\mathbf{x}, \mathbf{r}) may not be projection-friendly. Although

projection onto such intersections has been studied [6, 58], the required iterations are often complex. 211

To address this, we reformulate the constraint to avoid direct projection onto the intersection: 212

$$\mathbf{z} \in \mathcal{K}_i \times \mathcal{K}_*^d, \ i = 1, 2, ..., M + 1. \tag{19}$$

For each i, since both \mathcal{K}^d_* and \mathcal{K}_i are projection-friendly, the product set $\mathcal{K}_i \times \mathcal{K}^d_*$ is also projection-friendly. Consequently, we introduce auxiliary variables \mathbf{u}_i for constraints (19), leading to the 213 214 following reformulation of (8): 215

$$\min_{\mathbf{z}, \mathbf{u}} \quad \frac{1}{\beta_k} F_k(\mathbf{z}) \quad \text{s.t.} \quad \mathbf{z} = \mathbf{u}_i, \ \mathbf{u}_i \in \mathcal{K}_i \times \mathcal{K}_*^d, \ i = 1, ..., M + 1,$$
 (20)

where $\mathbf{u} = (\mathbf{u}_1, ..., \mathbf{u}_{M+1})$. We define the indicator function as $g_i(\mathbf{z}) = I_{\mathcal{K}_i \times \mathcal{K}_*^d}(\mathbf{z}), i = 1, 2, ..., M +$ 1. The augmented Lagrangian function of problem (20) is given by:

$$\mathcal{L}_{\gamma}^k(\mathbf{z},\mathbf{u},\boldsymbol{\mu}) = \frac{1}{\beta_k} F_k(\mathbf{z}) + \sum_{i=1}^{M+1} g_i(\mathbf{u}_i) + \sum_{i=1}^{M+1} \langle \boldsymbol{\mu}_i, \mathbf{u}_i - \mathbf{z} \rangle + \frac{\gamma}{2} \sum_{i=1}^{M+1} \|\mathbf{u}_i - \mathbf{z}\|^2,$$

where $\mu:=(\mu_1,...,\mu_{M+1})$ denotes the Lagrangian multiplier associated with constraint $\mathbf{z}=\mathbf{u}_i$. 218 Based on $\mathcal{L}^k_{\gamma}(\mathbf{z},\mathbf{u},\boldsymbol{\mu})$, we adopt an alternative approach to solve (20) inspired by the core idea of 219 the Alternating Direction Method of Multipliers (ADMM). This method alternates between updating 220 primal variables z and u in separate subproblems, followed by a dual ascent step to update μ . At the 221 k-th iteration, we update z by performing a gradient step with given z^k : 222

$$\mathbf{z}^{k+1} = \mathbf{z}^k - e_k \mathbf{d}_{\mathbf{z}}^k,\tag{21}$$

where the update direction $\mathbf{d}_{\mathbf{z}}^k$ corresponds to the gradient of \mathcal{L}_{γ}^k with respect to \mathbf{z} evaluated at $(\mathbf{z}^k, \mathbf{u}^k, \boldsymbol{\mu}^k)$ and e_k is the step size of k-th iteration. This is equivalent to minimize the proximal 224 subproblem of \mathcal{L}_{γ}^{k} :

$$\mathbf{z}^{k+1} = \arg\min_{\mathbf{z}} \left\{ \mathcal{L}_{\gamma}^{k}(\mathbf{z}^{k}, \mathbf{u}^{k}, \boldsymbol{\mu}^{k}) + \langle \nabla_{z} \mathcal{L}_{\gamma}^{k}(\mathbf{z}^{k}, \mathbf{u}^{k}, \boldsymbol{\mu}^{k}), \mathbf{z} - \mathbf{z}^{k} \rangle + \frac{1}{2e_{k}} \|\mathbf{z} - \mathbf{z}^{k}\|^{2} \right\}.$$

Next, for the **u**-subproblem, we update \mathbf{u}_i by minimizing \mathcal{L}_{γ}^k with respect to \mathbf{u}_i as

$$\mathbf{u}_{i}^{k+1} = \arg\min_{\mathbf{u}_{i}} \left\{ g_{i}(\mathbf{u}_{i}) + \frac{\gamma}{2} \|\mathbf{u}_{i} - \mathbf{z}^{k+1} + \frac{\boldsymbol{\mu}_{i}^{k}}{\gamma} \|^{2} \right\}, \tag{22}$$

which is equivalent to performing the direct projection onto $\mathcal{K}_i \times \mathcal{K}_*^d$, yielding:

$$\mathbf{u}_{i}^{k+1} = \operatorname{proj}_{\mathcal{K}_{i} \times \mathcal{K}_{*}^{d}} \left(\frac{\boldsymbol{\mu}_{i}^{k}}{\gamma} - \mathbf{z}^{k+1}\right), \ i = 1, ..., M+1.$$
(23)

Finally, for the dual multipliers μ_i , we update them as

$$\mu_i^{k+1} = \mu_i^k + \gamma (\mathbf{u}_i^{k+1} - \mathbf{z}^{k+1}), \ i = 1, ..., M+1.$$
 (24)

Algorithm 2 Alternating approaches for (20)

1: Input λ^0, ξ^0 , sequences $\{\beta_k\}, \{e_k\}$, a constant γ . Initialize $\mathbf{x}^0, \mathbf{r}^0, \boldsymbol{\rho}_i^0, s^0$, set $\mathbf{u}_i^0 = \mathbf{z}^0$.

2: **for** k = 0, 1, 2, ... **do**3: Update \mathbf{z}^{k+1} with (21).
4: Update \mathbf{u}^{k+1} with (23).

Update μ^{k+1} with (24). 5:

6: end for

The penalty parameter is updated as $\beta_k = \underline{\beta}(1+k)^p$, where $\underline{\beta} > 0$ is a constant and 0 . The initialization of Algorithm 2 is also detailed in Appendix C.1. We remark that Algorithm 2 differs229 230 from standard ADMM or DRS in two key aspects: (i) the augmented Lagrangian \mathcal{L}_{γ}^k varies with the iteration-dependent parameter β_k . (ii) instead of exactly minimizing \mathcal{L}_{γ}^k in the **z**-subproblem, 232 we adopt its first-order approximation at \mathbf{z}^k . The strategy is commonly employed in gradient-based 233 alternating minimization approaches [1, 17].

In the following, we discuss the convergence property of Algorithm 2. Similar to the analysis for Algorithm 1, we utilize the stationarity and feasibility measure commonly used in penalty methods [67, 95, 94]. We define the following merit functions in the same arguments as (16) and (17):

$$\phi_{res}^{k}(\mathbf{z}) := \operatorname{dist}\left(0, \nabla F_{k}(\mathbf{z}) + \mathcal{N}_{\mathcal{K}}(\mathbf{z})\right),$$
 (25)

$$\phi_{fea}(\mathbf{z}) := \max\{p(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{r}, \boldsymbol{\xi}, s), \|A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i\|^2\},$$
(26)

where $\mathcal{K} := (\mathcal{K}_1 \cap \cdots \cap \mathcal{K}_{M+1}) \times \mathcal{K}_1^d \times \cdots \mathcal{K}_{M+1}^d$. Based on the above functions, we establish the convergence results for Algorithm 2 in Theorem 3.7. In pursuit of this, we make the following assumption, which is popularly employed in ADMM approaches [90, 8, 81, 26].

Assumption 3.6. The sequence $\{\mu^k\}$ is bounded and satisfies $\sum_{k=1}^{\infty} \|\mu^{k+1} - \mu^k\|^2 \le \infty$.

Theorem 3.7. Suppose Assumptions 3.1, 3.2 and 3.6 hold. If the step sizes in Algorithm 2 satisfy $0 < \underline{e} \le e_k < \min\{\frac{\beta_k}{\alpha_L + \beta_k \|A_t\|_2^2 \alpha_p}, \frac{1}{\alpha_d + \|A_t\|_2^2}, 1\}$, the sequence $\{\mathbf{z}^k\}$ generated by Algorithm 2 satisfies $\lim_{k \to \infty} \phi_{res}^k(\mathbf{z}^{k+1}) = 0$. Furthermore, if the sequence $\{F_k(\mathbf{z}^k)\}$ is bounded, then it holds that $\lim_{k \to \infty} \phi_{fea}(\mathbf{z}^k) = 0$.

Note that the lower bound \underline{e} for step sizes e_k is commonly utilized in single-loop Hessian-free algorithms for BLO [94, 95, 62]. We provide the detailed proof for Theorem 3.7 in Appendix C.4.

4 Numerical Experiments

238

249

260

261

262

263

265

266

267

268

269

270

271

272

276

In this section, we evaluate the numerical performance of our proposed LDPM through experiments on 250 both synthetic and real datasets. Specifically, we compare LDPM with several existing hyperparameter 251 optimization algorithms under the BLO framework (3), including search methods, TPE [13], IGJO [31], IFDM [14, 15], VF-iDCA [36], LDMMA [22], BiC-GAFFA [94], as detailed in Appedix D.1. 253 We consider all hyperparameter optimization problems listed in Table 1. Performance is evaluated using validation and test errors based on the obtained LL minimizers, as well as the total running 255 time. These metrics are standard in the evaluation of bilevel hyperparameter optimization algorithms 256 [36, 31]. For each problem, we perform experiments across various data settings or datasets with 10 257 repetitions, and report the aggregated statistical results. Depending on the regularization structure of 258 each problem, we apply either Algorithm 1 or 2, as detailed in Section 3. 259

4.1 Experiments on synthetic data

We focus on two prototypical tasks built from simple synthetic data: least squares regression with various Lasso-type regularizers and low-rank matrix completion, as listed in Table 1. The synthetic data consists of observation matrices sampled from specific distributions and response vectors generated with controlled noise. The detailed data generation process is provided in Appendix D.2. **Lasso-type Regression.** We consider three regularizers: elastic net [100], group Lasso [99], and sparse group Lasso [83]. These formulations all promote sparsity while balancing model complexity.

sparse group Lasso [83]. These formulations all promote sparsity while balancing model complexity and predictive accuracy. Table 2 presents the statistical results for the sparse group Lasso problem, including validation error, test error, and running time. Results for the elastic net and group Lasso problems are reported in Tables 3 and 4, respectively. Detailed experimental settings for each method are provided in the corresponding subsections of Appendix D.2. Overall, LDPM demonstrates superior performance on synthetic data, consistently achieving the lowest test errors while requiring the least computational time compared to baseline methods.

Low-rank matrix completion. For this problem, we conduct the numerical experiments on 60×60 matrices [36, 31]. The data generation process, detailed statistical results, and corresponding analysis are presented in Appendix D.2.4.

Sensitivity of parameters. We conduct sensitivity experiments on both Algorithm 1 and Algorithm 2. The results summarized in Table 6 show that both algorithms exhibit stable convergence across various parameter settings.

Table 2: Sparse group Lasso problems on synthetic data, where p represents the number of features.

Settings	Time(s)	p = 600 Val. Err.	Test Err.	Time(s)	p = 1200 Val. Err.	Test Err.
Grid	$ 6.36 \pm 1.88 $	84.73 ± 5.29	87.34 ± 15.91	$ 13.68 \pm 2.49 $	84.68 ± 4.31	86.00 ± 18.43
Random	6.02 ± 2.01	135.17 ± 5.95	147.43 ± 25.54	12.64 ± 2.84	137.87 ± 14.21	146.25 ± 15.52
IGJO	1.58 ± 0.28	101.93 ± 4.07	96.36 ± 13.72	7.35 ± 1.46	130.56 ± 14.02	106.70 ± 4.01
VF-iDCA	0.56 ± 0.15	56.96 ± 5.58	76.84 ± 11.33	8.63 ± 2.91	86.38 ± 6.40	87.58 ± 8.90
LDMMA	0.57 ± 0.13	82.70 ± 5.03	72.44 ± 14.72	4.72 ± 2.15	83.93 ± 7.32	84.03 ± 9.08
BiC-GAFFA	0.39 ± 0.02	67.42 ± 6.28	71.45 ± 10.74	2.52 ± 0.29	82.21 ± 5.03	79.81 ± 7.66
LDPM	0.35 ± 0.03	65.11 ± 6.62	69.48 ± 9.40	2.15 ± 0.14	81.39 ± 6.51	$\textbf{78.11} \pm \textbf{6.35}$
Cattings		p = 2400			p = 4800	
Settings	Time(s)	p = 2400 Val. Err.	Test Err.	Time(s)	p = 4800 Val. Err.	Test Err.
Settings Grid	Time(s)		Test Err. 84.86 ± 15.09	Time(s)		Test Err. 115.41 ± 17.62
		Val. Err.			Val. Err.	
Grid	24.23 ± 4.05	Val. Err. 95.63 ± 14.13	84.86 ± 15.09	$ 47.09 \pm 6.34 $	Val. Err. 128.94 ± 24.11	115.41 ± 17.62
Grid Random	$\begin{vmatrix} 24.23 \pm 4.05 \\ 22.17 \pm 6.85 \end{vmatrix}$	Val. Err. 95.63 ± 14.13 120.04 ± 15.36	84.86 ± 15.09 146.77 ± 16.70	$\begin{vmatrix} 47.09 \pm 6.34 \\ 46.3 \pm 5.57 \end{vmatrix}$	Val. Err. 128.94 ± 24.11 99.41 ± 16.55	$115.41 \pm 17.62 \\ 122.49 \pm 19.46$
Grid Random IGJO	$ \begin{vmatrix} 24.23 \pm 4.05 \\ 22.17 \pm 6.85 \\ 11.14 \pm 7.44 \end{vmatrix} $	Val. Err. 95.63 ± 14.13 120.04 ± 15.36 91.59 ± 14.97	84.86 ± 15.09 146.77 ± 16.70 115.98 ± 14.94	$ 47.09 \pm 6.34 46.3 \pm 5.57 29.76 \pm 9.44$	Val. Err. 128.94 ± 24.11 99.41 ± 16.55 99.75 ± 15.14	115.41 ± 17.62 122.49 ± 19.46 106.49 ± 7.48
Grid Random IGJO VF-iDCA	$ \begin{vmatrix} 24.23 \pm 4.05 \\ 22.17 \pm 6.85 \\ 11.14 \pm 7.44 \\ 14.31 \pm 1.45 \\ 7.50 \pm 0.21 \end{vmatrix} $	Val. Err. 95.63 ± 14.13 120.04 ± 15.36 91.59 ± 14.97 63.21 ± 5.36	84.86 ± 15.09 146.77 ± 16.70 115.98 ± 14.94 81.92 ± 10.54	$ \begin{vmatrix} 47.09 \pm 6.34 \\ 46.3 \pm 5.57 \\ 29.76 \pm 9.44 \\ 45.12 \pm 3.10 \end{vmatrix} $	Val. Err. 128.94 ± 24.11 99.41 ± 16.55 99.75 ± 15.14 73.66 ± 10.53	115.41 ± 17.62 122.49 ± 19.46 106.49 ± 7.48 96.09 ± 9.14

4.2 Experiments on real-world data

To assess the robustness of our algorithm in practical settings, we conduct experiments on real-world datasets that are larger and exhibit more complex sampling distributions. Specifically, we consider experiments on elastic net, smoothing support vector machine and sparse logistic regression, as listed in Table 1. All datasets are drawn from the LIBSVM repository³ [21]. For each repetition, we randomly shuffle and split the data into training, validation and test sets.

Elastic Net. In this part, we conduct experiments on datasets gisette [43] and sensit [30]. We summarize the comparative experimental results in Table 7 and show the validation and test error curves over time for each algorithm in Figure 1. Even in these high-dimensional settings, LDPM delivers competitive accuracy while maintaining fast convergence. Additional experimental details are provided in Appendix D.4.1.

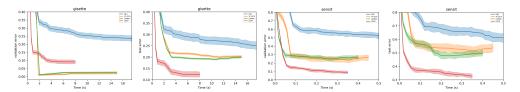


Figure 1: Comparison of the algorithms on Elastic Net problem for real-world datasets.

Smoothed Support Vector Machine. In this part, we perform 6-fold cross-validation using medical statistics datasets, including diabetes, sonar, a1a [7]. Details of the datasets and experimental setup are given in Appendix D.4.2. We plots the validation and test errors of each algorithm over time in Figure 2, which clearly shows that LDPM converges more rapidly and achieves lower error levels than the competing methods.

Sparse Logistic Regression. In this part, we conduct experiments on three large-scale document classification datasets, news20.binary, rcv1.binary and real-sim. Dataset characteristics and experimental details are provided in Appendix D.4.3. In this experiment, we compare LDPM with search methods, IFDM and BiC-GAFFA. We plot the validation and test error curves over time in Figure 3 and report the corresponding final validation and test accuracies in Table 9 for comparison. LDPM consistently converges faster and achieves the lowest validation and test errors.

5 Conclusion

In this paper, we introduce a penalty framework based on lower-level duality for bilevel hyperparameter optimization. Notably, we solve the penalized problem using single-loop first-order algorithms. Theoretically, we establish convergence guarantees for the proposed algorithms. Empirically, through numerical experiments on both synthetic and real-world datasets, our methods exhibit superior performance compared to existing approaches, particularly among the illustrated HO examples.

³https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

References

307

- Vahid Abolghasemi, Saideh Ferdowsi, and Saeid Sanei. A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing. *Signal Processing*, 92(4):999–1009, 2012.
- [2] Jan Harold Alcantara, Chieu Thanh Nguyen, Takayuki Okuno, Akiko Takeda, and Jein-Shan Chen. Unified smoothing approach for best hyperparameter selection problem using a bilevel optimization strategy. *Mathematical Programming*, pages 1–40, 2024.
- [3] Jan Harold Alcantara and Akiko Takeda. Theoretical smoothing frameworks for general nonsmooth bilevel problems. *arXiv preprint arXiv:2401.17852*, 2024.
- [4] Roberto Andreani, José Mario Martínez, and Benar Fux Svaiter. A new sequential optimality condition for constrained optimization and algorithmic consequences. *SIAM Journal on Optimization*, 20(6):3533–3554, 2010.
- [5] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml. In International conference on learning representations, 2018.
- [6] Aleksandr Y Aravkin, James V Burke, Dmitry Drusvyatskiy, Michael P Friedlander, and Scott
 Roy. Level-set methods for convex optimization. *Mathematical Programming*, 174:359–390,
 2019.
- [7] Arthur Asuncion and David Newman. Uci machine learning repository, 2007.
- [8] Xiaodi Bai, Jie Sun, and Xiaojin Zheng. An augmented lagrangian decomposition method for chance-constrained optimization problems. *INFORMS Journal on Computing*, 33(3):1056–1069, 2021.
- [9] Fan Bao, Guoqiang Wu, Chongxuan Li, Jun Zhu, and Bo Zhang. Stability and generalization of bilevel programming in hyperparameter optimization. *Advances in neural information processing systems*, 34:4529–4541, 2021.
- [10] Amir Beck. First-order methods in optimization. SIAM, 2017.
- III] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyperparameter optimization. *Advances in neural information processing systems*, 24, 2011.
- James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. *Journal of machine learning research*, 13(2), 2012.
- James Bergstra, Daniel Yamins, and David Cox. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In *International* conference on machine learning, pages 115–123. PMLR, 2013.
- [14] Quentin Bertrand, Quentin Klopfenstein, Mathieu Blondel, Samuel Vaiter, Alexandre Gramfort, and Joseph Salmon. Implicit differentiation of lasso-type models for hyperparameter optimization. In *International Conference on Machine Learning*, pages 810–821. PMLR, 2020.
- [15] Quentin Bertrand, Quentin Klopfenstein, Mathurin Massias, Mathieu Blondel, Samuel Vaiter,
 Alexandre Gramfort, and Joseph Salmon. Implicit differentiation for fast hyperparameter
 selection in non-smooth convex learning. *Journal of Machine Learning Research*, 23(149):1–
 43, 2022.
- [16] Christopher M Bishop. *Neural networks for pattern recognition*. Oxford university press,
- 1349 [17] Nicholas Boyd, Geoffrey Schiebinger, and Benjamin Recht. The alternating descent conditional gradient method for sparse inverse problems. *SIAM Journal on Optimization*, 27(2):616–639, 2017.
- [18] Stephen P Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press,2004.

- [19] Michael Brückner and Tobias Scheffer. Stackelberg games for adversarial prediction problems.
 In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 547–555, 2011.
- [20] Emmanuel Candes and Benjamin Recht. Exact matrix completion via convex optimization. *Communications of the ACM*, 55(6):111–119, 2012.
- [21] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. *ACM transactions on intelligent systems and technology (TIST)*, 2(3):1–27, 2011.
- 1361 [22] He Chen, Haochen Xu, Rujun Jiang, and Anthony Man-Cho So. Lower-level duality based reformulation and majorization minimization algorithm for hyperparameter optimization. arXiv preprint arXiv:2403.00314, 2024.
- ³⁶⁴ [23] Lesi Chen, Yaohua Ma, and Jingzhao Zhang. Near-optimal fully first-order algorithms for finding stationary points in bilevel optimization. *arXiv preprint arXiv:2306.14853*, 2023.
- ³⁶⁶ [24] Lesi Chen, Jing Xu, and Jingzhao Zhang. Bilevel optimization without lower-level strong convexity from the hyper-objective perspective. *arXiv preprint arXiv:2301.00712*, 2023.
- Marc Claesen, Frank De Smet, Johan Suykens, and Bart De Moor. Ensemblesvm: A library for ensemble learning using support vector machines. *arXiv preprint arXiv:1403.0745*, 2014.
- [26] Xiangyu Cui, Rujun Jiang, Yun Shi, Rufeng Xiao, and Yifan Yan. Decision making under
 cumulative prospect theory: An alternating direction method of multipliers. *INFORMS Journal* on Computing, 2024.
- [27] Hari Dahal, Wei Liu, and Yangyang Xu. Damped proximal augmented lagrangian method for weakly-convex problems with convex constraints. *arXiv preprint arXiv:2311.09065*, 2023.
- [28] Stephan Dempe and Alain Zemkoho. Bilevel optimization. In *Springer optimization and its* applications, volume 161. Springer, 2020.
- Gonzalo I Diaz, Achille Fokoue-Nkoutche, Giacomo Nannicini, and Horst Samulowitz. An effective algorithm for hyperparameter optimization of neural networks. *IBM Journal of Research and Development*, 61(4/5):9–1, 2017.
- [30] Marco F Duarte and Yu Hen Hu. Vehicle classification in distributed sensor networks. *Journal of Parallel and Distributed Computing*, 64(7):826–838, 2004.
- [31] Jean Feng and Noah Simon. Gradient-based regularization parameter selection for problems with nonsmooth penalty functions. *Journal of Computational and Graphical Statistics*, 27(2):426–435, 2018.
- [32] Matthias Feurer and Frank Hutter. Hyperparameter optimization. *Automated machine learning: Methods, systems, challenges*, pages 3–33, 2019.
- [33] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
 adaptation of deep networks. In *International conference on machine learning*, pages 1126–1135. PMLR, 2017.
- [34] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and
 reverse gradient-based hyperparameter optimization. In *International Conference on Machine Learning*, pages 1165–1173. PMLR, 2017.
- [35] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.
 Bilevel programming for hyperparameter optimization and meta-learning. In *International conference on machine learning*, pages 1568–1577. PMLR, 2018.
- [36] Lucy L Gao, Jane Ye, Haian Yin, Shangzhi Zeng, and Jin Zhang. Value function based difference-of-convex algorithm for bilevel hyperparameter selection problems. In *International Conference on Machine Learning*, pages 7164–7182. PMLR, 2022.

- Lucy L Gao, Jane J Ye, Haian Yin, Shangzhi Zeng, and Jin Zhang. Moreau envelope based difference-of-weakly-convex reformulation and algorithm for bilevel programs. *arXiv preprint arXiv:2306.16761*, 2023.
- [38] Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent, and Simon Lacoste-Julien.

 A variational inequality perspective on generative adversarial networks. *arXiv preprint arXiv:1802.10551*, 2018.
- [39] Tommaso Giovannelli, Griffin Dean Kent, and Luis Nunes Vicente. Inexact bilevel stochastic gradient methods for constrained and unconstrained lower-level problems. *arXiv preprint* arXiv:2110.00604, 2021.
- [40] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
 Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications* of the ACM, 63(11):139–144, 2020.
- [41] Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration complexity of hypergradient computation. In *International Conference on Machine Learning*, pages 3748–3758. PMLR, 2020.
- [42] Lan-Zhe Guo, Zhen-Yu Zhang, Yuan Jiang, Yu-Feng Li, and Zhi-Hua Zhou. Safe deep semi-supervised learning for unseen-class unlabeled data. In *International conference on machine learning*, pages 3897–3906. PMLR, 2020.
- [43] Isabelle Guyon, Steve Gunn, Asa Ben-Hur, and Gideon Dror. Result analysis of the nips 2003 feature selection challenge. *Advances in neural information processing systems*, 17, 2004.
- [44] Frank Hutter, Jörg Lücke, and Lars Schmidt-Thieme. Beyond manual tuning of hyperparameters. *KI-Künstliche Intelligenz*, 29:329–337, 2015.
- [45] MohammadNoor Injadat, Abdallah Moubayed, Ali Bou Nassif, and Abdallah Shami. Systematic ensemble model selection approach for educational data mining. *Knowledge-Based Systems*, 200:105992, 2020.
- [46] Kwangmoo Koh, Seung-Jean Kim, and Stephen Boyd. An interior-point method for large-scale
 11-regularized logistic regression. *Journal of Machine learning research*, 8(Jul):1519–1555,
 2007.
- Gautam Kunapuli, K Bennett, Jing Hu, and Jong-Shi Pang. Bilevel model selection for support vector machines. In *CRM proceedings and lecture notes*, volume 45, pages 129–158, 2008.
- Gautam Kunapuli, Kristin P Bennett, Jing Hu, and Jong-Shi Pang. Classification model selection via bilevel programming. *Optimization Methods & Software*, 23(4):475–489, 2008.
- 431 [49] Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert Nowak. On penalty methods for nonconvex bilevel optimization and first-order stochastic approximation. *arXiv* preprint *arXiv*:2309.01753, 2023.
- [50] Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. A fully first-order
 method for stochastic bilevel optimization. In *International Conference on Machine Learning*,
 pages 18083–18113. PMLR, 2023.
- [51] Chong Li and Kung Fu Ng. On constraint qualification for an infinite system of convex inequalities in a banach space. *SIAM Journal on Optimization*, 15(2):488–512, 2005.
- [52] Chong Li, Kung Fu Ng, and Ting Kei Pong. Constraint qualifications for convex inequality systems with applications in constrained optimization. SIAM Journal on Optimization, 19(1):163–187, 2008.
- [53] Jiajin Li, Caihua Chen, and Anthony Man-Cho So. Fast epigraphical projection-based incremental algorithms for wasserstein distributionally robust support vector machine. *Advances in Neural Information Processing Systems*, 33:4029–4039, 2020.

- Junyi Li, Bin Gu, and Heng Huang. A fully single loop algorithm for bilevel optimization without hessian inverse. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pages 7426–7434, 2022.
- 448 [55] Tao Li and Suresh P Sethi. A review of dynamic stackelberg game models. *Discrete & Continuous Dynamical Systems-B*, 22(1):125, 2017.
- [56] Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. Bome! bilevel optimization made easy: A simple first-order approach. Advances in neural information processing systems, 35:17248–17262, 2022.
- [57] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.
 arXiv preprint arXiv:1806.09055, 2018.
- [58] Meijiao Liu and Yong-Jin Liu. Fast algorithm for singly linearly constrained quadratic
 programs with box-like constraints. *Computational Optimization and Applications*, 66:309–326, 2017.
- Risheng Liu, Xuan Liu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A value-function-based interior-point method for non-convex bi-level optimization. In *International conference on machine learning*, pages 6882–6892. PMLR, 2021.
- [60] Risheng Liu, Xuan Liu, Shangzhi Zeng, Jin Zhang, and Yixuan Zhang. Value-function-based
 sequential minimization for bi-level optimization. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2023.
- [61] Risheng Liu, Yaohua Liu, Shangzhi Zeng, and Jin Zhang. Towards gradient-based bilevel optimization with non-convex followers and beyond. *Advances in Neural Information Processing Systems*, 34:8662–8675, 2021.
- [62] Risheng Liu, Zhu Liu, Wei Yao, Shangzhi Zeng, and Jin Zhang. Moreau envelope for nonconvex bi-level optimization: A single-loop and hessian-free solution strategy. arXiv preprint arXiv:2405.09927, 2024.
- Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by implicit differentiation. In *International conference on artificial intelligence and statistics*, pages 1540–1552. PMLR, 2020.
- ⁴⁷³ [64] Zhaosong Lu and Sanyou Mei. First-order penalty methods for bilevel optimization. *SIAM Journal on Optimization*, 34(2):1937–1969, 2024.
- [65] JunRu Luo, Hong Qiao, and Bo Zhang. Learning with smooth hinge losses. *Neurocomputing*, 463:379–387, 2021.
- Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimization through reversible learning. In *International conference on machine learning*, pages 2113–2122. PMLR, 2015.
- 480 [67] Ashkan Mohammadi. Penalty methods to compute stationary solutions in constrained opti-481 mization problems. *arXiv preprint arXiv:2206.04020*, 2022.
- ⁴⁸² [68] Todd G Nick and Kathleen M Campbell. Logistic regression. *Topics in biostatistics*, pages 273–301, 2007.
- [69] Jorge Nocedal and Stephen Wright. *Numerical optimization*. Springer Science & Business Media, 2006.
- 486 [70] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.
- [71] Takayuki Okuno, Akiko Takeda, Akihiro Kawana, and Motokazu Watanabe. On lphyperparameter learning via bilevel nonsmooth optimization. *Journal of Machine Learning Research*, 22(245):1–47, 2021.
- Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In *International* conference on machine learning, pages 737–746. PMLR, 2016.

- 492 [73] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit gradients. *Advances in neural information processing systems*, 32, 2019.
- [74] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples
 for robust deep learning. In *International conference on machine learning*, pages 4334–4343.
 PMLR, 2018.
- 497 [75] R Tyrrell Rockafellar. *Convex analysis*, volume 18. Princeton university press, 1970.
- ⁴⁹⁸ [76] R Tyrrell Rockafellar and Roger J-B Wets. *Variational analysis*, volume 317. Springer Science & Business Media, 2009.
- [77] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back propagation for bilevel optimization. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 1723–1732. PMLR, 2019.
- 503 [78] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regular-504 ized loss minimization. *Journal of Machine Learning Research*, 14(1), 2013.
- [79] Han Shen and Tianyi Chen. On penalty-based bilevel gradient descent method. In *International Conference on Machine Learning*, pages 30992–31015. PMLR, 2023.
- [80] Han Shen, Zhuoran Yang, and Tianyi Chen. Principled penalty-based methods for bilevel reinforcement learning and rlhf. *arXiv preprint arXiv:2402.06886*, 2024.
- [81] Yuan Shen, Zaiwen Wen, and Yin Zhang. Augmented lagrangian alternating direction method
 for matrix separation based on low-rank factorization. *Optimization Methods and Software*,
 29(2):239–263, 2014.
- 512 [82] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng.
 513 Meta-weight-net: Learning an explicit mapping for sample weighting. *Advances in neural*514 *information processing systems*, 32, 2019.
- Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A sparse-group lasso. *Journal of computational and graphical statistics*, 22(2):231–245, 2013.
- Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning algorithms. *Advances in neural information processing systems*, 25, 2012.
- [85] Bradly Stadie, Lunjun Zhang, and Jimmy Ba. Learning intrinsic rewards as a bi-level optimization problem. In *Conference on Uncertainty in Artificial Intelligence*, pages 111–120.
 PMLR, 2020.
- [86] Jiali Wang, He Chen, Rujun Jiang, Xudong Li, and Zihao Li. Fast algorithms for stackelberg
 prediction game with least squares loss. In *International Conference on Machine Learning*,
 pages 10708–10716. PMLR, 2021.
- [87] Jiali Wang, Wen Huang, Rujun Jiang, Xudong Li, and Alex L Wang. Solving stackelberg
 prediction game with least squares loss via spherically constrained least squares reformulation.
 In *International Conference on Machine Learning*, pages 22665–22679. PMLR, 2022.
- [88] Po-Wei Wang, Matt Wytock, and Zico Kolter. Epigraph projections for fast general convex
 programming. In *International Conference on Machine Learning*, pages 2868–2877. PMLR,
 2016.
- [89] Yue Frank Wu, Weitong Zhang, Pan Xu, and Quanquan Gu. A finite-time analysis of two time scale actor-critic methods. *Advances in Neural Information Processing Systems*, 33:17617–
 17628, 2020.
- [90] Yangyang Xu, Wotao Yin, Zaiwen Wen, and Yin Zhang. An alternating direction algorithm for
 matrix completion with nonnegative factors. *Frontiers of Mathematics in China*, 7:365–384,
 2012.

- [91] Haikuo Yang, Luo Luo, Chris Junchi Li, Michael Jordan, and Maryam Fazel. Accelerating
 inexact hypergradient descent for bilevel optimization. In *OPT 2023: Optimization for Machine Learning*, 2023.
- Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization.
 Advances in Neural Information Processing Systems, 34:13670–13682, 2021.
- [93] Zhuoran Yang, Yongxin Chen, Mingyi Hong, and Zhaoran Wang. Provably global convergence
 of actor-critic: A case for linear quadratic regulator with ergodic cost. Advances in neural
 information processing systems, 32, 2019.
- [94] Wei Yao, Haian Yin, Shangzhi Zeng, and Jin Zhang. Overcoming lower-level constraints
 in bilevel optimization: A novel approach with regularized gap functions. arXiv preprint
 arXiv:2406.01992, 2024.
- [95] Wei Yao, Chengming Yu, Shangzhi Zeng, and Jin Zhang. Constrained bi-level optimization:
 Proximal lagrangian value function approach and hessian-free algorithm. arXiv preprint
 arXiv:2401.16164, 2024.
- [96] Jane J Ye, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. Difference of convex algorithms for bilevel programs with applications in hyperparameter selection. arXiv preprint arXiv:2102.09006, 2021.
- [97] Jane J Ye, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. Difference of convex algorithms for
 bilevel programs with applications in hyperparameter selection. *Mathematical Programming*,
 198(2):1583–1616, 2023.
- Jane J Ye and DL Zhu. Optimality conditions for bilevel programming problems. *Optimization*, 33(1):9–27, 1995.
- [99] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
 Journal of the Royal Statistical Society Series B: Statistical Methodology, 68(1):49–67, 2006.
- [100] Hui Zou and Trevor Hastie. Regression shrinkage and selection via the elastic net, with applications to microarrays. *JR Stat Soc Ser B*, 67:301–20, 2003.

Proofs for Section 2

In this subsection, we provide the proofs of the results concerning the penalty framework in Section 565

A.1 Proof of Lemma 2.1 566

- The following proof follows [22]. 567
- *Proof.* We prove the conclusion based on the formulation (3). First we introduce augmented variables z and z_i , i = 1, 2, ..., M + 1 and deduce the equivalent form of LL problem of (3),

$$\min_{\mathbf{x}, \mathbf{z}_i} \varphi(\mathbf{z}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{z}_i) \quad \text{s.t. } \mathbf{z} = A_t \mathbf{x} - \mathbf{b}_t, \ \mathbf{x} = \mathbf{z}_i, \ i = 1, 2, ..., M+1$$
 (27)

Since l, R_i are convex and the constraints are affine, strong duality holds under Slater's condition. If $ri(\text{dom } l \cap (\bigcap_{i=1}^{M+1} \text{dom } R_i)) \neq \emptyset$, then (27) is equivalent to its Lagrangian dual problem:

$$\max_{\boldsymbol{\xi}, \boldsymbol{\rho}} \min_{\mathbf{x}, \mathbf{z}, \mathbf{z}_i} \varphi(\mathbf{z}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{z}_i) - \boldsymbol{\xi}^T (A_t \mathbf{x} - \mathbf{b}_t - \mathbf{z}) + \sum_{i=1}^{M+1} \boldsymbol{\rho_i}^T (\mathbf{x} - \mathbf{z}_i),$$

where ξ is Lagrangian multiplier of constraint $A_t \mathbf{x} - \mathbf{b}_t = \mathbf{z}$, while ρ_i are those associated with constraints $\mathbf{x} = \mathbf{z}_i$. By adding the negative signs, we obtain

$$\max_{\boldsymbol{\xi}, \boldsymbol{\rho}} - \max_{\mathbf{x}, \mathbf{z}, \mathbf{z}_i} - \varphi(\mathbf{z}) - \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{z}_i) + \boldsymbol{\xi}^T (A_t \mathbf{x} - \mathbf{b}_t - \mathbf{z}) - \sum_{i=1}^{M+1} \boldsymbol{\rho_i}^T (\mathbf{x} - \mathbf{z}_i).$$

The above problem can be further simplified as,

$$\max_{\boldsymbol{\xi}, \boldsymbol{\rho}} \quad -\varphi^*(\boldsymbol{\xi}) - \sum_{i=1}^{M+1} \lambda_i R_i^*(\frac{\boldsymbol{\rho}_i}{\lambda_i}) - \boldsymbol{\xi}^T \mathbf{b}_t.$$
s.t.
$$A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i = \mathbf{0}.$$
(28)

Meanwhile, leveraging the value function of the lower-level problem, the constraint of (3) is equivalent to

$$l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) \le \min_{\mathbf{x}} \{ l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) \}.$$
 (29)

From the equivalence of (27) and (28), (29) is further equivalent to

$$l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) \leq \max_{\boldsymbol{\xi}, \boldsymbol{\rho}} \{ -\varphi^*(\boldsymbol{\xi}) - \sum_{i=1}^{M+1} \lambda_i R_i^*(\frac{\boldsymbol{\rho}_i}{\lambda_i}) - \boldsymbol{\xi}^T \mathbf{b}_t \mid A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i = \mathbf{0} \}.$$
(30)

Because the inequality in (30) holds if and only if there exists a feasible pair (ξ, ρ) satisfying (30),

dropping the \max operator, we obtain that the constraint in (3) is equivalent to

$$l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) + \varphi^*(\boldsymbol{\xi}) + \sum_{i=1}^{M+1} \lambda_i R_i^*(\frac{\boldsymbol{\rho_i}}{\lambda_i}) + \boldsymbol{\xi}^T \mathbf{b}_t \le 0,$$
$$A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i = \mathbf{0}.$$

We complete the proof.

81 A.2 Proof of Theorem 2.4

- Proof. We adopt the convention $A(\mathbf{z}) = \frac{1}{2} \|A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i\|^2$. It is straightforward that $A(\mathbf{z}) \geq 0$. Let
- 583 $\bar{\mathbf{z}}$ be any limit point of the sequence $\{\mathbf{z}^k\}$ and $\{\mathbf{z}^{j_k}\}\subset \{\mathbf{z}^k\}$ be the subsequence such that $\mathbf{z}^{j_k}\to \bar{\mathbf{z}}$.
- Assume that \mathbf{z}^* is a solution of the reformulation (6). Then it holds that $L(\mathbf{x}^*) \leq L(\mathbf{x})$ for all
- z = $(\mathbf{x}, \lambda, \rho, \mathbf{r}, \xi, s)$ feasible to (6). Note that any point z feasible to (6) is also feasible to (8).
- Since \mathbf{z}^{k+1} is the minimizer of the problem (8) with β_k , it follows that

$$L(\mathbf{x}^{k+1}) + \beta_k(p(\mathbf{z}^{k+1}) + A(\mathbf{z}^{k+1})) \stackrel{(a)}{\leq} L(\mathbf{x}^*) + \beta_k(p(\mathbf{z}^*) + A(\mathbf{z}^*)) \stackrel{(b)}{\leq} L(\mathbf{x}^*), \tag{31}$$

where (a) follows from the feasibility of \mathbf{z}^{k+1} and \mathbf{z}^* for the penalized problem (8) and the optimality of \mathbf{z}^{k+1} , (b) holds because \mathbf{z}^* is feasible to (6). From (31), we deduce

$$p(\mathbf{z}^{k+1}) + A(\mathbf{z}^{k+1}) \le \frac{1}{\beta_k} (L(\mathbf{x}^*) - L(\mathbf{x}^{k+1})).$$

- Since the functions L, p and A are lower semi-continuous in \mathbf{z} , letting $k = k_j$ and taking the limit $j \to \infty$ for the above inequality, we have $p(\bar{\mathbf{z}}) + A(\bar{\mathbf{z}}) \le 0$ with $\beta_k \to \infty$.
- Since the assumptions of Theorem 2.4 are consistent with those of Lemma 2.1, we obtain the following relation from the formulation of p in (7)

$$p(\mathbf{z}) = l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) - \min_{\mathbf{x}} \{ l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) \},$$

- which directly implies that $p(\mathbf{z}) \geq 0$. Combined with $A(\mathbf{z}) \geq 0$ for all \mathbf{z} , we further deduce that
- $p(\bar{z}) = 0$ and $A(\bar{z}) = 0$. Therefore, \bar{z} is feasible for (6). Since z^* is optimal for (6), it holds that
- 595 $L(\mathbf{x}^*) < L(\bar{\mathbf{x}}).$
- Letting $k=k_j$ and taking the limit $j\to\infty$ for (31), we have $L(\bar{\mathbf{x}})\leq L(\mathbf{x}^*)$. Hence, we deduce that
- 597 $L(\bar{\mathbf{x}}) = L(\mathbf{x}^*)$ and $\bar{\mathbf{z}}$ is also an optimal solution of (6). This completes the proof.

598 A.3 Conjugate functions for problems listed in Table 1

- we calculate the closed-form expression of the conjugate functions of φ in problems as follows:
- For least squares loss, $\varphi^*(v) = \frac{1}{2}v^2$.
- For **smoothed hinge loss**, $\varphi^*(v) = \frac{1}{2}v^2 + v$ if -1 < v < 0 and $\varphi^*(v) = \infty$ otherwise.
- For **logistic loss**, $\varphi^*(v) = -v \log(v) (1-v) \log(1-v)$ if 0 < v < 1 and $\varphi^*(v) = \infty$ otherwise.

B Epigraphical Projections

- In this section, we discuss the projection onto the cones in Algorithms 1 and 2. According to different
- cases detailed in Section 3.1 and 3.2, we discuss the projections when involving different norm
- 606 regularizers.

607

611

B.1 Projections Involving Vector Norms

- The most commonly used norms in hyperparameter optimization include the ℓ_1 -, ℓ_2 and ℓ_∞ -norm,
- each serving distinct purposes depending on the specific application. When R_i represents a single
- norm, the explicit forms of \mathcal{K}_i and \mathcal{K}_i^d defined in (9) are expressed as follows.
 - $R_i(x) = \|\mathbf{x}\|_1$: $\mathcal{K}_i = \{(\mathbf{x}, r_i) \mid \|\mathbf{x}\|_1 \le r_i\}, \mathcal{K}_i^d = \{(\boldsymbol{\rho}_i, \lambda_i) \mid \|\boldsymbol{\rho}_i\|_{\infty} \le \lambda_i\}.$
- 612 $R_i(x) = \|\mathbf{x}\|_2$: $\mathcal{K}_i = \{(\mathbf{x}, r_i) \mid \|\mathbf{x}\|_2 \le r_i\}, \mathcal{K}_i^d = \{(\boldsymbol{\rho}_i, \lambda_i) \mid \|\boldsymbol{\rho}_i\|_2 \le \lambda_i\}.$
- 613 $R_i(x) = \|\mathbf{x}\|_{\infty}$: $\mathcal{K}_i = \{(\mathbf{x}, r_i) \mid \|\mathbf{x}\|_{\infty} \le r_i\}, \mathcal{K}_i^d = \{(\boldsymbol{\rho}_i, \lambda_i) \mid \|\boldsymbol{\rho}_i\|_1 \le \lambda_i\}.$

- Thus, we investigate the projection onto the epigraph $\{(\mathbf{x},t) \mid \|\mathbf{x}\|_q \leq t\}$ of the ℓ_q -norm (q = 1)614
- $1,2,\infty$). The projection for the ℓ_2 -norm epigraph has a well-known closed-form solution, as detailed 615
- 616
- **Proposition B.1.** [10, Example 6.37] Let $L_2^n = \{(\mathbf{x},t) \mid ||\mathbf{x}||_2 \le t\}$, for any $(\mathbf{x},t) \in \mathbb{R}^n \times \mathbb{R}$, we 617
- 618

$$\operatorname{proj}_{L_{2}^{n}}((\mathbf{x},t)) = \begin{cases} \left(\frac{\|\mathbf{x}\|_{2}+t}{2\|\mathbf{x}\|_{2}}\mathbf{x}, \frac{\|\mathbf{x}\|_{2}+t}{2}\right), & \|\mathbf{x}\|_{2} \geq |t|, \\ (\mathbf{0},0), & t < \|\mathbf{x}\|_{2} < -t, \\ (\mathbf{x},t), & \|\mathbf{x}\|_{2} \leq t. \end{cases}$$

- Next, we discuss the ℓ_1 norm epigraphic projection. We first provide the following theorem on the
- projection onto epigraphs of convex functions. 620
- **Theorem B.2.** [10, Theorem 6.36] Let $C = \operatorname{epi}(g) = \{(\mathbf{x}, t) \mid g(\mathbf{x}) \le t\}$ where g is convex. Then 621
- for any $(\mathbf{x},t) \in \mathbb{R}^n \times \mathbb{R}$, it holds that

$$\mathrm{proj}_C((\mathbf{x},t)) = \left\{ \begin{array}{ll} (\mathbf{x},t), & g(\mathbf{x}) \leq t, \\ (\mathrm{prox}_{\lambda^* g}(\mathbf{x}), t + \lambda^*), & g(\mathbf{x}) > t, \end{array} \right.$$

where λ^* is any positive root of the function

$$\psi(\lambda) = g(\operatorname{prox}_{\lambda q}(\mathbf{x}) - \lambda - t).$$

- In addition, ψ is nonincreasing. 624
- **Proposition B.3.** [10, Example 6.38] Let $L_1^n = \{(\mathbf{x},t) \mid ||\mathbf{x}||_1 \le t\}$, for any $(\mathbf{x},t) \in \mathbb{R}^n \times \mathbb{R}$, we 625
- have 626

$$\operatorname{proj}_{L_1^n}((\mathbf{x},t)) = \begin{cases} (\mathbf{x},t), & \|\mathbf{x}\|_1 \leq t, \\ (\mathcal{T}_{\lambda^*}(\mathbf{x}), t + \lambda^*), & \|\mathbf{x}\|_1 > t, \end{cases}$$

where $\mathcal{T}_{\lambda} = \operatorname{prox}_{\lambda \|\cdot\|_1}$ denotes the proximal of ℓ_1 -norm, defined as

$$\mathcal{T}_{\lambda}(y) = [|y| - \lambda]_{+} \operatorname{sgn}(y) = \begin{cases} y - \lambda, & y \ge \lambda \\ 0, & |y| < \lambda, \\ y + \lambda, & y \le -\lambda. \end{cases}$$

- Here, λ^* is any positive root of the nonincreasing function $\psi(\lambda) = \|\mathcal{T}_{\lambda}(\mathbf{x})\|_1 \lambda s$. In practice,
- the ℓ_1 norm epigraphical projection can be computed in linear time using the quick-select algorithm 629
- proposed by [88]. 630
- Finally, the projection for the ℓ_∞ norm epigraph can be computed directly via the Moreau decompo-631
- sition. Let $L_{\infty}^n = \{(\mathbf{x}, t) \mid ||\mathbf{x}||_{\infty} \leq t\}$, then the projection is given by 632

$$\operatorname{proj}_{L_{-}^{n}}(\mathbf{x},t) = (\mathbf{x},t) - \operatorname{proj}_{L_{+}^{n}}(\mathbf{x},t).$$

- When R_i represents the squared ℓ_2 norm, the corresponding rotated second-order cones are defined
- as \mathcal{K}_{M+1} and \mathcal{K}_{M+1}^d in (9). According to Theorem B.2, for any $(\mathbf{x},t) \in \mathbb{R}^n \times \mathbb{R}$, we have

$$\operatorname{proj}_{\mathcal{K}_{M+1}}(\mathbf{x},t) = \begin{cases} (\mathbf{x},t), & \|\mathbf{x}\|_{2}^{2} \leq 2t, \\ (\frac{\mathbf{x}}{1+\lambda^{*}}, t+\lambda^{*}), & \|\mathbf{x}\|_{2}^{2} > 2t, \end{cases}$$

- where λ^* is any positive root of the nonincreasing function $\psi(\lambda) = (\frac{1}{2}\lambda + t)(1+2\lambda^2) ||x||_2^2$. Similar 635
- to ℓ_1 -norm epigraphic projection, it can also be effectively solved in linear time with quick-select 636
- algorithm proposed by [88]. 637
- 638
- For the rotated second-order cone $\mathcal{K}^d_{M+1}=\{(oldsymbol{
 ho},\lambda,s)\mid \|oldsymbol{
 ho}\|_2^2\leq 2\lambda s\}$ where $oldsymbol{
 ho}\in\mathbb{R}^n$, an equivalent representation is given by $\{(oldsymbol{
 ho},\lambda,s)\mid \|(oldsymbol{
 ho},\lambda,s)\|_2\leq \lambda+s\}$. We introduce auxiliary variables $\mathbf{w}=(oldsymbol{
 ho},\lambda,s)\in\mathbb{R}^{n+2}$ and $t=\lambda+s\in\mathbb{R}$. In this way, the projection onto \mathcal{K}^d_{M+1} for given $(ar{oldsymbol{
 ho}},\bar{\lambda},\bar{s})$ 639
- 640
- is equivalent to the following optimization problem with $(\bar{\mathbf{w}}, \bar{t})$: 641

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w} - \bar{\mathbf{w}}\|^2 + \frac{1}{2} (t - \bar{t})^2 \text{ s.t. } \|\mathbf{w}\|_2 \le t, \mathbf{w}^T \mathbf{c}_0 = t,$$

where $\mathbf{c}_0 = (0, ..., 0, 1, 1) \in \mathbb{R}^{n+2}$. The problem can be solved directly using the analytic solution 642 provided in [53, Proposition 6.4]. 643

When the regularization involves a group component-wise regularizers, i.e., $R_i(\mathbf{x}) = \|\mathbf{x}^{(i)}\|_{(t)}$,

where represents the *i*-th subvector of \mathbf{x} with $\mathbf{x} = (\mathbf{x}^{(1)}, ..., \mathbf{x}^{(M)})$, as described in Section 3.1. In 645

this case, we observe that projection onto the set \mathcal{K}_i and \mathcal{K}_i^d corresponds to the ℓ_1, ℓ_2 or ℓ_{∞} -norm. 646

The same projection applies to the vector $\boldsymbol{\rho} = (\boldsymbol{\rho}^{(1)}, ..., \boldsymbol{\rho}^{(M)})$. 647

Projections Involving Matrix Norms

Now we study the projection onto the epigraphs of nuclear norm $\|\cdot\|_*$ and spectral norm $\|\cdot\|_{op}$. 649 Since our reformulation relies on conjugate functions and the conjugate of a norm is its dual norm, 650

we need to take both into consideration. 651

648

657

658

659

660

661

662

663

664

665

666

669

670

671

672

676

678

679

For a matrix $X \in \mathbb{R}^{m \times n}$, the nuclear norm is defined as $\|X\|_* = \sum_{i=1}^{\min\{m,n\}} \sigma_i(X)$ and the spectral norm is defined as $\|X\|_{op} = \max_i \sigma_i(X)$, where $\sigma_i(X)$ is singular values for X. 652

653

Given a matrix $A \in \mathbb{R}^{m \times n}$ and a scalar t, the projection onto the epigraph of the nuclear norm $\{X \in \mathbb{R}^{m \times n}, \tau \geq 0 \mid \|X\|_* \leq \tau\}$ involves solving the following optimization problem

$$\min_{X,\tau \geq 0} \frac{1}{2} \|X - A\|_F^2 + \frac{1}{2} \|t - \tau\|^2 \text{ s.t. } \|X\|_* \leq \tau,$$

where $\|\cdot\|_F$ denotes Frobenius norm of a matrix.

- If $||A||_* \le t$, the point (A,t) already lies in the epigraph and the projection is simply $(X,\tau)=(A,t).$
- If $||A||_* > t$, we first compute the singular value decomposition of A as $A = U\Sigma V$, where $\Sigma = \text{diag}\{\sigma_1, \sigma_2, ..., \sigma_r\}$ is the single value matrix of A and $U \in \mathbb{R}^{m \times r}$, $V \in \mathbb{R}^{n \times r}$. According to [1,Theorem 6.36], the projected matrix is obtained by soft-thresholding the singular values:

$$\bar{\sigma}_i = \max(\sigma_i - \lambda, 0), i = 1, 2, ..., r,$$

where λ is determined by the equation $\sum_{i=1}^{r} \max(\sigma_i - \lambda, 0) = t + \lambda$. This equation is typically solved efficient $x = t + \lambda$. solved efficiently via a bisection search. Subsequently, we obtain the solution $\tau^* = t + \lambda$ and reconstruct the projected matrix as $X^* = U \hat{\Sigma} V^T$ where $\bar{\Sigma} = \text{diag}\{\bar{\sigma}_1, \bar{\sigma}_2, ..., \bar{\sigma}_r\}$. The projected pair (X^*, τ^*) is the closest point to (A, t) in the epigraph of the nuclear norm.

Given a matrix $A \in \mathbb{R}^{m \times n}$ and a scalar t, now we consider projection onto the epigraph of the 667 nuclear norm $\{X \in \mathbb{R}^{m \times n}, \tau \geq 0 \mid ||X||_{op} \leq \tau\}$ 668

- If $||A||_{op} \leq t$, the point (A,t) already lies in the epigraph and the projection is simply $(X,\tau) = (\overline{A},t).$
- If $||A||_{op} > t$, we first compute the singular value decomposition of A as $A = U\Sigma V$, where $\Sigma = \text{diag}\{\sigma_1, \sigma_2, ..., \sigma_r\}$ is the single value matrix of A and $U \in \mathbb{R}^{m \times r}$, $V \in \mathbb{R}^{n \times r}$.

Since the epigraph of the spectral norm is defined by the constraint $\|X\|_{op} = \max_i \sigma_i(X) \le 1$ 673

 τ , we need to adjust the singular values so that the largest does not exceed the new scalar τ^* 674 675

$$\tilde{\sigma}_i = \min\{\sigma_i, \tau^*\}$$
 for $i = 1, 2, \dots, r$.

To determine τ^* , we solve the one-dimensional optimization problem

$$\min_{\tau \ge 0} \ \frac{1}{2} \sum_{i: \tau \ge \tau} (\sigma_i - \tau)^2 + \frac{1}{2} (\tau - t)^2.$$

In practice, the optimal τ^* can be efficiently computed using a bisection search. 677

> Subsequently, we reconstruct the projected matrix as $X^* = U\tilde{\Sigma}V^T$ where $\tilde{\Sigma} =$ $\operatorname{diag}\{\tilde{\sigma}_1,\tilde{\sigma}_2,\ldots,\tilde{\sigma}_r\}.$

The projected pair (X^*, τ^*) is the closest point to (A, t) in the epigraph of the spectral norm. 681

From the above discussions, it is evident that the projections can be computed efficiently.

C Explanations and proofs for Section 3

In this section, we provide additional explanations and the proofs for the convergence results of our proposed algorithms in Section 3.

686 C.1 Initialization of Algorithm 1 and 2

We initialize the starting point by following the algorithms for BLO proposed in [36, 22, 95]. For Algorithm 1, given the input $\lambda^0, \boldsymbol{\xi}^0$, we initialize \mathbf{x}^0 by solving the LL problem of (3). The remaining initial variables are set as $r_i^0 = R_i(\mathbf{x})$, $\boldsymbol{\rho}^0 = -\nabla l(\mathbf{x}^0)$ and $s^0 = \|\boldsymbol{\rho}^0\|^2/2\lambda_1^0$. For Algorithm 2, given the input $\lambda^0, \boldsymbol{\xi}^0$, we also initialize \mathbf{x}^0 with solving the LL problem of (3). The other initial variables are set as $r_i^0 = R_i(\mathbf{x}^0)$, $\boldsymbol{\rho}_i^0 = -\frac{1}{M+1}A_t\boldsymbol{\xi}^0$ and $s^0 = \|\boldsymbol{\rho}_{M+1}^0\|^2/2\lambda_{M+1}^0$.

This initialization strategy ensures a feasible starting point for the corresponding reformulation of original BLO, thereby facilitating convergence and enhancing the overall efficiency of the optimization process.

695 C.2 Explanations for Merit Functions

To initiate the proof of the convergence results, we establish the rationale for selecting ϕ_{res}^k and ϕ_{fea} as the merit measures. Note that ϕ_{res}^k and ϕ_{fea} in Section 3.1 and 3.2 are both defined based on the penalized formulation (8) within a unified framework as follows:

$$\phi_{res}^{k}(\mathbf{z}) := \operatorname{dist}\left(0, \nabla_{\mathbf{z}} F_{k}(\mathbf{z}) + \mathcal{N}_{\mathcal{K}}(\mathbf{z})\right),$$
(32)

699

683

$$\phi_{fea}(\mathbf{z}) := \max\{p(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{r}, \boldsymbol{\xi}, s), \|A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i \|\},$$
(33)

where $\mathcal{K} = (\mathcal{K}_1 \cap \cdots \cap \mathcal{K}_{M+1}) \times \mathcal{K}_1^d \times \cdots \mathcal{K}_{M+1}^d$. For the case of single-round global regularization discussed in Section 3.1, the set \mathcal{K} reduces to $\mathcal{K} = \mathcal{K}_1 \times \mathcal{K}_1^d$ and $(\boldsymbol{\rho}_1, ..., \boldsymbol{\rho}_{M+1})$ is replaced by a single $\boldsymbol{\rho}$.

From Lemma 2.1, we know that (5) is a direct reformulation of (3). For convenience, we simplify the left hand of the first constraint as:

$$F(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \boldsymbol{\xi}) = l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) + \varphi^*(\boldsymbol{\xi}) + \sum_{i=1}^{M+1} \lambda_i R_i^*(\frac{\boldsymbol{\rho_i}}{\lambda_i}) + \boldsymbol{\xi}^T \mathbf{b}_t.$$

Similar to (8), we construct the penalized formulation for (5) as follows,

$$\min_{\mathbf{z}} L(\mathbf{x}) + \beta_k F(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \boldsymbol{\xi}) + \frac{\beta_k}{2} \|A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i\|^2,$$
(34)

where β_k serves as the penalty parameter.

Proposition C.1. If $\phi_{fea}(\mathbf{z}) = 0$, then $(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \boldsymbol{\xi})$ is a feasible point to (5). Moreover, if $\phi_{fea}(\mathbf{z}) = 0$ and $\phi_{res}(\mathbf{z}) = 0$ both hold, then $(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \boldsymbol{\xi})$ is a stationary point of (34).

709 *Proof.* (a) When $\phi_{fea} = 0$ holds:

From the non-negativity of the function p and $\|\cdot\|^2$, if $\phi_{fea}(\mathbf{z})=0$, it holds that $p(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{r}, \boldsymbol{\xi}, s)=0$ and $A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i = \mathbf{0}$

According to the constraints of (8), we know that

$$R_i(\mathbf{x}) \le r_i, \ i = 1, ..., M + 1,$$

 $R_i^*(\frac{\rho_i}{\lambda_i}) = 0, \ i = 1, ..., M.$

Additionally, we restore $\lambda_{M+1} R_{M+1}^*(\frac{\rho_{M+1}}{\lambda_{M+1}})$ with the inequality $\frac{\|\rho_{M+1}\|_2^2}{2\lambda_{M+1}} \leq s$. Consequently, we observe that

$$F(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \boldsymbol{\xi}) = l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) + \varphi^*(\boldsymbol{\xi}) + \sum_{i=1}^{M+1} \lambda_i R_i^*(\frac{\boldsymbol{\rho_i}}{\lambda_i}) + \boldsymbol{\xi}^T \mathbf{b_t}$$

$$= l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) + \varphi^*(\boldsymbol{\xi}) + \lambda_{M+1} R_{M+1}^*(\frac{\boldsymbol{\rho}_{M+1}}{\lambda_{M+1}}) + \boldsymbol{\xi}^T \mathbf{b_t}$$

$$\leq l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i r_i + \varphi^*(\boldsymbol{\xi}) + \boldsymbol{\xi}^T \mathbf{b_t} + s$$

$$= p(\mathbf{x}, \boldsymbol{\lambda}, \mathbf{r}, \boldsymbol{\xi}, s) = 0,$$

which implies that $(\mathbf{x}, \lambda, \rho, \xi)$ is feasible to (5).

716 **(b) When** $\phi^k_{res}(\mathbf{z}) = 0$ and $\phi_{fea}(\mathbf{z}) = 0$ both hold:

In this part, we use Moreau-Rockafellar theorem [75, Theorem 23.8] to calculate the sum rule of subdifferentials. If f_1 and f_2 are convex and lower continuous at x and f_2 is differentiable at $x \in \text{int}(\text{dom}(f_1)) \cap \text{int}(\text{dom}(f_2))$, then it holds that

$$\partial (f_1 + f_2)(x) \subset \partial f_1(x) + \partial f_2(x).$$

We analyze $\phi^k_{res}(\mathbf{z}) = 0$ for each component of \mathbf{z} .

• For x and r, we have

$$-(\nabla L(\mathbf{x}) + \beta_k \nabla l(\mathbf{x}), \beta_k \lambda) \in \mathcal{N}_{\mathcal{K}_1 \cap \dots \cap \mathcal{K}_{M+1}}(\mathbf{x}, \mathbf{r}), \tag{35}$$

where $K_i = \{(\mathbf{x}, \mathbf{r}) \mid R_i(\mathbf{x}) \leq r_i\}$. Let ∂R_i denote the limiting subdifferential of the function R_i [76]. According to the definition of the normal cone of inequality constraints [51, 52] and the definition of K_i in (9), we know that

$$\mathcal{N}_{\mathcal{K}_1 \cap \dots \cap \mathcal{K}_{M+1}}(\mathbf{x}, \mathbf{r}) = \operatorname{cone} \{ (\partial R_i(\mathbf{x}), -1), i = 1, \dots, M+1 \}$$
$$= \{ \sum_{i=1}^{M+1} t_i(\partial R_i(\mathbf{x}), -1) \mid t_i \geq 0 \},$$

where cone denotes the conic hull of a set. Combining with (35), we obtain

$$0 \in \nabla L(\mathbf{x}) + \beta_k \nabla l(\mathbf{x}) + \beta_k \sum_{i=1}^{M+1} \lambda_i \partial R_i(\mathbf{x}). \tag{36}$$

• For $\boldsymbol{\xi}$, we have

728 729 730

731

732

$$\nabla \varphi^*(\boldsymbol{\xi}) + \mathbf{b}_t + A_t^T (A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i) = 0.$$
(37)

• For $({m \rho}_i, \lambda_i), i = 1, ..., M$, we have

$$-(A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i, r_i) \in \mathcal{N}_{\mathcal{K}_i^d}(\boldsymbol{\rho}_i, \lambda_i), i = 1, ..., M,$$

where $\mathcal{K}_i^d = \{(\boldsymbol{\rho}_i, \lambda_i) \mid \|\boldsymbol{\rho}_i\|_{*(i)} \leq \lambda_i\}$. From (30) and the definition of p, we know that $F(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \boldsymbol{\xi}) \geq 0$ for all $(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \boldsymbol{\xi})$. If $\phi_{fea}(\mathbf{z}) = 0$, the following chain of inequalities holds:

$$0 \le F(\mathbf{x}, \lambda, \rho, \boldsymbol{\xi}) \le p(\mathbf{x}, \lambda, \mathbf{r}, \boldsymbol{\xi}, s) \le 0,$$

which naturally reduces to equalities. Consequently, we have $F(\mathbf{x}, \lambda, \rho, \xi) = p(\mathbf{x}, \lambda, \mathbf{r}, \xi, s)$, implying that $R_i(\mathbf{x}) = r_i, i = 1, ..., M$. Therefore, we obtain that

$$-(A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i, R_i(\mathbf{x})) \in \mathcal{N}_{\mathcal{K}_i^d}(\boldsymbol{\rho}_i, \lambda_i), i = 1, ..., M,$$

Meanwhile, we note that for i=1,...,M, R_i^* is the indicator function of the set $\{\|\mathbf{y}\|_{*(i)} \leq 1\}$. Combining with the fact that the normal cone is equivalent to the subdifferential of indicator function, for the variables ρ_i and λ_i , the above formulation implies that

$$-(A_{t}\boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_{i}) \in \partial_{\boldsymbol{\rho}_{i}} I_{\{\|\boldsymbol{\rho}\|_{*(i)} \leq \lambda_{i}\}} = \partial_{\boldsymbol{\rho}_{i}} I_{\{\|\boldsymbol{\rho}\|_{*(i)}/\lambda_{i} \leq 1\}} \stackrel{(*)}{=} \partial_{\boldsymbol{\rho}_{i}} \left[\lambda_{i} R_{i}^{*} (\frac{\boldsymbol{\rho}_{i}}{\lambda_{i}})\right]. \quad (38)$$

 $-R_{i}(\mathbf{x}) \in \partial_{\lambda_{i}} I_{\{\|\boldsymbol{\rho}\|_{*(i)} \leq \lambda_{i}\}} \stackrel{(a)}{=} \partial_{\lambda_{i}} I_{\{\|\boldsymbol{\rho}\|_{*(i)} \leq \lambda_{i}\}} + I_{\{\|\boldsymbol{\rho}\|_{*(i)} \leq \lambda_{i}\}}$ $= \partial_{\lambda_{i}} I_{\{\|\boldsymbol{\rho}\|_{*(i)} \leq \lambda_{i}\}} + R_{i}^{*} (\frac{\boldsymbol{\rho}_{i}}{\lambda_{i}}) \stackrel{(*)}{=} \partial_{\lambda_{i}} \left[\lambda_{i} R_{i}^{*} (\frac{\boldsymbol{\rho}_{i}}{\lambda_{i}})\right],$ (39)

where (a) follows the fact $\|\rho\|_{*(i)} \leq \lambda_i$ and (*) holds from the direct calculation of the subdifferential.

• For $(\rho_{M+1}, \lambda_{M+1}, s)$, we have

736

737

738

739

742

743

744

$$-(A_t \boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_i, r_{M+1}, 1) \in \mathcal{N}_{\mathcal{K}_{M+1}^d}(\boldsymbol{\rho}_{M+1}, \lambda_{M+1}, s),$$

where $\mathcal{K}_{M+1}^d = \{(m{
ho}_{M+1}, \lambda_{M+1}, s) \mid \|m{
ho}_{M+1}\|_2^2 \leq 2\lambda_{M+1}s\}$. Similar to the deduction for $(m{
ho}_i, \lambda_i)$ in (38) and (39), we can obtain

$$-(A_{t}\boldsymbol{\xi} + \sum_{i=1}^{M+1} \boldsymbol{\rho}_{i}) \in \partial_{\boldsymbol{\rho}_{M+1}} \left[\lambda_{M+1} R_{M+1}^{*} \left(\frac{\boldsymbol{\rho}_{M+1}}{\lambda_{M+1}} \right) \right],$$

$$-R_{M+1}(\mathbf{x}) \in \partial_{\lambda_{M+1}} \left[\lambda_{M+1} R_{M+1}^{*} \left(\frac{\boldsymbol{\rho}_{M+1}}{\lambda_{M+1}} \right) \right].$$
(40)

In summary, we find that the equations (36), (37), (38), (39) and (40) coincide with the stationary conditions of (34). Therefore, we conclude that $(\mathbf{x}, \lambda, \xi, \rho)$ is a stationary point of (34).

From deduction (29) and (30), we conclude that $\phi_{fea}(\mathbf{z}) = 0$ implies

$$l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) = \min_{\mathbf{x}} \{ l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i R_i(\mathbf{x}) \}.$$

Following the reasoning in Theorem 2.4, we conclude that as $\beta_k \to \infty$, any limit point of the sequence of optimal solutions to (34) with β_k is an optimal solution of (5). According to (36), we further obtain that

$$\operatorname{dist}(0, \nabla l(\mathbf{x}) + \sum_{i=1}^{M+1} \lambda_i \partial R_i(\mathbf{x})) \le \frac{1}{\beta_k} \|\nabla L(\mathbf{x})\| \to 0,$$

as $\beta_k \to \infty$. These results demonstrate that ϕ^k_{res} and ϕ_{fea} can effectively character the optimality condition of the LL problem in (3). In summary, the selection of ϕ^k_{res} and ϕ_{fea} is reasonable.

We provide the proofs for the convergence results of Algorithm 1 and 2 in the subsequent sections.

753 C.3 Proof of Theorem 3.5

We first recall the update for the variables of \mathbf{z} in Algorithm 1 as follows. We calculate the update directions of \mathbf{z} as $\mathbf{d}_{\mathbf{z}}^k = \beta_k(\mathbf{d}_{\mathbf{x}}^k, \mathbf{d}_{\boldsymbol{\lambda}}^k, \mathbf{d}_{\boldsymbol{\rho}}^k, \mathbf{d}_{\mathbf{\xi}}^k, \mathbf{d}_{\boldsymbol{\delta}}^k)$, where

$$\mathbf{d}_{\mathbf{x}}^{k} = \frac{1}{\beta_{k}} \nabla L(\mathbf{x}^{k}) + \nabla l(\mathbf{x}^{k}),$$

$$\mathbf{d}_{\boldsymbol{\xi}}^{k} = \nabla \varphi^{*}(\boldsymbol{\xi}^{k}) + \mathbf{b}_{t} + A_{t}^{T}(A_{t}\boldsymbol{\xi}^{k} + \boldsymbol{\rho}^{k}),$$

$$\mathbf{d}_{\boldsymbol{\lambda}}^{k} = \mathbf{r}^{k}, \ \mathbf{d}_{\mathbf{r}}^{k} = \boldsymbol{\lambda}^{k}, \ d_{s}^{k} = 1,$$

$$\mathbf{d}_{\boldsymbol{\rho}}^{k} = A_{t}\boldsymbol{\xi}^{k+1} + \boldsymbol{\rho}^{k}.$$

$$(41)$$

With these directions, the gradient descent step is performed as

$$\bar{\mathbf{z}}^{k+1} = \mathbf{z}^k - e_k \mathbf{d}_{\mathbf{z}}^k$$

For $\bar{\mathbf{z}}^{k+1} = (\bar{\mathbf{x}}^{k+1}, \bar{\boldsymbol{\lambda}}^{k+1}, \bar{\boldsymbol{\rho}}^{k+1}, \bar{\mathbf{r}}^{k+1}, \bar{\boldsymbol{\xi}}^{k+1}, \bar{\boldsymbol{s}}^{k+1})$, we subsequently apply the projection $\mathbf{z}^{k+1} = \operatorname{proj}_{\mathcal{K}}(\bar{\mathbf{z}}^{k+1}).$ (42)

Note that the variable ξ is not involved in the projection step and thus it is evolved directly as 758 $\boldsymbol{\mathcal{E}}^{k+1} = \bar{\boldsymbol{\mathcal{E}}}^{k+1}$ 759

Next, we discuss the sufficient decrease property for Algorithm 1. 760

Lemma C.2. Suppose Assumption 3.2 hold. For $k \in \mathbb{N}$, let $\{\mathbf{z}^k\}$ be generated from Algorithm 1. 761

Define $V_k = \frac{1}{\beta_k} F_k(\mathbf{z}^k)$, then the following inequality holds: 762

$$V_{k+1} - V_{k} \leq \left(\frac{\alpha_{L} + \beta_{k} \|A_{t}\|_{2}^{2} \alpha_{p}}{2\beta_{k}} - \frac{1}{e_{k} \beta_{k}}\right) \|\mathbf{x}^{k+1} - \mathbf{x}^{k}\|^{2} + \left(\frac{1}{2} - \frac{1}{e_{k} \beta_{k}}\right) \|\boldsymbol{\rho}^{k+1} - \boldsymbol{\rho}^{k}\|^{2} - \frac{1}{e_{k} \beta_{k}} \|s^{k+1} - s^{k}\|^{2} + \left(\frac{1}{2} - \frac{1}{e_{k} \beta_{k}}\right) (\|\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^{k}\|^{2} + \|\mathbf{r}^{k+1} - \mathbf{r}^{k}\|^{2}) + \left(\frac{\alpha_{d} + \|A_{t}\|_{2}^{2}}{2} - \frac{1}{e_{k} \beta_{k}}\right) \|\boldsymbol{\xi}^{k+1} - \boldsymbol{\xi}^{k}\|^{2}.$$

$$(43)$$

Furthermore, if the step sizes satisfy $0 < e_k \le \min\{\frac{2}{\alpha_L + \beta_k \|A_L\|_2^2 \alpha_n}, \frac{2}{\beta_k}, \frac{2}{\beta_k (\alpha_d + \|A_L\|_2^2)}\}$, it holds that $V_{k+1} \leq V_k$. 764

Proof. Given Assumption 3.2 that φ is α_p -smooth, we know that l is $||A_t||_2^2 \alpha_p$ -smooth. By applying the sufficient decrease lemma [10, Lemma 5.7], we obtain that

$$\frac{1}{\beta_k} L(\mathbf{x}^{k+1}) + l(\mathbf{x}^{k+1}) \le \frac{1}{\beta_k} L(\mathbf{x}^k) + l(\mathbf{x}^k) + \langle \frac{1}{\beta_k} \nabla L(\mathbf{x}^k) + \nabla l(\mathbf{x}^k), \mathbf{x}^{k+1} - \mathbf{x}^k \rangle
+ \frac{1}{2} (\frac{1}{\beta_k} \alpha_L + ||A_t||_2^2 \alpha_p) ||\mathbf{x}^{k+1} - \mathbf{x}^k||^2.$$

Based on the convexity of the cones and the second projection theorem [10, Theorem 6.41], we have

$$\langle (\bar{\mathbf{x}}^{k+1}, \bar{\mathbf{r}}^{k+1}) - (\mathbf{x}^{k+1}, \mathbf{r}^{k+1}), (\mathbf{x}^{k}, \mathbf{r}^{k}) - (\mathbf{x}^{k+1}, \mathbf{r}^{k+1}) \rangle \le 0$$

which implies 768

$$\begin{array}{l} \frac{1}{\beta_k}L(\mathbf{x}^{k+1}) + l(\mathbf{x}^{k+1}) + \langle \boldsymbol{\lambda}^{k+1}, \mathbf{r}^{k+1} - \mathbf{r}^k \rangle \\ \leq \frac{1}{\beta_k}L(\mathbf{x}^k) + l(\mathbf{x}^k) + \left(\frac{\alpha_L + \beta_k \|A_t\|_2^2 \alpha_p}{2\beta_k} - \frac{1}{e_k \beta_k}\right) \|\mathbf{x}^{k+1} - \mathbf{x}^k\|^2 + \left(\frac{1}{2} - \frac{1}{e_k \beta_k}\right) \|\mathbf{r}^{k+1} - \mathbf{r}^k\|^2. \end{array}$$

Given $\beta_k = \underline{\beta}(1+k)^p$, we have $\frac{1}{\beta_{k+1}} \leq \frac{1}{\beta_k}$. Combining the above inequalities and the non-negativity

$$\beta_{k+1}L(\mathbf{x}^{k+1}) + l(\mathbf{x}^{k+1}) + \langle \boldsymbol{\lambda}^{k+1}, \mathbf{r}^{k+1} - \mathbf{r}^k \rangle \leq \frac{1}{\beta_k}L(\mathbf{x}^{k+1}) + l(\mathbf{x}^{k+1})\langle \boldsymbol{\lambda}^{k+1}, \mathbf{r}^{k+1} - \mathbf{r}^k \rangle$$

$$\leq \frac{1}{\beta_k}L(\mathbf{x}^k) + l(\mathbf{x}^k) + \left(\frac{\alpha_L + \beta_k \|A_t\|_2^2 \alpha_p}{2\beta_k} - \frac{1}{e_k \beta_k}\right) \|\mathbf{x}^{k+1} - \mathbf{x}^k\|^2 + \left(\frac{1}{2} - \frac{1}{e_k \beta_k}\right) \|\mathbf{r}^{k+1} - \mathbf{r}^k\|^2.$$
(44)

The same derivation process applies to ρ , λ_i , r_i , leading to the following results:

$$||A_{t}\boldsymbol{\xi}^{k+1} + \boldsymbol{\rho}^{k+1}||^{2} + \langle \boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^{k}, \mathbf{r}^{k} \rangle$$

$$\leq ||A_{t}\boldsymbol{\xi}^{k+1} + \boldsymbol{\rho}^{k}||^{2} + \left(\frac{1}{2} - \frac{1}{e_{k}\beta_{k}}\right) ||\boldsymbol{\rho}^{k+1} - \boldsymbol{\rho}^{k}||^{2} + \left(\frac{1}{2} - \frac{1}{e_{k}\beta_{k}}\right) ||\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^{k}||^{2}.$$

$$(45)$$

For the variable s, we deduce that $\bar{s}^{k+1} = s^k - e_k$ and $\langle \bar{s}^{k+1} - s^{k+1}, s^k - s^{k+1} \rangle \leq 0$, which implies

773

$$s^{k+1} - s^k \le -\frac{1}{e_k \beta_k} \|s^{k+1} - s^k\|^2. \tag{46}$$

Next, we define $H_k(\boldsymbol{\xi}) = \varphi^*(\boldsymbol{\xi}) + \boldsymbol{\xi}^T \mathbf{b}_t + \frac{1}{2} \|A_t \boldsymbol{\xi} + \boldsymbol{\rho}^k\|^2$, noting that H_k is $(\alpha_d + \|A_t\|_2^2)$ -smooth. Then the update of $\boldsymbol{\xi}$ in Algorithm 1 can be expressed as

$$\boldsymbol{\xi}^{k+1} = \bar{\boldsymbol{\xi}}^{k+1} = \boldsymbol{\xi}^k - e_k \beta_k \nabla H_k(\boldsymbol{\xi}^k).$$

Applying the sufficient decrease lemma [10, Lemma 5.7], we obtain

$$H_k(\boldsymbol{\xi}^{k+1}) \le H_k(\boldsymbol{\xi}^k) + \langle \nabla H_k(\boldsymbol{\xi}^k), \boldsymbol{\xi}^{k+1} - \boldsymbol{\xi}^k \rangle + \frac{\alpha_d + ||A_t||_2^2}{2} ||\boldsymbol{\xi}^{k+1} - \boldsymbol{\xi}^k||^2$$

which simplifies to

$$H_k(\boldsymbol{\xi}^{k+1}) \le H_k(\boldsymbol{\xi}^k) + \left(\frac{\alpha_d + ||A_t||_2^2}{2} - \frac{1}{e_k \beta_k}\right) ||\boldsymbol{\xi}^{k+1} - \boldsymbol{\xi}^k||^2.$$
(47)

- 778
- Summing up the estimates (44)–(47), we arrive at the inequality (43). Furthermore, when the step size satisfies $0 < e_k \le \min\{\frac{2}{\alpha_L + \beta_k \|A_t\|_2^2 \alpha_p}, \frac{2}{\beta_k}, \frac{2}{\beta_k (\alpha_d + \|A_t\|_2^2)}\}$, the right-hand side of (43) becomes negative, ensuring that $V_{K+1} \le V_k$. 779
- 780
- Now we provide the proof for Theorem 3.5. 781
- *Proof.* We compress (43) from k = 0 to K 1 and obtain that 782

$$\sum_{k=1}^{K-1} \left[\left(\frac{1}{e_{k}\beta_{k}} - \frac{\alpha_{L} + \beta_{k} \|A_{t}\|_{2}^{2} \alpha_{p}}{2\beta_{k}} \right) \|\mathbf{x}^{k+1} - \mathbf{x}^{k}\|^{2} + \left(\frac{1}{e_{k}\beta_{k}} - \frac{\alpha_{d} + \|A_{t}\|_{2}^{2}}{2} \right) \|\boldsymbol{\xi}^{k+1} - \boldsymbol{\xi}^{k}\|^{2} + \left(\frac{1}{e_{k}\beta_{k}} - \frac{1}{2} \right) \left(\|\boldsymbol{\rho}^{k+1} - \boldsymbol{\rho}^{k}\|^{2} + \|\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^{k}\|^{2} + \|\mathbf{r}^{k+1} - \mathbf{r}^{k}\|^{2} \right) \right] \leq V_{0} - V_{K}.$$
(48)

From the non-negativity of L and p, we know that $V_K \geq 0$ and $V_0 - V_K \leq V_0$. Subsequently, according to the update rule of variables $(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\rho}, \mathbf{r}, \boldsymbol{\xi}, s)$ in Algorithm 1, we have that

$$0 \in e_k(\nabla L(\mathbf{x}^k) + \beta_k \nabla l(\mathbf{x}^k)) + (\mathbf{x}^{k+1} - \mathbf{x}^k) + \mathcal{N}_{\mathcal{K}}(\mathbf{x}^{k+1}),$$

$$e_k \beta_k (A_t^T (A_t \boldsymbol{\xi}^k + \boldsymbol{\rho}^k) + \mathbf{b}_t + \nabla \varphi^*(\boldsymbol{\xi}^k)) + (\boldsymbol{\xi}^{k+1} - \boldsymbol{\xi}^k) = 0.$$

Therefore, it holds that

$$\nabla L(\mathbf{x}^k) + \beta_k \nabla l(\mathbf{x}^k) + e_k(\mathbf{x}^{k+1} - \mathbf{x}^k) \in \mathcal{N}_{\mathcal{K}}(\mathbf{x}^{k+1}),$$

$$\nabla_{\boldsymbol{\xi}} F_k(\mathbf{z}^k) + \frac{1}{e_k} (\boldsymbol{\xi}^{k+1} - \boldsymbol{\xi}^k) = 0.$$
(49)

Furthermore, we have similar conclusions for λ , \mathbf{r} , ρ , s as follows,

$$0 \in (\nabla_{\lambda}, \nabla_{\mathbf{r}}, \nabla_{\boldsymbol{\rho}}, \nabla_{s}) F_{k}(\mathbf{z}^{k}) + \frac{1}{e_{k}} (\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^{k}, \mathbf{r}^{k+1} - \mathbf{r}^{k}, \boldsymbol{\rho}^{k+1} - \boldsymbol{\rho}^{k}, s^{k+1} - s^{k}) + \mathcal{N}_{\mathcal{K}}(\boldsymbol{\lambda}^{k+1}, \mathbf{r}^{k+1}, \boldsymbol{\rho}^{k+1}, s^{k+1}).$$

$$(50)$$

Now we define 787

$$M_{\mathbf{z}}^k := \nabla_{\mathbf{z}} F_k(\mathbf{z}^{k+1}) - \mathbf{d}_{\mathbf{z}}^k - \frac{1}{e_k} (\mathbf{z}^{k+1} - \mathbf{z}^k) \stackrel{(*)}{=} \nabla_{\mathbf{z}} F_k(\mathbf{z}^{k+1}) - \nabla_{\mathbf{z}} F_k(\mathbf{z}^k) - \frac{1}{e_k} (\mathbf{z}^{k+1} - \mathbf{z}^k),$$

where (*) holds from $\mathbf{d}_{\mathbf{z}}^k = \nabla_{\mathbf{z}} F_k(\mathbf{z}^k)$. Using the directions specified in (41) and the relationship given in (49) and (50), we obtain

$$M_{\mathbf{z}}^k \in \nabla F_k(\mathbf{z}^{k+1}) + \mathcal{N}_{\mathcal{K}}(\mathbf{z}^{k+1}),$$
 (51)

Based on the definition of the residual function ϕ_{res}^k in (16) and the relationship (51), we know that

$$||M_{\mathbf{z}}^{k}|| \ge \operatorname{dist}\left(0, \nabla_{\mathbf{z}} F_{k}(\mathbf{z}^{k+1}) + \mathcal{N}_{\mathcal{K}}(\mathbf{z}^{k+1})\right) = \phi_{res}^{k}(\mathbf{z}^{k+1})$$
(52)

Subsequently, we estimate the value $||M_{\mathbf{z}}^{k}||$ with respect to \mathbf{z} . By using Assumptions 3.1 and 3.2, we 791

 $\text{find that } \|\nabla_{\mathbf{z}}F_k(\mathbf{z}^{k+1}) - \nabla_{\mathbf{z}}F_k(\mathbf{z}^k)\| \leq \beta_k L_{\mathbf{z}}\|\mathbf{z}^{k+1} - \mathbf{z}^k\| \text{ where } L_{\mathbf{z}} = \max\{\frac{\alpha_L + \beta_k \|A_t\|_2^2 \alpha_p}{\beta_L}, \alpha_d + \alpha_k \|\mathbf{z}^k\|_2^2 \|\mathbf{z}^k$

 $||A_t||_2^2, 1$. Then we have 793

$$||M_{\mathbf{z}}^{k}|| \le \beta_{k} L_{\mathbf{z}} ||\mathbf{z}^{k+1} - \mathbf{z}^{k}|| + \frac{1}{e_{k}} ||\mathbf{z}^{k+1} - \mathbf{z}^{k}||.$$
 (53)

By combining (52) and the inequality (53), we deduce that

$$\phi_{res}^{k}(\mathbf{z}^{k+1}) \le \beta_k L_{\mathbf{z}} \|\mathbf{z}^{k+1} - \mathbf{z}^{k}\| + \frac{1}{e_k} \|\mathbf{z}^{k+1} - \mathbf{z}^{k}\|.$$
 (54)

When the step sizes are set as $0 < e_k \le \frac{1}{M_k} \le \min\{\frac{1}{\alpha_L + \beta_k \|A_t\|_2^2 \alpha_p}, \frac{1}{\beta_k}, \frac{1}{\beta_k (\alpha_d + \|A_t\|_2^2)}\}$, we know that $0 < \epsilon_k \le \frac{1}{\alpha_d}$ which implies that $\beta_k \le \frac{1}{\alpha_d}$. Then we conclude from (54) that there exists a

that $0 < e_k \le \frac{1}{\beta_k}$, which implies that $\beta_k \le \frac{1}{e_k}$. Then we conclude from (54) that there exists a constant $C_{res} > 0$ such that

$$\frac{1}{\beta_L^2} \phi_{res}^k(\mathbf{z}^{k+1})^2 \le \frac{C_{res}}{e_k \beta_k} \|\mathbf{z}^{k+1} - \mathbf{z}^k\|^2.$$
 (55)

From (48), we deduce that

$$\sum_{k=0}^{\infty} \frac{1}{2e_{k}\beta_{k}} \|\mathbf{z}^{k+1} - \mathbf{z}^{k}\|^{2} \\
\leq \sum_{k=0}^{\infty} \left[\left(\frac{1}{e_{k}\beta_{k}} - \frac{(\|A_{v}\|_{2}^{2} + \beta_{k}\|A_{t}\|_{2}^{2})\alpha_{p}}{2\beta_{k}} \right) \|\mathbf{x}^{k+1} - \mathbf{x}^{k}\|^{2} + \left(\frac{1}{e_{k}\beta_{k}} - \frac{\alpha_{d} + \|A_{t}\|_{2}^{2}}{2} \right) \|\boldsymbol{\xi}^{k+1} - \boldsymbol{\xi}^{k}\|^{2} \\
+ \left(\frac{1}{e_{k}\beta_{k}} - \frac{1}{2} \right) \left(\|\boldsymbol{\rho}^{k+1} - \boldsymbol{\rho}^{k}\|^{2} + \|\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^{k}\|^{2} + \|\mathbf{r}^{k+1} - \mathbf{r}^{k}\|^{2} \right) \right] \\
\leq V_{0}. \tag{56}$$

By compressing (55) from k=0 to ∞ and combining with the inequality (56), we obtain that

$$\sum_{k=0}^{\infty} \frac{1}{\beta_k^2} \phi_{res}^k(\mathbf{z}^{k+1})^2 \le 2C_{res} V_0.$$

Given $\beta_k = \beta (1+k)^p$ and 0 , we conclude that

$$\min_{0 \le k \le K} \phi_{res}^k(\mathbf{z}^{k+1}) = \mathcal{O}(\frac{1}{K^{1/2-p}}).$$

From the definition of ϕ_{fea} in (17), we know that

$$0 \le \beta_k \phi_{fea}(\mathbf{z}^k) \le 2(F_k(\mathbf{z}^k) - L(\mathbf{z}^k)).$$

If the sequence $\{F_k(\mathbf{z}^k)\}$ is bounded, we know that there exists M>0 such that $F_k(\mathbf{z}^k)\leq M$ for each k. Meanwhile, $L(\mathbf{x}^k)\geq 0$ holds from Assumption 3.1. Then we have

$$\beta_k \phi_{fea}(\mathbf{z}^k) < 2M$$
.

which implies that $\phi_{fea}(\mathbf{z}^k) = \mathcal{O}(\frac{1}{K_p})$.

805 C.4 Proof of Theorem 3.7

806 *Proof.* From the update rule for **u** in (23), we have

$$\mathcal{L}_{\gamma}^{k}(\mathbf{z}^{k+1}, \mathbf{u}^{k+1}, \boldsymbol{\mu}^{k}) \leq \mathcal{L}_{\gamma}^{k}(\mathbf{z}^{k+1}, \mathbf{u}^{k}, \boldsymbol{\mu}^{k}). \tag{57}$$

Additionally, the update rule for μ in (24) implies

$$\mathcal{L}_{\gamma}^{k}(\mathbf{z}^{k+1}, \mathbf{u}^{k+1}, \boldsymbol{\mu}^{k+1}) - \mathcal{L}_{\gamma}^{k}(\mathbf{z}^{k+1}, \mathbf{u}^{k+1}, \boldsymbol{\mu}^{k}) = -\frac{1}{\gamma} \|\boldsymbol{\mu}^{k+1} - \boldsymbol{\mu}^{k}\|^{2}.$$
 (58)

According to Assumptions 3.1 and 3.2, we know that $\mathcal{L}_{\gamma}^{k}(\mathbf{z},\mathbf{u},\boldsymbol{\mu})$ is M_{k} -smooth with respect to \mathbf{z} ,

where $M_k = \max\{\frac{\alpha_L + \beta_k \|A_t\|_2^2 \alpha_p}{\beta_k}, \alpha_d + \|A_t\|_2^2, 1\}$. According to [10, Lemma 5.7], we have

$$\mathcal{L}_{\gamma}^{k}(\mathbf{z}^{k+1}, \mathbf{u}^{k}, \boldsymbol{\mu}^{k}) \leq \mathcal{L}_{\gamma}^{k}(\mathbf{z}^{k}, \mathbf{u}^{k}, \boldsymbol{\mu}^{k}) + \langle \nabla_{\mathbf{z}} \mathcal{L}_{\gamma}^{k}(\mathbf{z}^{k}, \mathbf{u}^{k}, \boldsymbol{\mu}^{k}), \mathbf{z}^{k+1} - \mathbf{z}^{k} \rangle + \frac{M_{k}}{2} \|\mathbf{z}^{k+1} - \mathbf{z}^{k}\|^{2}.$$

Given the update rule $\mathbf{z}^{k+1} = \mathbf{z}^k - e_k \nabla_{\mathbf{z}} \mathcal{L}^k_{\gamma}(\mathbf{z}^k, \mathbf{u}^k, \boldsymbol{\mu}^k)$, the inequality becomes

$$\mathcal{L}_{\gamma}^{k}(\mathbf{z}^{k+1}, \mathbf{u}^{k}, \boldsymbol{\mu}^{k}) \leq \mathcal{L}_{\gamma}^{k}(\mathbf{z}^{k}, \mathbf{u}^{k}, \boldsymbol{\mu}^{k}) + \left(\frac{M_{k}}{2} - \frac{1}{e_{k}}\right) \|\mathbf{z}^{k+1} - \mathbf{z}^{k}\|^{2}.$$
 (59)

Combining (57), (58) and (59) and dividing both sides by β_k , we conclude

$$\mathcal{L}_{\gamma}^{k}(\mathbf{z}^{k+1}, \mathbf{u}^{k+1}, \boldsymbol{\mu}^{k+1}) - \mathcal{L}_{\gamma}^{k}(\mathbf{z}^{k}, \mathbf{u}^{k}, \boldsymbol{\mu}^{k}) \leq \left(\frac{M_{k}}{2} - \frac{1}{e_{k}}\right) \|\mathbf{z}^{k+1} - \mathbf{z}^{k}\|^{2} - \frac{1}{\gamma} \|\boldsymbol{\mu}^{k+1} - \boldsymbol{\mu}^{k}\|^{2}.$$

According to $\beta_k = \underline{\beta}(1+k)^p$, we obtain that $\frac{1}{\beta_{k+1}} \leq \frac{1}{\beta_k}$. With the non-negativity of L, it holds that $\mathcal{L}^{k+1}_{\gamma}(\mathbf{z}^{k+1},\mathbf{u}^{k+1},\boldsymbol{\mu}^{k+1}) \leq \mathcal{L}^{k}_{\gamma}(\mathbf{z}^{k+1},\mathbf{u}^{k+1},\boldsymbol{\mu}^{k+1})$, which implies that

$$\mathcal{L}_{\gamma}^{k+1}(\mathbf{z}^{k+1}, \mathbf{u}^{k+1}, \boldsymbol{\mu}^{k+1}) - \mathcal{L}_{\gamma}^{k}(\mathbf{z}^{k}, \mathbf{u}^{k}, \boldsymbol{\mu}^{k}) \leq \left(\frac{M_{k}}{2} - \frac{1}{e_{k}}\right) \|\mathbf{z}^{k+1} - \mathbf{z}^{k}\|^{2} - \frac{1}{\gamma} \|\boldsymbol{\mu}^{k+1} - \boldsymbol{\mu}^{k}\|^{2}.$$
(60)

Now we define $U_k = \mathcal{L}_{\gamma}^k(\mathbf{z}^k, \mathbf{u}^k, \boldsymbol{\mu}^k)$. Given that $0 < e_k \le \min\{\frac{\beta_k}{\alpha_L + \beta_k \|A_t\|_2^2 \alpha_p}, \frac{1}{\alpha_d + \|A_t\|_2^2}, 1\} \le 1$

 $\frac{1}{M_{\odot}}$, we can deduce from (60) that

$$U_{k+1} - U_k \le -\frac{1}{2e_k} \|\mathbf{z}^{k+1} - \mathbf{z}^k\|^2 - \frac{1}{\gamma} \|\boldsymbol{\mu}^{k+1} - \boldsymbol{\mu}^k\|^2.$$
 (61)

From the expression for \mathcal{L}_{γ}^{k} , we can deduce the following

$$\mathcal{L}_{\gamma}^{k}(\mathbf{z}, \mathbf{u}, \boldsymbol{\mu}) = F_{k}(\mathbf{z}) + \sum_{i=1}^{M+1} g_{i}(\mathbf{u}_{i}) + \sum_{i=1}^{M+1} \langle \boldsymbol{\mu}_{i}, \mathbf{u}_{i} - \mathbf{z} \rangle + \frac{\gamma}{2} \sum_{i=1}^{M+1} \|\mathbf{u}_{i} - \mathbf{z}\|^{2}$$
$$= F_{k}(\mathbf{z}) + \sum_{i=1}^{M+1} g_{i}(\mathbf{u}_{i}) + \frac{\gamma}{2} \sum_{i=1}^{M+1} \|\mathbf{u}_{i} - \mathbf{z} + \frac{\boldsymbol{\mu}_{i}}{\gamma}\|^{2} - \sum_{i=1}^{M+1} \frac{\|\boldsymbol{\mu}_{i}\|^{2}}{2\gamma}.$$

According to Assumption 3.6, we know that there exists some M_{μ} such that $\|\mu^k\|^2 \leq M_{\mu}$ for all $k \in \mathbb{N}$. Additionally, the functions L and p are non-negative. This implies that

$$U_k \ge -\sum_{i=1}^{M+1} \frac{\|\boldsymbol{\mu}_i^k\|^2}{2\gamma\beta_k} \ge -\frac{(M+1)M_{\boldsymbol{\mu}}}{2\gamma\underline{\beta}} \stackrel{\triangle}{=} \mathcal{L}_b, \forall k \in \mathbb{N},$$
 (62)

indicating that U_k is lower bounded. By telescoping the inequality (61) for k=0 to ∞ , we get

$$\sum_{k=0}^{\infty} \frac{1}{2e_k} \|\mathbf{z}^{k+1} - \mathbf{z}^k\|^2 + \frac{1}{\gamma} \sum_{k=0}^{\infty} \|\boldsymbol{\mu}^{k+1} - \boldsymbol{\mu}^k\|^2 \le U_0 - \mathcal{L}_b.$$
 (63)

- The sufficient decrease property (60) ensures that the $U_0 \mathcal{L}_b \geq U_0 U_k \geq 0$ for any $k \in \mathbb{N}$. Combining with the fact that $0 < \frac{1}{e_k} \leq \frac{1}{e}$ are bounded, and both e_k and γ is positive, we obtain from
- 821
- (63) that 822

$$\lim_{k \to \infty} \frac{1}{e_k} \|\mathbf{z}^{k+1} - \mathbf{z}^k\|^2 = 0, \ \lim_{k \to \infty} \|\boldsymbol{\mu}^{k+1} - \boldsymbol{\mu}^k\| = 0.$$
 (64)

Additionally, the step size e_k satisfies $0 < \underline{e} < e_k \le \min\{\frac{\beta_k}{\alpha_L + \beta_k \|A_t\|_2^2 \alpha_p}, \frac{1}{\alpha_d + \|A_t\|_2^2}, 1\} \le \frac{1}{M_k}$. This implies that $\max\{\|A_t\|_2^2 \alpha_p, \alpha_d + \|A_t\|_2^2, 1\} \le \lim_{k \to \infty} \frac{1}{e_k} \le \frac{1}{\underline{e}}$. Therefore, (64) ensures that 823

824

$$\lim_{k \to \infty} \|\mathbf{z}^{k+1} - \mathbf{z}^k\| = 0 \tag{65}$$

From the update of μ_i , we further derive that

$$\lim_{k \to \infty} \|\mathbf{u}_i^k - \mathbf{z}^k\| = 0. \tag{66}$$

Meanwhile, from the form (22) for updating \mathbf{u}_i , we derive

$$\mathbf{0} \in \partial g_{i}(\mathbf{u}_{i}^{k+1}) + \gamma(\mathbf{u}_{i}^{k+1} - \mathbf{z}^{k+1} + \frac{\boldsymbol{\mu}_{i}^{k}}{\gamma})$$

$$\stackrel{(a)}{=} \mathcal{N}_{\mathcal{K}_{i} \times \mathcal{K}_{*}^{d}}(\mathbf{u}_{i}^{k+1}) + \gamma(\mathbf{u}_{i}^{k+1} - \mathbf{z}^{k+1}) + \boldsymbol{\mu}_{i}^{k}$$

$$\stackrel{(b)}{=} \mathcal{N}_{\mathcal{K}_{i} \times \mathcal{K}^{d}}(\mathbf{u}_{i}^{k+1}) + \boldsymbol{\mu}_{i}^{k+1}, \ i = 1, ..., M+1,$$

$$(67)$$

- where (a) utilizes the fact that the normal cone is equivalent to the subdifferential of indicator
- functions and (b) follows from the update of μ_i^{k+1} . In (67), we use Moreau-Rockafellar theorem [75, 828
- Theorem 23.8] to calculate the sum rule of subdifferentials. (67) implies that

$$-\boldsymbol{\mu}_i^{k+1} \in \mathcal{N}_{\mathcal{K}_i \times \mathcal{K}^d}(\mathbf{u}_i^{k+1}).$$

Combining the outer semi-continuity of the normal cone and (66), we can obtain that

$$\lim_{k \to \infty} \operatorname{dist}(-\boldsymbol{\mu}_i^k, \mathcal{N}_{\mathcal{K}_i \times \mathcal{K}_*^d}(\mathbf{z}^k)) = 0.$$
 (68)

Furthermore, according to the definition $\mathcal{K} = (\mathcal{K}_1 \cap \cdots \cap \mathcal{K}_{M+1}) \times \mathcal{K}_*^d$, we know that $\mathcal{K} = (\mathcal{K}_1 \cap \cdots \cap \mathcal{K}_{M+1}) \times \mathcal{K}_*^d$ $(\mathcal{K}_1 \times \mathcal{K}_*^d) \cap \cdots \cap (\mathcal{K}_{M+1} \times \mathcal{K}_*^d)$. It implies that

$$\mathcal{N}_{\mathcal{K}} = \mathcal{N}_{\mathcal{K}_1 \times \mathcal{K}_a^d} + \dots + \mathcal{N}_{\mathcal{K}_{M+1} \times \mathcal{K}_a^d}.$$

From (68), we know 833

$$\lim_{k \to \infty} \operatorname{dist}(-\sum_{i=1}^{M+1} \boldsymbol{\mu}_i^k, \mathcal{N}_{\mathcal{K}}(\mathbf{z}^k)) = 0.$$
 (69)

From the update of z, we have

$$\mathbf{z}^{k+1} = \mathbf{z}^k - e_k \nabla_{\mathbf{z}} \mathcal{L}_{\gamma}^k(\mathbf{z}^k, \mathbf{u}^k, \boldsymbol{\mu}^k).$$

Combining with the definition of F_k in (8), the above equality can be further expressed as

$$\mathbf{0} = -\frac{1}{e_k} (\mathbf{z}^{k+1} - \mathbf{z}^k) + \frac{1}{\beta_k} \nabla_{\mathbf{z}} F_k(\mathbf{z}^k) - \sum_{i=1}^{M+1} \boldsymbol{\mu}_i^k - \gamma \sum_{i=1}^{M+1} (\mathbf{u}_i^k - \mathbf{z}^k)
= -\frac{1}{e_k} (\mathbf{z}^{k+1} - \mathbf{z}^k) + \frac{1}{\beta_k} \nabla_{\mathbf{z}} F_k(\mathbf{z}^k) - \sum_{i=1}^{M+1} \boldsymbol{\mu}_i^{k+1} + \sum_{i=1}^{M+1} (\boldsymbol{\mu}_i^{k+1} - \boldsymbol{\mu}_i^k) - \gamma \sum_{i=1}^{M+1} (\mathbf{u}_i^k - \mathbf{z}^k).$$
(70)

Now we define 836

$$M_{\mathbf{z}}^k = \nabla_{\mathbf{z}} F_k(\mathbf{z}^{k+1}) - \beta_k \sum_{i=1}^{M+1} \boldsymbol{\mu}_i^{k+1}.$$

From (69), we know that 837

$$\lim_{k \to \infty} \operatorname{dist}(M_{\mathbf{z}}^k, \nabla_{\mathbf{z}} F_k(\mathbf{z}^{k+1}) + \mathcal{N}_{\mathcal{K}}(\mathbf{z}^{k+1})) = 0.$$

Therefore, we evaluate $||M_{\mathbf{z}}^{k}||$ as follows. According to (70), we know that

$$M_{\mathbf{z}}^{k} = \frac{\beta_{k}}{e_{k}} (\mathbf{z}^{k+1} - \mathbf{z}^{k}) + (\nabla_{\mathbf{z}} F_{k}(\mathbf{z}^{k+1}) - \nabla_{\mathbf{z}} F_{k}(\mathbf{z}^{k})) + \sum_{i=1}^{M+1} \beta_{k} (\boldsymbol{\mu}_{i}^{k} - \boldsymbol{\mu}_{i}^{k+1}) + \gamma \beta_{k} \sum_{i=1}^{M+1} (\mathbf{u}_{i}^{k} - \mathbf{z}^{k}).$$

With the notation M_k , we know that $F_k(\mathbf{z})$ is $(\beta_k M_k)$ -smooth wit respect to \mathbf{z} . Then we have

$$||M_{\mathbf{z}}^{k}|| \leq \frac{\beta_{k}}{e_{k}} ||\mathbf{z}^{k+1} - \mathbf{z}^{k}|| + \beta_{k} M_{k} ||\mathbf{z}^{k+1} - \mathbf{z}^{k}|| + \beta_{k} ||\boldsymbol{\mu}^{k+1} - \boldsymbol{\mu}^{k}|| + \gamma \beta_{k} \sum_{i=1}^{M+1} ||\mathbf{u}_{i}^{k} - \mathbf{z}^{k}||$$

$$\leq \frac{2\beta_{k}}{e_{k}} ||\mathbf{z}^{k+1} - \mathbf{z}^{k}|| + \beta_{k} ||\boldsymbol{\mu}^{k+1} - \boldsymbol{\mu}^{k}|| + \gamma \beta_{k} \sum_{i=1}^{M+1} ||\mathbf{u}_{i}^{k} - \mathbf{z}^{k}||,$$

where (a) use the fact that $e_k \leq \frac{1}{M_k}$. Combining the definition of ϕ_{res}^k in (25), we obtain

$$\begin{aligned} \phi_{res}^{k}(\mathbf{z}^{k+1}) & \leq & \|M_{\mathbf{z}}^{k}\| + \operatorname{dist}(M_{\mathbf{z}}^{k}, \nabla_{\mathbf{z}}F_{k}(\mathbf{z}^{k+1}) + \mathcal{N}_{\mathcal{K}}(\mathbf{z}^{k+1})) \\ & \leq & \frac{2\beta_{k}}{e_{k}} \|\mathbf{z}^{k+1} - \mathbf{z}^{k}\| + \beta_{k} \|\boldsymbol{\mu}^{k+1} - \boldsymbol{\mu}^{k}\| + \gamma\beta_{k} \sum_{i=1}^{M+1} \|\mathbf{u}_{i}^{k} - \mathbf{z}^{k}\| \\ & + \operatorname{dist}(M_{\mathbf{z}}^{k}, \nabla_{\mathbf{z}}F_{k}(\mathbf{z}^{k+1}) + \mathcal{N}_{\mathcal{K}}(\mathbf{z}^{k+1})). \end{aligned}$$

(63) and (65) imply that $\|\mathbf{z}^{k+1} - \mathbf{z}^k\| \le \mathcal{O}(1/\sqrt{k})$, $\|\boldsymbol{\mu}^{k+1} - \boldsymbol{\mu}^k\| \le \mathcal{O}(1/\sqrt{k})$ and $\|\mathbf{u}_i^k - \mathbf{z}^k\| \le \mathcal{O}(1/\sqrt{k})$. Combining with the fact that $0 < \frac{1}{e_k} \le \frac{1}{e}$ and $0 , we take the limit as <math>k \to \infty$

in the above inequality and obtain that

$$\lim_{k \to \infty} \phi_{res}^k(\mathbf{z}^k) = 0.$$

If the sequence $\{F_k(\mathbf{z}^k)\}$ is bounded, we know that there exists a constant M such that $F_k(\mathbf{z}^k) \leq M$ for all k. From the formulation ϕ_{fea} in (26), we observe that

$$0 \le \beta_k \phi_{fea}(\mathbf{z}^k) \le 2(F_k(\mathbf{z}^k) - L(\mathbf{z}^k)) \stackrel{(a)}{\le} 2M,$$

where (a) holds from the non-negativity of L from Assumption 3.1. With the non-negativity of ϕ_{fea} , we take the limit $k \to \infty$ in the above inequality and obtain that

$$\lim_{k \to \infty} \phi_{fea}(\mathbf{z}^k) = 0.$$

848

849 D Experiments

856 857

858

859

860

861

862

863

864

865

866

867

868

869

875

All experiments are implemented using Python 3.9 on a computer equipped with an Apple M2 chip (8-core architecture: 4 performance cores and 4 efficiency cores), running the macOS operating system with 8 GB memory. The competing methods are implemented using the code provided by [36, 22, 95].

854 D.1 Introduction for Competitors

We now introduce the competing methods evaluated in our experiments:

- Grid Search: We perform a 10 × 10 uniformly-spaced grid search over the hyperparameter space.
- Random Search: We uniformly sample 100 configurations for each hyperparameter direction.
- Implicit Differentiation: This category includes IGJO [31] and IFDM [14, 15], both of which rely on implicit differentiation techniques.
- **TPE**: We adopt the Tree-structured Parzen Estimator approach [13], a widely used Bayesian optimization method.
- VF-iDCA: [36] formulates the lower-level problem as a value function and approximately solves the bilevel problem via DC programming.
- LDMMA: Based on lower-level duality, [22] reformulates the original problem (3) into a more tractable form.
- BiC-GAFFA: [94] solves the bilevel optimization problem using a gap function-based framework.

We apply IFDM only to the elastic net and logistic regression problems, as its available implementation supports only these two among our tested tasks. LDMMA is used exclusively for Lasso-type regression and the smoothed support vector machine, as its reformulation is not compatible with logistic regression. Furthermore, [36] does not provide experimental results for logistic regression, and therefore we do not include it in the comparison for that task.

D.2 Experimental on Synthetic Data

For experiments on synthetic data, we consider hyperparameter optimization for elastic net, group Lasso, and sparse group Lasso. These models are equipped with a least squares loss and different regularization terms. We outline the specific mathematical form of (3) for each problem below.

Elastic net [100] is a linear combination of the Lasso and ridge penalties. Its formulation in (3) is given by:

$$\min_{\mathbf{x}} \quad \frac{1}{2} \|A_{val}\mathbf{x} - \mathbf{b}_{val}\|^{2}
\text{s.t.} \quad \mathbf{x} \in \arg\min_{\hat{\mathbf{x}}} \frac{1}{2} \|A_{tr}\hat{\mathbf{x}} - \mathbf{b}_{tr}\|^{2} + \lambda_{1} \|\hat{\mathbf{x}}\|_{1} + \frac{\lambda_{2}}{2} \|\hat{\mathbf{x}}\|_{2}^{2},$$
(71)

Group Lasso [99] is an extension of the Lasso with penalty to predefined groups of coefficients. This problem is captured in (3) as:

$$\min_{\mathbf{x}} \quad \frac{1}{2} \|A_{val}\mathbf{x} - \mathbf{b}_{val}\|^{2}
\text{s.t.} \quad \mathbf{x} \in \arg\min_{\hat{\mathbf{x}}} \frac{1}{2} \|A_{tr}\hat{\mathbf{x}} - \mathbf{b}_{tr}\|^{2} + \sum_{i=1}^{M} \lambda_{i} \|\hat{\mathbf{x}}^{(i)}\|_{2}, \tag{72}$$

where $\mathbf{x}^{(i)}$ is a sub-vector of \mathbf{x} and $\mathbf{x} = (\mathbf{x}^{(1)}, ..., \mathbf{x}^{(M)})$.

Sparse group Lasso [83] combines the group Lasso and Lasso penalties, which are designed to encourage sparsity and grouping of predictors [31]. Its formulation in (3) is represented as:

$$\min_{\mathbf{x}} \quad \frac{1}{2} \|A_{val}\mathbf{x} - \mathbf{b}_{val}\|^{2}
\text{s.t.} \quad \mathbf{x} \in \arg\min_{\hat{\mathbf{x}}} \frac{1}{2} \|A_{tr}\hat{\mathbf{x}} - \mathbf{b}_{tr}\|^{2} + \lambda_{M+1} \|\hat{\mathbf{x}}\|_{1} + \sum_{i=1}^{M} \lambda_{i} \|\hat{\mathbf{x}}^{(i)}\|_{2},$$
(73)

where $\mathbf{x}^{(i)}$ is a sub-vector of \mathbf{x} and $\mathbf{x} = (\mathbf{x}^{(1)}, ..., \mathbf{x}^{(M)})$.

Based on the different cases discussed in Section 3.1 and Section 3.2, we naturally employ Algorithm
1 to solve (72), and Algorithm 2 to address (71) and (73). To evaluate the performance of each
method, we calculate validation and test error with obtained LL minimizers in each experiment. We
provide detailed experimental settings and report the results for elastic net and group lasso below.

D.2.1 Elastic Net

The synthetic data is generated following the methodology described by [31], as outlined below. Feature vectors $\mathbf{a}_i \in \mathbb{R}^p$ are sampled from a multivariate normal distribution with a mean of 0 and covariance structure $\operatorname{cor}(a_{ij},a_{ik})=0.5^{|j-k|}$. The response vector \mathbf{b} is computed as $b_i=\boldsymbol{\beta}^{\top}\mathbf{a}_i+\sigma\epsilon_i$, where $\beta_i\in\mathbb{R}^p$ is generated such that each element takes a value of either 0 or 1, with exactly 15 nonzero elements. The noise $\boldsymbol{\epsilon}$ is sampled from a standard normal distribution, and the value of σ is determined to ensure that the signal-to-noise ratio satisfies $\mathrm{SNR} \triangleq \|A\boldsymbol{\beta}\|/\|\mathbf{b}-A\boldsymbol{\beta}\|=2$. Since [95] does not provide experiments or code for the elastic net problem, we compare only with search-based methods, IGJO, IFDM, VF-iDCA and LDMMA in this experiment. We implement the algorithms we compared with the same settings according to the description in [36, 22]. For LDPM with Algorithm 2, we set $\beta_k = (1+k)^{0.3}$, $e_k = 0.1$ and $\gamma = 10$. For elastic net problem, the stopping criterion is set as $\|\mathbf{z}^{k+1} - \mathbf{z}^k\|/\|\mathbf{z}^{k+1}\| \leq 0.1$.

We conduct repeated experiments with 10 randomly generated synthetic data, and calculate the mean and variance. The numerical results on elastic net are reported in Table 3. Overall, LDPM achieves the lowest test error while maintaining a significantly reduced time cost, especially for large-scale datasets. In contrast, the search methods incur a high computational cost and exhibit poor performance on the test dataset. The gradient-based method IGJO demonstrates slightly better accuracy and efficiency but converges very slowly.

As discussed in [36, 22], both VF-iDCA and LDMMA achieve consistently low validation errors across various experiments, indicating strong learning performance on training and validation sets. However, they tend to suffer from overfitting, as reflected in increasing test errors over iterations and poor generalization to unseen data. This phenomenon occurs across experiments with several machine learning models.

Table 3: Elastic net problems on synthetic data, where $|I_{tr}|$, $|I_{val}|$, $|I_{te}|$ and p represent the number of training observations, validation observations, predictors and features, respectively.

Settings	Methods	Time(s)	Val. Err.	Test Err.	Settings	Time(s)	Val. Err.	Test Err.
$ I_{tr} = 100$ $ I_{val} = 20$ $ I_{te} = 250$ $p = 250$	Grid Random IGJO IFDM VF-iDCA LDMMA LDPM	1.20 ± 0.50 3.16 ± 0.63	$\begin{array}{c} 7.01 \pm 2.01 \\ 4.99 \pm 1.69 \\ 4.19 \pm 0.91 \\ 2.72 \pm 1.57 \\ 0.00 \pm 0.00 \end{array}$	6.97 ± 0.79	$ I_{tr} = 100$ $ I_{val} = 100$ $ I_{te} = 250$ $p = 450$	1.44 ± 2.85 6.08 ± 2.24 3.95 ± 0.22	$\begin{array}{c} 6.04 \pm 1.45 \\ 5.22 \pm 1.50 \\ 4.89 \pm 0.12 \\ 3.13 \pm 0.78 \\ 0.00 \pm 0.00 \end{array}$	6.49 ± 0.83 5.72 ± 0.91
$ I_{tr} = 100$ $ I_{val} = 100$ $ I_{te} = 250$ p = 250	Grid Random IGJO IFDM VF-iDCA LDMMA LDPM	6.44 ± 1.28 3.86 ± 2.09 1.17 ± 0.38 4.74 ± 1.77 0.98 ± 0.09	4.39 ± 1.10 4.41 ± 0.98 4.54 ± 1.06 2.35 ± 1.56 0.00 ± 0.00	4.31 ± 0.95 4.38 ± 1.06 4.47 ± 1.11	$ I_{tr} = 100$ $ I_{val} = 100$ $ I_{te} = 100$ $p = 2500$	23.21 ± 4.96 16.26 ± 1.44	6.44 ± 1.53 7.78 ± 1.12 7.57 ± 0.79 0.00 ± 0.00 0.00 ± 0.00	8.67 ± 0.94 8.61 ± 0.82 8.10 ± 1.45 4.61 ± 0.77

In our experiments, we report the numerical results of VF-iDCA and LDMMA based on the final iteration output when the algorithm terminates. In contrast, [36, 22] reports the best results observed across all iterations. As a result, the test errors reported for VF-iDCA and LDMMA in Table 3 appear slightly worse in our study. Additionally, our test error is slightly worse than that reported in [22] only under the first data setting in Table 3. [22] implements LDMMA with employing off-the-shelf solver MOSEK in MATLAB to solve the subproblems. Therefore, LDMMA yields highly favorable results for small-scale problems, while its efficiency deteriorates significantly as the data size increases, making it less effective for large-scale problem instances.

We observe that the running time performance of IFDM is highly competitive and significantly fast in large scale. This is because the IFDM algorithm leverages the sparsity of the Jacobian of the hyper-objective in bilevel optimization, which is also stated in [15].

D.2.2 Sparse Group Lasso

We generate the synthetic data with the method in [31], including 100 training, validation and test 926 samples, respectively. The feature vector $\mathbf{a}_i \in \mathbb{R}^p$ is drawn from a standard normal distribution. 927 The response vector **b** is computed as $b_i = \boldsymbol{\beta}^{\mathsf{T}} \mathbf{a}_i + \sigma \epsilon_i$, where $\boldsymbol{\beta} = [\boldsymbol{\beta^{(1)}}, \boldsymbol{\beta^{(2)}}, \boldsymbol{\beta^{(3)}}], \boldsymbol{\beta^{(i)}} =$ 928 $(1, 2, 3, 4, 5, 0, \dots, 0)$, for i = 1, 2, 3. The noise vector ϵ follows a standard normal distribution, and 929 σ is set such that the signal-to-noise ratio (SNR) is 2. For different dimensions in Table 2, we set 930 the group size to 30 for p = 600 and p = 1200, and to 300 for p = 2400 and p = 4800. Notably, 931 compared to [36, 22], our feature vector dimensions are larger, while the number of samples is 932 evidently smaller. 933

We compare our method with search methods, IGJO, VF-iDCA, LDMMA and BiC-GAFFA in this experiment. For the compared method BiC-GAFFA, we follow the recommended procedure outlined in [95]. For the other comparison methods, we adopt the exact settings from [36, 22]. For LDPM with Algorithm 2, we set $\beta_k = (1+k)^{0.3}$, $\gamma = 10$ and the step size $e_k = 0.001$. For sparse group Lasso problem, the stopping criterion is set as $\|\mathbf{z}^{k+1} - \mathbf{z}^k\| / \|\mathbf{z}^{k+1}\| \le 0.2$.

From Table 2, we observe that LDPM achieves lowest test error and outperforms other algorithms in terms of time cost. As the scale of data increases, LDPM consistently finds the best hyperparameters and model solutions. In comparison, search methods become extremely unstable when facing dozens of hyperparameters. IGJO converges slowly and requires huge amount of computation. Similar to the experiments on the elastic net problem, LDMMA and VF-iDCA still exhibit a certain degree of overfitting. Both LDPM and BiC-GAFFA belong to the class of single-loop Hessian-free algorithms. Since LDPM employs projection to handle nonsmooth constraints, it achieves slightly better performance and efficiency compared to BiC-GAFFA.

D.2.3 Group Lasso

Compared to the sparse group Lasso problem, this experiment removes the ℓ_1 -norm regularization term, leading to a reduction in the complexity of the LL problem. However, this omission also results in weaker control over the sparsity of x, potentially affecting the structure and interpretability of the solution. While the lower computational complexity may improve efficiency, the trade-off is a less strictly enforced sparsity constraint, which could affect the ability to capture key features in high-dimensional settings.

The synthetic data is generated following the same procedure as described in Appendix D.2.2. For this experiment, we adopt the same settings for other compared algorithms as those used in the experiment for the sparse group Lasso problem in Appendix D.2.2. For LDPM, we conduct Algorithm 1 with $\beta_k = (1+k)^{0.3}$ and $e_k = 0.01$.

We conduct experiments with different data scales and report numerical results over 10 repetitions in Table 4. The overall comparison results in Table 4 are similar to those in Table 2. In this case, LDPM only requires projected gradient descent, leading to a significant improvement in efficiency.

Table 4: Group Lasso problems on the synthetic data, where p represents the number of features.

Settings		p = 600			p = 1200	
Settings	Time(s)	Val. Err.	Test Err.	Time(s)	Val. Err.	Test Err.
Grid	5.72 ± 1.69	93.20 ± 5.82	96.07 ± 17.50	12.31 ± 2.24	93.15 ± 4.74	94.60 ± 20.27
Random	5.42 ± 1.81	148.69 ± 6.55	162.17 ± 28.09	11.38 ± 2.56	151.66 ± 15.63	160.88 ± 17.07
IGJO	1.42 ± 0.25	112.12 ± 4.48	105.99 ± 15.09	6.62 ± 1.31	143.62 ± 15.42	117.37 ± 4.41
VF-iDCA	0.50 ± 0.14	62.66 ± 6.14	84.52 ± 12.46	7.77 ± 2.62	95.02 ± 7.04	96.34 ± 9.79
LDMMA	0.51 ± 0.12	90.97 ± 5.53	79.68 ± 16.19	4.25 ± 1.94	92.32 ± 8.05	92.43 ± 9.99
BiC-GAFFA	0.35 ± 0.02	74.16 ± 6.91	78.60 ± 11.81	2.27 ± 0.26	90.43 ± 5.53	87.79 ± 8.43
LDPM	$\boldsymbol{0.32 \pm 0.03}$	71.62 ± 7.28	$\textbf{76.43} \pm \textbf{10.34}$	$\boldsymbol{1.94 \pm 0.13}$	89.53 ± 7.16	85.92 ± 6.99
Cattings		p = 2400			p = 4800	
Settings	Time(s)	p = 2400 Val. Err.	Test Err.	Time(s)	p = 4800 Val. Err.	Test Err.
Settings	Time(s)		Test Err. 93.35 ± 16.60			
		Val. Err.			Val. Err. 141.83 ± 26.52	
Grid	21.81 ± 3.65	Val. Err. 105.19 ± 15.54	93.35 ± 16.60	42.38 ± 5.71	Val. Err. 141.83 ± 26.52	126.95 ± 19.38
Grid Random	21.81 ± 3.65 19.95 ± 6.17	Val. Err. 105.19 ± 15.54 132.04 ± 16.90	93.35 ± 16.60 161.45 ± 18.37	42.38 ± 5.71 41.67 ± 5.01	Val. Err. 141.83 ± 26.52 109.35 ± 18.21	126.95 ± 19.38 134.74 ± 21.41
Grid Random IGJO	$\begin{vmatrix} 21.81 \pm 3.65 \\ 19.95 \pm 6.17 \\ 10.03 \pm 6.69 \end{vmatrix}$	Val. Err. 105.19 ± 15.54 132.04 ± 16.90 100.75 ± 16.47	93.35 ± 16.60 161.45 ± 18.37 127.58 ± 16.43	$egin{array}{c} 42.38 \pm 5.71 \\ 41.67 \pm 5.01 \\ 26.78 \pm 8.50 \\ \hline \end{array}$	Val. Err. 141.83 ± 26.52 109.35 ± 18.21 109.73 ± 16.66	126.95 ± 19.38 134.74 ± 21.41 117.14 ± 8.23
Grid Random IGJO VF-iDCA		Val. Err. 105.19 ± 15.54 132.04 ± 16.90 100.75 ± 16.47 69.53 ± 5.90	93.35 ± 16.60 161.45 ± 18.37 127.58 ± 16.43 90.11 ± 11.59		Val. Err. 141.83 ± 26.52 109.35 ± 18.21 109.73 ± 16.66 81.03 ± 11.58	126.95 ± 19.38 134.74 ± 21.41 117.14 ± 8.23 105.70 ± 10.05

D.2.4 Low-rank Matrix Completion

961

We consider low-rank matrix completion problem on synthetic data. The formulation in (3) of the low-rank matrix completion is given as:

$$\min_{\boldsymbol{\theta},\boldsymbol{\beta},\Gamma} \sum_{(i,j)\in\Omega_{val}} |M_{ij} - \mathbf{x}_{i}\boldsymbol{\theta} - \mathbf{z}_{j}\boldsymbol{\beta} - \Gamma_{ij}|^{2}$$
s.t.
$$(\boldsymbol{\theta},\boldsymbol{\beta},\Gamma) \in \underset{\boldsymbol{\theta},\boldsymbol{\beta},\Gamma}{\operatorname{arg\,min}} \left\{ \sum_{(i,j)\in\Omega_{tr}} |M_{ij} - \mathbf{x}_{i}\boldsymbol{\theta} - \mathbf{z}_{j}\boldsymbol{\beta} - \Gamma_{ij}|^{2} + \lambda_{0} \|\Gamma\|_{*} + \sum_{g=1}^{G} \lambda_{g} \|\boldsymbol{\theta}^{(g)}\|_{2} + \sum_{g=1}^{G} \lambda_{g+G} \|\boldsymbol{\beta}^{(g)}\|_{2} \right\}$$

$$(74)$$

The data generation procedure follows the approach in [31, 36]. Specifically, two entries per row and column are selected as the training set $\Omega_{\rm tr}$, and one entry per row and column is selected as the validation set $\Omega_{\rm val}$. The remaining entries form the test set $\Omega_{\rm test}$. The row and column features are each grouped into 12 groups, with 3 covariates per group, resulting in p=36 and G=12.

The true coefficients are set as $\alpha^{(g)} = g\mathbf{1}_3$ for $g = 1, \dots, 4$ and $\beta^{(g)} = g\mathbf{1}_3$ for g = 1, 2, with all other group coefficients set to zero. The low-rank effect matrix Γ is generated as a rank-one matrix $\Gamma = \mathbf{u}\mathbf{v}^{\top}$, where \mathbf{u} and \mathbf{v} are sampled from the standard normal distribution.

The row features X and column features Z are also sampled from a standard normal distribution and then scaled so that the Frobenius norm of $X\alpha\mathbf{1}^{\top} + (Z\beta\mathbf{1}^{\top})^{\top}$ matches that of Γ . Finally, the matrix observations are generated as

$$M_{ij} = \mathbf{x}_i^{\top} \boldsymbol{\alpha} + \mathbf{z}_j^{\top} \boldsymbol{\beta} + \Gamma_{ij} + \sigma \epsilon_{ij},$$

where ϵ_{ij} is standard Gaussian noise, and the noise level σ is chosen such that the signal-to-noise ratio (SNR) equals 2.

In this experiment, we compare LDPM with grid serach, random search, TPE, IGJO, VF-iDCA. For 976 grid search, we explore two hyperparameters μ_1 and μ_2 with the regularization parameters defined as 977 $\lambda_0=10^{\mu_1}$ and $\lambda_g=10^{\mu_2}$ for each $g=1,\ldots,2G$. A 10×10 grid uniformly spaced over the range 978 $[-3.5, -1] \times [-3.5, -1]$ is employed, consistent with the approach of [31]. For both the random search 979 and TPE methods, the optimization is conducted over transformed variables $u_q = \log_{10}(\lambda_m)$ for $m=0,1,2,\ldots,2G$, where each u_q is drawn from a uniform distribution on the interval [-3.5,-1]. 981 For IGJO, the initial values for the regularization vector λ are set to $[0.005, 0.005, \dots, 0.005]$. For 982 VF-iDCA, the initial guess for the auxiliary parameter \mathbf{r} is chosen as $[1,0.1,0.1,\ldots,0.1]$. The algorithm is terminated when the stopping criterion $(\|\mathbf{z}^{k+1} - \mathbf{z}^k\|)/\|\mathbf{z}^k\| \le 0.1$ is satisfied. For LDPM with Algorithm 2, we set $\beta_k = (1+k)^{0.3}$, $\gamma = 10$ and the step size $e_k = 0.025$. 983 984 985

Throughout all experiments, feature grouping is performed sequentially as follows, every three consecutive features are assigned to the same group, starting from the first feature onward.

We present the statistical results in repeated experiments in Table 5. Both VF-iDCA and LDPM incur 988 longer runtimes than search methods because they perform more intensive iterative updates—VF-989 iDCA leverages inexact DC-programming steps to more faithfully enforce the low-rank and group-990 sparsity penalties. This additional computational effort yields tighter approximation of the underlying 991 992 low-rank factors, resulting in substantially lower validation and test errors. LDPM repeatedly perform costly matrix projections as discussed in Appendix B.2 to enforce the rank constraints accurately. 993 These intensive projection steps allow them to recover the underlying low-rank structure more 994 precisely, which translates into substantially lower validation and test errors. 995

Table 5: Low-rank matrix completion problems on synthetic data

Methods	Time(s)	Val. Acc.	Test Acc.
Grid	21.02 ± 0.95	0.71 ± 0.21	0.76 ± 0.20
Random	33.12 ± 2.10	0.72 ± 0.22	0.79 ± 0.19
TPE	36.80 ± 9.45	0.69 ± 0.20	0.75 ± 0.18
IGJO	1205.0 ± 312.5	0.67 ± 0.20	0.71 ± 0.17
VF-iDCA	55.20 ± 12.05	0.65 ± 0.18	0.69 ± 0.15
LDPM	62.10 ± 15.31	$\textbf{0.58} \pm \textbf{0.14}$	0.66 ± 0.13

996 D.3 Sensitivity of Parameters

In this part, we conduct experiments to analyze the sensitivity of our methods to different parameter combinations. We evaluate both Algorithm 1 and Algorithm 2. To investigate the parameter sensitivity of Algorithm 1, we carry out supplementary experiments on the group Lasso problem with a problem dimension of 1200. In each trial, we vary one parameter while keeping the others fixed. The corresponding convergence times and projected gradient descent (PGD) iteration counts are summarized in Table 6a. A similar analysis is also performed for Algorithm 2 on the sparse group Lasso instance, also with a dimension of 1200. The convergence performance, including time and steps, is likewise reported in Table 6b.

Strategy	e_k	β	p	Steps	Time(s)
Original	0.01	1	0.3	29	2.04
	0.005	1	0.3	42	3.75
e_k	0.05	1	0.3	18	1.67
	0.08	1	0.3	14	1.42
	0.01	2	0.3	40	3.60
β	0.01	10	0.3	44	3.89
_	0.01	40	0.3	38	3.95
	0.01	1	0.05	95	11.72
p	0.01	10	0.15	56	4.85
	0.01	40	0.5	31	2.93

(a)	Parameter	Sensitivity	for Al	gorithm 1
-----	-----------	-------------	--------	-----------

Strategy	e_k	β	p	γ	Steps	Time(s)
Original	0.01	1	0.3	10	36	2.30
	0.005	1	0.3	10	49	4.97
e_k	0.05	1	0.3	10	21	1.89
	0.08	1	0.3	10	17	1.54
	0.01	2	0.3	10	48	4.16
β	0.01	10	0.3	10	56	4.35
_	0.01	40	0.3	10	52	5.15
	0.01	1	0.05	10	129	16.57
p	0.01	10	0.15	10	58	6.12
	0.01	40	0.5	10	72	8.83
	0.01	1	0.3	5	62	5.12
γ	0.01	1	0.3	20	39	2.48
/L \ D		~			4.1	

(b) Parameter Sensitivity for Algorithm 2

Table 6: Parameter Sensitivity Analysis for LDPM

In Algorithm 2, larger γ enforces the constraint more aggressively, so the primal residual in z-subproblem drops quickly. Smaller γ makes z-update more flexible, but the residual decays more slowly, so it end up needing more iterations and longer overall runtime. As presented in Table 6, the algorithm consistently achieves convergence and exhibits strong robustness across a broad spectrum of parameter configurations, highlighting its stability and reliability under varying conditions.

D.4 Experimental on Real-world Datasets

This section of the experiments aims to demonstrate the numerical performance of our method on real-world datasets.

D.4.1 Elastic Net

We consider elastic net problem on high dimendional datasets gisette and sensit. The mathmatical formulation follows (71). The datasets have a large number of features, which are suitable for evaluating the performance of regularization techniques like the elastic net. Following the approach in [36], we partition the datasets as follows: 50 and 25 examples are extracted as the training set, respectively; 50 and 25 examples are used as the validation set, respectively; and the remaining data was reserved for testing. For the same reasons as in Appendix D.2.1, we also compare LDPM with search method, IGJO, IFDM, VF-iDCA and LDMMA in this experiment. We conduct compared algorithms with the same settings as [36, 22]. For LDPM with Algorithm 2, we set $\beta_k = (1+k)^{0.3}$, $e_k = 0.01$ and $\gamma = 5$. The stopping criterion in this experiment is also set as $\|\mathbf{z}^{k+1} - \mathbf{z}^k\|/\|\mathbf{z}^{k+1}\| \le 0.1$. We report the experimental results in Figure 1 and summarize them in Table 7 as auxiliary experimental results. These demonstrate that LDPM consistently achieves competitive performance while maintaining fast computational speeds on real-world datasets for elastic net problems.

As described in [36, 22], the implementation of VF-iDCA and LDMMA relies heavily on optimization solvers. In particular, the subproblems of LDMMA are entirely dependent on the commercial solver MOSEK, while the subproblems of VF-iDCA also rely on the CVXPY package, utilizing ECOS or CSC as solvers. For large-scale datasets, frequent solver calls can become a major computational bottleneck, limiting the scalability of these methods in high-dimensional or complex problem settings. Furthermore, the conic programming reformulation proposed in [22] introduces second-order cone

Table 7: Elastic net problem on datasets gisette and sensit, where $|I_{tr}|$, $|I_{val}|$, $|I_{te}|$ and p represent the number of training samples, validation samples, test samples and features, respectively.

Dataset Methods	Time(s)	Val. Err.	Test Err.	Dataset	Time(s)	Val. Err.	Test Err.
	37.21 ± 4.80 56.67 ± 9.55 18.24 ± 3.17 35.40 ± 0.74 10.75 ± 2.72 9.45 ± 2.98 4.85 ± 0.23	$\begin{array}{c} 0.22 \pm 0.05 \\ 0.24 \pm 0.02 \\ 0.22 \pm 0.02 \\ 0.01 \pm 0.00 \\ 0.01 \pm 0.00 \end{array}$	$\begin{array}{c} 0.26 \pm 0.02 \\ 0.23 \pm 0.03 \\ 0.23 \pm 0.03 \\ 0.22 \pm 0.01 \\ 0.21 \pm 0.01 \end{array}$	sensit	$\begin{array}{c} 1.46 \pm 0.12 \\ 0.57 \pm 0.14 \\ 6.35 \pm 0.04 \\ 0.47 \pm 0.06 \\ 0.41 \pm 0.05 \end{array}$	$\begin{array}{c} 1.52 \pm 0.58 \\ 0.52 \pm 0.18 \\ 0.37 \pm 0.10 \\ 0.27 \pm 0.03 \\ 0.25 \pm 0.04 \end{array}$	$\begin{array}{c} 1.33 \pm 0.47 \\ 1.48 \pm 0.43 \\ 0.61 \pm 0.14 \\ 0.41 \pm 0.23 \\ 0.52 \pm 0.06 \\ 0.50 \pm 0.04 \\ 0.34 \pm 0.05 \end{array}$

constraints, making LDMMA inherently a second-order algorithm. Consequently, its efficiency deteriorates significantly when applied to large-scale problems.

In this experiment, we omit the validation/test error-vs-time curves in Figure 1 for both the grid/random search methods and IFDM because their numerical instability leads to highly erratic traces. As discussed in [31, 14], implicit differentiation methods can suffer from numerical instability when applied to problems with sparse regularization like elastic net. In such cases, the inner optimization problems often have poor conditioning, causing oscillatory behavior during convergence.

1039 D.4.2 Smoothed Support Vector Machine

The smoothed support vector machine incorporates smoothed hinge loss function and squared ℓ_2 -norm regularization. The formulation in (3) of the smoothed support vector machine is given as:

$$\min_{\mathbf{x},\lambda} \quad \sum_{i \in I_{val}} l_h(-b_i \mathbf{a}_i^T \mathbf{x})
\text{s.t.} \quad \mathbf{x} \in \arg\min_{\hat{\mathbf{x}}} \sum_{i \in I_{tr}} l_h(b_i \mathbf{a}_i^T \hat{\mathbf{x}}) + \frac{\lambda}{2} ||\hat{\mathbf{x}}||_2^2,$$
(75)

where l_h denotes the smoothed hinge loss function detailed in Table 1. Since there is only one regularization term in (75), we conduct LDPM using Algorithm 1 according to the discussion in Section 3.

We use the LIBSVM toolbox⁴ to load the datasets and extract the corresponding observation matrix and label vector for each dataset. Each dataset is divided into two separate parts: a cross-validation training set Ω consisting of $3\lfloor N/6 \rfloor$ samples, and a test set Ω_{test} containing the remaining samples. Within this division, the training set is further partitioned into multiple equal parts, and we iteratively use one part as the validation set while utilizing the remaining parts as the training set to solve the SVM problem. For the experiments, we conducted 6-fold cross-validation on the training and validation sets across all three datasets to optimize the hyperparameters.

During the process of solving the smoothed support vector machine problem with K-fold cross-validation, the loss function on the validation set is defined as follows:

$$\Theta_{val}(\mathbf{w}^1, \mathbf{w}^2, \dots, \mathbf{w}^K, \mathbf{c}) := \frac{1}{K} \sum_{k=1}^K \frac{1}{|\Omega_{val}^k|} \sum_{j \in \Omega_{val}^k} l_h(b_j \mathbf{a}_j^T \mathbf{w}^k), \tag{76}$$

Following the approach used for support vector machine [48], we reformulate the primal problem into the following bilevel optimization model for the smoothed support vector machine:

$$\min_{\mathbf{w},c} \quad \Theta_{val}(\mathbf{w}^{1}, \mathbf{w}^{2}, \dots, \mathbf{w}^{K}, \mathbf{c})
\text{s.t.} \quad \lambda > 0, \bar{\mathbf{w}}_{lb} \leq \bar{\mathbf{w}} \leq \bar{\mathbf{w}}_{ub}
\mathbf{w}^{k} \in \underset{-\bar{\mathbf{w}} \leq \mathbf{w} \leq \bar{\mathbf{w}}}{\operatorname{arg min}} \left\{ \sum_{j \in \Omega_{tr}^{k}} l_{h}(b_{j} \mathbf{a}_{j}^{T} \mathbf{w}) + \frac{\lambda}{2} ||\mathbf{w}||_{2}^{2} \right\}, k = 1, 2, \dots, K,$$
(77)

where $\mathbf{w}^1, \mathbf{w}^2, \dots, \mathbf{w}^K$ are K parallel copies of c and \mathbf{w} . $\bar{\mathbf{w}}_{ub}$ and $\bar{\mathbf{w}}_{lb}$ are the upper and lower bounds of $\bar{\mathbf{w}}$. Similarly, we define the loss function on the training set in a manner analogous to (76):

$$\Theta_{tr}(\mathbf{w}^1, \mathbf{w}^2, \dots, \mathbf{w}^K, \mathbf{c}) := \frac{1}{K} \sum_{k=1}^K \frac{1}{|\Omega_{tr}^k|} \sum_{j \in \Omega_{tr}^k} l_h(b_j \mathbf{a}_j^T \mathbf{w}^k).$$
 (78)

⁴https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

We also implement other competitive methods following the effective practice in [36, 22]. For LDPM with Algorithm 1, the penalty parameter is configured as $\beta_k = (1+k)^{0.3}$ and the step size in each iteration is fixed at $e_k = 0.1$. We plot the convergence curves of each algorithm for validation and test error in Figure 2.

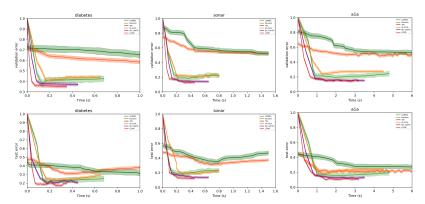


Figure 2: Comparison of the algorithms for SSVM problem on real-world datasets.

1062 D.4.3 Sparse Logistic Regression

The sparse logistic regression [46] is equipped with logistic loss function and ℓ_1 -norm regularization. Its formulation in (3) is

$$\min_{\mathbf{x},\lambda} \quad \sum_{i \in I_{val}} \log(1 + e^{-b_i \mathbf{a}_i^T \mathbf{x}})$$
s.t.
$$\mathbf{x} \in \arg\min_{\hat{\mathbf{x}}} \sum_{i \in I_{tr}} \log(1 + e^{-b_i \mathbf{a}_i^T \hat{\mathbf{x}}}) + \lambda \|\hat{\mathbf{x}}\|_1.$$
(79)

Similar to Appendix D.4.2, we also apply LDPM with Algorithm 1 in this experiment. Following the experimental setup in [15], we conduct our evaluations on large-scale real-world datasets. Specifically, we use the same datasets as [15], namely news20, rcv1 and real-sim, all of which can be downloaded from LIBSVM website⁵. Table 8 provides a brief introduction to the basic characteristics of these three datasets.

Table 8: Dataset Overview

Datasets	Samples	Features	Sparsity	Ratio
news20.binary	19,996	1,355,191		
rcv1.binary	20,242	47,236	0.155%	
real-sim	72,309	20,958	0.245%	0.33113

This experiment is initially conducted in [15]. Since VF-iDCA and LDMMA are not suitable for solving large-scale problems, and the reformulation of LDMMA is not applicable to the logistic loss function, we do not compare these algorithms in this experiment. We compare our method with search methods, IFDM, and BiC-GAFFA. Random search uniformly samples 50 hyperparameter values in the interval $[\lambda_{\max} - 4\log(10), \lambda_{\max}]$. The algorithm settings for IFDM follow the configurations in [15] for each real dataset without modification. For BiC-GAFFA, we use $\gamma_1 = 10, \gamma_2 = 0.01, \eta_k = 0.01, r = 5, \alpha_k = 0.01, \rho = 0.3$, with a maximum iteration limit of 1000. For LDPM with Algorithm 1, we set $\beta_k = (1+k)^{0.3}, e_k = 0.05$.

In this experiment, we implement the code provided in [15]. Each experiment is repeated 10 times to compute the average and variance of runtime, validation error, validation accuracy, test error, and test accuracy. The convergence curves of each algorithm with respect to validation and test error are illustrated in Figure 3. Additionally, we calculate the corresponding accuracy and report them in Table 9.

⁵https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

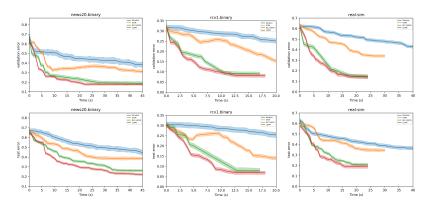


Figure 3: Comparison of the algorithms for sparse logistic regression on real-world datasets.

Table 9: Accuracy of sparse logistic regression problem on real-world datasets.

Dataset	Methods	Time(s)	Val. Acc.	Test Acc.
news20.binary	Random IFDM BiC-GAFFA LDPM	$\begin{array}{c} 654.63 \pm 33.26 \\ 41.16 \pm 6.81 \\ 32.64 \pm 4.48 \\ 30.85 \pm 3.29 \end{array}$	86.87 ± 1.14	84.07 ± 1.09 90.17 ± 0.81
rcv1.binary	Random IFDM BiC-GAFFA LDPM	$\begin{array}{c} 214.46 \pm 67.15 \\ 21.08 \pm 5.47 \\ 15.92 \pm 0.94 \\ 14.13 \pm 1.43 \end{array}$		96.12 ± 1.29 96.50 ± 1.21
real-sim	Random IFDM BiC-GAFFA LDPM	$624.45 \pm 38.03 \\ 25.86 \pm 1.57 \\ 18.08 \pm 0.71 \\ 17.93 \pm 0.68$	91.23 ± 2.18	91.10 ± 1.31 91.68 ± 2.42

Overall, we observe from Figure 3 and Table 9 that LDPM achieves the lowest time cost and test error in the experiment on sparse logistic regression.

The comprehensive experimental results provide strong evidence of the efficiency and practicality of our algorithm in addressing bilevel hyperparameter optimization. These results highlight its effectiveness in real-world applications, demonstrating its ability to achieve superior performance while maintaining computational efficiency.

E Further Discussions

1085

1088

1089

1090

1091

1092

1093

1094

1095

1103

1104

1105

LDPM effectively solves bilevel optimization problems of the form (3), as demonstrated by strong empirical results. However, the core of LDPM relies on a projected gradient descent, which currently cannot handle nonsmooth loss functions without dedicated solvers, such as the hinge loss in SVMs. In contrast, [36, 22] circumvent this issue by leveraging existing solvers to deal with such nonsmooth components.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer [Yes], [No], or [NA].
- [NA] means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. 1111 While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a 1112 proper justification is given (e.g., "error bars are not reported because it would be too computationally 1113 expensive" or "we were unable to find the license for the dataset we used"). In general, answering 1114 "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we 1115 acknowledge that the true answer is often more nuanced, so please just use your best judgment and 1116 write a justification to elaborate. All supporting evidence can appear either in the main paper or the 1117 supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification 1118 1119 please point to the section(s) where related material for the question can be found.

1120 IMPORTANT, please:

1106

1107

1108

1121

1122

1123

1124

1125

1126

1127

1129

1130

1131

1132

1134

1135

1136 1137

1138

1139

1140

1141

1142

1143

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

- Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",
- · Keep the checklist subsection headings, questions/answers and guidelines below.
- Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly summarize the paper's key contributions and accurately reflect the scope and content presented in the main body.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper clearly acknowledges the limitations of the proposed approach, particularly regarding its assumptions and potential generalizability.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was
 only tested on a few datasets or with a few runs. In general, empirical results often
 depend on implicit assumptions, which should be articulated.

- The authors should reflect on the factors that influence the performance of the approach.
 For example, a facial recognition algorithm may perform poorly when image resolution
 is low or images are taken in low lighting. Or a speech-to-text system might not be
 used reliably to provide closed captions for online lectures because it fails to handle
 technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The paper clearly states all necessary assumptions and provides complete and rigorous proofs for each theoretical result.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper clearly describes the experimental settings, datasets, evaluation metrics, and implementation details, enabling reproduction of the main results and supporting the paper's key claims.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived
 well by the reviewers: Making the paper reproducible is important, regardless of
 whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways.
 For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed

- instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The paper clearly describes the experimental setup, which allows for the reproducibility of the main experimental results.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The paper provides a clear and comprehensive description of all the necessary training and testing details, including data splits, hyperparameters, their selection process, and the type of optimizer used, which ensures that the results can be understood and reproduced.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail
 that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper clearly reports the statistical results, as all experiments were repeated and the corresponding statistical significance and error bars were appropriately provided, ensuring the reliability of the reported findings.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The paper clearly specifies the computational resources used for the experiments, including the type of compute workers, memory, and execution time, ensuring that readers can understand and reproduce the experimental setup.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper fully adheres to the NeurIPS Code of Ethics, ensuring that all ethical guidelines and considerations were followed during the study.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [No]

Justification: The paper does not discuss the potential positive or negative societal impacts of the work performed, as the primary focus is on the technical and theoretical aspects of the research.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal
 impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Since our work does not involve the release of data or models that could pose significant risks for misuse, such as pretrained language models, image generators, or scraped datasets, there are no specific safeguards required.

Guidelines:

• The answer NA means that the paper poses no such risks.

- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1404

1405

1406

1407 1408

1409

1410

1411

1412 1413

1414

1415

1416

1417

1418

1419

1420

Justification: In our comparison experiments, we ran methods from other researchers, utilizing the code and datasets provided in their papers. We ensured proper crediting and respect for the licensing and terms of use associated with both the code and the datasets.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [No]

Justification: The authors have only reported on existing methods and datasets, without introducing new assets that require additional documentation.

Guidelines

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

1421 Answer: [NA]

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1462

1463

1464

1465

Justification: The paper does not involve human subjects or crowdsourcing experiments, so this question is not applicable.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: Since the research does not involve human subjects or crowdsourcing experiments, there are no associated risks.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions
 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
 guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No LLMs were used in the core methods or any important components of the research, so no declaration is required.

Guidelines

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.