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Abstract

Hyperparameter optimization (HO) is a critical task in machine learning and can1

be formulated as a bilevel optimization problem. However, many existing algo-2

rithms for addressing nonsmooth lower-level problems involve solving sequential3

subproblems, which are computationally expensive. To address this challenge, we4

propose penalty methods for solving HO, leveraging strong duality between the5

lower-level problem and its dual. We show that the penalized problem closely6

approximates the optimal solutions of the original HO under certain conditions.7

Moreover, we develop first-order single-loop algorithms to solve the penalized8

problems efficiently. Theoretically, we establish the convergence of the proposed9

algorithms. Numerical experiments demonstrate the efficiency and superiority of10

our method.11

1 Introduction12

Hyperparameter optimization (HO) arises in many diverse fields, neural architecture search [16, 29,13

57], feature learning [35], ensemble models [25], semi-supervised learning [42] and sample-weighting14

schemes [34, 77, 74, 82]. The hyperparameters control model complexity, training stability and15

convergence. Unlike model parameters, they need to be chosen externally. A poor choice can cripple16

performance, whereas good hyperparameters greatly enhance accuracy, robustness and generalization.17

Regularization is a common way to guide hyperparameter tuning, especially in regression and18

classification [32]. By adding a penalty term to the empirical risk, one trades off data fitting against19

model complexity to curb overfitting. The general framework can be formulated as20

min
x

l(x) +

M+1∑
i=1

λiRi(x), (1)

where l(x) represents the loss function and λ = (λ1, λ2, ..., λM+1) encompasses hyperparameters.21

Meanwhile, Ri(x), i = 1, 2, ...,M + 1 denotes the regularizers related to norms, which can be22

categorized as follows:23

Ri(x) = ∥x∥(i), i = 1, 2, ...,M, RM+1(x) =
1

2
∥x∥22. (2)

For each i, ∥ · ∥(i) represents a specific norm, such as the ℓ1, ℓ2, ℓ∞, ℓ1,2 norm for vectors, the24

spectre or nuclear norm for matrices, or other commonly used norms. Note that these two types of25

regularizers may appear simultaneously or individually.26

Based on the formulation (1), training/validation approach is involved as a sophisticated method. This27

method optimizes parameters in the form (1) on the training set and observes the corresponding error28

on the validation set. The approach can be summarized as bilevel optimization framework [57, 9] and29
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has demonstrated outstanding performance in practical applications [66, 31, 35, 15]. In essence, the30

process can be outlined in the following bilevel optimization (BLO) [72, 28]:31

min
x∈Rn,λ∈RM+1

+

L(x) s.t. x ∈ argmin
x̂

{
l(x̂) +

M+1∑
i=1

λiRi(x̂)

}
, (3)

where L, l, Ri : Rn → R ∪ {+∞} are proper, closed functions, x is the parameter to learn, and32

λ is hyperparameter. In BLO (3), the lower-level (LL) problem serves as a base learner, aiming33

to determine the optimal hypothesis on the training set for a given hyperparameter configuration.34

In contrast, the upper-level (UL) problem aims to identify the hyperparameter and corresponding35

hypothesis that minimizes the given criteria on the validation set. We explain the mathematical36

forms of the component functions in problem (3) using several illustrative examples listed in Table37

1, including elastic net [100], sparse group Lasso [83], logistic regression [68, 46], low-rank matrix38

completion [20] and smoothed support vector machine [78, 65].39

Table 1: Examples of bilevel hyperparameter optimization [48, 31, 46] in the form (3).

Machine learning algorithm Upper Criteria Base Learner

Elastic net 1
2

∑
i∈Ival

|bi − xTai|2 1
2

∑
i∈Itr

|bi − xTai|2 + λ1∥x∥1 + λ2
2
∥x∥22

Sparse group Lasso 1
2

∑
i∈Ival

|bi − xTai|2 1
2

∑
i∈Itr

|bi − xTai|2 +
∑M

m=1 λm∥x(m)∥2 + λM+1∥x∥1
Smoothed support vector machine

∑
i∈Ival

lh(biw
Tai)

∑
i∈Itr

lh(biw
Tai) +

λ
2
∥w∥2 (with constraint −w̄ ≤ w ≤ w̄.)

Low-rank matrix completion
∑

(i,j)∈Ωval

1
2
|Mij − xiθ − zjβ − Γij |2

∑
(i,j)∈Ωtr

1
2
|Mij − xiθ − zjβ − Γij |2 + λ0∥Γ∥∗ +

∑G
g=1 λg∥θ(g)∥2 +

∑G
g=1 λg+G∥β(g)∥2

Logistic regression
∑

j∈Ival
log(1 + e−bjx

T aj )
∑

j∈Itr
log(1 + e−bjx

T aj ) + λ
2
∥x∥2

lh denotes the smoothed hinge loss given by lh(x) =
1
2
− x if x ≤ 0, 1

2
(1− x)2 if 0 ≤ x ≤ 1 and 0 else.

1.1 Related Work40

Hyperparameter Optimization. A variety of approaches have been developed for hyperparameter41

optimization (HO) [44]. The simplest model-free techniques include grid search [45] and random42

search [12]. More advanced methods such as Bayesian optimization [11, 84] iteratively select43

evaluation points based on prior observations. However, these approaches often struggle with44

scalability when faced with high-dimensional parameter spaces.45

Bilevel Optimization. Bilevel optimization (BLO) underpins many machine learning tasks, including46

meta-learning [33], adversarial learning [19, 86, 87], reinforcement learning [80, 85, 93, 89], model47

selection [47, 39], generative adversarial networks [38, 40], and game theory [55]. Early methods48

primarily relied on gradient-based algorithms, which can be broadly classified into two categories:49

Iterative Differentiation (ITD) and Approximate Implicit Differentiation (AID). ITD methods unroll50

the lower-level problem and compute hypergradients via backpropagation [34, 35, 41, 61, 5, 77],51

while AID methods derive gradients from the lower-level optimality conditions [72, 73, 63, 92, 91].52

Recent advances include fully first-order methods that avoid Hessian and implicit gradient com-53

putations [23, 54, 24]. To address the challenge of multiple lower-level minima, [59] introduce54

a value-function-based reformulation, leading to penalization-based algorithms [60]. This line of55

work has grown into a prominent direction, with various penalty-based single-level reformulations56

proposed in [79, 64, 50, 49, 56]. Another promising direction leverages the Moreau envelope to57

smooth the bilevel structure, yielding single-loop, Hessian-free algorithms capable of converging to58

well-defined KKT points [37, 95, 94].59

For BLO with nonsmooth lower-level problems, [14] propose an implicit differentiation framework60

based on block coordinate descent, which is later extended to general nonsmooth settings [15]. Other61

approaches include DC methods [96, 97] and penalized DC formulations [36], both requiring the62

computation of the lower-level value function. Smoothing-based strategies have also been explored63

to handle nonsmoothness [3, 2, 71]. Additionally, [23] present a gradient-free method with inexact64

subproblem solutions, while [22] reformulate BLO via duality, avoiding the value function entirely65

and solving the problem through cone programming. [62] further extend the Moreau envelope66

approach to nonsmooth lower-level problems, offering efficient single-loop algorithms.67

1.2 Motivations and Contributions68

In this work, we focus on solving the bilevel optimization (3). We extend the reformulation initially69

proposed by [22] and incorporate penalty strategy. We demonstrate that our framework is applicable70

to commonly used hyperparameter optimization problems schemed in (3). Moreover, we propose71
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the Lower-level Duality Based Penalty Methods (LDPM), which are first-order algorithms specif-72

ically designed for the penalized problem. The algorithms efficiently handle the nonsmooth norm73

components with epigraphic projections. Notably, our algorithms are single-loop and Hessian-free,74

relying solely on the first-order information of the functions in (3). Theoretically, we establish the75

convergence results of the algorithms under mild conditions. We summarize our contributions as76

follows.77

• We propose a penalty method based on lower-level duality for hyperparameter optimization78

(3), which is in the form of BLO with nonsmooth LL problem.79

• We introduce two first-order single-loop algorithms to solve the penalized problem and80

provide theoretical proof of the convergence.81

• We evaluate the efficiency of our algorithms with numerical experiments on synthetic and82

real-world data. Experimental results validate superiority of our algorithm in practical83

scenarios.84

2 Penalty-based Approach85

In this section, we propose our penalization framework for the original problem (3). Prior to this,86

we observe that the loss functions of base learners in Table 1 share a unified structure of the form87

φ(Ax− b), where Ax− b abstracts the data-sample relationship. Accordingly, we denote that88

l(x) = φ(Atx− bt), (4)

where l(x) corresponds to the loss on validation and training sets as described in (3). We now provide89

a detailed discussion of the mathematical forms of the function φ for problems in Table 1, along with90

the expressions At,bt:91

Least squares loss: φ(t) = 1
2 t

2, with Atx− bt = Atrx− btr.92

Smoothed hinge loss: φ(t) = lh(t) with Atw − bt = (btrAtr)w.93

Logistic loss: φ(t) = log(1 + e−t), with Atx− bt = (btrAtr)x.94

Building on the inner structure of φ and Ri, our approach is grounded in a reformulation based on the95

duality of LL problem. We embrace the idea initially proposed by [22] and summarize the following96

lemma, which is a modification and extension of [22, Theorem 2.1].97

Lemma 2.1. Given the convex lower semi-continuous functions l and Ri, if ri(dom l ∩98

(∩M+1
i=1 dom Ri)) ̸= ∅1, then problem (3) has the following equivalent form:99

min
x,λ,ρ,ξ

L(x) s.t.


l(x) +

M+1∑
i=1

λiRi(x) + φ∗(ξ) +

M+1∑
i=1

λiR
∗
i

(
ρi
λi

)
+ ξ⊤bt ≤ 0,

At ξ +

M+1∑
i=1

ρi = 0.

(5)

where ρ = (ρ1, ...,ρM+1) and At,bt, φ are consistent with those in (4) and φ∗ and R∗
i are the100

conjugate functions of φ and Ri for i = 1, 2, ...,M + 1, respectively. 2101

Remark 2.2. Slater’s condition is broadly satisfied by all examples in Table 1, ensuring strong duality102

for the LL problem in (3) without requiring strong convexity. For instance, the least squares loss is103

not strongly convex, yet strong duality still holds under this condition.104

We present a detailed proof of Lemma 2.1 in the Appendix A.1. Notably, each problem listed in Table105

1 can be reformulated into the structure of (5). For clarity, we calculate the closed-form expressions106

of the conjugate functions in Appendix A.3. We remark that our reformulation utilizes the structure107

of l(x) in (4), which is different from the one in [22, Theorem 2.1]. Notably, each problem listed in108

Table 1 can be reformulated into the structure of (5).109

To elaborate, we discuss the terms R∗
i in (5) as follows. For i = 1, 2, ...,M , Ri denotes a norm, i.e.,110

Ri(x) = ∥x∥(i). In this case, we know that R∗
i (y) is the indicator function of the set {∥y∥∗(i) ≤ 1}111

1This condition is commonly known as Slater’s condition. ri(·) denotes the relative interior of the set.
2We define the conjugate h∗(y) = supx{yTx− h(x)} for a function h.
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where ∥ · ∥∗(i) denoted the dual norm of ∥ · ∥(i) [18, Example 3.26]. The term RM+1 denotes the112

squared ℓ2-norm, i.e.,RM+1(x) =
1
2∥x∥

2
2. In this case, we can compute that λM+1R

∗
M+1(

ρM+1

λM+1
) =113

∥ρM+1∥2
2

2λM+1
[18, Example 3.27]. To refine the intricate constraints of (5), we introduce auxiliary114

variables ri and s satisfying Ri(x) ≤ ri and ∥ρM+1∥2
2

2λM+1
≤ s. This results in a further reformulation115

based on Lemma 2.1.116

Proposition 2.3. The original problem (3) can be reformulated as117

min
x,λ,ρ,r,ξ,s

L(x)

s.t. l(x) +
M+1∑
i=1

λiri + φ∗(ξ) + ξTbt + s ≤ 0, Atξ +
M+1∑
i=1

ρi = 0,

∥x∥(i) ≤ ri, ∥ρi∥∗(i) ≤ λi, i = 1, 2, ...,M,
1
2
∥x∥22 ≤ rM+1, ∥ρM+1∥22 ≤ 2λM+1s.

(6)

For simplicity, we rewrite the left-hand of the first inequality constraint in (6) as:118

p(x,λ, r, ξ, s) = l(x) +

M+1∑
i=1

λiri + φ∗(ξ) + ξTbt + s. (7)

Now we consider the penalization of problem (6) as follows,119

min
z

Fk(z) s.t.

{
∥x∥(i) ≤ ri, ∥ρi∥∗(i) ≤ λi, i = 1, 2, . . . ,M,
1
2∥x∥

2
2 ≤ rM+1, ∥ρM+1∥22 ≤ 2λM+1s.

(8)

where Fk(z) := L(x) + βkp(x,λ, r, ξ, s) +
βk

2 ∥Atξ +
M+1∑
i=1

ρi∥2 with z := (x,λ,ρ, r, ξ, s) for120

convenience, and βk serves as the penalty parameter. This penalty strategy is commonly employed121

in bilevel optimization [79, 62, 95, 94, 59]. Inspired by [70, Theorem 17.1], the following theorem122

reveals the relationship between the optimal solutions of penalization and reformulation (6).123

Theorem 2.4. Assume L, l and Ri are lower semi-continuous, with the loss function l and the124

regularization term Ri in LL objective being convex. Suppose the penalty parameter satisfying125

βk → ∞. If zk+1 is the minimizer of penalized problem (8) with βk, then every limit point z∗ of the126

sequence {zk} is a solution to the reformulation (6).127

The proof of Theorem 2.4 is provided in Appendix A.2. From the equivalence between (5) and (6), it128

follows that if z is the solution of (6), then (x,λ,ρ, ξ) is the corresponding solution of (5). Thus,129

Theorem 2.4 also reveals the connection between (5) and (8).130

3 Epigraphical Projection-based First-order Algorithms131

We develop our algorithms based on the penalized formulation (8), beginning with general assump-132

tions on the original problem (3) to support analysis and algorithm design.133

Assumption 3.1. The UL objective L is αL-smooth with respect to LL variable x. Additionally, as a134

loss function, L is non-negative, i.e., L(x) ≥ 0 for all x.135

Assumption 3.2. The function φ is convex. Moreover, the function φ and its conjugate φ∗ is αp-136

and αd-smooth, respectively.137

Remark 3.3. Assumptions 3.1 and 3.2 are satisfied by commonly used loss functions. Specifically,138

the problems listed in Table 1 adhere to Assumptions 3.1 and 3.2. We remark the UL objective L can139

be nonconvex, which remains compatible with our framework.140

Remark 3.4. The smoothness properties of l are naturally inherited by φ. Therefore, Assumption 3.2141

implies that l is convex and Lipschitz smooth. Combined with the definition of Ri in (2), Assumption142

3.2 ensures that the LL problem in (3) is convex. Importantly, our framework relies only on the143

first-order differentiability and does not require the LL objective in (3) to exhibit strong convexity.144

However, the primary challenges of solving (8) stem from the nonsmooth nature of the constraints,145

particularly when different norms are involved. We define corresponding sets for the constraints in146
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problem (8) in the form of cones as follows:147

Ki := {(x, r) | ∥x∥(i) ≤ ri}, Kd
i := {(ρi, λi) | ∥ρi∥∗(i) ≤ λi}, i = 1, 2, ...,M,

KM+1 := {(x, r) | ∥x∥22 ≤ 2rM+1}, Kd
M+1 := {(ρM+1, λM+1, s) | ∥ρM+1∥22 ≤ 2λM+1s}.

(9)
Furthermore, each set in (9) is projection-friendly, which facilitates efficient epigraphic projection of148

corresponding norms. The details of the projection operations are discussed in Appendix B.149

Given these insights, a natural approach to manage the constraints in (8) is through projections onto150

Ki and Kd
i . To address problems with different regularizers, we discuss the proposed algorithms in151

various scenarios. Section 3.1 focuses on problem (3) with single-round global regularization applied152

to the entire vector x. Section 3.2 extends this to problems with multiple interacting regularizers.153

This division provides a structured approach to handling varying constraints and regularization terms.154

3.1 Separable Regularizers155

In this subsection, we explore the algorithm for (3) when the LL problem incorporates separate156

regularizers, structured as a single group of component-wise terms. Specifically, the LL problem in157

(3) can be expressed as158

x ∈ argmin
x̂

{
l(x̂) +

M∑
i=1

λi∥x̂(i)∥(t)

}
,

where x(i) represents the i-th subvector of x with x = (x(1), ...,x(M)) and ∥ · ∥(t) represents a159

prescribed norm applied to each group.160

When M = 1, the LL problem of (3) involves a single regularizer R1(x), corresponding to simpler161

models such as toy Lasso or logistic regression. In this case, the constraints of (8) simplify as follows.162

If R1(x) = ∥x∥(t) and ∥ · ∥(t) is a norm, the constraints of (8) reduce to:163

∥x∥(t) ≤ r1, ∥ρ∥∗(t) ≤ λ1. (10)

If R1(x) =
1
2∥x∥

2
2, the constraints of (8) simplify to:164

1

2
∥x∥22 ≤ r1,

1

2
∥ρ∥22 ≤ λ1s. (11)

The constraints (10)-(11) are consistent with the structure in (9) and can be compactly expressed as165

z ∈ K := K1 ×Kd
1. (12)

When M > 1, the LL problem of (3) incorporates group regularization, where group-wise ℓ2-166

regularization is the most common choice. This setting is widely adopted in practice, as illustrated by167

examples such as group Lasso in Table 1. Although the problem may appear to involve multiple regu-168

larization terms and hyperparameters, it essentially amounts to applying a single-round regularization169

process over the entire variable x. Under this structure, the constrains of (8) simplifies to:170

∥x(i)∥(t) ≤ ri, ∥ρ(i)∥(t) ≤ λi, i = 1, . . . ,M, (13)

where ρ(i) is the i-th subvector of ρ with ρ = (ρ(1), ...,ρ(M)). Since constraints of (13) are171

independent for each i, they can be equivalently expressed as:172

(x, r) ∈ K1 × · · · × KM , (ρ,λ) ∈ Kd
1 × · · · × Kd

M ,

which implies that173

z ∈ K := (K1 × · · · × KM )× (Kd
1 × · · · × Kd

M ). (14)

Importantly, we observe that K in (12) and (14) remains projection-friendly, facilitating efficient174

implementation. Accordingly, we adopt a gradient projection method to solve the penalized problem175

(8), as outlined in Algorithm 1. In each iteration, we update z as176

zk+1 = projK(z
k − ek∇zFk(z

k)), (15)

where ek > 0 is the step size, and projK(x) is the projection of x onto K.177
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Algorithm 1 First-order Projection-based Method
1: Input λ0, ξ0, sequences {βk}, {ek}. Initialize x0, r0,ρ0, s0.
2: for k = 0, 1, 2, ... do
3: Update zk+1 with projection gradient descent as (15).
4: end for

In Algorithm 1, we choose the penalty parameter as βk = β(1 + k)p with a constant β > 0 and178

0 < p < 1/2, which corresponds to Theorem 2.4. Such a selection strategy is common in penalty179

method and augmented Lagrangian methods [70, 69, 27, 62, 95, 94]. The initialization of Algorithm180

1 is detailed in Appendix C.1. We remark that Algorithm 1 is a single loop algorithm that does not181

require solving any subproblem.182

Next, we proceed to the convergence analysis of Algorithm 1, specifically investigating the non-183

asymptotic convergence properties of the sequence {zk} generated by Algorithm 1. By leveraging the184

reformulation in Lemma 2.1 and the definition of p, it follows that p(x,λ, r, ξ, s) ≥ 0 and no interior185

point exists for the feasible set [98, 59, 22]. In this case, the classical KKT condition for nonsmooth186

constrained optimization [76] are unsuitable for our analysis. Instead, we adopt the approximation187

KKT conditions introduced in [4]. We denote merit functions below,188

ϕkres(z) := dist
(
0,∇zFk(z) +NK(z)

)
, (16)

189

ϕfea(z) := max{p(x,λ, r, ξ, s), ∥Atξ + ρ∥2}. (17)

The residual function ϕkres(z) quantifies the stationarity for (8), because ϕkres(z) = 0 if and only190

if z is a stationary point of (8). Meanwhile, the function ϕfea(z) is interpreted as a feasibility191

measure for the penalized constraints of problem (6) [67]. Indeed, the merit functions in (16) and (17)192

are associated with the reformulation (5). Combined with the structure of BLO, ϕfea(z) regulates193

optimality conditions of LL problem of (3). We clarify corresponding conclusions in Proposition C.1.194

Theorem 3.5. Suppose Assumptions 3.1 and 3.2 hold. If the step size {ek} in Algorithm 1 satisfies195

0 < ek ≤ min{ 1
αL+βk∥At∥2

2αp
, 1
βk
, 1
βk(αd+∥At∥2

2
)}, the sequence {zk} generated by Algorithm 1196

satisfies197

min
0≤k≤K

ϕkres(z
k+1) = O(

1

K
1
2−p

).

Furthermore, if the sequence {Fk(z
k)} is bounded, then it holds that198

0 ≤ min
0≤k≤K

ϕfea(z
k) = O(

1

Kp
).

We remark that boundedness assumptions on {Fk(z
k)} are widely adopted in relevant literature199

[95, 94, 62]. We provide explanations, proofs and more details in Appendix C.3.200

3.2 Nonseparable Regularizers201

In this subsection, we focus on developing a first-order algorithm for solving (3) in scenarios involving202

multiple interacting regularizers. These cases arise when the LL problem of (3) incorporates multiple203

regularization terms applied to the entire vector x, such as elastic net or sparse group Lasso. Our204

discussion centers on addressing the penalized formulation in this setting, leveraging the reformulation205

(8). Using the definitions of Ki and Kd
i from (9), the constraints of (8) can be written as206

(x, r) ∈ Ki, (ρi, λi) ∈ Kd
i , i = 1, 2, ...,M,

(x, r) ∈ KM+1, (ρM+1, λM+1, s) ∈ Kd
M+1,

which can be further expressed as207

(x, r) ∈ K1 ∩ · · · ∩ KM+1, (ρ,λ, s) ∈ Kd
1 × · · · × Kd

M+1. (18)

We denote Kd
∗ := Kd

1 × · · · × Kd
M+1. (18) can be equivalently expressed as208

z ∈ (K1 ∩ · · · ∩ KM+1)×Kd
1 × · · · Kd

M+1 = (K1 ∩ · · · ∩ KM+1)×Kd
∗.

Since each Kd
i is projection-friendly, the product set Kd

∗ inherits this property. In contrast, the209

intersection ∩M+1
i=1 Ki defined over the shared variable (x, r) may not be projection-friendly. Although210
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projection onto such intersections has been studied [6, 58], the required iterations are often complex.211

To address this, we reformulate the constraint to avoid direct projection onto the intersection:212

z ∈ Ki ×Kd
∗, i = 1, 2, ...,M + 1. (19)

For each i, since both Kd
∗ and Ki are projection-friendly, the product set Ki ×Kd

∗ is also projection-213

friendly. Consequently, we introduce auxiliary variables ui for constraints (19), leading to the214

following reformulation of (8):215

min
z,u

1

βk
Fk(z) s.t. z = ui, ui ∈ Ki ×Kd

∗, i = 1, ...,M + 1, (20)

where u = (u1, ...,uM+1). We define the indicator function as gi(z) = IKi×Kd
∗
(z), i = 1, 2, ...,M+216

1. The augmented Lagrangian function of problem (20) is given by:217

Lk
γ(z,u,µ) =

1

βk
Fk(z) +

M+1∑
i=1

gi(ui) +

M+1∑
i=1

⟨µi,ui − z⟩+ γ

2

M+1∑
i=1

∥ui − z∥2,

where µ := (µ1, ...,µM+1) denotes the Lagrangian multiplier associated with constraint z = ui.218

Based on Lk
γ(z,u,µ), we adopt an alternative approach to solve (20) inspired by the core idea of219

the Alternating Direction Method of Multipliers (ADMM). This method alternates between updating220

primal variables z and u in separate subproblems, followed by a dual ascent step to update µ. At the221

k-th iteration, we update z by performing a gradient step with given zk:222

zk+1 = zk − ekd
k
z , (21)

where the update direction dk
z corresponds to the gradient of Lk

γ with respect to z evaluated at223

(zk,uk,µk) and ek is the step size of k-th iteration. This is equivalent to minimize the proximal224

subproblem of Lk
γ :225

zk+1 = argmin
z

{
Lk
γ(z

k,uk,µk) + ⟨∇zLk
γ(z

k,uk,µk), z− zk⟩+ 1

2ek
∥z− zk∥2 }.

Next, for the u-subproblem, we update ui by minimizing Lk
γ with respect to ui as226

uk+1
i = argmin

ui

{
gi(ui) +

γ

2
∥ui − zk+1 +

µk
i

γ
∥2
}
, (22)

which is equivalent to performing the direct projection onto Ki ×Kd
∗, yielding:227

uk+1
i = projKi×Kd

∗
(
µk

i

γ
− zk+1), i = 1, ...,M + 1. (23)

Finally, for the dual multipliers µi, we update them as228

µk+1
i = µk

i + γ(uk+1
i − zk+1), i = 1, ...,M + 1. (24)

Algorithm 2 Alternating approaches for (20)

1: Input λ0, ξ0, sequences {βk}, {ek}, a constant γ. Initialize x0, r0,ρ0
i , s

0, set u0
i = z0.

2: for k = 0, 1, 2, ... do
3: Update zk+1 with (21).
4: Update uk+1 with (23).
5: Update µk+1 with (24).
6: end for

The penalty parameter is updated as βk = β(1 + k)p, where β > 0 is a constant and 0 < p < 1
2 . The229

initialization of Algorithm 2 is also detailed in Appendix C.1. We remark that Algorithm 2 differs230

from standard ADMM or DRS in two key aspects: (i) the augmented Lagrangian Lk
γ varies with231

the iteration-dependent parameter βk. (ii) instead of exactly minimizing Lk
γ in the z-subproblem,232

we adopt its first-order approximation at zk. The strategy is commonly employed in gradient-based233

alternating minimization approaches [1, 17].234
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In the following, we discuss the convergence property of Algorithm 2. Similar to the analysis for235

Algorithm 1, we utilize the stationarity and feasibility measure commonly used in penalty methods236

[67, 95, 94]. We define the following merit functions in the same arguments as (16) and (17):237

ϕkres(z) := dist
(
0,∇Fk(z) +NK(z)

)
, (25)

238

ϕfea(z) := max{p(x,λ, r, ξ, s), ∥Atξ +

M+1∑
i=1

ρi∥2}, (26)

where K := (K1 ∩ · · · ∩ KM+1) × Kd
1 × · · · Kd

M+1. Based on the above functions, we establish239

the convergence results for Algorithm 2 in Theorem 3.7. In pursuit of this, we make the following240

assumption, which is popularly employed in ADMM approaches [90, 8, 81, 26].241

Assumption 3.6. The sequence {µk} is bounded and satisfies
∞∑
k=1

∥µk+1 − µk∥2 ≤ ∞.242

Theorem 3.7. Suppose Assumptions 3.1, 3.2 and 3.6 hold. If the step sizes in Algorithm 2 satisfy243

0 < e ≤ ek < min{ βk

αL+βk∥At∥2
2αp

, 1
αd+∥At∥2

2
, 1}, the sequence {zk} generated by Algorithm 2244

satisfies limk→∞ ϕkres(z
k+1) = 0. Furthermore, if the sequence {Fk(z

k)} is bounded, then it holds245

that limk→∞ ϕfea(z
k) = 0.246

Note that the lower bound e for step sizes ek is commonly utilized in single-loop Hessian-free247

algorithms for BLO [94, 95, 62]. We provide the detailed proof for Theorem 3.7 in Appendix C.4.248

4 Numerical Experiments249

In this section, we evaluate the numerical performance of our proposed LDPM through experiments on250

both synthetic and real datasets. Specifically, we compare LDPM with several existing hyperparameter251

optimization algorithms under the BLO framework (3), including search methods, TPE [13], IGJO252

[31], IFDM [14, 15], VF-iDCA [36], LDMMA [22], BiC-GAFFA [94], as detailed in Appedix D.1.253

We consider all hyperparameter optimization problems listed in Table 1. Performance is evaluated254

using validation and test errors based on the obtained LL minimizers, as well as the total running255

time. These metrics are standard in the evaluation of bilevel hyperparameter optimization algorithms256

[36, 31]. For each problem, we perform experiments across various data settings or datasets with 10257

repetitions, and report the aggregated statistical results. Depending on the regularization structure of258

each problem, we apply either Algorithm 1 or 2, as detailed in Section 3.259

4.1 Experiments on synthetic data260

We focus on two prototypical tasks built from simple synthetic data: least squares regression with261

various Lasso-type regularizers and low-rank matrix completion, as listed in Table 1. The synthetic262

data consists of observation matrices sampled from specific distributions and response vectors263

generated with controlled noise. The detailed data generation process is provided in Appendix D.2.264

Lasso-type Regression. We consider three regularizers: elastic net [100], group Lasso [99], and265

sparse group Lasso [83]. These formulations all promote sparsity while balancing model complexity266

and predictive accuracy. Table 2 presents the statistical results for the sparse group Lasso problem,267

including validation error, test error, and running time. Results for the elastic net and group Lasso268

problems are reported in Tables 3 and 4, respectively. Detailed experimental settings for each method269

are provided in the corresponding subsections of Appendix D.2. Overall, LDPM demonstrates270

superior performance on synthetic data, consistently achieving the lowest test errors while requiring271

the least computational time compared to baseline methods.272

Low-rank matrix completion. For this problem, we conduct the numerical experiments on 60× 60273

matrices [36, 31]. The data generation process, detailed statistical results, and corresponding analysis274

are presented in Appendix D.2.4.275

Sensitivity of parameters. We conduct sensitivity experiments on both Algorithm 1 and Algorithm276

2. The results summarized in Table 6 show that both algorithms exhibit stable convergence across277

various parameter settings.278
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Table 2: Sparse group Lasso problems on synthetic data, where p represents the number of features.
Settings p = 600 p = 1200

Time(s) Val. Err. Test Err. Time(s) Val. Err. Test Err.

Grid 6.36 ± 1.88 84.73 ± 5.29 87.34 ± 15.91 13.68 ± 2.49 84.68 ± 4.31 86.00 ± 18.43
Random 6.02 ± 2.01 135.17 ± 5.95 147.43 ± 25.54 12.64 ± 2.84 137.87 ± 14.21 146.25 ± 15.52

IGJO 1.58 ± 0.28 101.93 ± 4.07 96.36 ± 13.72 7.35 ± 1.46 130.56 ± 14.02 106.70 ± 4.01
VF-iDCA 0.56 ± 0.15 56.96 ± 5.58 76.84 ± 11.33 8.63 ± 2.91 86.38 ± 6.40 87.58 ± 8.90
LDMMA 0.57 ± 0.13 82.70 ± 5.03 72.44 ± 14.72 4.72 ± 2.15 83.93 ± 7.32 84.03 ± 9.08

BiC-GAFFA 0.39 ± 0.02 67.42 ± 6.28 71.45 ± 10.74 2.52 ± 0.29 82.21 ± 5.03 79.81 ± 7.66
LDPM 0.35 ± 0.03 65.11 ± 6.62 69.48 ± 9.40 2.15 ± 0.14 81.39 ± 6.51 78.11 ± 6.35

Settings p = 2400 p = 4800
Time(s) Val. Err. Test Err. Time(s) Val. Err. Test Err.

Grid 24.23 ± 4.05 95.63 ± 14.13 84.86 ± 15.09 47.09 ± 6.34 128.94 ± 24.11 115.41 ± 17.62
Random 22.17 ± 6.85 120.04 ± 15.36 146.77 ± 16.70 46.3 ± 5.57 99.41 ± 16.55 122.49 ± 19.46

IGJO 11.14 ± 7.44 91.59 ± 14.97 115.98 ± 14.94 29.76 ± 9.44 99.75 ± 15.14 106.49 ± 7.48
VF-iDCA 14.31 ± 1.45 63.21 ± 5.36 81.92 ± 10.54 45.12 ± 3.10 73.66 ± 10.53 96.09 ± 9.14
LDMMA 7.50 ± 0.21 66.23 ± 7.47 79.09 ± 13.75 36.14 ± 3.65 78.61 ± 12.32 95.81 ± 9.43

BiC-GAFFA 5.11 ± 0.10 86.83 ± 13.53 76.38 ± 8.60 5.03 ± 0.63 94.34 ± 8.19 92.05 ± 7.13
LDPM 4.87 ± 0.05 92.32 ± 6.62 74.14 ± 2.79 4.58 ± 0.17 91.35 ± 6.04 90.21 ± 5.74

4.2 Experiments on real-world data279

To assess the robustness of our algorithm in practical settings, we conduct experiments on real-world280

datasets that are larger and exhibit more complex sampling distributions. Specifically, we consider281

experiments on elastic net, smoothing support vector machine and sparse logistic regression, as282

listed in Table 1. All datasets are drawn from the LIBSVM repository3 [21]. For each repetition, we283

randomly shuffle and split the data into training, validation and test sets.284

Elastic Net. In this part, we conduct experiments on datasets gisette [43] and sensit [30]. We285

summarize the comparative experimental results in Table 7 and show the validation and test error286

curves over time for each algorithm in Figure 1. Even in these high-dimensional settings, LDPM287

delivers competitive accuracy while maintaining fast convergence. Additional experimental details288

are provided in Appendix D.4.1.289

Figure 1: Comparison of the algorithms on Elastic Net problem for real-world datasets.

Smoothed Support Vector Machine. In this part, we perform 6-fold cross-validation using medical290

statistics datasets, including diabetes, sonar, a1a [7]. Details of the datasets and experimental setup291

are given in Appendix D.4.2. We plots the validation and test errors of each algorithm over time in292

Figure 2, which clearly shows that LDPM converges more rapidly and achieves lower error levels293

than the competing methods.294

Sparse Logistic Regression. In this part, we conduct experiments on three large-scale document295

classification datasets, news20.binary, rcv1.binary and real-sim. Dataset characteristics and experi-296

mental details are provided in Appendix D.4.3. In this experiment, we compare LDPM with search297

methods, IFDM and BiC-GAFFA. We plot the validation and test error curves over time in Figure 3298

and report the corresponding final validation and test accuracies in Table 9 for comparison. LDPM299

consistently converges faster and achieves the lowest validation and test errors.300

5 Conclusion301

In this paper, we introduce a penalty framework based on lower-level duality for bilevel hyperparam-302

eter optimization. Notably, we solve the penalized problem using single-loop first-order algorithms.303

Theoretically, we establish convergence guarantees for the proposed algorithms. Empirically, through304

numerical experiments on both synthetic and real-world datasets, our methods exhibit superior305

performance compared to existing approaches, particularly among the illustrated HO examples.306

3https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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A Proofs for Section 2563

In this subsection, we provide the proofs of the results concerning the penalty framework in Section564

2.565

A.1 Proof of Lemma 2.1566

The following proof follows [22].567

Proof. We prove the conclusion based on the formulation (3). First we introduce augmented variables568

z and zi, i = 1, 2, ...,M + 1 and deduce the equivalent form of LL problem of (3),569

min
x,zi

φ(z) +

M+1∑
i=1

λiRi(zi) s.t. z = Atx− bt, x = zi, i = 1, 2, ...,M + 1 (27)

Since l, Ri are convex and the constraints are affine, strong duality holds under Slater’s condition. If570

ri(dom l ∩ (∩M+1
i=1 dom Ri)) ̸= ∅, then (27) is equivalent to its Lagrangian dual problem:571

max
ξ,ρ

min
x,z,zi

φ(z) +

M+1∑
i=1

λiRi(zi)− ξT (Atx− bt − z) +

M+1∑
i=1

ρi
T (x− zi),

where ξ is Lagrangian multiplier of constraint Atx − bt = z, while ρi are those associated with572

constraints x = zi. By adding the negative signs, we obtain573

max
ξ,ρ

− max
x,z,zi

−φ(z)−
M+1∑
i=1

λiRi(zi) + ξT (Atx− bt − z)−
M+1∑
i=1

ρi
T (x− zi).

The above problem can be further simplified as,574

max
ξ,ρ

−φ∗(ξ)−
M+1∑
i=1

λiR
∗
i (

ρi

λi
)− ξTbt.

s.t. Atξ +
M+1∑
i=1

ρi = 0.

(28)

Meanwhile, leveraging the value function of the lower-level problem, the constraint of (3) is equivalent575

to576

l(x) +

M+1∑
i=1

λiRi(x) ≤ min
x

{l(x) +
M+1∑
i=1

λiRi(x)}. (29)

From the equivalence of (27) and (28), (29) is further equivalent to577

l(x) +
M+1∑
i=1

λiRi(x) ≤ max
ξ,ρ

{−φ∗(ξ)−
M+1∑
i=1

λiR
∗
i (

ρi

λi
)− ξTbt | Atξ +

M+1∑
i=1

ρi = 0}.

(30)
Because the inequality in (30) holds if and only if there exists a feasible pair (ξ,ρ) satisfying (30),578

dropping the max operator, we obtain that the constraint in (3) is equivalent to579

l(x) +

M+1∑
i=1

λiRi(x) + φ∗(ξ) +

M+1∑
i=1

λiR
∗
i (
ρi

λi
) + ξTbt ≤ 0,

Atξ +

M+1∑
i=1

ρi = 0.

We complete the proof.580
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A.2 Proof of Theorem 2.4581

Proof. We adopt the conventionA(z) = 1
2∥Atξ+

M+1∑
i=1

ρi∥2. It is straightforward thatA(z) ≥ 0. Let582

z̄ be any limit point of the sequence {zk} and {zjk} ⊂ {zk} be the subsequence such that zjk → z̄.583

Assume that z∗ is a solution of the reformulation (6). Then it holds that L(x∗) ≤ L(x) for all584

z = (x,λ,ρ, r, ξ, s) feasible to (6). Note that any point z feasible to (6) is also feasible to (8).585

Since zk+1 is the minimizer of the problem (8) with βk, it follows that586

L(xk+1) + βk(p(z
k+1) +A(zk+1))

(a)

≤ L(x∗) + βk(p(z
∗) +A(z∗))

(b)

≤ L(x∗), (31)

where (a) follows from the feasibility of zk+1 and z∗ for the penalized problem (8) and the optimality587

of zk+1, (b) holds because z∗ is feasible to (6). From (31), we deduce588

p(zk+1) +A(zk+1) ≤ 1

βk
(L(x∗)− L(xk+1)).

Since the functions L, p and A are lower semi-continuous in z, letting k = kj and taking the limit589

j → ∞ for the above inequality, we have p(z̄) +A(z̄) ≤ 0 with βk → ∞.590

Since the assumptions of Theorem 2.4 are consistent with those of Lemma 2.1, we obtain the591

following relation from the formulation of p in (7)592

p(z) = l(x) +

M+1∑
i=1

λiRi(x)−min
x

{l(x) +
M+1∑
i=1

λiRi(x)},

which directly implies that p(z) ≥ 0. Combined with A(z) ≥ 0 for all z, we further deduce that593

p(z̄) = 0 and A(z̄) = 0. Therefore, z̄ is feasible for (6). Since z∗ is optimal for (6), it holds that594

L(x∗) ≤ L(x̄).595

Letting k = kj and taking the limit j → ∞ for (31), we have L(x̄) ≤ L(x∗). Hence, we deduce that596

L(x̄) = L(x∗) and z̄ is also an optimal solution of (6). This completes the proof.597

A.3 Conjugate functions for problems listed in Table 1598

we calculate the closed-form expression of the conjugate functions of φ in problems as follows:599

For least squares loss, φ∗(v) = 1
2v

2.600

For smoothed hinge loss, φ∗(v) = 1
2v

2 + v if −1 < v < 0 and φ∗(v) = ∞ otherwise.601

For logistic loss, φ∗(v) = −v log(v)− (1− v) log(1− v) if 0 < v < 1 and φ∗(v) = ∞ otherwise.602

B Epigraphical Projections603

In this section, we discuss the projection onto the cones in Algorithms 1 and 2. According to different604

cases detailed in Section 3.1 and 3.2, we discuss the projections when involving different norm605

regularizers.606

B.1 Projections Involving Vector Norms607

The most commonly used norms in hyperparameter optimization include the ℓ1-, ℓ2- and ℓ∞-norm,608

each serving distinct purposes depending on the specific application. When Ri represents a single609

norm, the explicit forms of Ki and Kd
i defined in (9) are expressed as follows.610

• Ri(x) = ∥x∥1: Ki = {(x, ri) | ∥x∥1 ≤ ri}, Kd
i = {(ρi, λi) | ∥ρi∥∞ ≤ λi}.611

• Ri(x) = ∥x∥2: Ki = {(x, ri) | ∥x∥2 ≤ ri}, Kd
i = {(ρi, λi) | ∥ρi∥2 ≤ λi}.612

• Ri(x) = ∥x∥∞: Ki = {(x, ri) | ∥x∥∞ ≤ ri}, Kd
i = {(ρi, λi) | ∥ρi∥1 ≤ λi}.613
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Thus, we investigate the projection onto the epigraph {(x, t) | ∥x∥q ≤ t} of the ℓq-norm (q =614

1, 2,∞). The projection for the ℓ2-norm epigraph has a well-known closed-form solution, as detailed615

below:616

Proposition B.1. [10, Example 6.37] Let Ln
2 = {(x, t) | ∥x∥2 ≤ t}, for any (x, t) ∈ Rn × R, we617

have618

projLn
2
((x, t)) =


(∥x∥2+t

2∥x∥2
x, ∥x∥2+t

2 ), ∥x∥2 ≥ |t|,
(0, 0), t < ∥x∥2 < −t,
(x, t), ∥x∥2 ≤ t.

Next, we discuss the ℓ1 norm epigraphic projection. We first provide the following theorem on the619

projection onto epigraphs of convex functions.620

Theorem B.2. [10, Theorem 6.36] Let C = epi(g) = {(x, t) | g(x) ≤ t} where g is convex. Then621

for any (x, t) ∈ Rn × R, it holds that622

projC((x, t)) =

{
(x, t), g(x) ≤ t,

(proxλ∗g(x), t+ λ∗), g(x) > t,

where λ∗ is any positive root of the function623

ψ(λ) = g(proxλg(x)− λ− t).

In addition, ψ is nonincreasing.624

Proposition B.3. [10, Example 6.38] Let Ln
1 = {(x, t) | ∥x∥1 ≤ t}, for any (x, t) ∈ Rn × R, we625

have626

projLn
1
((x, t)) =

{
(x, t), ∥x∥1 ≤ t,

(Tλ∗(x), t+ λ∗), ∥x∥1 > t,

where Tλ = proxλ∥·∥1
denotes the proximal of ℓ1-norm, defined as627

Tλ(y) = [|y| − λ]+ sgn(y) =


y − λ, y ≥ λ

0, |y| < λ,

y + λ, y ≤ −λ.

Here, λ∗ is any positive root of the nonincreasing function ψ(λ) = ∥Tλ(x)∥1 − λ− s. In practice,628

the ℓ1 norm epigraphical projection can be computed in linear time using the quick-select algorithm629

proposed by [88].630

Finally, the projection for the ℓ∞ norm epigraph can be computed directly via the Moreau decompo-631

sition. Let Ln
∞ = {(x, t) | ∥x∥∞ ≤ t}, then the projection is given by632

projLn
∞
(x, t) = (x, t)− projLn

1
(x, t).

When Ri represents the squared ℓ2 norm, the corresponding rotated second-order cones are defined633

as KM+1 and Kd
M+1 in (9). According to Theorem B.2, for any (x, t) ∈ Rn × R, we have634

projKM+1
(x, t) =

{
(x, t), ∥x∥22 ≤ 2t,

( x
1+λ∗ , t+ λ∗), ∥x∥22 > 2t,

where λ∗ is any positive root of the nonincreasing function ψ(λ) = (12λ+t)(1+2λ2)−∥x∥22. Similar635

to ℓ1-norm epigraphic projection, it can also be effectively solved in linear time with quick-select636

algorithm proposed by [88].637

For the rotated second-order cone Kd
M+1 = {(ρ, λ, s) | ∥ρ∥22 ≤ 2λs} where ρ ∈ Rn, an equivalent638

representation is given by {(ρ, λ, s) | ∥(ρ, λ, s)∥2 ≤ λ + s}. We introduce auxiliary variables639

w = (ρ, λ, s) ∈ Rn+2 and t = λ+ s ∈ R. In this way, the projection onto Kd
M+1 for given (ρ̄, λ̄, s̄)640

is equivalent to the following optimization problem with (w̄, t̄):641

min
w,t

1

2
∥w − w̄∥2 + 1

2
(t− t̄)2 s.t. ∥w∥2 ≤ t,wT c0 = t,
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where c0 = (0, ..., 0, 1, 1) ∈ Rn+2. The problem can be solved directly using the analytic solution642

provided in [53, Proposition 6.4].643

When the regularization involves a group component-wise regularizers, i.e., Ri(x) = ∥x(i)∥(t),644

where represents the i-th subvector of x with x = (x(1), ...,x(M)), as described in Section 3.1. In645

this case, we observe that projection onto the set Ki and Kd
i corresponds to the ℓ1, ℓ2 or ℓ∞-norm.646

The same projection applies to the vector ρ = (ρ(1), ...,ρ(M)).647

B.2 Projections Involving Matrix Norms648

Now we study the projection onto the epigraphs of nuclear norm ∥ · ∥∗ and spectral norm ∥ · ∥op.649

Since our reformulation relies on conjugate functions and the conjugate of a norm is its dual norm,650

we need to take both into consideration.651

For a matrix X ∈ Rm×n, the nuclear norm is defined as ∥X∥∗ =
min{m,n}∑

i=1

σi(X) and the spectral652

norm is defined as ∥X∥op = max
i
σi(X), where σi(X) is singular values for X .653

Given a matrix A ∈ Rm×n and a scalar t, the projection onto the epigraph of the nuclear norm654

{X ∈ Rm×n, τ ≥ 0 | ∥X∥∗ ≤ τ} involves solving the following optimization problem655

min
X,τ≥0

1

2
∥X −A∥2F +

1

2
∥t− τ∥2 s.t. ∥X∥∗ ≤ τ,

where ∥ · ∥F denotes Frobenius norm of a matrix.656

• If ∥A∥∗ ≤ t, the point (A, t) already lies in the epigraph and the projection is simply657

(X, τ) = (A, t).658

• If ∥A∥∗ > t, we first compute the singular value decomposition of A as A = UΣV , where659

Σ = diag{σ1, σ2, ..., σr} is the single value matrix of A and U ∈ Rm×r, V ∈ Rn×r.660

According to [1,Theorem 6.36], the projected matrix is obtained by soft-thresholding the661

singular values:662

σ̄i = max(σi − λ, 0), i = 1, 2, ..., r,

where λ is determined by the equation
r∑

i=1

max(σi−λ, 0) = t+λ. This equation is typically663

solved efficiently via a bisection search. Subsequently, we obtain the solution τ∗ = t+ λ664

and reconstruct the projected matrix as X∗ = U Σ̄V T where Σ̄ = diag{σ̄1, σ̄2, ..., σ̄r}. The665

projected pair (X∗, τ∗) is the closest point to (A, t) in the epigraph of the nuclear norm.666

Given a matrix A ∈ Rm×n and a scalar t, now we consider projection onto the epigraph of the667

nuclear norm {X ∈ Rm×n, τ ≥ 0 | ∥X∥op ≤ τ}668

• If ∥A∥op ≤ t, the point (A, t) already lies in the epigraph and the projection is simply669

(X, τ) = (A, t).670

• If ∥A∥op > t, we first compute the singular value decomposition of A as A = UΣV , where671

Σ = diag{σ1, σ2, ..., σr} is the single value matrix of A and U ∈ Rm×r, V ∈ Rn×r.672

Since the epigraph of the spectral norm is defined by the constraint ∥X∥op = max
i
σi(X) ≤673

τ , we need to adjust the singular values so that the largest does not exceed the new scalar τ∗674

as675

σ̃i = min{σi, τ∗} for i = 1, 2, . . . , r.

To determine τ∗, we solve the one-dimensional optimization problem676

min
τ≥0

1

2

∑
i:σi>τ

(σi − τ)2 +
1

2
(τ − t)2.

In practice, the optimal τ∗ can be efficiently computed using a bisection search.677

Subsequently, we reconstruct the projected matrix as X∗ = U Σ̃V T where Σ̃ =678

diag{σ̃1, σ̃2, . . . , σ̃r}.679

The projected pair (X∗, τ∗) is the closest point to (A, t) in the epigraph of the spectral680

norm.681
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From the above discussions, it is evident that the projections can be computed efficiently.682

C Explanations and proofs for Section 3683

In this section, we provide additional explanations and the proofs for the convergence results of our684

proposed algorithms in Section 3.685

C.1 Initialization of Algorithm 1 and 2686

We initialize the starting point by following the algorithms for BLO proposed in [36, 22, 95]. For687

Algorithm 1, given the input λ0, ξ0, we initialize x0 by solving the LL problem of (3). The remaining688

initial variables are set as r0i = Ri(x), ρ0 = −∇l(x0) and s0 = ∥ρ0∥2/2λ01. For Algorithm 2, given689

the input λ0, ξ0, we also initialize x0 with solving the LL problem of (3). The other initial variables690

are set as r0i = Ri(x
0), ρ0

i = − 1
M+1Atξ

0 and s0 = ∥ρ0
M+1∥2/2λ0M+1.691

This initialization strategy ensures a feasible starting point for the corresponding reformulation of692

original BLO, thereby facilitating convergence and enhancing the overall efficiency of the optimization693

process.694

C.2 Explanations for Merit Functions695

To initiate the proof of the convergence results, we establish the rationale for selecting ϕkres and ϕfea696

as the merit measures. Note that ϕkres and ϕfea in Section 3.1 and 3.2 are both defined based on the697

penalized formulation (8) within a unified framework as follows:698

ϕkres(z) := dist
(
0,∇zFk(z) +NK(z)

)
, (32)

699

ϕfea(z) := max{p(x,λ, r, ξ, s), ∥Atξ +

M+1∑
i=1

ρi∥}, (33)

where K = (K1 ∩ · · · ∩KM+1)×Kd
1 × · · · Kd

M+1. For the case of single-round global regularization700

discussed in Section 3.1, the set K reduces to K = K1 × Kd
1 and (ρ1, ...,ρM+1) is replaced by a701

single ρ.702

From Lemma 2.1, we know that (5) is a direct reformulation of (3). For convenience, we simplify the703

left hand of the first constraint as:704

F (x,λ,ρ, ξ) = l(x) +

M+1∑
i=1

λiRi(x) + φ∗(ξ) +

M+1∑
i=1

λiR
∗
i (
ρi

λi
) + ξTbt.

Similar to (8), we construct the penalized formulation for (5) as follows,705

min
z

L(x) + βkF (x,λ,ρ, ξ) +
βk
2
∥Atξ +

M+1∑
i=1

ρi∥2, (34)

where βk serves as the penalty parameter.706

Proposition C.1. If ϕfea(z) = 0, then (x,λ,ρ, ξ) is a feasible point to (5). Moreover, if ϕfea(z) = 0707

and ϕres(z) = 0 both hold, then (x,λ,ρ, ξ) is a stationary point of (34).708

Proof. (a) When ϕfea = 0 holds:709

From the non-negativity of the function p and ∥ · ∥2, if ϕfea(z) = 0, it holds that p(x,λ, r, ξ, s) = 0710

and Atξ +
M+1∑
i=1

ρi = 0711

According to the constraints of (8), we know that712

Ri(x) ≤ ri, i = 1, ...,M + 1,

R∗
i (

ρi

λi
) = 0, i = 1, ...,M.
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Additionally, we restore λM+1R
∗
M+1(

ρM+1

λM+1
) with the inequality ∥ρM+1∥

2
2

2λM+1
≤ s. Consequently, we713

observe that714

F (x,λ,ρ, ξ) = l(x) +

M+1∑
i=1

λiRi(x) + φ∗(ξ) +

M+1∑
i=1

λiR
∗
i (
ρi

λi
) + ξTbt

= l(x) +

M+1∑
i=1

λiRi(x) + φ∗(ξ) + λM+1R
∗
M+1(

ρM+1

λM+1
) + ξTbt

≤ l(x) +

M+1∑
i=1

λiri + φ∗(ξ) + ξTbt + s

= p(x,λ, r, ξ, s) = 0,

which implies that (x,λ,ρ, ξ) is feasible to (5).715

(b) When ϕkres(z) = 0 and ϕfea(z) = 0 both hold:716

In this part, we use Moreau-Rockafellar theorem [75, Theorem 23.8] to calculate the sum rule717

of subdifferentials. If f1 and f2 are convex and lower continuous at x and f2 is differentiable at718

x ∈ int(dom(f1)) ∩ int(dom(f2)), then it holds that719

∂(f1 + f2)(x) ⊂ ∂f1(x) + ∂f2(x).

We analyze ϕkres(z) = 0 for each component of z.720

• For x and r, we have721

−(∇L(x) + βk∇l(x), βkλ) ∈ NK1∩···∩KM+1
(x, r), (35)

where Ki = {(x, r) | Ri(x) ≤ ri}. Let ∂Ri denote the limiting subdifferential of the722

function Ri [76]. According to the definition of the normal cone of inequality constraints723

[51, 52] and the definition of Ki in (9), we know that724

NK1∩···∩KM+1
(x, r) = cone{(∂Ri(x),−1), i = 1, ...,M + 1}

= {
M+1∑
i=1

ti(∂Ri(x),−1) | ti ≥ 0},

where cone denotes the conic hull of a set. Combining with (35), we obtain725

0 ∈ ∇L(x) + βk∇l(x) + βk

M+1∑
i=1

λi∂Ri(x). (36)

• For ξ, we have726

∇φ∗(ξ) + bt +AT
t (Atξ +

M+1∑
i=1

ρi) = 0. (37)

• For (ρi, λi), i = 1, ...,M , we have727

−(Atξ +

M+1∑
i=1

ρi, ri) ∈ NKd
i
(ρi, λi), i = 1, ...,M,

where Kd
i = {(ρi, λi) | ∥ρi∥∗(i) ≤ λi}. From (30) and the definition of p, we know that728

F (x,λ,ρ, ξ) ≥ 0 for all (x,λ,ρ, ξ). If ϕfea(z) = 0, the following chain of inequalities729

holds:730

0 ≤ F (x,λ,ρ, ξ) ≤ p(x,λ, r, ξ, s) ≤ 0,

which naturally reduces to equalities. Consequently, we have F (x,λ,ρ, ξ) =731

p(x,λ, r, ξ, s), implying that Ri(x) = ri, i = 1, ...,M . Therefore, we obtain that732

−(Atξ +

M+1∑
i=1

ρi, Ri(x)) ∈ NKd
i
(ρi, λi), i = 1, ...,M,
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Meanwhile, we note that for i = 1, ...,M , R∗
i is the indicator function of the set {∥y∥∗(i) ≤733

1}. Combining with the fact that the normal cone is equivalent to the subdifferential of734

indicator function, for the variables ρi and λi, the above formulation implies that735

−(Atξ +

M+1∑
i=1

ρi) ∈ ∂ρi
I{∥ρ∥∗(i)≤λi} = ∂ρi

I{∥ρ∥∗(i)/λi≤1}
(∗)
= ∂ρi

[
λiR

∗
i (
ρi

λi
)
]
. (38)

736

−Ri(x) ∈ ∂λi
I{∥ρ∥∗(i)≤λi}

(a)
= ∂λi

I{∥ρ∥∗(i)≤λi} + I{∥ρ∥∗(i)≤λi}

= ∂λi
I{∥ρ∥∗(i)≤λi} +R∗

i (
ρi

λi
)
(∗)
= ∂λi

[
λiR

∗
i (

ρi

λi
)
]
,

(39)

where (a) follows the fact ∥ρ∥∗(i) ≤ λi and (∗) holds from the direct calculation of the737

subdifferential.738

• For (ρM+1, λM+1, s), we have739

−(Atξ +

M+1∑
i=1

ρi, rM+1, 1) ∈ NKd
M+1

(ρM+1, λM+1, s),

where Kd
M+1 = {(ρM+1, λM+1, s) | ∥ρM+1∥22 ≤ 2λM+1s}. Similar to the deduction for740

(ρi, λi) in (38) and (39), we can obtain741

−(Atξ +
M+1∑
i=1

ρi) ∈ ∂ρM+1

[
λM+1R

∗
M+1(

ρM+1

λM+1
)
]
,

−RM+1(x) ∈ ∂λM+1

[
λM+1R

∗
M+1(

ρM+1

λM+1
)
]
.

(40)

In summary, we find that the equations (36), (37), (38), (39) and (40) coincide with the742

stationary conditions of (34). Therefore, we conclude that (x,λ, ξ,ρ) is a stationary point743

of (34).744

745

From deduction (29) and (30), we conclude that ϕfea(z) = 0 implies746

l(x) +

M+1∑
i=1

λiRi(x) = min
x

{l(x) +
M+1∑
i=1

λiRi(x)}.

Following the reasoning in Theorem 2.4, we conclude that as βk → ∞, any limit point of the747

sequence of optimal solutions to (34) with βk is an optimal solution of (5). According to (36), we748

further obtain that749

dist(0,∇l(x) +
M+1∑
i=1

λi∂Ri(x)) ≤
1

βk
∥∇L(x)∥ → 0,

as βk → ∞. Thess results demonstrate that ϕkres and ϕfea can effectively character the optimality750

condition of the LL problem in (3). In summary, the selection of ϕkres and ϕfea is reasonable.751

We provide the proofs for the convergence results of Algorithm 1 and 2 in the subsequent sections.752

C.3 Proof of Theorem 3.5753

We first recall the update for the variables of z in Algorithm 1 as follows. We calculate the update754

directions of z as dk
z = βk(d

k
x,d

k
λ,d

k
ρ,d

k
r ,d

k
ξ,d

k
s), where755

dk
x = 1

βk
∇L(xk) +∇l(xk),

dk
ξ = ∇φ∗(ξk) + bt +AT

t (Atξ
k + ρk),

dk
λ = rk, dk

r = λk, dks = 1,

dk
ρ = Atξ

k+1 + ρk.

(41)
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With these directions, the gradient descent step is performed as756

z̄k+1 = zk − ekd
k
z .

For z̄k+1 = (x̄k+1, λ̄
k+1

, ρ̄k+1, r̄k+1, ξ̄
k+1

, s̄k+1), we subsequently apply the projection757

zk+1 = projK(z̄
k+1). (42)

Note that the variable ξ is not involved in the projection step and thus it is evolved directly as758

ξk+1 = ξ̄
k+1.759

Next, we discuss the sufficient decrease property for Algorithm 1.760

Lemma C.2. Suppose Assumption 3.2 hold. For k ∈ N, let {zk} be generated from Algorithm 1.761

Define Vk = 1
βk
Fk(z

k), then the following inequality holds:762

Vk+1 − Vk ≤
(

αL+βk∥At∥2
2αp

2βk
− 1

ekβk

)
∥xk+1 − xk∥2 +

(
1
2 − 1

ekβk

)
∥ρk+1 − ρk∥2

− 1
ekβk

∥sk+1 − sk∥2 +
(

1
2 − 1

ekβk

)
(∥λk+1 − λk∥2 + ∥rk+1 − rk∥2)

+
(

αd+∥At∥2
2

2 − 1
ekβk

)
∥ξk+1 − ξk∥2.

(43)

Furthermore, if the step sizes satisfy 0 < ek ≤ min{ 2
αL+βk∥At∥2

2αp
, 2
βk
, 2
βk(αd+∥At∥2

2)
}, it holds that763

Vk+1 ≤ Vk.764

Proof. Given Assumption 3.2 that φ is αp-smooth, we know that l is ∥At∥22αp-smooth. By applying765

the sufficient decrease lemma [10, Lemma 5.7], we obtain that766

1

βk
L(xk+1) + l(xk+1) ≤ 1

βk
L(xk) + l(xk) + ⟨ 1

βk
∇L(xk) +∇l(xk),xk+1 − xk⟩

+
1

2
(
1

βk
αL + ∥At∥22αp)∥xk+1 − xk∥2.

Based on the convexity of the cones and the second projection theorem [10, Theorem 6.41], we have767

⟨(x̄k+1, r̄k+1)− (xk+1, rk+1), (xk, rk)− (xk+1, rk+1)⟩ ≤ 0

which implies768

1
βk
L(xk+1) + l(xk+1) + ⟨λk+1, rk+1 − rk⟩

≤ 1
βk
L(xk) + l(xk) +

(
αL+βk∥At∥2

2αp

2βk
− 1

ekβk

)
∥xk+1 − xk∥2 +

(
1
2 − 1

ekβk

)
∥rk+1 − rk∥2.

Given βk = β(1+k)p, we have 1
βk+1

≤ 1
βk

. Combining the above inequalities and the non-negativity769

of L, we derive770

βk+1L(x
k+1) + l(xk+1) + ⟨λk+1, rk+1 − rk⟩ ≤ 1

βk
L(xk+1) + l(xk+1)⟨λk+1, rk+1 − rk⟩

≤ 1
βk
L(xk) + l(xk) +

(
αL+βk∥At∥2

2αp

2βk
− 1

ekβk

)
∥xk+1 − xk∥2 +

(
1
2 − 1

ekβk

)
∥rk+1 − rk∥2.

(44)
The same derivation process applies to ρ, λi, ri, leading to the following results:771

∥Atξ
k+1 + ρk+1∥2 + ⟨λk+1 − λk, rk⟩

≤ ∥Atξ
k+1 + ρk∥2 +

(
1
2 − 1

ekβk

)
∥ρk+1 − ρk∥2 +

(
1
2 − 1

ekβk

)
∥λk+1 − λk∥2. (45)

For the variable s, we deduce that s̄k+1 = sk − ek and ⟨s̄k+1− sk+1, sk − sk+1⟩ ≤ 0, which implies772

that773

sk+1 − sk ≤ − 1

ekβk
∥sk+1 − sk∥2. (46)

Next, we define Hk(ξ) = φ∗(ξ) + ξTbt +
1
2∥Atξ + ρk∥2, noting that Hk is (αd + ∥At∥22)-smooth.774

Then the update of ξ in Algorithm 1 can be expressed as775

ξk+1 = ξ̄
k+1

= ξk − ekβk∇Hk(ξ
k).
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Applying the sufficient decrease lemma [10, Lemma 5.7], we obtain776

Hk(ξ
k+1) ≤ Hk(ξ

k) + ⟨∇Hk(ξ
k), ξk+1 − ξk⟩+ αd + ∥At∥22

2
∥ξk+1 − ξk∥2,

which simplifies to777

Hk(ξ
k+1) ≤ Hk(ξ

k) +

(
αd + ∥At∥22

2
− 1

ekβk

)
∥ξk+1 − ξk∥2. (47)

Summing up the estimates (44)–(47), we arrive at the inequality (43). Furthermore, when the step778

size satisfies 0 < ek ≤ min{ 2
αL+βk∥At∥2

2αp
, 2
βk
, 2
βk(αd+∥At∥2

2)
}, the right-hand side of (43) becomes779

negative, ensuring that VK+1 ≤ Vk.780

Now we provide the proof for Theorem 3.5.781

Proof. We compress (43) from k = 0 to K − 1 and obtain that782

K−1∑
k=1

[ (
1

ekβk
− αL+βk∥At∥2

2αp

2βk

)
∥xk+1 − xk∥2 +

(
1

ekβk
− αd+∥At∥2

2

2

)
∥ξk+1 − ξk∥2

+
(

1
ekβk

− 1
2

)(
∥ρk+1 − ρk∥2 + ∥λk+1 − λk∥2 + ∥rk+1 − rk∥2

) ]
≤ V0 − VK .

(48)

From the non-negativity of L and p, we know that VK ≥ 0 and V0 − VK ≤ V0. Subsequently,783

according to the update rule of variables (x,λ,ρ, r, ξ, s) in Algorithm 1, we have that784

0 ∈ ek(∇L(xk) + βk∇l(xk)) + (xk+1 − xk) +NK(x
k+1),

ekβk(A
T
t (Atξ

k + ρk) + bt +∇φ∗(ξk)) + (ξk+1 − ξk) = 0.

Therefore, it holds that785

∇L(xk) + βk∇l(xk) + ek(x
k+1 − xk) ∈ NK(x

k+1),

∇ξFk(z
k) + 1

ek
(ξk+1 − ξk) = 0.

(49)

Furthermore, we have similar conclusions for λ, r,ρ, s as follows,786

0 ∈ (∇λ,∇r,∇ρ,∇s)Fk(z
k) + 1

ek
(λk+1 − λk, rk+1 − rk,ρk+1 − ρk, sk+1 − sk)

+NK(λ
k+1, rk+1,ρk+1, sk+1).

(50)

Now we define787

Mk
z := ∇zFk(z

k+1)− dk
z − 1

ek
(zk+1 − zk)

(∗)
= ∇zFk(z

k+1)−∇zFk(z
k)− 1

ek
(zk+1 − zk),

where (∗) holds from dk
z = ∇zFk(z

k). Using the directions specified in (41) and the relationship788

given in (49) and (50), we obtain789

Mk
z ∈ ∇Fk(z

k+1) +NK(z
k+1), (51)

Based on the definition of the residual function ϕkres in (16) and the relationship (51), we know that790

∥Mk
z ∥ ≥ dist

(
0,∇zFk(z

k+1) +NK(z
k+1)

)
= ϕkres(z

k+1) (52)

Subsequently, we estimate the value ∥Mk
z ∥ with respect to z. By using Assumptions 3.1 and 3.2, we791

find that ∥∇zFk(z
k+1)−∇zFk(z

k)∥ ≤ βkLz∥zk+1 − zk∥ where Lz = max{αL+βk∥At∥2
2αp

βk
, αd +792

∥At∥22, 1}. Then we have793

∥Mk
z ∥ ≤ βkLz∥zk+1 − zk∥+ 1

ek
∥zk+1 − zk∥. (53)

By combining (52) and the inequality (53), we deduce that794

ϕkres(z
k+1) ≤ βkLz∥zk+1 − zk∥+ 1

ek
∥zk+1 − zk∥. (54)
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When the step sizes are set as 0 < ek ≤ 1
Mk

≤ min{ 1
αL+βk∥At∥2

2αp
, 1
βk
, 1
βk(αd+∥At∥2

2)
}, we know795

that 0 < ek ≤ 1
βk

, which implies that βk ≤ 1
ek

. Then we conclude from (54) that there exists a796

constant Cres > 0 such that797

1

β2
k

ϕkres(z
k+1)2 ≤ Cres

ekβk
∥zk+1 − zk∥2. (55)

From (48), we deduce that798

∞∑
k=0

1
2ekβk

∥zk+1 − zk∥2

≤
∞∑
k=0

[ (
1

ekβk
− (∥Av∥2

2+βk∥At∥2
2)αp

2βk

)
∥xk+1 − xk∥2 +

(
1

ekβk
− αd+∥At∥2

2

2

)
∥ξk+1 − ξk∥2

+
(

1
ekβk

− 1
2

)(
∥ρk+1 − ρk∥2 + ∥λk+1 − λk∥2 + ∥rk+1 − rk∥2

) ]
≤ V0.

(56)
By compressing (55) from k = 0 to ∞ and combining with the inequality (56), we obtain that799

∞∑
k=0

1

β2
k

ϕkres(z
k+1)2 ≤ 2CresV0.

Given βk = β(1 + k)p and 0 < p < 1
2 , we conclude that800

min
0≤k≤K

ϕkres(z
k+1) = O(

1

K1/2−p
).

From the definition of ϕfea in (17), we know that801

0 ≤ βkϕfea(z
k) ≤ 2(Fk(z

k)− L(zk)).

If the sequence {Fk(z
k)} is bounded, we know that there exists M > 0 such that Fk(z

k) ≤M for802

each k. Meanwhile, L(xk) ≥ 0 holds from Assumption 3.1. Then we have803

βkϕfea(z
k) ≤ 2M,

which implies that ϕfea(zk) = O( 1
Kp ).804

C.4 Proof of Theorem 3.7805

Proof. From the update rule for u in (23), we have806

Lk
γ(z

k+1,uk+1,µk) ≤ Lk
γ(z

k+1,uk,µk). (57)

Additionally, the update rule for µ in (24) implies807

Lk
γ(z

k+1,uk+1,µk+1)− Lk
γ(z

k+1,uk+1,µk) = − 1

γ
∥µk+1 − µk∥2. (58)

According to Assumptions 3.1 and 3.2, we know that Lk
γ(z,u,µ) is Mk-smooth with respect to z,808

where Mk = max{αL+βk∥At∥2
2αp

βk
, αd + ∥At∥22, 1}. According to [10, Lemma 5.7], we have809

Lk
γ(z

k+1,uk,µk) ≤ Lk
γ(z

k,uk,µk) + ⟨∇zLk
γ(z

k,uk,µk), zk+1 − zk⟩+ Mk

2
∥zk+1 − zk∥2.

Given the update rule zk+1 = zk − ek∇zLk
γ(z

k,uk,µk), the inequality becomes810

Lk
γ(z

k+1,uk,µk) ≤ Lk
γ(z

k,uk,µk) +

(
Mk

2
− 1

ek

)
∥zk+1 − zk∥2. (59)

Combining (57), (58) and (59) and dividing both sides by βk, we conclude811

Lk
γ(z

k+1,uk+1,µk+1)− Lk
γ(z

k,uk,µk) ≤
(
Mk

2
− 1

ek

)
∥zk+1 − zk∥2 − 1

γ
∥µk+1 − µk∥2.
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According to βk = β(1 + k)p, we obtain that 1
βk+1

≤ 1
βk

. With the non-negativity of L, it holds that812

Lk+1
γ (zk+1,uk+1,µk+1) ≤ Lk

γ(z
k+1,uk+1,µk+1), which implies that813

Lk+1
γ (zk+1,uk+1,µk+1)−Lk

γ(z
k,uk,µk) ≤

(
Mk

2
− 1

ek

)
∥zk+1−zk∥2− 1

γ
∥µk+1−µk∥2. (60)

Now we define Uk = Lk
γ(z

k,uk,µk). Given that 0 < ek ≤ min{ βk

αL+βk∥At∥2
2αp

, 1
αd+∥At∥2

2
, 1} ≤814

1
Mk

, we can deduce from (60) that815

Uk+1 − Uk ≤ − 1

2ek
∥zk+1 − zk∥2 − 1

γ
∥µk+1 − µk∥2. (61)

From the expression for Lk
γ , we can deduce the following,816

Lk
γ(z,u,µ) = Fk(z) +

M+1∑
i=1

gi(ui) +
M+1∑
i=1

⟨µi,ui − z⟩+ γ
2

M+1∑
i=1

∥ui − z∥2

= Fk(z) +
M+1∑
i=1

gi(ui) +
γ
2

M+1∑
i=1

∥ui − z+ µi

γ ∥2 −
M+1∑
i=1

∥µi∥
2

2γ .

According to Assumption 3.6, we know that there exists some Mµ such that ∥µk∥2 ≤ Mµ for all817

k ∈ N. Additionally, the functions L and p are non-negative. This implies that818

Uk ≥ −
M+1∑
i=1

∥µk
i ∥2

2γβk
≥ − (M + 1)Mµ

2γβ

△
= Lb,∀k ∈ N, (62)

indicating that Uk is lower bounded. By telescoping the inequality (61) for k = 0 to ∞, we get819

∞∑
k=0

1

2ek
∥zk+1 − zk∥2 + 1

γ

∞∑
k=0

∥µk+1 − µk∥2 ≤ U0 − Lb. (63)

The sufficient decrease property (60) ensures that the U0 − Lb ≥ U0 − Uk ≥ 0 for any k ∈ N.820

Combining with the fact that 0 < 1
ek

≤ 1
e are bounded, and both ek and γ is positive, we obtain from821

(63) that822

lim
k→∞

1

ek
∥zk+1 − zk∥2 = 0, lim

k→∞
∥µk+1 − µk∥ = 0. (64)

Additionally, the step size ek satisfies 0 < e < ek ≤ min{ βk

αL+βk∥At∥2
2αp

, 1
αd+∥At∥2

2
, 1} ≤ 1

Mk
. This823

implies that max{∥At∥22αp, αd + ∥At∥22, 1} ≤ lim
k→∞

1
ek

≤ 1
e . Therefore, (64) ensures that824

lim
k→∞

∥zk+1 − zk∥ = 0 (65)

From the update of µi, we further derive that825

lim
k→∞

∥uk
i − zk∥ = 0. (66)

Meanwhile, from the form (22) for updating ui, we derive826

0 ∈ ∂gi(u
k+1
i ) + γ(uk+1

i − zk+1 +
µk

i

γ )
(a)
= NKi×Kd

∗
(uk+1

i ) + γ(uk+1
i − zk+1) + µk

i
(b)
= NKi×Kd

∗
(uk+1

i ) + µk+1
i , i = 1, ...,M + 1,

(67)

where (a) utilizes the fact that the normal cone is equivalent to the subdifferential of indicator827

functions and (b) follows from the update of µk+1
i . In (67), we use Moreau-Rockafellar theorem [75,828

Theorem 23.8] to calculate the sum rule of subdifferentials. (67) implies that829

−µk+1
i ∈ NKi×Kd

∗
(uk+1

i ).

Combining the outer semi-continuity of the normal cone and (66), we can obtain that830

lim
k→∞

dist(−µk
i ,NKi×Kd

∗
(zk)) = 0. (68)
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Furthermore, according to the definition K = (K1 ∩ · · · ∩ KM+1) × Kd
∗, we know that K =831

(K1 ×Kd
∗) ∩ · · · ∩ (KM+1 ×Kd

∗). It implies that832

NK = NK1×Kd
∗
+ · · ·+NKM+1×Kd

∗
.

From (68), we know833

lim
k→∞

dist(−
M+1∑
i=1

µk
i ,NK(z

k)) = 0. (69)

From the update of z, we have834

zk+1 = zk − ek∇zLk
γ(z

k,uk,µk).

Combining with the definition of Fk in (8), the above equality can be further expressed as835

0 = − 1
ek
(zk+1 − zk) + 1

βk
∇zFk(z

k)−
M+1∑
i=1

µk
i − γ

M+1∑
i=1

(uk
i − zk)

= − 1
ek
(zk+1 − zk) + 1

βk
∇zFk(z

k)−
M+1∑
i=1

µk+1
i +

M+1∑
i=1

(µk+1
i − µk

i )− γ
M+1∑
i=1

(uk
i − zk).

(70)
Now we define836

Mk
z = ∇zFk(z

k+1)− βk

M+1∑
i=1

µk+1
i .

From (69), we know that837

lim
k→∞

dist(Mk
z ,∇zFk(z

k+1) +NK(z
k+1)) = 0.

Therefore, we evaluate ∥Mk
z ∥ as follows. According to (70), we know that838

Mk
z =

βk
ek

(zk+1−zk)+(∇zFk(z
k+1)−∇zFk(z

k))+

M+1∑
i=1

βk(µ
k
i −µk+1

i )+γβk

M+1∑
i=1

(uk
i −zk).

With the notation Mk, we know that Fk(z) is (βkMk)-smooth wit respect to z. Then we have839

∥Mk
z ∥ ≤ βk

ek
∥zk+1 − zk∥+ βkMk∥zk+1 − zk∥+ βk∥µk+1 − µk∥+ γβk

M+1∑
i=1

∥uk
i − zk∥

(a)

≤ 2βk

ek
∥zk+1 − zk∥+ βk∥µk+1 − µk∥+ γβk

M+1∑
i=1

∥uk
i − zk∥,

where (a) use the fact that ek ≤ 1
Mk

. Combining the definition of ϕkres in (25), we obtain840

ϕkres(z
k+1) ≤ ∥Mk

z ∥+ dist(Mk
z ,∇zFk(z

k+1) +NK(z
k+1))

≤ 2βk

ek
∥zk+1 − zk∥+ βk∥µk+1 − µk∥+ γβk

M+1∑
i=1

∥uk
i − zk∥

+dist(Mk
z ,∇zFk(z

k+1) +NK(z
k+1)).

(63) and (65) imply that ∥zk+1 − zk∥ ≤ O(1/
√
k), ∥µk+1 − µk∥ ≤ O(1/

√
k) and ∥uk

i − zk∥ ≤841

O(1/
√
k). Combining with the fact that 0 < 1

ek
≤ 1

e and 0 < p < 1/2, we take the limit as k → ∞842

in the above inequality and obtain that843

lim
k→∞

ϕkres(z
k) = 0.

If the sequence {Fk(z
k)} is bounded, we know that there exists a constant M such that Fk(z

k) ≤M844

for all k. From the formulation ϕfea in (26), we observe that845

0 ≤ βkϕfea(z
k) ≤ 2(Fk(z

k)− L(zk))
(a)

≤ 2M,

where (a) holds from the non-negativity of L from Assumption 3.1. With the non-negativity of ϕfea,846

we take the limit k → ∞ in the above inequality and obtain that847

lim
k→∞

ϕfea(z
k) = 0.

848
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D Experiments849

All experiments are implemented using Python 3.9 on a computer equipped with an Apple M2 chip850

(8-core architecture: 4 performance cores and 4 efficiency cores), running the macOS operating851

system with 8 GB memory. The competing methods are implemented using the code provided by852

[36, 22, 95].853

D.1 Introduction for Competitors854

We now introduce the competing methods evaluated in our experiments:855

• Grid Search: We perform a 10× 10 uniformly-spaced grid search over the hyperparameter856

space.857

• Random Search: We uniformly sample 100 configurations for each hyperparameter direc-858

tion.859

• Implicit Differentiation: This category includes IGJO [31] and IFDM [14, 15], both of860

which rely on implicit differentiation techniques.861

• TPE: We adopt the Tree-structured Parzen Estimator approach [13], a widely used Bayesian862

optimization method.863

• VF-iDCA: [36] formulates the lower-level problem as a value function and approximately864

solves the bilevel problem via DC programming.865

• LDMMA: Based on lower-level duality, [22] reformulates the original problem (3) into a866

more tractable form.867

• BiC-GAFFA: [94] solves the bilevel optimization problem using a gap function-based868

framework.869

We apply IFDM only to the elastic net and logistic regression problems, as its available implementation870

supports only these two among our tested tasks. LDMMA is used exclusively for Lasso-type871

regression and the smoothed support vector machine, as its reformulation is not compatible with872

logistic regression. Furthermore, [36] does not provide experimental results for logistic regression,873

and therefore we do not include it in the comparison for that task.874

D.2 Experimental on Synthetic Data875

For experiments on synthetic data, we consider hyperparameter optimization for elastic net, group876

Lasso, and sparse group Lasso. These models are equipped with a least squares loss and different877

regularization terms. We outline the specific mathematical form of (3) for each problem below.878

Elastic net [100] is a linear combination of the Lasso and ridge penalties. Its formulation in (3) is879

given by:880

min
x

1
2∥Avalx− bval∥2

s.t. x ∈ argmin
x̂

1
2∥Atrx̂− btr∥2 + λ1∥x̂∥1 + λ2

2 ∥x̂∥22,
(71)

Group Lasso [99] is an extension of the Lasso with penalty to predefined groups of coefficients. This881

problem is captured in (3) as:882

min
x

1
2∥Avalx− bval∥2

s.t. x ∈ argmin
x̂

1
2∥Atrx̂− btr∥2 +

M∑
i=1

λi∥x̂(i)∥2,
(72)

where x(i) is a sub-vector of x and x = (x(1), ...,x(M)).883

Sparse group Lasso [83] combines the group Lasso and Lasso penalties, which are designed to884

encourage sparsity and grouping of predictors [31]. Its formulation in (3) is represented as:885

min
x

1
2∥Avalx− bval∥2

s.t. x ∈ argmin
x̂

1
2∥Atrx̂− btr∥2 + λM+1∥x̂∥1 +

M∑
i=1

λi∥x̂(i)∥2,
(73)
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where x(i) is a sub-vector of x and x = (x(1), ...,x(M)).886

Based on the different cases discussed in Section 3.1 and Section 3.2, we naturally employ Algorithm887

1 to solve (72), and Algorithm 2 to address (71) and (73). To evaluate the performance of each888

method, we calculate validation and test error with obtained LL minimizers in each experiment. We889

provide detailed experimental settings and report the results for elastic net and group lasso below.890

D.2.1 Elastic Net891

The synthetic data is generated following the methodology described by [31], as outlined below.892

Feature vectors ai ∈ Rp are sampled from a multivariate normal distribution with a mean of 0 and893

covariance structure cor(aij , aik) = 0.5|j−k|. The response vector b is computed as bi = β⊤ai+σϵi,894

where βi ∈ Rp is generated such that each element takes a value of either 0 or 1, with exactly 15895

nonzero elements. The noise ϵ is sampled from a standard normal distribution, and the value of σ is896

determined to ensure that the signal-to-noise ratio satisfies SNR
∆
= ∥Aβ∥/∥b−Aβ∥ = 2. Since [95]897

does not provide experiments or code for the elastic net problem, we compare only with search-based898

methods, IGJO, IFDM, VF-iDCA and LDMMA in this experiment. We implement the algorithms we899

compared with the same settings according to the description in [36, 22]. For LDPM with Algorithm900

2, we set βk = (1 + k)0.3, ek = 0.1 and γ = 10. For elastic net problem, the stopping criterion is set901

as ∥zk+1 − zk∥/∥zk+1∥ ≤ 0.1.902

We conduct repeated experiments with 10 randomly generated synthetic data, and calculate the903

mean and variance. The numerical results on elastic net are reported in Table 3. Overall, LDPM904

achieves the lowest test error while maintaining a significantly reduced time cost, especially for905

large-scale datasets. In contrast, the search methods incur a high computational cost and exhibit906

poor performance on the test dataset. The gradient-based method IGJO demonstrates slightly better907

accuracy and efficiency but converges very slowly.908

As discussed in [36, 22], both VF-iDCA and LDMMA achieve consistently low validation errors909

across various experiments, indicating strong learning performance on training and validation sets.910

However, they tend to suffer from overfitting, as reflected in increasing test errors over iterations911

and poor generalization to unseen data. This phenomenon occurs across experiments with several912

machine learning models.913

Table 3: Elastic net problems on synthetic data, where |Itr|, |Ival|, |Ite| and p represent the number
of training observations, validation observations, predictors and features, respectively.

Settings Methods Time(s) Val. Err. Test Err. Settings Time(s) Val. Err. Test Err.

|Itr| = 100
|Ival| = 20
|Ite| = 250
p = 250

Grid 5.76 ± 0.33 7.05 ± 2.02 6.98 ± 1.14

|Itr| = 100
|Ival| = 100
|Ite| = 250
p = 450

11.72 ± 1.32 6.05 ± 1.47 6.49 ± 0.82
Random 5.74 ± 0.26 7.01 ± 2.01 7.01 ± 1.11 12.85 ± 2.11 6.04 ± 1.45 6.49 ± 0.83
IGJO 1.54 ± 0.84 4.99 ± 1.69 5.42 ± 1.21 3.37 ± 1.85 5.22 ± 1.50 5.72 ± 0.91
IFDM 1.20 ± 0.50 4.19 ± 0.91 4.81 ± 1.39 1.44 ± 2.85 4.89 ± 0.12 4.98 ± 0.17
VF-iDCA 3.16 ± 0.63 2.72 ± 1.57 5.18 ± 1.40 6.08 ± 2.24 3.13 ± 0.78 5.39 ± 0.92
LDMMA 1.64 ± 0.07 0.00 ± 0.00 6.97 ± 0.79 3.95 ± 0.22 0.00 ± 0.00 6.56 ± 0.70
LDPM 0.60 ± 0.02 2.56 ± 0.80 4.92 ± 0.51 1.02 ± 0.03 3.42 ± 0.39 4.23 ± 0.37

|Itr| = 100
|Ival| = 100
|Ite| = 250
p = 250

Grid 6.09 ± 0.60 6.39 ± 1.09 6.27 ± 1.02

|Itr| = 100
|Ival| = 100
|Ite| = 100
p = 2500

32.99 ± 3.81 7.81 ± 1.53 8.82 ± 0.92
Random 6.44 ± 1.28 4.39 ± 1.10 6.27 ± 1.05 33.82 ± 2.66 6.44 ± 1.53 8.67 ± 0.94
IGJO 3.86 ± 2.09 4.41 ± 0.98 4.31 ± 0.95 31.30 ± 6.41 7.78 ± 1.12 8.61 ± 0.82
IFDM 1.17 ± 0.38 4.54 ± 1.06 4.38 ± 1.06 3.94 ± 2.28 7.57 ± 0.79 8.10 ± 1.45
VF-iDCA 4.74 ± 1.77 2.35 ± 1.56 4.47 ± 1.11 23.21 ± 4.96 0.00 ± 0.00 4.61 ± 0.77
LDMMA 0.98 ± 0.09 0.00 ± 0.00 5.61 ± 0.77 16.26 ± 1.44 0.00 ± 0.00 5.67 ± 1.21
LDPM 0.73 ± 0.08 3.41 ± 0.48 3.51 ± 0.40 4.83 ± 0.08 1.65 ± 0.14 4.37 ± 0.65

In our experiments, we report the numerical results of VF-iDCA and LDMMA based on the final914

iteration output when the algorithm terminates. In contrast, [36, 22] reports the best results observed915

across all iterations. As a result, the test errors reported for VF-iDCA and LDMMA in Table 3 appear916

slightly worse in our study. Additionally, our test error is slightly worse than that reported in [22] only917

under the first data setting in Table 3. [22] implements LDMMA with employing off-the-shelf solver918

MOSEK in MATLAB to solve the subproblems. Therefore, LDMMA yields highly favorable results919

for small-scale problems, while its efficiency deteriorates significantly as the data size increases,920

making it less effective for large-scale problem instances.921

We observe that the running time performance of IFDM is highly competitive and significantly fast922

in large scale. This is because the IFDM algorithm leverages the sparsity of the Jacobian of the923

hyper-objective in bilevel optimization, which is also stated in [15].924
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D.2.2 Sparse Group Lasso925

We generate the synthetic data with the method in [31], including 100 training, validation and test926

samples, respectively. The feature vector ai ∈ Rp is drawn from a standard normal distribution.927

The response vector b is computed as bi = β⊤ai + σϵi, where β =
[
β(1),β(2),β(3)

]
, β(i) =928

(1, 2, 3, 4, 5, 0, . . . , 0), for i = 1, 2, 3. The noise vector ϵ follows a standard normal distribution, and929

σ is set such that the signal-to-noise ratio (SNR) is 2. For different dimensions in Table 2, we set930

the group size to 30 for p = 600 and p = 1200, and to 300 for p = 2400 and p = 4800. Notably,931

compared to [36, 22], our feature vector dimensions are larger, while the number of samples is932

evidently smaller.933

We compare our method with search methods, IGJO, VF-iDCA, LDMMA and BiC-GAFFA in this934

experiment. For the compared method BiC-GAFFA, we follow the recommended procedure outlined935

in [95]. For the other comparison methods, we adopt the exact settings from [36, 22]. For LDPM936

with Algorithm 2, we set βk = (1 + k)0.3, γ = 10 and the step size ek = 0.001. For sparse group937

Lasso problem, the stopping criterion is set as ∥zk+1 − zk∥/∥zk+1∥ ≤ 0.2.938

From Table 2, we observe that LDPM achieves lowest test error and outperforms other algorithms in939

terms of time cost. As the scale of data increases, LDPM consistently finds the best hyperparameters940

and model solutions. In comparison, search methods become extremely unstable when facing941

dozens of hyperparameters. IGJO converges slowly and requires huge amount of computation.942

Similar to the experiments on the elastic net problem, LDMMA and VF-iDCA still exhibit a certain943

degree of overfitting. Both LDPM and BiC-GAFFA belong to the class of single-loop Hessian-free944

algorithms. Since LDPM employs projection to handle nonsmooth constraints, it achieves slightly945

better performance and efficiency compared to BiC-GAFFA.946

D.2.3 Group Lasso947

Compared to the sparse group Lasso problem, this experiment removes the ℓ1-norm regularization948

term, leading to a reduction in the complexity of the LL problem. However, this omission also results949

in weaker control over the sparsity of x, potentially affecting the structure and interpretability of950

the solution. While the lower computational complexity may improve efficiency, the trade-off is a951

less strictly enforced sparsity constraint, which could affect the ability to capture key features in952

high-dimensional settings.953

The synthetic data is generated following the same procedure as described in Appendix D.2.2. For this954

experiment, we adopt the same settings for other compared algorithms as those used in the experiment955

for the sparse group Lasso problem in Appendix D.2.2. For LDPM, we conduct Algorithm 1 with956

βk = (1 + k)0.3 and ek = 0.01.957

We conduct experiments with different data scales and report numerical results over 10 repetitions in958

Table 4. The overall comparison results in Table 4 are similar to those in Table 2. In this case, LDPM959

only requires projected gradient descent, leading to a significant improvement in efficiency.960

Table 4: Group Lasso problems on the synthetic data, where p represents the number of features.
Settings p = 600 p = 1200

Time(s) Val. Err. Test Err. Time(s) Val. Err. Test Err.

Grid 5.72 ± 1.69 93.20 ± 5.82 96.07 ± 17.50 12.31 ± 2.24 93.15 ± 4.74 94.60 ± 20.27
Random 5.42 ± 1.81 148.69 ± 6.55 162.17 ± 28.09 11.38 ± 2.56 151.66 ± 15.63 160.88 ± 17.07

IGJO 1.42 ± 0.25 112.12 ± 4.48 105.99 ± 15.09 6.62 ± 1.31 143.62 ± 15.42 117.37 ± 4.41
VF-iDCA 0.50 ± 0.14 62.66 ± 6.14 84.52 ± 12.46 7.77 ± 2.62 95.02 ± 7.04 96.34 ± 9.79
LDMMA 0.51 ± 0.12 90.97 ± 5.53 79.68 ± 16.19 4.25 ± 1.94 92.32 ± 8.05 92.43 ± 9.99

BiC-GAFFA 0.35 ± 0.02 74.16 ± 6.91 78.60 ± 11.81 2.27 ± 0.26 90.43 ± 5.53 87.79 ± 8.43
LDPM 0.32 ± 0.03 71.62 ± 7.28 76.43 ± 10.34 1.94 ± 0.13 89.53 ± 7.16 85.92 ± 6.99

Settings p = 2400 p = 4800
Time(s) Val. Err. Test Err. Time(s) Val. Err. Test Err.

Grid 21.81 ± 3.65 105.19 ± 15.54 93.35 ± 16.60 42.38 ± 5.71 141.83 ± 26.52 126.95 ± 19.38
Random 19.95 ± 6.17 132.04 ± 16.90 161.45 ± 18.37 41.67 ± 5.01 109.35 ± 18.21 134.74 ± 21.41

IGJO 10.03 ± 6.69 100.75 ± 16.47 127.58 ± 16.43 26.78 ± 8.50 109.73 ± 16.66 117.14 ± 8.23
VF-iDCA 12.88 ± 1.31 69.53 ± 5.90 90.11 ± 11.59 40.61 ± 2.79 81.03 ± 11.58 105.70 ± 10.05
LDMMA 6.75 ± 0.19 72.85 ± 8.22 87.00 ± 15.13 32.53 ± 3.29 86.47 ± 13.55 105.39 ± 10.37

BiC-GAFFA 4.60 ± 0.09 95.51 ± 14.88 84.02 ± 9.46 4.53 ± 0.57 103.77 ± 9.01 101.26 ± 7.84
LDPM 4.38 ± 0.05 101.55 ± 7.28 81.55 ± 3.07 4.12 ± 0.15 100.49 ± 6.64 99.23 ± 6.31
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D.2.4 Low-rank Matrix Completion961

We consider low-rank matrix completion problem on synthetic data. The formulation in (3) of the962

low-rank matrix completion is given as:963

min
θ,β,Γ

∑
(i,j)∈Ωval

|Mij − xiθ − zjβ − Γij |2

s.t. (θ,β,Γ) ∈ argmin
θ,β,Γ

{ ∑
(i,j)∈Ωtr

|Mij − xiθ − zjβ − Γij |2

+λ0∥Γ∥∗ +
G∑

g=1
λg∥θ(g)∥2 +

G∑
g=1

λg+G∥β(g)∥2
} (74)

The data generation procedure follows the approach in [31, 36]. Specifically, two entries per row964

and column are selected as the training set Ωtr, and one entry per row and column is selected as the965

validation set Ωval. The remaining entries form the test set Ωtest. The row and column features are966

each grouped into 12 groups, with 3 covariates per group, resulting in p = 36 and G = 12.967

The true coefficients are set as α(g) = g13 for g = 1, . . . , 4 and β(g) = g13 for g = 1, 2, with all968

other group coefficients set to zero. The low-rank effect matrix Γ is generated as a rank-one matrix969

Γ = uv⊤, where u and v are sampled from the standard normal distribution.970

The row features X and column features Z are also sampled from a standard normal distribution and971

then scaled so that the Frobenius norm of Xα1⊤ + (Zβ1⊤)⊤ matches that of Γ. Finally, the matrix972

observations are generated as973

Mij = x⊤
i α+ z⊤j β + Γij + σϵij ,

where ϵij is standard Gaussian noise, and the noise level σ is chosen such that the signal-to-noise974

ratio (SNR) equals 2.975

In this experiment, we compare LDPM with grid serach, random search, TPE, IGJO, VF-iDCA. For976

grid search, we explore two hyperparameters µ1 and µ2 with the regularization parameters defined as977

λ0 = 10µ1 and λg = 10µ2 for each g = 1, . . . , 2G. A 10× 10 grid uniformly spaced over the range978

[−3.5,−1]×[−3.5,−1] is employed, consistent with the approach of [31]. For both the random search979

and TPE methods, the optimization is conducted over transformed variables ug = log10(λm) for980

m = 0, 1, 2, . . . , 2G, where each ug is drawn from a uniform distribution on the interval [−3.5,−1].981

For IGJO, the initial values for the regularization vector λ are set to [0.005, 0.005, . . . , 0.005]. For982

VF-iDCA, the initial guess for the auxiliary parameter r is chosen as [1, 0.1, 0.1, . . . , 0.1]. The983

algorithm is terminated when the stopping criterion (∥zk+1 − zk∥)/∥zk∥ ≤ 0.1 is satisfied. For984

LDPM with Algorithm 2, we set βk = (1 + k)0.3, γ = 10 and the step size ek = 0.025.985

Throughout all experiments, feature grouping is performed sequentially as follows, every three986

consecutive features are assigned to the same group, starting from the first feature onward.987

We present the statistical results in repeated experiments in Table 5. Both VF-iDCA and LDPM incur988

longer runtimes than search methods because they perform more intensive iterative updates—VF-989

iDCA leverages inexact DC-programming steps to more faithfully enforce the low-rank and group-990

sparsity penalties. This additional computational effort yields tighter approximation of the underlying991

low-rank factors, resulting in substantially lower validation and test errors. LDPM repeatedly perform992

costly matrix projections as discussed in Appendix B.2 to enforce the rank constraints accurately.993

These intensive projection steps allow them to recover the underlying low-rank structure more994

precisely, which translates into substantially lower validation and test errors.995

Table 5: Low-rank matrix completion problems on synthetic data

Methods Time(s) Val. Acc. Test Acc.

Grid 21.02 ± 0.95 0.71 ± 0.21 0.76 ± 0.20
Random 33.12 ± 2.10 0.72 ± 0.22 0.79 ± 0.19
TPE 36.80 ± 9.45 0.69 ± 0.20 0.75 ± 0.18
IGJO 1205.0 ± 312.5 0.67 ± 0.20 0.71 ± 0.17
VF-iDCA 55.20 ± 12.05 0.65 ± 0.18 0.69 ± 0.15
LDPM 62.10 ± 15.31 0.58 ± 0.14 0.66 ± 0.13
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D.3 Sensitivity of Parameters996

In this part, we conduct experiments to analyze the sensitivity of our methods to different parameter997

combinations. We evaluate both Algorithm 1 and Algorithm 2. To investigate the parameter sensitivity998

of Algorithm 1, we carry out supplementary experiments on the group Lasso problem with a999

problem dimension of 1200. In each trial, we vary one parameter while keeping the others fixed.1000

The corresponding convergence times and projected gradient descent (PGD) iteration counts are1001

summarized in Table 6a. A similar analysis is also performed for Algorithm 2 on the sparse group1002

Lasso instance, also with a dimension of 1200. The convergence performance, including time and1003

steps, is likewise reported in Table 6b.1004

Strategy ek β p Steps Time(s)

Original 0.01 1 0.3 29 2.04

ek

0.005 1 0.3 42 3.75
0.05 1 0.3 18 1.67
0.08 1 0.3 14 1.42

β
0.01 2 0.3 40 3.60
0.01 10 0.3 44 3.89
0.01 40 0.3 38 3.95

p
0.01 1 0.05 95 11.72
0.01 10 0.15 56 4.85
0.01 40 0.5 31 2.93

(a) Parameter Sensitivity for Algorithm 1

Strategy ek β p γ Steps Time(s)

Original 0.01 1 0.3 10 36 2.30

ek

0.005 1 0.3 10 49 4.97
0.05 1 0.3 10 21 1.89
0.08 1 0.3 10 17 1.54

β
0.01 2 0.3 10 48 4.16
0.01 10 0.3 10 56 4.35
0.01 40 0.3 10 52 5.15

p
0.01 1 0.05 10 129 16.57
0.01 10 0.15 10 58 6.12
0.01 40 0.5 10 72 8.83

γ
0.01 1 0.3 5 62 5.12
0.01 1 0.3 20 39 2.48

(b) Parameter Sensitivity for Algorithm 2

Table 6: Parameter Sensitivity Analysis for LDPM

In Algorithm 2, larger γ enforces the constraint more aggressively, so the primal residual in z-1005

subproblem drops quickly. Smaller γ makes z-update more flexible, but the residual decays more1006

slowly, so it end up needing more iterations and longer overall runtime. As presented in Table 6, the1007

algorithm consistently achieves convergence and exhibits strong robustness across a broad spectrum1008

of parameter configurations, highlighting its stability and reliability under varying conditions.1009

D.4 Experimental on Real-world Datasets1010

This section of the experiments aims to demonstrate the numerical performance of our method on1011

real-world datasets.1012

D.4.1 Elastic Net1013

We consider elastic net problem on high dimendional datasets gisette and sensit. The mathmatical1014

formulation follows (71). The datasets have a large number of features, which are suitable for1015

evaluating the performance of regularization techniques like the elastic net. Following the approach1016

in [36], we partition the datasets as follows: 50 and 25 examples are extracted as the training set,1017

respectively; 50 and 25 examples are used as the validation set, respectively; and the remaining data1018

was reserved for testing. For the same reasons as in Appendix D.2.1, we also compare LDPM with1019

search method, IGJO, IFDM, VF-iDCA and LDMMA in this experiment. We conduct compared1020

algorithms with the same settings as [36, 22]. For LDPM with Algorithm 2, we set βk = (1 + k)0.3,1021

ek = 0.01 and γ = 5. The stopping criterion in this experiment is also set as ∥zk+1−zk∥/∥zk+1∥ ≤1022

0.1. We report the experimental results in Figure 1 and summarize them in Table 7 as auxiliary1023

experimental results. These demonstrate that LDPM consistently achieves competitive performance1024

while maintaining fast computational speeds on real-world datasets for elastic net problems.1025

As described in [36, 22], the implementation of VF-iDCA and LDMMA relies heavily on optimization1026

solvers. In particular, the subproblems of LDMMA are entirely dependent on the commercial solver1027

MOSEK, while the subproblems of VF-iDCA also rely on the CVXPY package, utilizing ECOS or1028

CSC as solvers. For large-scale datasets, frequent solver calls can become a major computational1029

bottleneck, limiting the scalability of these methods in high-dimensional or complex problem settings.1030

Furthermore, the conic programming reformulation proposed in [22] introduces second-order cone1031
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Table 7: Elastic net problem on datasets gisette and sensit, where |Itr|, |Ival|, |Ite| and p represent
the number of training samples, validation samples, test samples and features, respectively.

Dataset Methods Time(s) Val. Err. Test Err. Dataset Time(s) Val. Err. Test Err.

gisette

Grid 37.21± 4.80 0.24± 0.02 0.24± 0.02

sensit

1.62± 0.19 1.41± 0.75 1.33± 0.47
Random 56.67± 9.55 0.22± 0.05 0.26± 0.02 1.46± 0.12 1.52± 0.58 1.48± 0.43
IGJO 18.24± 3.17 0.24± 0.02 0.23± 0.03 0.57± 0.14 0.52± 0.18 0.61± 0.14
IFDM 35.40± 0.74 0.22± 0.02 0.23± 0.03 6.35± 0.04 0.37± 0.10 0.41± 0.23
VF-iDCA 10.75± 2.72 0.01± 0.00 0.22± 0.01 0.47± 0.06 0.27± 0.03 0.52± 0.06
LDMMA 9.45± 2.98 0.01± 0.00 0.21± 0.01 0.41± 0.05 0.25± 0.04 0.50± 0.04
LDPM 4.85± 0.23 0.09± 0.05 0.14± 0.03 0.28± 0.02 0.08± 0.01 0.34± 0.05

constraints, making LDMMA inherently a second-order algorithm. Consequently, its efficiency1032

deteriorates significantly when applied to large-scale problems.1033

In this experiment, we omit the validation/test error-vs-time curves in Figure 1 for both the1034

grid/random search methods and IFDM because their numerical instability leads to highly erratic1035

traces. As discussed in [31, 14], implicit differentiation methods can suffer from numerical insta-1036

bility when applied to problems with sparse regularization like elastic net. In such cases, the inner1037

optimization problems often have poor conditioning, causing oscillatory behavior during convergence.1038

D.4.2 Smoothed Support Vector Machine1039

The smoothed support vector machine incorporates smoothed hinge loss function and squared ℓ2-norm1040

regularization. The formulation in (3) of the smoothed support vector machine is given as:1041

min
x,λ

∑
i∈Ival

lh(−biaTi x)

s.t. x ∈ argmin
x̂

∑
i∈Itr

lh(bia
T
i x̂) +

λ
2 ∥x̂∥

2
2,

(75)

where lh denotes the smoothed hinge loss function detailed in Table 1. Since there is only one1042

regularization term in (75), we conduct LDPM using Algorithm 1 according to the discussion in1043

Section 3.1044

We use the LIBSVM toolbox4 to load the datasets and extract the corresponding observation matrix1045

and label vector for each dataset. Each dataset is divided into two separate parts: a cross-validation1046

training set Ω consisting of 3⌊N/6⌋ samples, and a test set Ωtest containing the remaining samples.1047

Within this division, the training set is further partitioned into multiple equal parts, and we iteratively1048

use one part as the validation set while utilizing the remaining parts as the training set to solve1049

the SVM problem. For the experiments, we conducted 6-fold cross-validation on the training and1050

validation sets across all three datasets to optimize the hyperparameters.1051

During the process of solving the smoothed support vector machine problem with K-fold cross-1052

validation, the loss function on the validation set is defined as follows:1053

Θval(w
1,w2, . . . ,wK , c) :=

1

K

K∑
k=1

1

|Ωk
val|

∑
j∈Ωk

val

lh(bja
T
j w

k), (76)

Following the approach used for support vector machine [48], we reformulate the primal problem1054

into the following bilevel optimization model for the smoothed support vector machine:1055

min
w,c

Θval(w
1,w2, . . . ,wK , c)

s.t. λ > 0, w̄lb ≤ w̄ ≤ w̄ub

wk ∈ argmin
−w≤w≤w

{ ∑
j∈Ωk

tr

lh(bja
T
j w) + λ

2 ∥w∥22

}
, k = 1, 2, . . . ,K,

(77)

where w1,w2, . . . ,wK are K parallel copies of c and w. w̄ub and w̄lb are the upper and lower1056

bounds of w̄. Similarly, we define the loss function on the training set in a manner analogous to (76):1057

Θtr(w
1,w2, . . . ,wK , c) :=

1

K

K∑
k=1

1

|Ωk
tr|

∑
j∈Ωk

tr

lh(bja
T
j w

k). (78)

4https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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We also implement other competitive methods following the effective practice in [36, 22]. For LDPM1058

with Algorithm 1, the penalty parameter is configured as βk = (1 + k)0.3 and the step size in each1059

iteration is fixed at ek = 0.1. We plot the convergence curves of each algorithm for validation and1060

test error in Figure 2.1061

Figure 2: Comparison of the algorithms for SSVM problem on real-world datasets.

D.4.3 Sparse Logistic Regression1062

The sparse logistic regression [46] is equipped with logistic loss function and ℓ1-norm regularization.1063

Its formulation in (3) is1064

min
x,λ

∑
i∈Ival

log(1 + e−bia
T
i x)

s.t. x ∈ argmin
x̂

∑
i∈Itr

log(1 + e−bia
T
i x̂) + λ∥x̂∥1.

(79)

Similar to Appendix D.4.2, we also apply LDPM with Algorithm 1 in this experiment. Following the1065

experimental setup in [15], we conduct our evaluations on large-scale real-world datasets. Specifically,1066

we use the same datasets as [15], namely news20, rcv1 and real-sim, all of which can be downloaded1067

from LIBSVM website5. Table 8 provides a brief introduction to the basic characteristics of these1068

three datasets.

Table 8: Dataset Overview

Datasets Samples Features Sparsity Ratio

news20.binary 19, 996 1, 355, 191 0.034% 0.5236
rcv1.binary 20, 242 47, 236 0.155% 0.46948

real-sim 72, 309 20, 958 0.245% 0.33113

1069

This experiment is initially conducted in [15]. Since VF-iDCA and LDMMA are not suitable for1070

solving large-scale problems, and the reformulation of LDMMA is not applicable to the logistic loss1071

function, we do not compare these algorithms in this experiment. We compare our method with search1072

methods, IFDM, and BiC-GAFFA. Random search uniformly samples 50 hyperparameter values in1073

the interval [λmax − 4 log(10), λmax]. The algorithm settings for IFDM follow the configurations in1074

[15] for each real dataset without modification. For BiC-GAFFA, we use γ1 = 10, γ2 = 0.01, ηk =1075

0.01, r = 5, αk = 0.01, ρ = 0.3, with a maximum iteration limit of 1000. For LDPM with Algorithm1076

1, we set βk = (1 + k)0.3, ek = 0.05.1077

In this experiment, we implement the code provided in [15]. Each experiment is repeated 10 times to1078

compute the average and variance of runtime, validation error, validation accuracy, test error, and1079

test accuracy. The convergence curves of each algorithm with respect to validation and test error are1080

illustrated in Figure 3. Additionally, we calculate the corresponding accuracy and report them in1081

Table 9.1082

5https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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Figure 3: Comparison of the algorithms for sparse logistic regression on real-world datasets.

Table 9: Accuracy of sparse logistic regression problem on real-world datasets.

Dataset Methods Time(s) Val. Acc. Test Acc.

news20.binary

Random 654.63± 33.26 81.49± 1.10 80.89± 1.24
IFDM 41.16± 6.81 86.87± 1.14 84.07± 1.09
BiC-GAFFA 32.64± 4.48 90.98± 1.03 90.17± 0.81
LDPM 30.85± 3.29 90.59± 1.15 92.94± 0.73

rcv1.binary

Random 214.46± 67.15 96.51± 1.19 94.24± 2.39
IFDM 21.08± 5.47 97.95± 0.26 96.12± 1.29
BiC-GAFFA 15.92± 0.94 98.72± 0.25 96.50± 1.21
LDPM 14.13± 1.43 98.70± 0.33 97.92± 1.29

real-sim

Random 624.45± 38.03 68.30± 1.10 67.65± 1.23
IFDM 25.86± 1.57 91.23± 2.18 91.10± 1.31
BiC-GAFFA 18.08± 0.71 93.28± 1.48 91.68± 2.42
LDPM 17.93± 0.68 95.10± 1.13 94.19± 1.57

Overall, we observe from Figure 3 and Table 9 that LDPM achieves the lowest time cost and test1083

error in the experiment on sparse logistic regression.1084

The comprehensive experimental results provide strong evidence of the efficiency and practicality1085

of our algorithm in addressing bilevel hyperparameter optimization. These results highlight its1086

effectiveness in real-world applications, demonstrating its ability to achieve superior performance1087

while maintaining computational efficiency.1088

E Further Discussions1089

LDPM effectively solves bilevel optimization problems of the form (3), as demonstrated by strong1090

empirical results. However, the core of LDPM relies on a projected gradient descent, which currently1091

cannot handle nonsmooth loss functions without dedicated solvers, such as the hinge loss in SVMs.1092

In contrast, [36, 22] circumvent this issue by leveraging existing solvers to deal with such nonsmooth1093

components.1094

NeurIPS Paper Checklist1095

The checklist is designed to encourage best practices for responsible machine learning research,1096

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove1097

the checklist: The papers not including the checklist will be desk rejected. The checklist should1098

follow the references and follow the (optional) supplemental material. The checklist does NOT count1099

towards the page limit.1100

Please read the checklist guidelines carefully for information on how to answer these questions. For1101

each question in the checklist:1102

• You should answer [Yes] , [No] , or [NA] .1103

• [NA] means either that the question is Not Applicable for that particular paper or the1104

relevant information is Not Available.1105
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• Please provide a short (1–2 sentence) justification right after your answer (even for NA).1106

The checklist answers are an integral part of your paper submission. They are visible to the1107

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it1108

(after eventual revisions) with the final version of your paper, and its final version will be published1109

with the paper.1110

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.1111

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a1112

proper justification is given (e.g., "error bars are not reported because it would be too computationally1113

expensive" or "we were unable to find the license for the dataset we used"). In general, answering1114

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we1115

acknowledge that the true answer is often more nuanced, so please just use your best judgment and1116

write a justification to elaborate. All supporting evidence can appear either in the main paper or the1117

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification1118

please point to the section(s) where related material for the question can be found.1119

IMPORTANT, please:1120

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",1121

• Keep the checklist subsection headings, questions/answers and guidelines below.1122

• Do not modify the questions and only use the provided macros for your answers.1123

1. Claims1124

Question: Do the main claims made in the abstract and introduction accurately reflect the1125

paper’s contributions and scope?1126

Answer: [Yes]1127

Justification: The abstract and introduction clearly summarize the paper’s key contributions1128

and accurately reflect the scope and content presented in the main body.1129

Guidelines:1130

• The answer NA means that the abstract and introduction do not include the claims1131

made in the paper.1132

• The abstract and/or introduction should clearly state the claims made, including the1133

contributions made in the paper and important assumptions and limitations. A No or1134

NA answer to this question will not be perceived well by the reviewers.1135

• The claims made should match theoretical and experimental results, and reflect how1136

much the results can be expected to generalize to other settings.1137

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1138

are not attained by the paper.1139

2. Limitations1140

Question: Does the paper discuss the limitations of the work performed by the authors?1141

Answer: [Yes]1142

Justification: The paper clearly acknowledges the limitations of the proposed approach,1143

particularly regarding its assumptions and potential generalizability.1144

Guidelines:1145

• The answer NA means that the paper has no limitation while the answer No means that1146

the paper has limitations, but those are not discussed in the paper.1147

• The authors are encouraged to create a separate "Limitations" section in their paper.1148

• The paper should point out any strong assumptions and how robust the results are to1149

violations of these assumptions (e.g., independence assumptions, noiseless settings,1150

model well-specification, asymptotic approximations only holding locally). The authors1151

should reflect on how these assumptions might be violated in practice and what the1152

implications would be.1153

• The authors should reflect on the scope of the claims made, e.g., if the approach was1154

only tested on a few datasets or with a few runs. In general, empirical results often1155

depend on implicit assumptions, which should be articulated.1156
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• The authors should reflect on the factors that influence the performance of the approach.1157

For example, a facial recognition algorithm may perform poorly when image resolution1158

is low or images are taken in low lighting. Or a speech-to-text system might not be1159

used reliably to provide closed captions for online lectures because it fails to handle1160

technical jargon.1161

• The authors should discuss the computational efficiency of the proposed algorithms1162

and how they scale with dataset size.1163

• If applicable, the authors should discuss possible limitations of their approach to1164

address problems of privacy and fairness.1165

• While the authors might fear that complete honesty about limitations might be used by1166

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1167

limitations that aren’t acknowledged in the paper. The authors should use their best1168

judgment and recognize that individual actions in favor of transparency play an impor-1169

tant role in developing norms that preserve the integrity of the community. Reviewers1170

will be specifically instructed to not penalize honesty concerning limitations.1171

3. Theory assumptions and proofs1172

Question: For each theoretical result, does the paper provide the full set of assumptions and1173

a complete (and correct) proof?1174

Answer: [Yes]1175

Justification: The paper clearly states all necessary assumptions and provides complete and1176

rigorous proofs for each theoretical result.1177

Guidelines:1178

• The answer NA means that the paper does not include theoretical results.1179

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1180

referenced.1181

• All assumptions should be clearly stated or referenced in the statement of any theorems.1182

• The proofs can either appear in the main paper or the supplemental material, but if1183

they appear in the supplemental material, the authors are encouraged to provide a short1184

proof sketch to provide intuition.1185

• Inversely, any informal proof provided in the core of the paper should be complemented1186

by formal proofs provided in appendix or supplemental material.1187

• Theorems and Lemmas that the proof relies upon should be properly referenced.1188

4. Experimental result reproducibility1189

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1190

perimental results of the paper to the extent that it affects the main claims and/or conclusions1191

of the paper (regardless of whether the code and data are provided or not)?1192

Answer: [Yes]1193

Justification: The paper clearly describes the experimental settings, datasets, evaluation1194

metrics, and implementation details, enabling reproduction of the main results and supporting1195

the paper’s key claims.1196

Guidelines:1197

• The answer NA means that the paper does not include experiments.1198

• If the paper includes experiments, a No answer to this question will not be perceived1199

well by the reviewers: Making the paper reproducible is important, regardless of1200

whether the code and data are provided or not.1201

• If the contribution is a dataset and/or model, the authors should describe the steps taken1202

to make their results reproducible or verifiable.1203

• Depending on the contribution, reproducibility can be accomplished in various ways.1204

For example, if the contribution is a novel architecture, describing the architecture fully1205

might suffice, or if the contribution is a specific model and empirical evaluation, it may1206

be necessary to either make it possible for others to replicate the model with the same1207

dataset, or provide access to the model. In general. releasing code and data is often1208

one good way to accomplish this, but reproducibility can also be provided via detailed1209
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instructions for how to replicate the results, access to a hosted model (e.g., in the case1210

of a large language model), releasing of a model checkpoint, or other means that are1211

appropriate to the research performed.1212

• While NeurIPS does not require releasing code, the conference does require all submis-1213

sions to provide some reasonable avenue for reproducibility, which may depend on the1214

nature of the contribution. For example1215

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1216

to reproduce that algorithm.1217

(b) If the contribution is primarily a new model architecture, the paper should describe1218

the architecture clearly and fully.1219

(c) If the contribution is a new model (e.g., a large language model), then there should1220

either be a way to access this model for reproducing the results or a way to reproduce1221

the model (e.g., with an open-source dataset or instructions for how to construct1222

the dataset).1223

(d) We recognize that reproducibility may be tricky in some cases, in which case1224

authors are welcome to describe the particular way they provide for reproducibility.1225

In the case of closed-source models, it may be that access to the model is limited in1226

some way (e.g., to registered users), but it should be possible for other researchers1227

to have some path to reproducing or verifying the results.1228

5. Open access to data and code1229

Question: Does the paper provide open access to the data and code, with sufficient instruc-1230

tions to faithfully reproduce the main experimental results, as described in supplemental1231

material?1232

Answer: [Yes]1233

Justification: The paper clearly describes the experimental setup, which allows for the1234

reproducibility of the main experimental results.1235

Guidelines:1236

• The answer NA means that paper does not include experiments requiring code.1237

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1238

public/guides/CodeSubmissionPolicy) for more details.1239

• While we encourage the release of code and data, we understand that this might not be1240

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1241

including code, unless this is central to the contribution (e.g., for a new open-source1242

benchmark).1243

• The instructions should contain the exact command and environment needed to run to1244

reproduce the results. See the NeurIPS code and data submission guidelines (https:1245

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1246

• The authors should provide instructions on data access and preparation, including how1247

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1248

• The authors should provide scripts to reproduce all experimental results for the new1249

proposed method and baselines. If only a subset of experiments are reproducible, they1250

should state which ones are omitted from the script and why.1251

• At submission time, to preserve anonymity, the authors should release anonymized1252

versions (if applicable).1253

• Providing as much information as possible in supplemental material (appended to the1254

paper) is recommended, but including URLs to data and code is permitted.1255

6. Experimental setting/details1256

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1257

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1258

results?1259

Answer: [Yes]1260

Justification: The paper provides a clear and comprehensive description of all the necessary1261

training and testing details, including data splits, hyperparameters, their selection process,1262

and the type of optimizer used, which ensures that the results can be understood and1263

reproduced.1264

38

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Guidelines:1265

• The answer NA means that the paper does not include experiments.1266

• The experimental setting should be presented in the core of the paper to a level of detail1267

that is necessary to appreciate the results and make sense of them.1268

• The full details can be provided either with the code, in appendix, or as supplemental1269

material.1270

7. Experiment statistical significance1271

Question: Does the paper report error bars suitably and correctly defined or other appropriate1272

information about the statistical significance of the experiments?1273

Answer: [Yes]1274

Justification: The paper clearly reports the statistical results, as all experiments were repeated1275

and the corresponding statistical significance and error bars were appropriately provided,1276

ensuring the reliability of the reported findings.1277

Guidelines:1278

• The answer NA means that the paper does not include experiments.1279

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1280

dence intervals, or statistical significance tests, at least for the experiments that support1281

the main claims of the paper.1282

• The factors of variability that the error bars are capturing should be clearly stated (for1283

example, train/test split, initialization, random drawing of some parameter, or overall1284

run with given experimental conditions).1285

• The method for calculating the error bars should be explained (closed form formula,1286

call to a library function, bootstrap, etc.)1287

• The assumptions made should be given (e.g., Normally distributed errors).1288

• It should be clear whether the error bar is the standard deviation or the standard error1289

of the mean.1290

• It is OK to report 1-sigma error bars, but one should state it. The authors should1291

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1292

of Normality of errors is not verified.1293

• For asymmetric distributions, the authors should be careful not to show in tables or1294

figures symmetric error bars that would yield results that are out of range (e.g. negative1295

error rates).1296

• If error bars are reported in tables or plots, The authors should explain in the text how1297

they were calculated and reference the corresponding figures or tables in the text.1298

8. Experiments compute resources1299

Question: For each experiment, does the paper provide sufficient information on the com-1300

puter resources (type of compute workers, memory, time of execution) needed to reproduce1301

the experiments?1302

Answer: [Yes]1303

Justification: The paper clearly specifies the computational resources used for the experi-1304

ments, including the type of compute workers, memory, and execution time, ensuring that1305

readers can understand and reproduce the experimental setup.1306

Guidelines:1307

• The answer NA means that the paper does not include experiments.1308

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1309

or cloud provider, including relevant memory and storage.1310

• The paper should provide the amount of compute required for each of the individual1311

experimental runs as well as estimate the total compute.1312

• The paper should disclose whether the full research project required more compute1313

than the experiments reported in the paper (e.g., preliminary or failed experiments that1314

didn’t make it into the paper).1315

9. Code of ethics1316
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Question: Does the research conducted in the paper conform, in every respect, with the1317

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1318

Answer: [Yes]1319

Justification: The research conducted in the paper fully adheres to the NeurIPS Code of1320

Ethics, ensuring that all ethical guidelines and considerations were followed during the1321

study.1322

Guidelines:1323

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1324

• If the authors answer No, they should explain the special circumstances that require a1325

deviation from the Code of Ethics.1326

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1327

eration due to laws or regulations in their jurisdiction).1328

10. Broader impacts1329

Question: Does the paper discuss both potential positive societal impacts and negative1330

societal impacts of the work performed?1331

Answer: [No]1332

Justification: The paper does not discuss the potential positive or negative societal impacts1333

of the work performed, as the primary focus is on the technical and theoretical aspects of1334

the research.1335

Guidelines:1336

• The answer NA means that there is no societal impact of the work performed.1337

• If the authors answer NA or No, they should explain why their work has no societal1338

impact or why the paper does not address societal impact.1339

• Examples of negative societal impacts include potential malicious or unintended uses1340

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1341

(e.g., deployment of technologies that could make decisions that unfairly impact specific1342

groups), privacy considerations, and security considerations.1343

• The conference expects that many papers will be foundational research and not tied1344

to particular applications, let alone deployments. However, if there is a direct path to1345

any negative applications, the authors should point it out. For example, it is legitimate1346

to point out that an improvement in the quality of generative models could be used to1347

generate deepfakes for disinformation. On the other hand, it is not needed to point out1348

that a generic algorithm for optimizing neural networks could enable people to train1349

models that generate Deepfakes faster.1350

• The authors should consider possible harms that could arise when the technology is1351

being used as intended and functioning correctly, harms that could arise when the1352

technology is being used as intended but gives incorrect results, and harms following1353

from (intentional or unintentional) misuse of the technology.1354

• If there are negative societal impacts, the authors could also discuss possible mitigation1355

strategies (e.g., gated release of models, providing defenses in addition to attacks,1356

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1357

feedback over time, improving the efficiency and accessibility of ML).1358

11. Safeguards1359

Question: Does the paper describe safeguards that have been put in place for responsible1360

release of data or models that have a high risk for misuse (e.g., pretrained language models,1361

image generators, or scraped datasets)?1362

Answer: [NA]1363

Justification: Since our work does not involve the release of data or models that could1364

pose significant risks for misuse, such as pretrained language models, image generators, or1365

scraped datasets, there are no specific safeguards required.1366

Guidelines:1367

• The answer NA means that the paper poses no such risks.1368
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• Released models that have a high risk for misuse or dual-use should be released with1369

necessary safeguards to allow for controlled use of the model, for example by requiring1370

that users adhere to usage guidelines or restrictions to access the model or implementing1371

safety filters.1372

• Datasets that have been scraped from the Internet could pose safety risks. The authors1373

should describe how they avoided releasing unsafe images.1374

• We recognize that providing effective safeguards is challenging, and many papers do1375

not require this, but we encourage authors to take this into account and make a best1376

faith effort.1377

12. Licenses for existing assets1378

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1379

the paper, properly credited and are the license and terms of use explicitly mentioned and1380

properly respected?1381

Answer: [Yes]1382

Justification: In our comparison experiments, we ran methods from other researchers,1383

utilizing the code and datasets provided in their papers. We ensured proper crediting and1384

respect for the licensing and terms of use associated with both the code and the datasets.1385

Guidelines:1386

• The answer NA means that the paper does not use existing assets.1387

• The authors should cite the original paper that produced the code package or dataset.1388

• The authors should state which version of the asset is used and, if possible, include a1389

URL.1390

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1391

• For scraped data from a particular source (e.g., website), the copyright and terms of1392

service of that source should be provided.1393

• If assets are released, the license, copyright information, and terms of use in the1394

package should be provided. For popular datasets, paperswithcode.com/datasets1395

has curated licenses for some datasets. Their licensing guide can help determine the1396

license of a dataset.1397

• For existing datasets that are re-packaged, both the original license and the license of1398

the derived asset (if it has changed) should be provided.1399

• If this information is not available online, the authors are encouraged to reach out to1400

the asset’s creators.1401

13. New assets1402

Question: Are new assets introduced in the paper well documented and is the documentation1403

provided alongside the assets?1404

Answer: [No]1405

Justification: The authors have only reported on existing methods and datasets, without1406

introducing new assets that require additional documentation.1407

Guidelines:1408

• The answer NA means that the paper does not release new assets.1409

• Researchers should communicate the details of the dataset/code/model as part of their1410

submissions via structured templates. This includes details about training, license,1411

limitations, etc.1412

• The paper should discuss whether and how consent was obtained from people whose1413

asset is used.1414

• At submission time, remember to anonymize your assets (if applicable). You can either1415

create an anonymized URL or include an anonymized zip file.1416

14. Crowdsourcing and research with human subjects1417

Question: For crowdsourcing experiments and research with human subjects, does the paper1418

include the full text of instructions given to participants and screenshots, if applicable, as1419

well as details about compensation (if any)?1420

41

paperswithcode.com/datasets


Answer: [NA]1421

Justification: The paper does not involve human subjects or crowdsourcing experiments, so1422

this question is not applicable.1423

Guidelines:1424

• The answer NA means that the paper does not involve crowdsourcing nor research with1425

human subjects.1426

• Including this information in the supplemental material is fine, but if the main contribu-1427

tion of the paper involves human subjects, then as much detail as possible should be1428

included in the main paper.1429

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1430

or other labor should be paid at least the minimum wage in the country of the data1431

collector.1432

15. Institutional review board (IRB) approvals or equivalent for research with human1433

subjects1434

Question: Does the paper describe potential risks incurred by study participants, whether1435

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1436

approvals (or an equivalent approval/review based on the requirements of your country or1437

institution) were obtained?1438

Answer: [NA]1439

Justification: Since the research does not involve human subjects or crowdsourcing experi-1440

ments, there are no associated risks.1441

Guidelines:1442

• The answer NA means that the paper does not involve crowdsourcing nor research with1443

human subjects.1444

• Depending on the country in which research is conducted, IRB approval (or equivalent)1445

may be required for any human subjects research. If you obtained IRB approval, you1446

should clearly state this in the paper.1447

• We recognize that the procedures for this may vary significantly between institutions1448

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1449

guidelines for their institution.1450

• For initial submissions, do not include any information that would break anonymity (if1451

applicable), such as the institution conducting the review.1452

16. Declaration of LLM usage1453

Question: Does the paper describe the usage of LLMs if it is an important, original, or1454

non-standard component of the core methods in this research? Note that if the LLM is used1455

only for writing, editing, or formatting purposes and does not impact the core methodology,1456

scientific rigorousness, or originality of the research, declaration is not required.1457

Answer: [NA]1458

Justification: No LLMs were used in the core methods or any important components of the1459

research, so no declaration is required.1460

Guidelines:1461

• The answer NA means that the core method development in this research does not1462

involve LLMs as any important, original, or non-standard components.1463

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1464

for what should or should not be described.1465
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