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Abstract

Hyperparameter optimization (HO) is a critical task in machine learning and can
be formulated as a bilevel optimization problem. However, many existing algo-
rithms for addressing nonsmooth lower-level problems involve solving sequential
subproblems, which are computationally expensive. To address this challenge, we
propose penalty methods for solving HO, leveraging strong duality between the
lower-level problem and its dual. We show that the penalized problem closely
approximates the optimal solutions of the original HO under certain conditions.
Moreover, we develop first-order single-loop algorithms to solve the penalized
problems efficiently. Theoretically, we establish the convergence of the proposed
algorithms. Numerical experiments demonstrate the efficiency and superiority of
our method.

1 Introduction

Hyperparameter optimization (HO) arises in many diverse fields, neural architecture search [16, 29|
57, feature learning [35]], ensemble models [25]], semi-supervised learning [42] and sample-weighting
schemes [34} [77, [74] 182]]. The hyperparameters control model complexity, training stability and
convergence. Unlike model parameters, they need to be chosen externally. A poor choice can cripple
performance, whereas good hyperparameters greatly enhance accuracy, robustness and generalization.

Regularization is a common way to guide hyperparameter tuning, especially in regression and
classification [32]. By adding a penalty term to the empirical risk, one trades off data fitting against
model complexity to curb overfitting. The general framework can be formulated as

M+1
min I(x) + > AiRi(x), (1)
=1

where [(x) represents the loss function and A = (A1, Ag, ..., A1) encompasses hyperparameters.
Meanwhile, R;(x),i = 1,2,..., M + 1 denotes the regularizers related to norms, which can be
categorized as follows:

. 1
Ri(x) = X/l i = 1,2, M, Rara(x) = 5 [x[13- ©)
For each 4, || - ||(;) represents a specific norm, such as the ¢, {5, {, {12 norm for vectors, the

spectre or nuclear norm for matrices, or other commonly used norms. Note that these two types of
regularizers may appear simultaneously or individually.

Based on the formulation (T)), training/validation approach is involved as a sophisticated method. This
method optimizes parameters in the form (I)) on the training set and observes the corresponding error
on the validation set. The approach can be summarized as bilevel optimization framework [57} 9] and
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has demonstrated outstanding performance in practical applications [66, 31} 35 [15]. In essence, the
process can be outlined in the following bilevel optimization (BLO) [[72} 28]]:

M+1
min L(x) st.x¢€ argmln{ )+ Z AiRi( } 3)

xER™ AR} T

where L,[, R; : R™ — R U {400} are proper, closed functions, x is the parameter to learn, and
A is hyperparameter. In BLO (@), the lower-level (LL) problem serves as a base learner, aiming
to determine the optimal hypothesis on the training set for a given hyperparameter configuration.
In contrast, the upper-level (UL) problem aims to identify the hyperparameter and corresponding
hypothesis that minimizes the given criteria on the validation set. We explain the mathematical
forms of the component functions in problem (3) using several illustrative examples listed in Table
[1] including elastic net [100I, sparse group Lasso [83]], logistic regression [68] 46], low-rank matrix
completion [20] and smoothed support vector machine [[78}65]].

Table 1: Examples of bilevel hyperparameter optimization [48], 31 [46] in the form (3).

Machine learning algorithm Upper Criteria Base Learner
Elastic net 1 er b= x"ai? 15 e, b= xTa” + Al + 22(|x]3
Sparse group Lasso DN eryn b= xTa;|? DN en,, 1bi = XTEI,\2 + EM, Aol (|2 4+ Aazga ||
Smoothed support vector machine > - ln(biw™a;) Yien, In (b w'a;) + ||wl|* (with constraint —w < w < W.)
Low-rank matrix completion Y (iiyeann 31Mij 7x07z;ﬁ—r,,\2 Siyean, 31Mij —xi0 =28 — T \2+)\0HFH +Z( Ag H0<”H2+Z( Ag+c B892
Logistic regression chf‘ ,log(1 +e7hix ) e, log(l+ ety )+ 3
11, denotes the smoothed hinge loss given by I () = 3 —zif 2 <0, 2(1 - 2)*if 0 <z < 1and 0 else.

1.1 Related Work

Hyperparameter Optimization. A variety of approaches have been developed for hyperparameter
optimization (HO) [44]. The simplest model-free techniques include grid search [45]] and random
search [12]. More advanced methods such as Bayesian optimization [11} [84] iteratively select
evaluation points based on prior observations. However, these approaches often struggle with
scalability when faced with high-dimensional parameter spaces.

Bilevel Optimization. Bilevel optimization (BLO) underpins many machine learning tasks, including
meta-learning [33]], adversarial learning [[19} 86, [87]], reinforcement learning [80, [85, 93| [89], model
selection [47,139]], generative adversarial networks [38} 40]], and game theory [S5]]. Early methods
primarily relied on gradient-based algorithms, which can be broadly classified into two categories:
Iterative Differentiation (ITD) and Approximate Implicit Differentiation (AID). ITD methods unroll
the lower-level problem and compute hypergradients via backpropagation [34} 35, 41} 1611 5 [77],
while AID methods derive gradients from the lower-level optimality conditions [[72} 73] 163} 92} |91]).

Recent advances include fully first-order methods that avoid Hessian and implicit gradient com-
putations [23}, 154, 24]]. To address the challenge of multiple lower-level minima, [S9] introduce
a value-function-based reformulation, leading to penalization-based algorithms [60]]. This line of
work has grown into a prominent direction, with various penalty-based single-level reformulations
proposed in [79, 64} 50} 149, 56]]. Another promising direction leverages the Moreau envelope to
smooth the bilevel structure, yielding single-loop, Hessian-free algorithms capable of converging to
well-defined KKT points [37} 95, 94].

For BLO with nonsmooth lower-level problems, [14] propose an implicit differentiation framework
based on block coordinate descent, which is later extended to general nonsmooth settings [15]]. Other
approaches include DC methods [96| 97] and penalized DC formulations [36], both requiring the
computation of the lower-level value function. Smoothing-based strategies have also been explored
to handle nonsmoothness [3} 2} [71]. Additionally, [23] present a gradient-free method with inexact
subproblem solutions, while [22]] reformulate BLO via duality, avoiding the value function entirely
and solving the problem through cone programming. [62] further extend the Moreau envelope
approach to nonsmooth lower-level problems, offering efficient single-loop algorithms.

1.2 Motivations and Contributions

In this work, we focus on solving the bilevel optimization (3). We extend the reformulation initially
proposed by [22] and incorporate penalty strategy. We demonstrate that our framework is applicable
to commonly used hyperparameter optimization problems schemed in (3). Moreover, we propose
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the Lower-level Duality Based Penalty Methods (LDPM), which are first-order algorithms specif-
ically designed for the penalized problem. The algorithms efficiently handle the nonsmooth norm
components with epigraphic projections. Notably, our algorithms are single-loop and Hessian-free,
relying solely on the first-order information of the functions in (3). Theoretically, we establish the
convergence results of the algorithms under mild conditions. We summarize our contributions as
follows.

* We propose a penalty method based on lower-level duality for hyperparameter optimization
@, which is in the form of BLO with nonsmooth LL problem.

* We introduce two first-order single-loop algorithms to solve the penalized problem and
provide theoretical proof of the convergence.

* We evaluate the efficiency of our algorithms with numerical experiments on synthetic and
real-world data. Experimental results validate superiority of our algorithm in practical
scenarios.

2 Penalty-based Approach

In this section, we propose our penalization framework for the original problem (3). Prior to this,
we observe that the loss functions of base learners in Table [Tl share a unified structure of the form
©(Ax — b), where Ax — b abstracts the data-sample relationship. Accordingly, we denote that

l(x) = p(Aix — by), (4)
where [(x) corresponds to the loss on validation and training sets as described in (3). We now provide
a detailed discussion of the mathematical forms of the function ¢ for problems in Table[I] along with
the expressions Ag, by:

Least squares loss: ¢(t) = 1t2, with A;x —b; = Ayx — by,
Smoothed hinge loss: ¢(t) = I, (t) with A;w — by = (b, As )W,
Logistic loss: ¢(t) = log(1 4+ e7"), with A;x — by = (b Ay )x.

Building on the inner structure of ¢ and R;, our approach is grounded in a reformulation based on the
duality of LL problem. We embrace the idea initially proposed by [22]] and summarize the following
lemma, which is a modification and extension of [22, Theorem 2.1].

Lemma 2.1. Given the convex lower semi-continuous functions | and R;, if ri(dom [ N
(ﬂi]\ii'ldom R;)) # W'} then problem (3) has the following equivalent form:

M+1 M+1
1)+ Y0 ARi(x) + 0" () + Y ARI(8) +€ by < 0,
. =1 =1
Join L(x) st M1 3)

A€+ Zpi = 0.
i=1

where p = (py, ..., ppr41) and Ay, by, @ are consistent with those in @) and ¢* and R} are the
conjugate functions of ¢ and R; fori =1,2,...., M + 1, respectively. E]
Remark 2.2. Slater’s condition is broadly satisfied by all examples in Table[I] ensuring strong duality

for the LL problem in (3) without requiring strong convexity. For instance, the least squares loss is
not strongly convex, yet strong duality still holds under this condition.

We present a detailed proof of Lemma2.1]in the Appendix[A.T] Notably, each problem listed in Table
can be reformulated into the structure of (3)). For clarity, we calculate the closed-form expressions
of the conjugate functions in Appendix [A.3] We remark that our reformulation utilizes the structure
of [(x) in @]) which is different from the one in [22, Theorem 2.1]. Notably, each problem listed in
Table[I] can be reformulated into the structure of (3).

To elaborate, we discuss the terms IR} in @ as follows. For ¢ = 1,2, ..., M, R; denotes a norm, i.e.,
R;i(x) = [|x||(s). In this case, we know that R} (y) is the indicator function of the set {||y|.;) < 1}

'This condition is commonly known as Slater’s condition. ri(-) denotes the relative interior of the set.
>We define the conjugate h*(y) = sup, {y” x — h(x)} for a function h.
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where || - ||(;) denoted the dual norm of || - ||;) [18, Example 3.26]. The term Ry, denotes the

squared £3-norm, i.e., Rar11(x) = 3||x]/3. In this case, we can compute that Apr1 R}, 4 ( ‘;\IZE )=

HPM+1 Hg

o [18, Example 3.27]. To refine the intricate constraints of @), we introduce auxiliary

2
variables r; and s satisfying R;(x) < r; and % < s. This results in a further reformulation
based on Lemma 2.1l
Proposition 2.3. The original problem (3) can be reformulated as

min L(x)
x,\,p,r,€,8
M+1 M+1
st 1)+ X Aiti + " (€) + €7by + 5 <0, AE + 2 =0, 6)

=1
uXH( <7“u||PzH*<) <N, i=1,2,., M,
113 < rarss oIz < 2>\M+1$

For simplicity, we rewrite the left-hand of the first inequality constraint in (6] as:

M+1

p(x, A1, €, 5) me &) +&"by+s. (7

Now we consider the penalization of problem () as follows,

{'XH(Z) Sri7 ||p7,||*(1,) S)\lv 1= 1a2aaM7

min F(z)
B %||x||§ <raits Pargalls < 2Xargas.

®

where Fj(z) := L(x) + Bip(x, A, 1,&,8) + BkHA@ + Z p;||? with z := (x, A\, p, 1, &, s) for

convenience, and (3 serves as the penalty parameter. This penalty strategy is commonly employed
in bilevel optimization [79, 162} 95|94, 159]. Inspired by [70, Theorem 17.1], the following theorem
reveals the relationship between the optimal solutions of penalization and reformulation (6)).

Theorem 2.4. Assume L,l and R; are lower semi-continuous, with the loss function | and the
regularization term R; in LL objective being convex. Suppose the penalty parameter satisfying
B — oo. If zF+1 is the minimizer of penalized problem (@ with By, then every limit point z* of the
sequence {z"} is a solution to the reformulation (6).

The proof of Theorem [2.4]is provided in Appendix From the equivalence between (3] and (6)), it
follows that if z is the solution of (6)), then (x, A, p, &) is the corresponding solution of (3)). Thus,
Theorem [2.4] also reveals the connection between (5) and (8))

3 Epigraphical Projection-based First-order Algorithms

We develop our algorithms based on the penalized formulation (8), beginning with general assump-
tions on the original problem (3) to support analysis and algorithm design.

Assumption 3.1. The UL objective L is arz,-smooth with respect to LL variable z. Additionally, as a
loss function, L is non-negative, i.e., L(x) > 0 for all x.

Assumption 3.2. The function ¢ is convex. Moreover, the function ¢ and its conjugate ¢* is -
and ag-smooth, respectively.

Remark 3.3. Assumptions [3.1]and [3.2] are satisfied by commonly used loss functions. Specifically,
the problems listed in Table[I|adhere to Assumptions[3.1)and[3.2} We remark the UL objective L can
be nonconvex, which remains compatible with our framework.

Remark 3.4. The smoothness properties of [ are naturally inherited by . Therefore, Assumption[3.2]
implies that [ is convex and Lipschitz smooth. Combined with the definition of R; in (2)), Assumption
[3.2 ensures that the LL problem in (3) is convex. Importantly, our framework relies only on the
first-order differentiability and does not require the LL objective in (3) to exhibit strong convexity.

However, the primary challenges of solving (8] stem from the nonsmooth nature of the constraints,
particularly when different norms are involved. We define corresponding sets for the constraints in
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problem (8) in the form of cones as follows:

Ki = {(er) | HXH(Z) SQ Ti}? IC? = {(gz’)‘l) | ||pz||*(z) < >"i}7 i=1,2, "'7?47
Ky =A{Gr) | Ix[]2 < 2raga}s Kigq o= {(Parg1 Avrt1,8) a4z < 2An0418}
©))
Furthermore, each set in (9) is projection-friendly, which facilitates efficient epigraphic projection of
corresponding norms. The details of the projection operations are discussed in Appendix [B]

Given these insights, a natural approach to manage the constraints in (8] is through projections onto
K; and K¢. To address problems with different regularizers, we discuss the proposed algorithms in
various scenarios. Section [3.1]focuses on problem (3)) with single-round global regularization applied
to the entire vector x. Section [3.2]extends this to problems with multiple interacting regularizers.
This division provides a structured approach to handling varying constraints and regularization terms.

3.1 Separable Regularizers

In this subsection, we explore the algorithm for (3)) when the LL problem incorporates separate
regularizers, structured as a single group of component-wise terms. Specifically, the LL problem in

(B) can be expressed as
M
X € arg min {l(f{) + Z)\,;Hc(i)”(t)} )
X i=1

where x(9 represents the i-th subvector of x with x = (x(l), o x
prescribed norm applied to each group.

M)y and | - ||(¢) represents a

When M = 1, the LL problem of (3) involves a single regularizer R;(x), corresponding to simpler
models such as toy Lasso or logistic regression. In this case, the constraints of (8)) simplify as follows.
If Ry (x) = ||x]|(¢) and || - ||+ is a norm, the constraints of (8 reduce to:

X[y <71 llollery < A (10)
If Ry (x) = 1 ||x||3, the constraints of (8) simplify to:
L2 Lo e
Sl < 1, Sll < Aus. an
The constraints (T0)-(TT) are consistent with the structure in (9) and can be compactly expressed as
zcK:=K; xK{. (12)
When M > 1, the LL problem of (@) incorporates group regularization, where group-wise f2-
regularization is the most common choice. This setting is widely adopted in practice, as illustrated by
examples such as group Lasso in Table[T] Although the problem may appear to involve multiple regu-

larization terms and hyperparameters, it essentially amounts to applying a single-round regularization
process over the entire variable x. Under this structure, the constrains of (8) simplifies to:

Py < 7 0Py < iy i =1, M, (13)

where p(¥) is the i-th subvector of p with p = (p(l)7 ...,p(M)). Since constraints of are
independent for each 7, they can be equivalently expressed as:

(x,r) € K1 x -+ x Kar, (p,A) € K¢ x -+ x K4,

which implies that
2K = (K x-xKy)x (K x--xKd)). (14)

Importantly, we observe that K in (I2) and (14) remains projection-friendly, facilitating efficient
implementation. Accordingly, we adopt a gradient projection method to solve the penalized problem
(8), as outlined in Algorithm[I] In each iteration, we update z as

2" = proji (2" — ex V, Fi(2")), (15)

where ej, > 0 is the step size, and proj,(x) is the projection of x onto K.
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Algorithm 1 First-order Projection-based Method
1: Input A%, £°, sequences {3}, {ex }. Initialize x°, r?, p°, s°.
2: for k=0,1,2,...do
3:  Update zF*! with projection gradient descent as (T3).
4: end for

In Algorithm we choose the penalty parameter as 3, = (1 + k)P with a constant 3 > 0 and
0 < p < 1/2, which corresponds to Theorem Such a selection strategy is common in penalty
method and augmented Lagrangian methods [[70} 169, 127, [62] 95) 194]. The initialization of Algorithm
[T)is detailed in Appendix [C.T] We remark that Algorithm[I]is a single loop algorithm that does not
require solving any subproblem.

Next, we proceed to the convergence analysis of Algorithm [I] specifically investigating the non-
asymptotic convergence properties of the sequence {z*} generated by Algorithm By leveraging the
reformulation in Lemma and the definition of p, it follows that p(x, A, r, €, s) > 0 and no interior
point exists for the feasible set [98] 159} 22]. In this case, the classical KKT condition for nonsmooth
constrained optimization [[76] are unsuitable for our analysis. Instead, we adopt the approximation
KKT conditions introduced in [4]. We denote merit functions below,

bea(2) 1= dist (0. V,Fi(2) + Nic(2)) (16)

¢fea(z) = max{p(x,)\,r,f,s),||At£+p||2}- (17)

The residual function ¢, (z) quantifies the stationarity for (§), because ¢, (z) = 0 if and only

if z is a stationary point of (§). Meanwhile, the function ¢¢.,(2) is interpreted as a feasibility
measure for the penalized constraints of problem (6)) [67]. Indeed, the merit functions in and
are associated with the reformulation (3). Combined with the structure of BLO, ¢ ¢.,(z) regulates
optimality conditions of LL problem of (3). We clarify corresponding conclusions in Proposition[C.1]

Theorem 3.5. Suppose Assumptions and|3.2|hold. If the step size {ey} in Algorithm|l|satisfies
0 < e < min{ 1 ), the sequence {z*} generated by Algorithm

1 1
ar+BrllAcll3ap’ Br’ Br(aa+|lAll3 )

satisfies
1
. koo kd+ly _

Oér]lglélK(bres(Z )_O(K%_ )

Furthermore, if the sequence { Fy(z")} is bounded, then it holds that
1
0< mi ca(z®) = O(=).
< i drea(z”) = O(4)

We remark that boundedness assumptions on {F(z")} are widely adopted in relevant literature
(951 94, 162]. We provide explanations, proofs and more details in Appendix [C.3]

3.2 Nonseparable Regularizers

In this subsection, we focus on developing a first-order algorithm for solving (3)) in scenarios involving
multiple interacting regularizers. These cases arise when the LL problem of (3]) incorporates multiple
regularization terms applied to the entire vector x, such as elastic net or sparse group Lasso. Our
discussion centers on addressing the penalized formulation in this setting, leveraging the reformulation
(8). Using the definitions of K; and K¢ from @]), the constraints of (8) can be written as

(x,7) €Ki, (pj; \i) €KL, i =1,2,..., M,

7

(X7 I‘) € ’CJV1+1’ (pM+1a )‘Af-i-lv 5) € IC%/I-{-I?
which can be further expressed as
(x,r) € K1 N NKpmt1, (P A 8) €KY x - x Ky (18)
We denote K7 := K¢ x --- x K¢, ;. (I8) can be equivalently expressed as
z€(Kin - NKps1) x KEx - Kb = (KN NKyg1) x K&

Since each K¢ is projection-friendly, the product set K¢ inherits this property. In contrast, the
intersection ﬂf‘i‘fllCi defined over the shared variable (x, r) may not be projection-friendly. Although
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projection onto such intersections has been studied [6} 58]], the required iterations are often complex.
To address this, we reformulate the constraint to avoid direct projection onto the intersection:

zeK;xKi=1,2,...,M+1. (19)

For each i, since both K¢ and C; are projection-friendly, the product set /C; x K¢ is also projection-
friendly. Consequently, we introduce auxiliary variables u; for constraints (I9), leading to the
following reformulation of (8):

1
min B—Fk(z) st. z=u;, e K;x KL i=1,...,M+1, (20)
z,u k
where u = (uy, ..., ups+1). We define the indicator function as g;(z) = I, xx¢(2),7 = 1,2, ..., M +
1. The augmented Lagrangian function of problem (20) is given by:

1 M+1 M+1 5 M+1
£§(z7u7 p) = @Fk(z) + Z gi(w;) + Z (0 —z) + b) Z [[u; — Z||27
i=1 i=1 i=1

where g := (pty, ..., ptps, 1) denotes the Lagrangian multiplier associated with constraint z = u;.

Based on Eﬂj(z, u, ), we adopt an alternative approach to solve (20) inspired by the core idea of
the Alternating Direction Method of Multipliers (ADMM). This method alternates between updating
primal variables z and u in separate subproblems, followed by a dual ascent step to update p. At the

k-th iteration, we update z by performing a gradient step with given z*:
ZFtl = ZF — ekd];7 2n

where the update direction d¥ corresponds to the gradient of /.Zﬂj with respect to z evaluated at

(z¥,u¥, u*) and ey, is the step size of k-th iteration. This is equivalent to minimize the proximal
subproblem of L%:

. 1
zk+1 = argmin {‘C:(Zkv uka /J’k) + <v2£'l§(zk7 uka ”’k)7 z — Zk> + E”Z - zkH2 }
z
Next, for the u-subproblem, we update u; by minimizing E’; with respect to u; as
k

u! = argmin {gi(ui) + %Hui Rty %IIQ} , 22)

which is equivalent to performing the direct projection onto K; x K¢, yielding:

pk

i = proje s (- =), i= 1, ML (23)

Finally, for the dual multipliers p;, we update them as

Ni?""l = “,f + 'y(uifc"'_l — Zk"'_l)7 t=1,...,. M+ 1. (24)

Algorithm 2 Alternating approaches for (20)

- Input X, £°, sequences {1}, {ex}, a constant . Initialize x°, r°, p?, 50, set u) = z°.

:fork=0,1,2,...do
Update z*+1 with 2.
Update u**! with 23).
Update p*+1 with (24).

end for

AN A A

The penalty parameter is updated as 8, = 3(1 + k)P, where 3 > 0 is a constant and 0 < p < % The
initialization of Algorithm [2]is also detailed in Appendix[C.I] We remark that Algorithm 2] differs
from standard ADMM or DRS in two key aspects: (i) the augmented Lagrangian L,]j varies with
the iteration-dependent parameter 5. (ii) instead of exactly minimizing llﬂj in the z-subproblem,

we adopt its first-order approximation at z*. The strategy is commonly employed in gradient-based
alternating minimization approaches [L, [17]].
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In the following, we discuss the convergence property of Algorithm 2] Similar to the analysis for
Algorithm|[I] we utilize the stationarity and feasibility measure commonly used in penalty methods
(67, 95] 94]]. We define the following merit functions in the same arguments as (I6) and (I7):

ko (z) = dist (07 V Fy(z) + J\f;c(z)), (25)
M+1
rea() = max{p(x,\,1,&,3), |4+ Y p|I*}, (26)

i=1
where K := (KCy N -+ N Karg1) X K¢ x -+ K4, ;. Based on the above functions, we establish

the convergence results for Algorithm [2]in Theorem[3.7] In pursuit of this, we make the following
assumption, which is popularly employed in ADMM approaches [90, 8}, 81} 26]].

Assumption 3.6. The sequence { 1"} is bounded and satisfies Z | Pt — || < .

Theorem 3.7. Suppose Assumpnons B.1) B.2land[3.6 hold. If the step sizes in Algorithm 2] satisfy
0 < e < er < min{ (¥L+Bk“AfH2(¥ , ad+ﬁAt 7 1}, the sequence {z"} generated by Algorlthm
P

satisfies limp,_, o (;Sms( k+1) = 0. Furthermore, if the sequence { F},(z")} is bounded, then it holds
that Mg 00 @ fea (2 k) = 0.

Note that the lower bound e for step sizes e is commonly utilized in single-loop Hessian-free
algorithms for BLO [94, 95| [62]. We provide the detailed proof for Theorem [3.7]in Appendix [C.4]

4 Numerical Experiments

In this section, we evaluate the numerical performance of our proposed LDPM through experiments on
both synthetic and real datasets. Specifically, we compare LDPM with several existing hyperparameter
optimization algorithms under the BLO framework @ including search methods, TPE [13], IGJIO
(31, IFDM [14,[15]], VF-iDCA [36], LDMMA [22], BiC-GAFFA [94], as detailed in Appedix [D.T]

We consider all hyperparameter optimization problems listed in Table[I] Performance is evaluated
using validation and test errors based on the obtained LL minimizers, as well as the total running
time. These metrics are standard in the evaluation of bilevel hyperparameter optimization algorithms
[36,131]]. For each problem, we perform experiments across various data settings or datasets with 10
repetitions, and report the aggregated statistical results. Depending on the regularization structure of
each problem, we apply either Algorithm|[T|or 2] as detailed in Section 3]

4.1 Experiments on synthetic data

We focus on two prototypical tasks built from simple synthetic data: least squares regression with
various Lasso-type regularizers and low-rank matrix completion, as listed in Table[T} The synthetic
data consists of observation matrices sampled from specific distributions and response vectors
generated with controlled noise. The detailed data generation process is provided in Appendix

Lasso-type Regression. We consider three regularizers: elastic net [100], group Lasso [99], and
sparse group Lasso [83]]. These formulations all promote sparsity while balancing model complexity
and predictive accuracy. Table 2] presents the statistical results for the sparse group Lasso problem,
including validation error, test error, and running time. Results for the elastic net and group Lasso
problems are reported in Tables [3|and 4] respectively. Detailed experimental settings for each method
are provided in the corresponding subsections of Appendix [D.2] Overall, LDPM demonstrates
superior performance on synthetic data, consistently achieving the lowest test errors while requiring
the least computational time compared to baseline methods.

Low-rank matrix completion. For this problem, we conduct the numerical experiments on 60 x 60
matrices [36}31]]. The data generation process, detailed statistical results, and corresponding analysis
are presented in Appendix [D.2.4]

Sensitivity of parameters. We conduct sensitivity experiments on both Algorithm[T]and Algorithm
[2] The results summarized in Table[6]show that both algorithms exhibit stable convergence across
various parameter settings.
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Table 2: Sparse group Lasso problems on synthetic data, where p represents the number of features.

p = 600 p = 1200
Time(s) Val. Err. Test Err. [ Time(s) Val. Err. Test Err.

Settings }

Grid 6.36 +1.88 84.73+5.29 87.34 £15.91 |13.68 £2.49 84.68 +4.31 86.00 £ 18.43
Random 6.02 +2.01 135.17 +5.95 147.43 £+ 25.54|12.64 £ 2.84 137.87 + 14.21 146.25 £+ 15.52
1GJO 1.58 +0.28 101.93 +4.07 96.36 + 13.72 | 7.35 + 1.46 130.56 + 14.02 106.70 £ 4.01
VF-iIDCA | 0.56 +0.15 56.96 + 5.58 76.84 +11.33 | 8.63 +2.91 86.38 + 6.40 87.58 £ 8.90
LDMMA | 0.57 +0.13 82.70 £5.03 72.44 +14.72 | 4.72 +2.15 83.93 + 7.32 84.03 £ 9.08
BiC-GAFFA | 0.39 £ 0.02 67.42 +6.28 71.45+10.74 | 2.52 £ 0.29 82.21 +5.03 79.81 + 7.66
LDPM 0.35+ 0.03 65.11 £ 6.62 69.48+9.40 |2.15+0.14 81.39+6.51 78.11+6.35

p = 2400 p = 4800
Time(s) Val. Err. Test Err. [ Time(s) Val. Err. Test Err.

Settings ‘

Grid 24.23 +4.05 95.63 = 14.13 84.86 £ 15.09 |47.09 £ 6.34 128.94 4= 24.11 115.41 £ 17.62
Random |22.17 + 6.85 120.04 £ 15.36 146.77 £ 16.70| 46.3 = 5.57 99.41 £ 16.55 122.49 4 19.46
1GJO 11.14 4+ 7.44 91.59 £ 14.97 115.98 + 14.94(29.76 £ 9.44 99.75 + 15.14 106.49 + 7.48
VF-iDCA |14.31 +1.45 63.21 £5.36 81.92 4 10.54 |45.12 £ 3.10 73.66 £ 10.53 96.09 £+ 9.14
LDMMA | 7.50 £ 0.21 66.23 4+ 7.47 79.09 &+ 13.75 |36.14 = 3.65 78.61 £ 12.32 95.81 + 9.43
BiC-GAFFA | 5.11 +0.10 86.83 £ 13.53 76.38 +8.60 | 5.03 £0.63 94.34 £+ 8.19 92.05 £ 7.13
LDPM 4.87+0.05 92.32+6.62 74.14+2.79 |4.58 +0.17 91.35+6.04 90.21 +5.74

4.2 Experiments on real-world data

To assess the robustness of our algorithm in practical settings, we conduct experiments on real-world
datasets that are larger and exhibit more complex sampling distributions. Specifically, we consider
experiments on elastic net, smoothing support vector machine and sparse logistic regression, as
listed in Table|l} All datasets are drawn from the LIBSVM repositoryE] [21]. For each repetition, we
randomly shuffle and split the data into training, validation and test sets.

Elastic Net. In this part, we conduct experiments on datasets gisette [43]] and sensit [30]. We
summarize the comparative experimental results in Table[7]and show the validation and test error
curves over time for each algorithm in Figure[I] Even in these high-dimensional settings, LDPM
delivers competitive accuracy while maintaining fast convergence. Additional experimental details
are provided in Appendix [D.4.1]

gisette gisette

5 1 12 1 1
Time (5)

° : 1 &

Figure 1: Comparison of the algorithms on Elastic Net problem for real-world datasets.

Smoothed Support Vector Machine. In this part, we perform 6-fold cross-validation using medical
statistics datasets, including diabetes, sonar, ala [[7]. Details of the datasets and experimental setup
are given in Appendix [D.4.2] We plots the validation and test errors of each algorithm over time in
Figure 2] which clearly shows that LDPM converges more rapidly and achieves lower error levels
than the competing methods.

Sparse Logistic Regression. In this part, we conduct experiments on three large-scale document
classification datasets, news20.binary, rcv1.binary and real-sim. Dataset characteristics and experi-
mental details are provided in Appendix [D.4.3] In this experiment, we compare LDPM with search
methods, IFDM and BiC-GAFFA. We plot the validation and test error curves over time in Figure
and report the corresponding final validation and test accuracies in Table [9|for comparison. LDPM
consistently converges faster and achieves the lowest validation and test errors.

5 Conclusion

In this paper, we introduce a penalty framework based on lower-level duality for bilevel hyperparam-
eter optimization. Notably, we solve the penalized problem using single-loop first-order algorithms.
Theoretically, we establish convergence guarantees for the proposed algorithms. Empirically, through
numerical experiments on both synthetic and real-world datasets, our methods exhibit superior
performance compared to existing approaches, particularly among the illustrated HO examples.

3https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/



307

308
309
310

311
312
313

314
315

316
317
318

319
320

321
322
323

324

325
326
327

328
329
330

331

333

334
335

336
337
338

339

341
342

344
345
346

347
348

349
350
351

352
353

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

[9]

(10]
(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

Vahid Abolghasemi, Saideh Ferdowsi, and Saeid Sanei. A gradient-based alternating mini-
mization approach for optimization of the measurement matrix in compressive sensing. Signal
Processing, 92(4):999-1009, 2012.

Jan Harold Alcantara, Chieu Thanh Nguyen, Takayuki Okuno, Akiko Takeda, and Jein-Shan
Chen. Unified smoothing approach for best hyperparameter selection problem using a bilevel
optimization strategy. Mathematical Programming, pages 1-40, 2024.

Jan Harold Alcantara and Akiko Takeda. Theoretical smoothing frameworks for general
nonsmooth bilevel problems. arXiv preprint arXiv:2401.17852, 2024.

Roberto Andreani, José Mario Martinez, and Benar Fux Svaiter. A new sequential optimality
condition for constrained optimization and algorithmic consequences. SIAM Journal on
Optimization, 20(6):3533-3554, 2010.

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml. In
International conference on learning representations, 2018.

Aleksandr Y Aravkin, James V Burke, Dmitry Drusvyatskiy, Michael P Friedlander, and Scott
Roy. Level-set methods for convex optimization. Mathematical Programming, 174:359-390,
2019.

Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

Xiaodi Bai, Jie Sun, and Xiaojin Zheng. An augmented lagrangian decomposition method for
chance-constrained optimization problems. INFORMS Journal on Computing, 33(3):1056—
1069, 2021.

Fan Bao, Guogiang Wu, Chongxuan Li, Jun Zhu, and Bo Zhang. Stability and generalization
of bilevel programming in hyperparameter optimization. Advances in neural information
processing systems, 34:4529-4541, 2021.

Amir Beck. First-order methods in optimization. SIAM, 2017.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algorithms for hyper-
parameter optimization. Advances in neural information processing systems, 24, 2011.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal
of machine learning research, 13(2), 2012.

James Bergstra, Daniel Yamins, and David Cox. Making a science of model search: Hyper-
parameter optimization in hundreds of dimensions for vision architectures. In International
conference on machine learning, pages 115-123. PMLR, 2013.

Quentin Bertrand, Quentin Klopfenstein, Mathieu Blondel, Samuel Vaiter, Alexandre Gram-
fort, and Joseph Salmon. Implicit differentiation of lasso-type models for hyperparameter
optimization. In International Conference on Machine Learning, pages §10-821. PMLR,
2020.

Quentin Bertrand, Quentin Klopfenstein, Mathurin Massias, Mathieu Blondel, Samuel Vaiter,
Alexandre Gramfort, and Joseph Salmon. Implicit differentiation for fast hyperparameter
selection in non-smooth convex learning. Journal of Machine Learning Research, 23(149):1-
43, 2022.

Christopher M Bishop. Neural networks for pattern recognition. Oxford university press,
1995.

Nicholas Boyd, Geoffrey Schiebinger, and Benjamin Recht. The alternating descent conditional
gradient method for sparse inverse problems. SIAM Journal on Optimization, 27(2):616-639,
2017.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

10



354
355
356

357
358

359
360

361
362
363

364
365

366
367

368
369

371
372

373
374

375
376

377
378
379

380
381

382
383
384

385
386

387
388
389

390
391
392

393
394

396
397
398

[19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

Michael Briickner and Tobias Scheffer. Stackelberg games for adversarial prediction problems.
In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 547-555, 2011.

Emmanuel Candes and Benjamin Recht. Exact matrix completion via convex optimization.
Communications of the ACM, 55(6):111-119, 2012.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1-27, 2011.

He Chen, Haochen Xu, Rujun Jiang, and Anthony Man-Cho So. Lower-level duality based
reformulation and majorization minimization algorithm for hyperparameter optimization.
arXiv preprint arXiv:2403.00314, 2024.

Lesi Chen, Yaohua Ma, and Jingzhao Zhang. Near-optimal fully first-order algorithms for
finding stationary points in bilevel optimization. arXiv preprint arXiv:2306.14853, 2023.

Lesi Chen, Jing Xu, and Jingzhao Zhang. Bilevel optimization without lower-level strong
convexity from the hyper-objective perspective. arXiv preprint arXiv:2301.00712, 2023.

Marc Claesen, Frank De Smet, Johan Suykens, and Bart De Moor. Ensemblesvm: A library
for ensemble learning using support vector machines. arXiv preprint arXiv:1403.0745, 2014.

Xiangyu Cui, Rujun Jiang, Yun Shi, Rufeng Xiao, and Yifan Yan. Decision making under
cumulative prospect theory: An alternating direction method of multipliers. INFORMS Journal
on Computing, 2024.

Hari Dahal, Wei Liu, and Yangyang Xu. Damped proximal augmented lagrangian method for
weakly-convex problems with convex constraints. arXiv preprint arXiv:2311.09065, 2023.

Stephan Dempe and Alain Zemkoho. Bilevel optimization. In Springer optimization and its
applications, volume 161. Springer, 2020.

Gonzalo I Diaz, Achille Fokoue-Nkoutche, Giacomo Nannicini, and Horst Samulowitz. An
effective algorithm for hyperparameter optimization of neural networks. IBM Journal of
Research and Development, 61(4/5):9—1, 2017.

Marco F Duarte and Yu Hen Hu. Vehicle classification in distributed sensor networks. Journal
of Parallel and Distributed Computing, 64(7):826-838, 2004.

Jean Feng and Noah Simon. Gradient-based regularization parameter selection for prob-
lems with nonsmooth penalty functions. Journal of Computational and Graphical Statistics,
27(2):426-435, 2018.

Matthias Feurer and Frank Hutter. Hyperparameter optimization. Automated machine learning:
Methods, systems, challenges, pages 3—33, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In International conference on machine learning, pages 1126—
1135. PMLR, 2017.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and
reverse gradient-based hyperparameter optimization. In International Conference on Machine
Learning, pages 1165-1173. PMLR, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. In International
conference on machine learning, pages 1568—1577. PMLR, 2018.

Lucy L Gao, Jane Ye, Haian Yin, Shangzhi Zeng, and Jin Zhang. Value function based

difference-of-convex algorithm for bilevel hyperparameter selection problems. In International
Conference on Machine Learning, pages 7164-7182. PMLR, 2022.

11



399
400
401

402
403
404

405
406
407

408

410

411
412
413

414
415
416

417
418

419
420

421
422
423

424
425
426

427
428

429
430

431
432
433

434
435
436

437
438

439
440
441

442
443
444

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

(50]

(51]

[52]

(53]

Lucy L Gao, Jane J Ye, Haian Yin, Shangzhi Zeng, and Jin Zhang. Moreau envelope based
difference-of-weakly-convex reformulation and algorithm for bilevel programs. arXiv preprint
arXiv:2306.16761, 2023.

Gauthier Gidel, Hugo Berard, Gaétan Vignoud, Pascal Vincent, and Simon Lacoste-Julien.
A variational inequality perspective on generative adversarial networks. arXiv preprint
arXiv:1802.10551, 2018.

Tommaso Giovannelli, Griffin Dean Kent, and Luis Nunes Vicente. Inexact bilevel stochastic
gradient methods for constrained and unconstrained lower-level problems. arXiv preprint
arXiv:2110.00604, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications
of the ACM, 63(11):139-144, 2020.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration
complexity of hypergradient computation. In International Conference on Machine Learning,
pages 3748-3758. PMLR, 2020.

Lan-Zhe Guo, Zhen-Yu Zhang, Yuan Jiang, Yu-Feng Li, and Zhi-Hua Zhou. Safe deep semi-
supervised learning for unseen-class unlabeled data. In International conference on machine
learning, pages 3897-3906. PMLR, 2020.

Isabelle Guyon, Steve Gunn, Asa Ben-Hur, and Gideon Dror. Result analysis of the nips 2003
feature selection challenge. Advances in neural information processing systems, 17, 2004.

Frank Hutter, Jorg Liicke, and Lars Schmidt-Thieme. Beyond manual tuning of hyperparame-
ters. KI-Kiinstliche Intelligenz, 29:329-337, 2015.

MohammadNoor Injadat, Abdallah Moubayed, Ali Bou Nassif, and Abdallah Shami. Sys-
tematic ensemble model selection approach for educational data mining. Knowledge-Based
Systems, 200:105992, 2020.

Kwangmoo Koh, Seung-Jean Kim, and Stephen Boyd. An interior-point method for large-scale
11-regularized logistic regression. Journal of Machine learning research, 8(Jul):1519-1555,
2007.

Gautam Kunapuli, K Bennett, Jing Hu, and Jong-Shi Pang. Bilevel model selection for support
vector machines. In CRM proceedings and lecture notes, volume 45, pages 129—-158, 2008.

Gautam Kunapuli, Kristin P Bennett, Jing Hu, and Jong-Shi Pang. Classification model
selection via bilevel programming. Optimization Methods & Software, 23(4):475-489, 2008.

Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert Nowak. On penalty methods
for nonconvex bilevel optimization and first-order stochastic approximation. arXiv preprint
arXiv:2309.01753, 2023.

Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. A fully first-order
method for stochastic bilevel optimization. In International Conference on Machine Learning,
pages 18083-18113. PMLR, 2023.

Chong Li and Kung Fu Ng. On constraint qualification for an infinite system of convex
inequalities in a banach space. SIAM Journal on Optimization, 15(2):488-512, 2005.

Chong Li, Kung Fu Ng, and Ting Kei Pong. Constraint qualifications for convex inequal-
ity systems with applications in constrained optimization. SIAM Journal on Optimization,
19(1):163-187, 2008.

Jiajin Li, Caihua Chen, and Anthony Man-Cho So. Fast epigraphical projection-based incre-

mental algorithms for wasserstein distributionally robust support vector machine. Advances in
Neural Information Processing Systems, 33:4029-4039, 2020.

12



445
446
447

448
449

450
451
452

453
454

455
456
457

458
459

461
462
463

464
465
466

467
468
469

470
471
472

473
474

475
476

477
478
479

481

482

484
485

486

487
488
489

490
491

[54] Junyi Li, Bin Gu, and Heng Huang. A fully single loop algorithm for bilevel optimization
without hessian inverse. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 74267434, 2022.

[55] Tao Li and Suresh P Sethi. A review of dynamic stackelberg game models. Discrete &
Continuous Dynamical Systems-B, 22(1):125, 2017.

[56] Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. Bome! bilevel optimization
made easy: A simple first-order approach. Advances in neural information processing systems,
35:17248-17262, 2022.

[57] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055, 2018.

[58] Meijiao Liu and Yong-Jin Liu. Fast algorithm for singly linearly constrained quadratic
programs with box-like constraints. Computational Optimization and Applications, 66:309—
326, 2017.

[59] Risheng Liu, Xuan Liu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A value-function-
based interior-point method for non-convex bi-level optimization. In International conference
on machine learning, pages 6882-6892. PMLR, 2021.

[60] Risheng Liu, Xuan Liu, Shangzhi Zeng, Jin Zhang, and Yixuan Zhang. Value-function-based
sequential minimization for bi-level optimization. /EEE Transactions on Pattern Analysis and
Machine Intelligence, 2023.

[61] Risheng Liu, Yaohua Liu, Shangzhi Zeng, and Jin Zhang. Towards gradient-based bilevel opti-
mization with non-convex followers and beyond. Advances in Neural Information Processing
Systems, 34:8662-8675, 2021.

[62] Risheng Liu, Zhu Liu, Wei Yao, Shangzhi Zeng, and Jin Zhang. Moreau envelope for
nonconvex bi-level optimization: A single-loop and hessian-free solution strategy. arXiv
preprint arXiv:2405.09927, 2024.

[63] Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters
by implicit differentiation. In International conference on artificial intelligence and statistics,
pages 1540-1552. PMLR, 2020.

[64] Zhaosong Lu and Sanyou Mei. First-order penalty methods for bilevel optimization. SIAM
Journal on Optimization, 34(2):1937-1969, 2024.

[65] JunRu Luo, Hong Qiao, and Bo Zhang. Learning with smooth hinge losses. Neurocomputing,
463:379-387, 2021.

[66] Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter
optimization through reversible learning. In International conference on machine learning,
pages 2113-2122. PMLR, 2015.

[67] Ashkan Mohammadi. Penalty methods to compute stationary solutions in constrained opti-
mization problems. arXiv preprint arXiv:2206.04020, 2022.

[68] Todd G Nick and Kathleen M Campbell. Logistic regression. Topics in biostatistics, pages
273-301, 2007.

[69] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business
Media, 2006.

[70] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

[71] Takayuki Okuno, Akiko Takeda, Akihiro Kawana, and Motokazu Watanabe. On Ip-
hyperparameter learning via bilevel nonsmooth optimization. Journal of Machine Learning
Research, 22(245):1-47, 2021.

[72] Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International
conference on machine learning, pages 737-746. PMLR, 2016.

13



492
493

494
495
496

497

498
499

500
501
502

503
504

505
506

507
508

509
510
511

512
513
514

515
516

517
518

519
520
521

522
523
524

525
526
527

528
529
530

531
532
533

535
536

[73] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with
implicit gradients. Advances in neural information processing systems, 32, 2019.

[74] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples
for robust deep learning. In International conference on machine learning, pages 4334-4343.
PMLR, 2018.

[75] R Tyrrell Rockafellar. Convex analysis, volume 18. Princeton university press, 1970.

[76] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science
& Business Media, 2009.

[77] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-
propagation for bilevel optimization. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1723-1732. PMLR, 2019.

[78] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regular-
ized loss minimization. Journal of Machine Learning Research, 14(1), 2013.

[79] Han Shen and Tianyi Chen. On penalty-based bilevel gradient descent method. In International
Conference on Machine Learning, pages 30992-31015. PMLR, 2023.

[80] Han Shen, Zhuoran Yang, and Tianyi Chen. Principled penalty-based methods for bilevel
reinforcement learning and rlhf. arXiv preprint arXiv:2402.06886, 2024.

[81] Yuan Shen, Zaiwen Wen, and Yin Zhang. Augmented lagrangian alternating direction method
for matrix separation based on low-rank factorization. Optimization Methods and Software,
29(2):239-263, 2014.

[82] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng.
Meta-weight-net: Learning an explicit mapping for sample weighting. Advances in neural
information processing systems, 32, 2019.

[83] Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A sparse-group lasso.
Journal of computational and graphical statistics, 22(2):231-245, 2013.

[84] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of
machine learning algorithms. Advances in neural information processing systems, 25, 2012.

[85] Bradly Stadie, Lunjun Zhang, and Jimmy Ba. Learning intrinsic rewards as a bi-level opti-
mization problem. In Conference on Uncertainty in Artificial Intelligence, pages 111-120.
PMLR, 2020.

[86] Jiali Wang, He Chen, Rujun Jiang, Xudong Li, and Zihao Li. Fast algorithms for stackelberg
prediction game with least squares loss. In International Conference on Machine Learning,
pages 10708-10716. PMLR, 2021.

[87] Jiali Wang, Wen Huang, Rujun Jiang, Xudong Li, and Alex L Wang. Solving stackelberg
prediction game with least squares loss via spherically constrained least squares reformulation.
In International Conference on Machine Learning, pages 22665-22679. PMLR, 2022.

[88] Po-Wei Wang, Matt Wytock, and Zico Kolter. Epigraph projections for fast general convex
programming. In International Conference on Machine Learning, pages 2868-2877. PMLR,
2016.

[89] Yue Frank Wu, Weitong Zhang, Pan Xu, and Quanquan Gu. A finite-time analysis of two time-
scale actor-critic methods. Advances in Neural Information Processing Systems, 33:17617—
17628, 2020.

[90] Yangyang Xu, Wotao Yin, Zaiwen Wen, and Yin Zhang. An alternating direction algorithm for

matrix completion with nonnegative factors. Frontiers of Mathematics in China, 7:365-384,
2012.

14



537
538
539

540
541

542
543
544

545
546
547

548
549
550

551
552
553

554
555
556

557
558

559
560

561
562

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

Haikuo Yang, Luo Luo, Chris Junchi Li, Michael Jordan, and Maryam Fazel. Accelerating
inexact hypergradient descent for bilevel optimization. In OPT 2023: Optimization for Machine
Learning, 2023.

Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization.
Advances in Neural Information Processing Systems, 34:13670-13682, 2021.

Zhuoran Yang, Yongxin Chen, Mingyi Hong, and Zhaoran Wang. Provably global convergence
of actor-critic: A case for linear quadratic regulator with ergodic cost. Advances in neural
information processing systems, 32, 2019.

Wei Yao, Haian Yin, Shangzhi Zeng, and Jin Zhang. Overcoming lower-level constraints
in bilevel optimization: A novel approach with regularized gap functions. arXiv preprint
arXiv:2406.01992, 2024.

Wei Yao, Chengming Yu, Shangzhi Zeng, and Jin Zhang. Constrained bi-level optimization:
Proximal lagrangian value function approach and hessian-free algorithm. arXiv preprint
arXiv:2401.16164, 2024.

Jane J Ye, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. Difference of convex algo-
rithms for bilevel programs with applications in hyperparameter selection. arXiv preprint
arXiv:2102.09006, 2021.

Jane J Ye, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. Difference of convex algorithms for
bilevel programs with applications in hyperparameter selection. Mathematical Programming,
198(2):1583-1616, 2023.

Jane J Ye and DL Zhu. Optimality conditions for bilevel programming problems. Optimization,
33(1):9-27, 1995.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 68(1):49-67, 2006.

[100] Hui Zou and Trevor Hastie. Regression shrinkage and selection via the elastic net, with

applications to microarrays. JR Stat Soc Ser B, 67:301-20, 2003.

15



563

564
565

566

567

568
569

570
571

572
573

574

575
576

577

578
579

580

A Proofs for Section 2]

In this subsection, we provide the proofs of the results concerning the penalty framework in Section

A.1 Proof of Lemma [2.1]

The following proof follows [22].

Proof. We prove the conclusion based on the formulation (3). First we introduce augmented variables
zand z;,i = 1,2,..., M + 1 and deduce the equivalent form of LL problem of (3),

M+1
min (z Z)\R st.z=Ax—b, x=z;,i=1,2,... M+1 27

X,Z;

Since /, R; are convex and the constraints are affine, strong duality holds under Slater’s condition. If
ri(dom I N (NMT'dom R;)) # 0, then is equivalent to its Lagrangian dual problem:

M+1 M+1
max min ¢(z) + Z AiRi( (Atx b, —z) + Z pil —Z;),

X,Z,Z;
& ‘ =1

where £ is Lagrangian multiplier of constraint A;x — b, = z, while p, are those associated with
constraints x = z;. By adding the negative signs, we obtain

M+1 M+1
max — max AiRi(z;) + Ayx — by — 2) T(x —z;).
nax — max —p(z ; )+ &7 (A ¢ Z:Pz ( )

The above problem can be further simplified as,

M+1 ) T
max  —¢"(§) = 3 ARI(R) — & br.

P i=
Mal (28)

i=1

Meanwhile, leveraging the value function of the lower-level problem, the constraint of (3)) is equivalent
to
M+1 M+1

+ Y AiRi(x) < min{l(x) + Z ARy (29)

From the equivalence of and 28), (29) is further equivalent to

M+1 M+1 ) T M+1
00+ £ AR(x) < max{—e"(6) ~ X AR~ €Tb [ Akt X pi=0).

(30)
Because the inequality in (30) holds if and only if there exists a feasible pair (&, p) satisfying (30),
dropping the max operator, we obtain that the constraint in (3) is equivalent to

M+1 M+1
+ 3 ARi(x)+ o Z i R* +.§’Tbt <0,
i=1
M+1
i=1
We complete the proof. O
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A.2  Proof of Theorem

M+1

Proof. We adopt the convention A(z) = 3| A&+ Y. p;||% Itis straightforward that A(z) > 0. Let
i=1

Z be any limit point of the sequence {z*} and {z/*} C {z*} be the subsequence such that z/* — Z.

Assume that z* is a solution of the reformulation (). Then it holds that L(x*) < L(x) for all
z = (x, A, p,1, &, s) feasible to (6). Note that any point z feasible to (6) is also feasible to (8).

k

Since zF*1 is the minimizer of the problem (8) with Sy, it follows that

(a) (b)

L") + Bi(p(2™) + A2")) < L(x*) + Br(p(z") + Alz") < L(x*), (3D
where (a) follows from the feasibility of z**! and z* for the penalized problem (8) and the optimality
of z**1, (b) holds because z* is feasible to (). From (31), we deduce

p(a ) + A" < o (L(x") = L(x*)).
B

Since the functions L, p and A are lower semi-continuous in z, letting & = k; and taking the limit
j — oo for the above inequality, we have p(z) + A(z) < 0 with 8 — oo.

Since the assumptions of Theorem are consistent with those of Lemma [2.1} we obtain the
following relation from the formulation of p in

M+1 M+1

p(z) = U(x) + Z Aili(x) — min{l(x) + Z Aili(x)},

which directly implies that p(z) > 0. Combined with A(z) > 0 for all z, we further deduce that
p(z) = 0 and A(z) = 0. Therefore, Z is feasible for (). Since z* is optimal for (6), it holds that
L(x*) < L(x).

Letting k& = k; and taking the limit j — oo for (3I)), we have L(x) < L(x*). Hence, we deduce that
L(x) = L(x*) and z is also an optimal solution of (6). This completes the proof. O

A.3 Conjugate functions for problems listed in Table ]|

we calculate the closed-form expression of the conjugate functions of ¢ in problems as follows:

For least squares loss, ©*(v) = v?.
For smoothed hinge loss, ¢*(v) = 202 + v if —1 < v < 0 and ¢* (v) = 0o otherwise.

For logistic loss, p*(v) = —vlog(v) — (1 — v)log(1 —v) if 0 < v < 1 and ¢*(v) = oo otherwise.

B Epigraphical Projections

In this section, we discuss the projection onto the cones in Algorithms[TJand[2] According to different
cases detailed in Section and we discuss the projections when involving different norm
regularizers.

B.1 Projections Involving Vector Norms

The most commonly used norms in hyperparameter optimization include the ¢;-, /- and ¢,,-norm,
each serving distinct purposes depending on the specific application. When R; represents a single
norm, the explicit forms of K; and K¢ defined in () are expressed as follows.

* Ri(z) = [Ix[[1: Ki = {(x,73) | %[y < i}, KF = {(ps Xi) | lpilloe < Xi}-
© Ri(x) = [[xl2: Ki = {(x, ) | [Ixll2 <7} K= {(pis M) | [|pill2 < i}
* Ri(z) = [[X]loo: Ki = {(x,15) | [|X[loo < ri}. KF = {(pss Xi) | lpills < A}
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Thus, we investigate the projection onto the epigraph {(x,t) | [|x||; < t} of the £;,-norm (¢ =
1,2, 00). The projection for the ¢5-norm epigraph has a well-known closed-form solution, as detailed
below:

Proposition B.1. [[[0 Example 6.37] Let L} = {(x,t) | ||x]|2 < t}, for any (x,t) € R™ x R, we

have
+1t +1
. (H2x|\‘|;¢2\|2 x, ) x> e
projry ((x,£)) = ¢ (0,0), t< x|z < —t,
(x,t), 1x[l2 <.

Next, we discuss the £ norm epigraphic projection. We first provide the following theorem on the
projection onto epigraphs of convex functions.

Theorem B.2. [I0, Theorem 6.36] Let C' = epi(g) = {(x,1) | g(x) < t} where g is convex. Then
forany (x,t) € R™ x R, it holds that

. B (X7 t), g(X) S t7
projo((x;1)) = { (proxy. (%), + %), g(x) > t,

where \* is any positive root of the function
P(A) = g(prox,,(x) — A —1).
In addition, 1) is nonincreasing.
Proposition B.3. [[[0| Example 6.38] Let L7 = {(x,t) | ||x]|1 < t}, for any (x,t) € R" x R, we

have

. _[ =), Il < ¢,
projry (%)) = { (Ta=(x),t+ A7), x> ¢,

where T, = prox All-lls denotes the proximal of /;-norm, defined as

Ta(y) = [ly| — A+ sgn(y) = 1 0, lyl < A,
y+ A oy <=\

Here, A\* is any positive root of the nonincreasing function ¥(\) = || 75(x)|l1 — A — s. In practice,
the ¢1 norm epigraphical projection can be computed in linear time using the quick-select algorithm
proposed by [I88]].

Finally, the projection for the ¢, norm epigraph can be computed directly via the Moreau decompo-
sition. Let LY = {(x,1) | ||x||co < t}, then the projection is given by

projpn (X,t) = (x,t) — projpy (x,1).

When R; represents the squared /5 norm, the corresponding rotated second-order cones are defined
as Kpr41 and K4, in (9). According to Theorem for any (x,t) € R™ x R, we have

(x,1), %13 < 2t,

. =
Projic, 4, (%,1) {(H"/\*,t—k)\*), (13 > 2¢,

where \* is any positive root of the nonincreasing function /(\) = ($A+1)(1+2A?)—||z||3. Similar
to /1-norm epigraphic projection, it can also be effectively solved in linear time with quick-select
algorithm proposed by [88]].

For the rotated second-order cone K¢, ,; = {(p, A, s) | ||p||3 < 2As} where p € R™, an equivalent
representation is given by {(p, A, s) | [|[(p, A, s)|l2 < A+ s}. We introduce auxiliary variables
w = (p,\,5) € R""2and t = X\ + s € R. In this way, the projection onto IC?erl for given (p, A, 5)
is equivalent to the following optimization problem with (W, ):

1 1
min = ||w — w|? 4+ = (t — )2 s.t. w2 < t,wlco=t,
w,t 2 2
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where ¢y = (0, ...,0,1,1) € R"*2, The problem can be solved directly using the analytic solution
provided in [S3| Proposition 6.4].

When the regularization involves a group component-wise regularizers, i.e., R;(x) = [x¥]|(),
where represents the i-th subvector of x with x = (x(1), ..., x(™))  as described in Section In
this case, we observe that projection onto the set K; and K¢ corresponds to the £;, £5 or £,-norm.
The same projection applies to the vector p = (p(l), e p(M)).

B.2 Projections Involving Matrix Norms

Now we study the projection onto the epigraphs of nuclear norm || - ||, and spectral norm || - ||op-
Since our reformulation relies on conjugate functions and the conjugate of a norm is its dual norm,
we need to take both into consideration.
min{m,n}
For a matrix X € R™*", the nuclear norm is defined as || X ||, = >,  0;(X) and the spectral
i=1
norm is defined as || X||,, = max o;(X), where o;(X) is singular values for X.
3

Given a matrix A € R™*™ and a scalar ¢, the projection onto the epigraph of the nuclear norm
{X e R™*™ 7 >0 || X|l« <7} involves solving the following optimization problem

1 , 1 )
-y g ~||t - t. <
min S — AL+ gl st X < 7

where || - || p denotes Frobenius norm of a matrix.

o If ||A||. < t, the point (A,¢) already lies in the epigraph and the projection is simply
(X,7)=(4,1)

o If ||A||. > t, we first compute the singular value decomposition of A as A = UXV, where
Y = diag{oy,09,...,0.} is the single value matrix of A and U € R™*", V € R"*".
According to [1,Theorem 6.36], the projected matrix is obtained by soft-thresholding the
singular values:

g; =max(o; — A\, 0),0=1,2,...,r,

where A is determined by the equation Y max(o; — A, 0) = t+ A. This equation is typically
i=1

solved efficiently via a bisection search. Subsequently, we obtain the solution 7% =t 4 A

and reconstruct the projected matrix as X* = ULV where ¥ = diag{5, 79, ..., 5,-}. The

projected pair (X™*, 7*) is the closest point to (A, ¢) in the epigraph of the nuclear norm.

Given a matrix A € R"*" and a scalar ¢, now we consider projection onto the epigraph of the
nuclear norm {X € R™*" 7> 0| || X|lop < 7}

o If ||Allop < t, the point (A,t) already lies in the epigraph and the projection is simply
(X,7) = (4,1)

o If || A||op > t, we first compute the singular value decomposition of A as A = UXV, where
¥ = diag{o1, 02, ..., 0, } is the single value matrix of A and U € R™*", V' € R"*",

Since the epigraph of the spectral norm is defined by the constraint | X ||,, = max o;(X) <

7, we need to adjust the singular values so that the largest does not exceed the new scalar 7*

as
; =min{o;, 7"} fori=1,2,...,r.
To determine 7*, we solve the one-dimensional optimization problem
1 9 1 9
min — o, — 1)+ o(r—1)".
7_202'2(1 )+ 5(m—1)
1:0;>T

In practice, the optimal 7* can be efficiently computed using a bisection search.

Subsequently, we reconstruct the projected matrix as X* = U SVT where ¥ =
diag{&l,&g, ey 5’,«}

The projected pair (X*,7*) is the closest point to (A, t) in the epigraph of the spectral
norm.
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From the above discussions, it is evident that the projections can be computed efficiently.

C Explanations and proofs for Section

In this section, we provide additional explanations and the proofs for the convergence results of our
proposed algorithms in Section 3]

C.1 Initialization of Algorithm[f]and 2]

We initialize the starting point by following the algorithms for BLO proposed in [36} 22} [95]]. For
Algorithm given the input A°, £°, we initialize x° by solving the LL problem of (@). The remaining
initial variables are set as r{ = R;(x), p° = —VI(x°) and s° = ||p°||2/2){. For Algorithm[2] given
the input A", £°, we also initialize x° with solving the LL problem of (@). The other initial variables

are setas 7 = R;(x%), p! = — 3727 A" and s° = || pQ, 1 [12/2X8, 4 1

This initialization strategy ensures a feasible starting point for the corresponding reformulation of
original BLO, thereby facilitating convergence and enhancing the overall efficiency of the optimization
process.

C.2 Explanations for Merit Functions

To initiate the proof of the convergence results, we establish the rationale for selecting ¥, and @ fe,
as the merit measures. Note that ¢*__ and ¢ fea iN Section and are both defined based on the

penalized formulation () within a unified framework as follows:

beu(z) = dist (0, V,Fi(2) + Nic(2)), (32)
M+1

bfea() 1= max{p(x,\,1,&,3), | A& + Y pil}, (33)
=1

where K = (KN NKprp1) x K¢ x - - IC?M_H. For the case of single-round global regularization
discussed in Section the set K reduces to K = K1 x K¢ and (py, ..., Pary1) is replaced by a
single p.
From Lemma[2.1] we know that () is a direct reformulation of (3)). For convenience, we simplify the
left hand of the first constraint as:

M+1 M+1

i=1 i=1 ‘
Similar to (), we construct the penalized formulation for (3) as follows,

6 M+1
min L(x) + B (x, A, p.€) + 5 A&+ D7 pill?, (34)
=1

where (), serves as the penalty parameter.

Proposition C.1. If ¢ ¢.q(z) = 0, then (x, A, p, €) is a feasible point to (5). Moreover, if ¢ fcq(z) = 0
and ¢r.s(z) = 0 both hold, then (x, X\, p, &) is a stationary point of (34).

Proof. (a) When ¢¢., = 0 holds:

From the non-negativity of the function p and || - [|2, if ¢eq(z) = 0, it holds that p(x, A, 1, &,s) =0
M+1

and A+ > p, =0
i=1

According to the constraints of , we know that

Ri(x) <ryyi=1,..,M+1,
Ry(§8)=0,i=1,.,M.
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713 Additionally, we restore Ayr41 Ry, +1(;)1”“) with the inequality M < s. Consequently, we

714 observe that

M+1 M+1
F(x,\,p,§) = + Y NRi(x) + Z Ai R* +sTbt
e
= 160+ Y MRilx) + 97 (8) +AM+1R7M+1<§’M“> +€b,
— M+1
M+1

< )+ D N+ (€) + €7D+ s

= p(X, )‘v r, £7 S) =0,
715 which implies that (x, A, p, £) is feasible to (3).
716 (b) When ¢F, (z) = 0 and ¢ .,(z) = 0 both hold:

717 In this part, we use Moreau-Rockafellar theorem [75, Theorem 23.8] to calculate the sum rule
718 of subdifferentials. If f; and f5 are convex and lower continuous at x and f, is differentiable at
719 x € int(dom(f1)) Nint(dom(f2)), then it holds that

I(f1 + f2)(x) C Ofi(x) + Ofa(w).

720 We analyze ¢¥, (z) = 0 for each component of z.

721 e For x and r, we have
—(VL(x) + BiVI(x), BxA) € Nic,n--nkarss (X, 1), (35)
722 where K; = {(x,r) | R;(x) < r;}. Let OR; denote the limiting subdifferential of the
723 function R; [[76]. According to the definition of the normal cone of inequality constraints
724 [51}152]] and the definition of C; in (9)), we know that
Nicinnkas, (X,1) = cone{(0R;(x),—1),i=1,...,. M + 1}
M+1
— {Z x),—1) | t; > 0},
725 where cone denotes the conic hull of a set. Combmmg with (33)), we obtain
M+1
0 € VL(X) + BxVI(x) + B > MORi(x) (36)
i=1
726 * For &, we have
M+1
Ve (€) + by + AL (A + ) pi) = 0. (37)
i=1
727 * For (p;, \i),i =1,..., M, we have
M+1
7(At€ + Z pi,m) € N}Cg(pi, )\1),2 =1,.... M,
i=1
728 where K¢ = {(p;, Ai) | [|pill«s) < Ai}. From (30) and the definition of p, we know that
729 F(x,X, p,&) > 0forall (x,X,p,&). If ¢rcqa(z) = 0, the following chain of inequalities
730 holds:
0 < F(x, A p,8) <p(x,A,r,§5) <0
731 which naturally reduces to equalities. Consequently, we have F(x,\, p,€&) =
732 p(x, A\, 1, &, s), implying that R;(x) = 4,4 = 1, ..., M. Therefore, we obtain that
M+1
— (A& + Z pi: Ri(x)) € Nica(p;, Mi),i = 1,..., M,
i=1
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Meanwhile, we note that for i = 1, ..., M, R is the indicator function of the set {||y|].(;) <
1}. Combining with the fact that the normal cone is equivalent to the subdifferential of
indicator function, for the variables p, and );, the above formulation implies that

M+1
) L Pi
~(Ak+ D i) € Op (ol <r = To. Tllplco /<1y = Do, [&Ri (y)] (38)

i=1

(@)
—Ri(x) € W Lipl.cy<nt = OnL{lply<nit T Lol <ai)

w(piy &) (s (39)
jong + B8 F o R (8]

= Il
where (a) follows the fact ||p||.;y < A; and () holds from the direct calculation of the
subdifferential.

* For (ppr415 An+1,5), we have

M+1
(A€ + Y pirarrns 1) € Nict | (Parsrs Avrens 5),

i=1

where ICMJrl = {(Prr41> 41, 8) | |lpar+1113 < 2Aar415}. Similar to the deduction for
(p;, A\i) in (38) and (39), we can obtain

M+1
— (A& + Z p;) € Oprrin [AMHRMH(,\?éﬁ )}

Ruraa(x) € Oayys s Rip (2]

AM41

(40)

In summary, we find that the equations (36), (37), (38), (39) and @0) coincide with the
stationary conditions of (34). Therefore, we conclude that (x, X, €, p) is a stationary point

of (34).
O

From deduction (29) and (30), we conclude that ¢ s, (z) = 0 implies

M+1 M+1

+ > AiRi(x) = min{l(x) + Z iR (
=1

Following the reasoning in Theorem 2.4} we conclude that as 8, — oo, any limit point of the
sequence of optimal solutions to (34) with 3 is an optimal solution of (3). According to (36), we
further obtain that

M+1 1
dist(0, VI(x) + XiOR;(x)) < —||VL(x)|| — 0,
> )< 5192

as B, — oc. Thess results demonstrate that ¢*.; and ¢, can effectively character the optimality

condition of the LL problem in (3). In summary, the selection of ¢, and ¢ ., is reasonable.

We provide the proofs for the convergence results of Algorithm[T]and [2]in the subsequent sections.

C.3 Proof of Theorem

We first recall the update for the variables of z in Algorithm I]as follows. We calculate the update
directions of z as d¥ = ,Bk(dk di,d%, df, dk ,d¥), where

=+ VL(X )+ VI(xF),
d’“ w (&") + by + AT (Ag" + p"),
d’“ =rk dk = )\k db =1,
=A £k+1 + p".

(41)
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With these directions, the gradient descent step is performed as

ZF =2k — ekdlz".

For z#+1 = (xF+1, A", ph+1 g+ ¢ gh+1) we subsequently apply the projection
z"t! = proj(z"). (42)
Note that the variable £ is not involved in the projection step and thus it is evolved directly as

€k+1 _ Ek+1

Next, we discuss the sufficient decrease property for Algorithm|[T]
Lemma C.2. Suppose Assumption hold. For k € N, let {z"} be generated from Algorithm

Define Vi, = B%F % (2"), then the following inequality holds:
ar+ Ay 2ap
Vst = Vi g(ii%#Le——Mﬂﬂ—ﬂw (5~ o) 1ot ="

ek Bk
R0 — F12 (5= A ) (A = NF2 4 Rt ek 2) @)

ekﬁk 2 ex Pk
aa+|lAdl3 k41 2
(A L) gt —gh
Furthermore, if the step sizes satisfy 0 < ey, < min{ 2 2 2 > }, it holds that

ar+BkllAdlizap’ Be’ Br(aatAdll3)
Vg1 < Vi

Proof. Given Assumptionthat ¢ is ayy-smooth, we know that [ is || A¢||3c,-smooth. By applying
the sufficient decrease lemma [[10, Lemma 5.7], we obtain that
1 1 1
B—L(xkﬂ) +1(xMh ngL(xk) +1(x*) + <B—VL(xk) + ViI(xF), xk - k)
k k k

1,1
2( ar + || Agl3ay) X — xF)2.
B
Based on the convexity of the cones and the second projection theorem [[10, Theorem 6.41], we have

<(ik+1, f,k+1) o (xkﬂ,rkﬂ), (Xk, I‘k) . (Xk+1,rk+1)> <0

which implies
AL 1) 4 (N R )

+Bk || At] 20,
< iuﬂﬂﬂﬁﬂ(ﬂ—%&ﬁ-amwﬂﬂ K2+ (5 = ot ) et — e,

Given B, = B(1+k)P, we have z— < Bi Combining the above inequalities and the non-negativity
of L, we derive

Bt LKD) 4+ (1) 4 (XL b by < L (k) 1o (N b k)

or+ Ay 2ap
< L) k) + (tlilien oL ket k2 (4 - L) ek e,
(44)
The same derivation process applies to p, \;, 7;, leading to the following results:
14"+ PR 2 4 (L — AR xR
< A oM (5 - ) et = ol (4

ek Bk ekﬂk

) AT AR|2, 45)

For the variable s, we deduce that 557! = s* — ¢, and (5F+1 — sF+1 sk — sk+1) <0, which implies
that

1
sPHL b < ||sh T — sF)2, (46)
ek
Next, we define Hy, (&) = ¢*(€) + &b, + 21| A:& + p"||%, noting that Hy, is (g + || A¢[|3)-smooth.
Then the update of £ in Algorithm [I|can be expressed as

M = g = b e BV H (€Y.
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Applying the sufficient decrease lemma [10, Lemma 5.7], we obtain

2
HL(E) < Hile) + (VA" €4 — )+ 1A grn _grye

which simplifies to

Hi(€54Y) < Hy(eF) + <ad + || A3 1 > €5+t — k)2, (47)

2 ex B

Summing up the estimates @)—@ we arrive at the inequality (3)). Furthermore, when the step
2

. . . 2 . .
size satisfies 0 < e}, < min{ T A ARy B Bt TATD }, the right-hand side of {3)) becomes

negative, ensuring that Vi1 < Vi. O]

Now we provide the proof for Theorem [3.3]

Proof. We compress (@3) from & = 0 to K — 1 and obtain that

K-—1 2 2
+BklA ]| A k+1 k
5 [ (i — toetion ) et -t (Gl — o) et — g

+( 1 %) (Hpk-+1 _ pk||2 4 H)\kJrl _ )\kHQ 4 Hrk—H _rk||2)} < Vb _ VK~

erBr

(48)

From the non-negativity of L and p, we know that Vx > 0 and Vj — Vi < V4. Subsequently,
according to the update rule of variables (x, A, p, 1, &, s) in Algorithm we have that

0 € ep(VL(xF) + B VI(xF)) + (xFH1 — xF) + N (xF+1),
exBr(AT (A" + p*) + by + Ve (€9)) + (€M - €) =0,
Therefore, it holds that
VL(x*) + B VI(xF) + e;fk(x’“rl —xF) € Nic(xF1),

4
VeFi(zb) + (¢ —¢f) =0 “49)
Furthermore, we have similar conclusions for A, r, p, s as follows,
0€ (Va,Vr,Vp, Vi) Fi(zF) + é(/\k+1 — AP pRtl ok phtl _ ph gkt gk 50
+N]C(Ak+17rk+17pk+175k+1>' ( )
Now we define
1 * 1
MF = V,Fy (25 — dF — = (2" — 25) @ W, R (2 — V,F(zb) — — (2" — 2"),
€k €L

where (*) holds from d¥ = V,Fy(z"*). Using the directions specified in (#1)) and the relationship
given in (@9) and (50), we obtain
My € VF(2"T) + Nic(2"11), (51)
Based on the definition of the residual function ¢¥,, in (T6)) and the relationship (5T), we know that
res

1M > dist (0, VaFu(2") + Nic(2"+)) = gk, (254 (52

Subsequently, we estimate the value || MF|| with respect to z. By using Assumptions|3.1|and [3.2} we
2

find that |V, Fi (2"1) — V, Fy (2%)]| < BrLyl|z" ! — 2* || where L, = max{ “e2elAdzon o 4

| A¢]|3, 1}. Then we have

1
IMG ]| < Bl — 28| + =20 — 2. (53)
€k
By combining (52)) and the inequality (33, we deduce that

res

1
Fos(Z"TY) < By |2t — 28|+ —||2MT — 25 (54)
ek
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1 1 1
or+Bil|Atl|30p 7 Br’ Bk(%ﬁ-HAtHg)} we know

When the step sizes are setas 0 < e < 5~ < min{ >
Then we conclude from (34) that there exists a

797

that 0 < e, < ﬂ , which implies that ﬁk <
constant C..s > 0 such that
Vo ke o Cres ki1 k2
FZ¢T€S(Z ) < ekﬂk HZ —z H : (55)
798 From (@8), we deduce that
S 1|kl k2
5 sl - 2|
S Ay ll24+8k|| A2 Aq||?
< kzo { (eklﬁk _ (1A]3 2B§J| PHz)O‘p) ka-’,—l _ Xk||2 + (eklﬁk . Oéd+|\2 t“2) ||£k+1 . £k||2
k+1 kK
(5 = 5) (I =PI AR = XF2 4 et — e 2) |
< V.
(56)
799 By compressing (33) from k& = 0 to oo and combining with the inequality (56)), we obtain that

k+1 < 2Cresvb~
Z ﬂ res =

=, we conclude that

soo  Given B, = B(1 + k)P and 0 < p < 2,
1
: koo k41y _
OgllclgnK res(z ) - O(Kl/pr)'

ot From the definition of ¢ ¢, in @, we know that
0 < Brdsea(a") < 2(Fr(z") — L(z")).
If the sequence { F},(z*)} is bounded, we know that there exists M > 0 such that F},(z*) < M for
each k. Meanwhile, L(x") > 0 holds from Assumption Then we have
") <2M,
O

802

803 .
ﬁk(bfea (Z

soa which implies that ¢ e, (z%) = O(+%5).

C.4 Proof of Theorem 3.7]

805
806 Proof. From the update rule for u in (23, we have
L5 u k) < L8P bt (57)
807 Additionally, the update rule for p in (24) implies
Lk( k+1 uk+1 Nk+1) _ Ek(zk+1 uk+1 “k) _ _7||uk+1 _ NkHQ (58)
) v ) 9 .
2
gos According to Assumptions and we know that L,’j(z, u, i) is Mj-smooth with respect to z,
809 where M), = max{%, aq + ||A¢]|3,1}. According to [[10, Lemma 5.7], we have
M
Ch(" b k) < (2 uF, )+ (VaLh (e o ) 2T ) SR
sto  Given the update rule z =zF — e, V,LE (z u”, u*), the inequality becomes
M 1
£ ) < ettt (- LY (59)
€k

My,

811
£k( k+1 uk+1’uk+1) —Eﬁ(zk,uk,uk) S
2 €L

Combining (57), (38) and (39) and dividing both sides by S, we conclude
1 1
Yl Lt
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According to 8, = (1 + k)P, we obtain that 5%“ < ﬁ% With the non-negativity of L, it holds that
LEF(gF 1wkt ph ) < L (2R uF Tt ph ), which implies that

, M, 1 X 1
E§+1(Zk+1,uk+1,uk+1)—£§(zk,uk,uk) < (2 _ 616) sz+1_zk||2_;Huk-‘rl_ukHQ. (60)
Now we define U, = L:(Zk,uk,ﬂk) Given that 0 < e < min{a +/3k\|At\|2ap’ ad-i,-HAtHz 1} <
71> We can deduce from (60) that
1 1, &
Uppr = Up < =5 —[l2"1 =2 = ~ [t = pb]. (61)
€k Y
From the expression for Eﬂj, we can deduce the following,
. M+1 MA1 )
L(z,u,p) = Fip(z)+ >0 gi(w) + Z (miui —z) + 3 Z i — =]
1 =
]\Z/H—l = M+1 Mt
= Fu(z)+ X gi(w)+3 Z Ju; —z + &4 — 30 A
=1 =1 =1

According to Assumption we know that there exists some M, such that ||*||? < M,, for all
k € N. Additionally, the functions L and p are non-negative. This implies that

MA1 g2 M+ 1)M,
-y - ll® S (M ADMy 2 o (62)
P 2%81« 2B
indicating that Uy, is lower bounded. By telescoping the inequality (61)) for & = 0 to oo, we get
— 1 . 1 o
Do gl = P D e - P < U - (63)
o 2k 7=

The sufficient decrease property ensures that the Uy — L, > Uy — Uy > 0 for any £ € N.
Combining with the fact that 0 < o < é are bounded, and both e, and ~ is positive, we obtain from

(63) that

1
lim —||z"™ —2F||2 =0, lim ||p** — u*|| =o0. (64)
k—o0 € k— o0

Additionally, the step size ey, satisfies 0 < e < e < min{

B 1
AR ATEay car Ay 1 < w7y This
implies that max{|| A¢||3cp, aa + || A3, 1} < Jim o < ¢. Therefore, (64) ensures that
—00 €
lim [|z** —2*|| =0 (65)
k—o0
From the update of p;, we further derive that
lim [luf — 2% =0. (66)
k—o0
Meanwhile, from the form (22)) for updating u;, we derive
kt1 k1l ktl | B
0 ¢ Jgi(ulf!) 4+ ~(ul +55)
E Nicoxra (@) 4wt — 2871) 4 pf 67
b
(:) NICiXK:f( )+Nk+17 Z:LaM""ly

where (a) utilizes the fact that the normal cone is equivalent to the subdifferential of indicator

functions and (b) follows from the update of uf“. In (67), we use Moreau-Rockafellar theorem 73]
Theorem 23.8] to calculate the sum rule of subdifferentials. (67) implies that

k+1 k+1
1" € Nigoxca (0i)-
Combining the outer semi-continuity of the normal cone and (66), we can obtain that

Jim dist(—pl, Nic, xica(z¥)) = 0. (68)
—00 *
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Furthermore, according to the definition K = (K; N --- N Kary1) x K2, we know that K =
(K1 x KHN -0 (Karer x £9). Tt implies that
Ni = Nic,xxa + -+ +NICM+1x/cg-

From (68), we know
M+1

Jim dist(— ; pk Nic(zF)) = 0. (69)
From the update of z, we have

2"t =2k — eV, Lk (z u”, ph).
Combining with the definition of F}, in (§)), the above equality can be further expressed as

M+1 M1
0 = =)+ LV~ X ph - 3 (uf =)
1 k1l _ ik 1 k+1 k M ek
= (=" *Z)Jr@Vsz(Z)*Zlui Z( —#) -y X (=),
i= i=1 i=
(70)
Now we define
M+1
_v Fk k+1 ﬁ Z ll'k+1
From (69), we know that
Jim dist(MEF, V,Fy (2811 + N (2FT1)) = 0.
—00
Therefore, we evaluate || MF|| as follows. According to (70), we know that
3 M+1 M1
MF = e—k(z’CJrl —2F) £ (V, Fy (2" =V, Fr(2%)) + Z Br(pf — pf ™) + Bk Z (uf —2z").
k i=1

With the notation My, we know that Fy(z) is (8 M k)—smooth wit respect to z. Then we have

M+1

M| < Ze g — 2P| 4 B Mi|[zF = 2+ Bellt ! — pFl 4Bk Y ([ul — 2|
(@) 28 k+1 k k+1 k At k k

< RN =2 Bl = T Bk Do (a2t

i=1

=1
where (a) use the fact that e, < 1, - Combining the definition of @F. . in (25), we obtain
res(z11) < HMZ’“H +dist(My, Vo Fi(2) + Nie(251))
M+1
< 2|t = 2F )|+ Bl = pFl B X (af - 2

i=1
+dist(MEF, V, Frp(z"1) + Nic (zFH1)).

©3) and (@) imply that [[2%+1 — 2% < O(1/V/R), |+ — | < O(1/VE) and ub — 2] <
O(1/V'k). Combining with the fact that 0 < = < L and 0 < p < 1/2, we take the limit as k — oo
in the above inequality and obtain that -

hm [0) M =o0.

T@S(
If the sequence { I}, (z*)} is bounded, we know that there exists a constant M such that F},(z*) < M
for all k. From the formulation ¢ ., in (26), we observe that
k k Ky &
0 < ﬁk¢fea(z ) < 2(Fk(z ) - L(Z )) < 2M7

where (a) holds from the non-negativity of L from Assumption With the non-negativity of ¢ seq,
we take the limit £ — oo in the above inequality and obtain that

. E\
klgr;o Gfea(z”) = 0.
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D Experiments

All experiments are implemented using Python 3.9 on a computer equipped with an Apple M2 chip
(8-core architecture: 4 performance cores and 4 efficiency cores), running the macOS operating
system with 8 GB memory. The competing methods are implemented using the code provided by
(36l 221 95].

D.1 Introduction for Competitors
We now introduce the competing methods evaluated in our experiments:

* Grid Search: We perform a 10 x 10 uniformly-spaced grid search over the hyperparameter
space.

* Random Search: We uniformly sample 100 configurations for each hyperparameter direc-
tion.

* Implicit Differentiation: This category includes IGJO [31]] and IFDM [14} [15], both of
which rely on implicit differentiation techniques.

* TPE: We adopt the Tree-structured Parzen Estimator approach [13]], a widely used Bayesian
optimization method.

* VF-iDCA: [36] formulates the lower-level problem as a value function and approximately
solves the bilevel problem via DC programming.

* LDMMA: Based on lower-level duality, [22] reformulates the original problem (3) into a
more tractable form.

* BiC-GAFFA: [94] solves the bilevel optimization problem using a gap function-based
framework.

We apply IFDM only to the elastic net and logistic regression problems, as its available implementation
supports only these two among our tested tasks. LDMMA is used exclusively for Lasso-type
regression and the smoothed support vector machine, as its reformulation is not compatible with
logistic regression. Furthermore, [36]] does not provide experimental results for logistic regression,
and therefore we do not include it in the comparison for that task.

D.2 Experimental on Synthetic Data

For experiments on synthetic data, we consider hyperparameter optimization for elastic net, group
Lasso, and sparse group Lasso. These models are equipped with a least squares loss and different
regularization terms. We outline the specific mathematical form of (3) for each problem below.

Elastic net [100] is a linear combination of the Lasso and ridge penalties. Its formulation in (3) is
given by:
min %HAWIX — byall]?

* . A A A 71
st x € argmin & [[Ank — by + AdlIR] + 22 %3, 71

Group Lasso [99] is an extension of the Lasso with penalty to predefined groups of coefficients. This
problem is captured in (3) as:
mxin %HAvalX - bvalH2
M : (72)
st x € argmin 3 || Ak — by |2+ 30 N [I%O |2,
% i=1

where x(¥ is a sub-vector of x and x = (x(V), ..., x(*)),

Sparse group Lasso [83]] combines the group Lasso and Lasso penalties, which are designed to
encourage sparsity and grouping of predictors [31]]. Its formulation in (3) is represented as:
m)zn %”Avalx - bval||2

T TS @
s.t.  x € argmin 5||AyX — by || + A X[ + Ail|x 9o,
% i=1
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where x(¥) is a sub-vector of x and x = (x(1), ..., x(*)),

Based on the different cases discussed in Section [3.]and Section[3.2] we naturally employ Algorithm
[ to solve (72), and Algorithm [2] to address (7I) and (73). To evaluate the performance of each
method, we calculate validation and test error with obtained LL minimizers in each experiment. We
provide detailed experimental settings and report the results for elastic net and group lasso below.

D.2.1 Elastic Net

The synthetic data is generated following the methodology described by [31], as outlined below.
Feature vectors a; € R? are sampled from a multivariate normal distribution with a mean of 0 and
covariance structure cor(aij, aik) = 0.519=*I. The response vector b is computed as b; = ﬂTai—i—aei,
where 3; € RP is generated such that each element takes a value of either O or 1, with exactly 15
nonzero elements. The noise € is sampled from a standard normal distribution, and the value of o is

determined to ensure that the signal-to-noise ratio satisfies SNR 2 lAB]|/|lb— AB|| = 2. Since [93]
does not provide experiments or code for the elastic net problem, we compare only with search-based
methods, IGJO, IFDM, VF-iDCA and LDMMA in this experiment. We implement the algorithms we
compared with the same settings according to the description in [36} 22]. For LDPM with Algorithm
we set By = (1 + k)3, e, = 0.1 and v = 10. For elastic net problem, the stopping criterion is set
as |21 — 2¥]|/ 21 < 0.1.

We conduct repeated experiments with 10 randomly generated synthetic data, and calculate the
mean and variance. The numerical results on elastic net are reported in Table[3} Overall, LDPM
achieves the lowest test error while maintaining a significantly reduced time cost, especially for
large-scale datasets. In contrast, the search methods incur a high computational cost and exhibit
poor performance on the test dataset. The gradient-based method IGJO demonstrates slightly better
accuracy and efficiency but converges very slowly.

As discussed in [36), 22], both VF-iDCA and LDMMA achieve consistently low validation errors
across various experiments, indicating strong learning performance on training and validation sets.
However, they tend to suffer from overfitting, as reflected in increasing test errors over iterations
and poor generalization to unseen data. This phenomenon occurs across experiments with several
machine learning models.

Table 3: Elastic net problems on synthetic data, where |I;,|, | Iyai|, | Ite| and p represent the number
of training observations, validation observations, predictors and features, respectively.

il

Settings Methods Time(s) Val. Err. Test Err. \ Settings Time(s) Val. Err. Test Err.
Grid 5.76+0.33 7.05+2.02 6.98 +1.14 11.72 £ 1.32 6.05 £ 1.47 6.49 + 0.82
1| — 100 Random 574026 7.01£201 TOLELIL |0 12854211 6.04% 145 6.49 +0.83
erl = IGI0  1.54+0.84 4.99+1.69 5.42+1.21 | 1trl = 3.37+£1.85 5.22+1.50 5.72+0.91
Hoarl =20 [ppy 120+ 050 4.19+0.01 4.81+1.39 ||fvatl =100 775475 o5 480 £0.12 4.98 +0.17
Heel =250 veinca 3.16+0.63 2.72 £ 157 518+ 1.40 |[1tel =250 61083 201 3133 0.78 5.39 £ 0.92
p= LDMMA 1.64 +0.07 0.00 +0.00 6.97 £0.79 |P = 3.95£0.22 0.00 £ 0.00 6.56 + 0.70
LDPM  0.60 + 0.02 2.56 + 0.80 4.92 + 0.51 1.02+0.03 3.42+0.39 4.23 +0.37
Grid 6.09+0.60 6.39+ 1.09 6.27 + 1.02 32.99 £3.81 7.81 + 1.53 8.82 + 0.92
I — 100 Random 6.44£1.28 439 £1.10 6.27£1.05 |, |00 33.82£2.66 6.44 £ 1.53 5.67%0.94
) 700 1610 386 £2.00 4.41+0.98 4.31+0.95 |77l T 101302641 778 112 861+ 0.82
vall =100 oy 19740038 4.54+1.06 4.38 + 1.06 | |[lvall = 3.94£2.28 7.57+0.79 810+ 1.45
Heel =250 yripca a7a+177 285+ 1.56 447111 |Htel =100 95515706 0.00 £ 0.00 4.61% 0.77
p= LDMMA 0.98 +0.09 0.00 +0.00 5.61+0.77 |P = 16.26 + 1.44 0.00 +0.00 5.67 & 1.21
LDPM  0.73 +0.08 3.41 +0.48 3.51 + 0.40 4.83+0.08 1.65+0.14 4.37 + 0.65

In our experiments, we report the numerical results of VF-iDCA and LDMMA based on the final
iteration output when the algorithm terminates. In contrast, [36, 22| reports the best results observed
across all iterations. As a result, the test errors reported for VF-iDCA and LDMMA in Table 3|appear
slightly worse in our study. Additionally, our test error is slightly worse than that reported in [22] only
under the first data setting in Table[3] [22] implements LDMMA with employing off-the-shelf solver
MOSEK in MATLAB to solve the subproblems. Therefore, LDMMA yields highly favorable results
for small-scale problems, while its efficiency deteriorates significantly as the data size increases,
making it less effective for large-scale problem instances.

We observe that the running time performance of IFDM is highly competitive and significantly fast
in large scale. This is because the IFDM algorithm leverages the sparsity of the Jacobian of the
hyper-objective in bilevel optimization, which is also stated in [[15].
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D.2.2 Sparse Group Lasso

We generate the synthetic data with the method in [31], including 100 training, validation and test
samples, respectively. The feature vector a; € RP is drawn from a standard normal distribution.
The response vector b is computed as b; = 3" a; + o¢;, where 8 = [BM), 3 g®)] 30 =
(1,2,3,4,5,0,...,0), for i = 1,2, 3. The noise vector € follows a standard normal distribution, and
o is set such that the signal-to-noise ratio (SNR) is 2. For different dimensions in Table 2] we set
the group size to 30 for p = 600 and p = 1200, and to 300 for p = 2400 and p = 4800. Notably,
compared to [36, 22|, our feature vector dimensions are larger, while the number of samples is
evidently smaller.

We compare our method with search methods, IGJO, VF-iDCA, LDMMA and BiC-GAFFA in this
experiment. For the compared method BiC-GAFFA, we follow the recommended procedure outlined
in [95]]. For the other comparison methods, we adopt the exact settings from [36, 22]]. For LDPM
with Algorithm we set B, = (1 + k)%3, v = 10 and the step size e, = 0.001. For sparse group
Lasso problem, the stopping criterion is set as ||z*** — z*| /|| z"*+1|| < 0.2.

From Table 2] we observe that LDPM achieves lowest test error and outperforms other algorithms in
terms of time cost. As the scale of data increases, LDPM consistently finds the best hyperparameters
and model solutions. In comparison, search methods become extremely unstable when facing
dozens of hyperparameters. IGJO converges slowly and requires huge amount of computation.
Similar to the experiments on the elastic net problem, LDMMA and VF-iDCA still exhibit a certain
degree of overfitting. Both LDPM and BiC-GAFFA belong to the class of single-loop Hessian-free
algorithms. Since LDPM employs projection to handle nonsmooth constraints, it achieves slightly
better performance and efficiency compared to BiC-GAFFA.

D.2.3 Group Lasso

Compared to the sparse group Lasso problem, this experiment removes the ¢;-norm regularization
term, leading to a reduction in the complexity of the LL problem. However, this omission also results
in weaker control over the sparsity of x, potentially affecting the structure and interpretability of
the solution. While the lower computational complexity may improve efficiency, the trade-off is a
less strictly enforced sparsity constraint, which could affect the ability to capture key features in
high-dimensional settings.

The synthetic data is generated following the same procedure as described in Appendix[D.2.2} For this
experiment, we adopt the same settings for other compared algorithms as those used in the experiment
for the sparse group Lasso problem in Appendix [D.2.2] For LDPM, we conduct Algorithm [T| with
Br = (1+ k‘)o'3 and e;, = 0.01.

We conduct experiments with different data scales and report numerical results over 10 repetitions in
Table E} The overall comparison results in Table E] are similar to those in Table @ In this case, LDPM
only requires projected gradient descent, leading to a significant improvement in efficiency.

Table 4: Group Lasso problems on the synthetic data, where p represents the number of features.

p = 600 p = 1200
Time(s) Val. Err. Test Err. \ Time(s) Val. Err. Test Err.

Settings }

Grid 5.72+1.69 93.20+5.82 96.07 £ 17.50 |12.31 £2.24 93.15+4.74 94.60 £ 20.27
Random 5.42+1.81 148.69 +6.55 162.17 £ 28.09|11.38 £ 2.56 151.66 + 15.63 160.88 + 17.07
1GJO 1.424+0.25 112.12 +4.48 105.99 £+ 15.09| 6.62 4+ 1.31 143.62 £ 15.42 117.37 £+ 4.41
VF-iDCA | 0.50 £0.14 62.66 4 6.14 84.52 £ 12.46 | 7.77 £ 2.62 95.02 £ 7.04 96.34 £ 9.79
LDMMA | 0.51+0.12 90.97 £5.53 79.68 & 16.19 | 4.25 +1.94 92.32 £+ 8.05 92.43 £ 9.99
BiC-GAFFA | 0.35 +0.02 74.16 £6.91  78.60 + 11.81 | 2.27 £ 0.26  90.43 + 5.53 87.79 £ 8.43
LDPM 0.32+0.083 71.62+7.28 76.43 +10.34|1.944+0.13 89.53+7.16 85.92+6.99

p = 2400 p = 4800
Time(s) Val. Err. Test Err. ‘ Time(s) Val. Err. Test Err.

Settings }

Grid 21.81 +3.65 105.19 4+ 15.54 93.35 £+ 16.60 |42.38 & 5.71 141.83 £ 26.52 126.95 + 19.38
Random [19.95 4+ 6.17 132.04 + 16.90 161.45 4 18.37 |41.67 £+ 5.01 109.35 4 18.21 134.74 + 21.41
1GJO 10.03 £ 6.69 100.75 £ 16.47 127.58 4 16.43|26.78 £+ 8.50 109.73 £ 16.66 117.14 4 8.23
VF-iDCA |12.88 £1.31 69.53 +£5.90 90.11 £ 11.59 [40.61 £ 2.79 81.03 £+ 11.58 105.70 £ 10.05
LDMMA | 6.7540.19  72.85 +£8.22 87.00 4+ 15.13 |32.53 + 3.29 86.47 £+ 13.55 105.39 + 10.37
BiC-GAFFA | 4.60 & 0.09 95.51 = 14.88  84.02 £ 9.46 | 4.53 £ 0.57 103.77 £9.01 101.26 £ 7.84
LDPM 4.38 £0.05 101.55+ 7.28 81.55+ 3.07 |4.12+0.15 100.49 + 6.64 99.23 £+ 6.31
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D.2.4 Low-rank Matrix Completion

We consider low-rank matrix completion problem on synthetic data. The formulation in (@) of the
low-rank matrix completion is given as:

min Z |Mij —x,»@—zjﬁ—FijP
(ivj)GQval

st.  (0,8,T) € argmin { > | M — %0 —z;8 — Ty (74)
08T | (i,5)€Q,

& ) d )
+olIT[[« + Zl Mgl 0|2 + Zl AgrallBY ||2}
9= 9=

The data generation procedure follows the approach in [31 36]]. Specifically, two entries per row
and column are selected as the training set €);,, and one entry per row and column is selected as the
validation set €2,,). The remaining entries form the test set {es;. The row and column features are
each grouped into 12 groups, with 3 covariates per group, resulting in p = 36 and G = 12.

The true coefficients are set as a9 = gl forg =1,...,4 and ﬁ(g) = gls for g = 1,2, with all
other group coefficients set to zero. The low-rank effect matrix I is generated as a rank-one matrix
I' = uv', where u and v are sampled from the standard normal distribution.

The row features X and column features Z are also sampled from a standard normal distribution and
then scaled so that the Frobenius norm of Xa1' + (Z31 ") T matches that of I. Finally, the matrix
observations are generated as

Mij = x;ra—i—z;rﬁ—i—I‘” +U€ij7

where ¢;; is standard Gaussian noise, and the noise level o is chosen such that the signal-to-noise
ratio (SNR) equals 2.

In this experiment, we compare LDPM with grid serach, random search, TPE, IGJO, VF-iDCA. For
grid search, we explore two hyperparameters p; and po with the regularization parameters defined as
Ao = 10t and A, = 10#2 foreach g = 1,...,2G. A 10 x 10 grid uniformly spaced over the range
[-3.5, —1]x[—3.5, —1] is employed, consistent with the approach of [31]]. For both the random search
and TPE methods, the optimization is conducted over transformed variables u, = log;o(Am,) for
m=20,1,2,...,2G, where each ug4 is drawn from a uniform distribution on the interval [—3.5, —1].
For IGJO, the initial values for the regularization vector X are set to [0.005, 0.005, . . ., 0.005]. For
VF-iDCA, the initial guess for the auxiliary parameter r is chosen as [1,0.1,0.1,...,0.1]. The
algorithm is terminated when the stopping criterion (||z"*! — z*||)/||z*|| < 0.1 is satisfied. For
LDPM with Algorithm 2] we set 8, = (1 + k)°-3, v = 10 and the step size e;, = 0.025.

Throughout all experiments, feature grouping is performed sequentially as follows, every three
consecutive features are assigned to the same group, starting from the first feature onward.

We present the statistical results in repeated experiments in Table[5] Both VF-iDCA and LDPM incur
longer runtimes than search methods because they perform more intensive iterative updates—VF-
iDCA leverages inexact DC-programming steps to more faithfully enforce the low-rank and group-
sparsity penalties. This additional computational effort yields tighter approximation of the underlying
low-rank factors, resulting in substantially lower validation and test errors. LDPM repeatedly perform
costly matrix projections as discussed in Appendix [B.2]to enforce the rank constraints accurately.
These intensive projection steps allow them to recover the underlying low-rank structure more
precisely, which translates into substantially lower validation and test errors.

Table 5: Low-rank matrix completion problems on synthetic data

Methods Time(s) Val. Ace. Test Acc.

Grid 21.024+0.95 0.714+0.21 0.76 + 0.20
Random 33.12 £2.10 0.72+0.22 0.79+£0.19
TPE 36.80 £ 9.45 0.69+0.20 0.75+0.18

1GJO 1205.0 £ 312.5 0.67 £0.20 0.71 +0.17
VF-iDCA 55.20 £+ 12.05 0.65 + 0.18 0.69 £ 0.15
LDPM 62.10 £ 15.31 0.58 +0.14 0.66 +0.13
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D.3 Sensitivity of Parameters

In this part, we conduct experiments to analyze the sensitivity of our methods to different parameter
combinations. We evaluate both Algorithm[TJand Algorithm 2] To investigate the parameter sensitivity
of Algorithm [T} we carry out supplementary experiments on the group Lasso problem with a
problem dimension of 1200. In each trial, we vary one parameter while keeping the others fixed.
The corresponding convergence times and projected gradient descent (PGD) iteration counts are
summarized in Table[6a] A similar analysis is also performed for Algorithm[2]on the sparse group
Lasso instance, also with a dimension of 1200. The convergence performance, including time and
steps, is likewise reported in Table [6b]

Strategy e, B p v Steps Time(s)

Strategy e B p Steps Time(s)

o Original 0.01 1 03 10 36 2.30

Original 0.01 1 03 29 2.04 0005 1 03 10 49 797
0005 1 03 42 375 e, 005 1 03 10 21 189

er 0.05 1 0.3 18 1.67 008 1 03 10 17 1.54

008 1 03 14 1.42 001 2 03 10 48 4.16

001 2 03 40 3.60 B 001 10 03 10 56 435

B 001 10 03 44  3.89 001 40 03 10 52 5.5

- 001 40 03 38  3.95 001 1 005 10 129 1657

001 1 005 95 11.72 p 001 10701510 58 612

001 40 05 10 72 8.83
001 1 03 5 62 5.12
001 1 03 20 39 2.48

(b) Parameter Sensitivity for Algorithm

P 0.01 10 0.15 56 4.85
0.01 40 0.5 31 2.93 ~

(a) Parameter Sensitivity for Algorithm|l]

Table 6: Parameter Sensitivity Analysis for LDPM

In Algorithm [2] larger v enforces the constraint more aggressively, so the primal residual in z-
subproblem drops quickly. Smaller v makes z-update more flexible, but the residual decays more
slowly, so it end up needing more iterations and longer overall runtime. As presented in Table[6] the
algorithm consistently achieves convergence and exhibits strong robustness across a broad spectrum
of parameter configurations, highlighting its stability and reliability under varying conditions.

D.4 Experimental on Real-world Datasets

This section of the experiments aims to demonstrate the numerical performance of our method on
real-world datasets.

D.4.1 Elastic Net

We consider elastic net problem on high dimendional datasets gisette and sensit. The mathmatical
formulation follows . The datasets have a large number of features, which are suitable for
evaluating the performance of regularization techniques like the elastic net. Following the approach
in [36]], we partition the datasets as follows: 50 and 25 examples are extracted as the training set,
respectively; 50 and 25 examples are used as the validation set, respectively; and the remaining data
was reserved for testing. For the same reasons as in Appendix [D.2.1} we also compare LDPM with
search method, IGJO, IFDM, VF-iDCA and LDMMA in this experiment. We conduct compared
algorithms with the same settings as [36} 22]]. For LDPM with Algorithm we set B, = (1 + k)°3,
er, = 0.01 and v = 5. The stopping criterion in this experiment is also set as ||z"+1 — z*|| /|| z* || <
0.1. We report the experimental results in Figure [I] and summarize them in Table [7] as auxiliary
experimental results. These demonstrate that LDPM consistently achieves competitive performance
while maintaining fast computational speeds on real-world datasets for elastic net problems.

As described in [36,22], the implementation of VF-iDCA and LDMMA relies heavily on optimization
solvers. In particular, the subproblems of LDMMA are entirely dependent on the commercial solver
MOSEK, while the subproblems of VF-iDCA also rely on the CVXPY package, utilizing ECOS or
CSC as solvers. For large-scale datasets, frequent solver calls can become a major computational
bottleneck, limiting the scalability of these methods in high-dimensional or complex problem settings.
Furthermore, the conic programming reformulation proposed in [22]] introduces second-order cone
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Table 7: Elastic net problem on datasets gisette and sensit, where
the number of training samples, validation samples, test samples and features, respectively.

Dataset Methods Time(s) Val. Err. Test Err. \Dataset Time(s) Val. Err.  Test Err.

Grid 37.21 £4.80 0.24 £0.02 0.24 £0.02 1.624+0.19 1.41 £ 0.75 1.33 £ 0.47
Random 56.67 & 9.55 0.22 +0.05 0.26 4 0.02 1.46 £0.12 1.52+0.58 1.48 £ 0.43
1GJO 18.24 +3.17 0.24 £ 0.02 0.23 £ 0.03 0.57+0.14 0.52 £0.18 0.61 £0.14
gisette IFDM 35.40 £0.74 0.22 £0.02 0.23 £0.03 | sensit 6.35 4 0.04 0.37 +0.10 0.41 £ 0.23
VF-iDCA 10.7542.72 0.01 £ 0.00 0.22 4 0.01 0.47 £0.06 0.27 £ 0.03 0.52 £ 0.06
LDMMA 9.45+2.98 0.01+0.00 0.2140.01 0.4140.05 0.25 £0.04 0.50 4 0.04
LDPM 4.85+0.23 0.09+0.05 0.14 +0.03 0.28 £ 0.02 0.08 £ 0.01 0.34 £ 0.05

constraints, making LDMMA inherently a second-order algorithm. Consequently, its efficiency
deteriorates significantly when applied to large-scale problems.

In this experiment, we omit the validation/test error-vs-time curves in Figure [I] for both the
grid/random search methods and IFDM because their numerical instability leads to highly erratic
traces. As discussed in [31} [14]], implicit differentiation methods can suffer from numerical insta-
bility when applied to problems with sparse regularization like elastic net. In such cases, the inner
optimization problems often have poor conditioning, causing oscillatory behavior during convergence.

D.4.2 Smoothed Support Vector Machine

The smoothed support vector machine incorporates smoothed hinge loss function and squared /5-norm
regularization. The formulation in (3) of the smoothed support vector machine is given as:

min > In(—b;alx)

XA 1€1ya1 (75)
st. x €argmin > [,(b;alx) + ;‘Hi”%,
X i€y,

where [;, denotes the smoothed hinge loss function detailed in Table[l] Since there is only one
regularization term in (75), we conduct LDPM using Algorithm [T according to the discussion in
Section 3

We use the LIBSVM toolboxﬂ to load the datasets and extract the corresponding observation matrix
and label vector for each dataset. Each dataset is divided into two separate parts: a cross-validation
training set 2 consisting of 3| N/6] samples, and a test set Qs containing the remaining samples.
Within this division, the training set is further partitioned into multiple equal parts, and we iteratively
use one part as the validation set while utilizing the remaining parts as the training set to solve
the SVM problem. For the experiments, we conducted 6-fold cross-validation on the training and
validation sets across all three datasets to optimize the hyperparameters.

During the process of solving the smoothed support vector machine problem with K -fold cross-
validation, the loss function on the validation set is defined as follows:

@val(Wl,W2,...,W Z| Z In(b; a w ) (76)

val| Gﬂk

val

Following the approach used for support vector machine [48], we reformulate the primal problem
into the following bilevel optimization model for the smoothed support vector machine:

min O,y (whw?, ..., wk c)
w,C
st A>0,wp < W < Wy
ke i > bjalw)+ 3wl k=1,2,... K
w arg min n(bja; w Slwlls ¢ s 2,0, K,
—w<w<w jenk
tr
where w!, w?, ..., w’ are K parallel copies of c and w. w,; and Wy, are the upper and lower

bounds of w. Similarly, we define the loss function on the training set in a manner analogous to (76)):

O (wh,w2,..., wE ) KZ 3 Zlhbaw) (78)

JEQE

*https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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We also implement other competitive methods following the effective practice in [36, 22]. For LDPM
with Algorithm the penalty parameter is configured as 8, = (1 + k)% and the step size in each
iteration is fixed at e, = 0.1. We plot the convergence curves of each algorithm for validation and
test error in Figure 2]

diabetes ) sonar 10

[T
T

04
Time (s)

diabetes

00 02 04 3 Y] 10 00 02 04 06 08 10 12 14 16 1 2 3 1 H
Time (s) Time (s) Time (s)

Figure 2: Comparison of the algorithms for SSVM problem on real-world datasets.

D.4.3 Sparse Logistic Regression

The sparse logistic regression [46] is equipped with logistic loss function and ¢;-norm regularization.
Its formulation in (3) is

min Y log(1+ e*biaiTx)

XA iel,a ' - A (79)
st. x€argmin Y log(1+ e %@ %) 4+ \||%];.
x i€l

Similar to Appendix [D.4.2] we also apply LDPM with Algorithm(T]in this experiment. Following the
experimental setup in [[15]], we conduct our evaluations on large-scale real-world datasets. Specifically,
we use the same datasets as [[15], namely news20, rcvl and real-sim, all of which can be downloaded
from LIBSVM Websiteﬂ Table 8| provides a brief introduction to the basic characteristics of these
three datasets.

Table 8: Dataset Overview

Datasets Samples Features Sparsity Ratio

news20.binary 19,996 1,355,191 0.034% 0.5236
revl.binary 20,242 47,236  0.155% 0.46948
real-sim 72,309 20,958 0.245% 0.33113

This experiment is initially conducted in [15]. Since VF-iDCA and LDMMA are not suitable for
solving large-scale problems, and the reformulation of LDMMA is not applicable to the logistic loss
function, we do not compare these algorithms in this experiment. We compare our method with search
methods, IFDM, and BiC-GAFFA. Random search uniformly samples 50 hyperparameter values in
the interval [Apax — 410g(10), Amax]- The algorithm settings for IFDM follow the configurations in
[L5] for each real dataset without modification. For BiC-GAFFA, we use v; = 10,y = 0.01, g =
0.01,r = 5, a; = 0.01, p = 0.3, with a maximum iteration limit of 1000. For LDPM with Algorithm
we set B = (1 + k)93, e = 0.05.

In this experiment, we implement the code provided in [[15]. Each experiment is repeated 10 times to
compute the average and variance of runtime, validation error, validation accuracy, test error, and
test accuracy. The convergence curves of each algorithm with respect to validation and test error are
illustrated in Figure[3] Additionally, we calculate the corresponding accuracy and report them in
Table

>https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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Figure 3: Comparison of the algorithms for sparse logistic regression on real-world datasets.

Table 9: Accuracy of sparse logistic regression problem on real-world datasets.

Dataset Methods Time(s) Val. Acc. Test Acc.
Random  654.63 + 33.26 81.49 £ 1.10 80.89 & 1.24
20 binary [FPM 41.16 +6.81 86.87 + 1.14 84.07 & 1.09
NewsZUDINATY Bic GAFFA  32.64 +4.48 90.98 +1.03 90.17 + 0.81
LDPM 30.85+3.29 90.59 + 1.15 92.94 + 0.73
Random  214.46 + 67.15 96.51 = 1.19 94.24 +2.39
| binary IFDM 21.08 + 5.47 97.95 +0.26 96.12 + 1.29
fevi-DInAY - BiC.GAFFA  15.924+0.94 98.72 +0.25 96.50 & 1.21
LDPM 14.13+1.43 98.70 +0.33 97.92 + 1.29
Random  624.45 + 38.03 68.30 £ 1.10 67.65 + 1.23
realsim  IFDM 25.86 4+ 1.57 91.23 +2.18 91.10 + 1.31
s BiC-GAFFA 18.08+0.71 93.28 148 91.68 + 2.42
LDPM 17.93+£0.68 95.10 + 1.13 94.19 + 1.57

Overall, we observe from Figure [3]and Table [9] that LDPM achieves the lowest time cost and test
error in the experiment on sparse logistic regression.

The comprehensive experimental results provide strong evidence of the efficiency and practicality
of our algorithm in addressing bilevel hyperparameter optimization. These results highlight its
effectiveness in real-world applications, demonstrating its ability to achieve superior performance
while maintaining computational efficiency.

E Further Discussions

LDPM effectively solves bilevel optimization problems of the form (3), as demonstrated by strong
empirical results. However, the core of LDPM relies on a projected gradient descent, which currently
cannot handle nonsmooth loss functions without dedicated solvers, such as the hinge loss in SVMs.
In contrast, [36} 22] circumvent this issue by leveraging existing solvers to deal with such nonsmooth
components.

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.
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* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly summarize the paper’s key contributions
and accurately reflect the scope and content presented in the main body.

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper clearly acknowledges the limitations of the proposed approach,
particularly regarding its assumptions and potential generalizability.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper clearly states all necessary assumptions and provides complete and
rigorous proofs for each theoretical result.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper clearly describes the experimental settings, datasets, evaluation
metrics, and implementation details, enabling reproduction of the main results and supporting
the paper’s key claims.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
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instructions for how to replicate the results, access to a hosted model (e.g., in the case

of a large language model), releasing of a model checkpoint, or other means that are

appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper clearly describes the experimental setup, which allows for the
reproducibility of the main experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides a clear and comprehensive description of all the necessary
training and testing details, including data splits, hyperparameters, their selection process,
and the type of optimizer used, which ensures that the results can be understood and
reproduced.
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Guidelines:

» The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper clearly reports the statistical results, as all experiments were repeated
and the corresponding statistical significance and error bars were appropriately provided,
ensuring the reliability of the reported findings.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper clearly specifies the computational resources used for the experi-
ments, including the type of compute workers, memory, and execution time, ensuring that
readers can understand and reproduce the experimental setup.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper fully adheres to the NeurIPS Code of
Ethics, ensuring that all ethical guidelines and considerations were followed during the
study.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The paper does not discuss the potential positive or negative societal impacts
of the work performed, as the primary focus is on the technical and theoretical aspects of
the research.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Since our work does not involve the release of data or models that could
pose significant risks for misuse, such as pretrained language models, image generators, or
scraped datasets, there are no specific safeguards required.

Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: In our comparison experiments, we ran methods from other researchers,

utilizing the code and datasets provided in their papers. We ensured proper crediting and
respect for the licensing and terms of use associated with both the code and the datasets.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: The authors have only reported on existing methods and datasets, without
introducing new assets that require additional documentation.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]

Justification: The paper does not involve human subjects or crowdsourcing experiments, so
this question is not applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Since the research does not involve human subjects or crowdsourcing experi-
ments, there are no associated risks.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No LLMs were used in the core methods or any important components of the
research, so no declaration is required.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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