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ABSTRACT

A key assumption in multi-task learning is that at the inference time the multi-task
model only has access to a given data point but not to the data point’s labels from
other tasks. This presents an opportunity to extend multi-task learning to utilize data
point’s labels from other auxiliary tasks, and this way improves performance on the
new task. Here we introduce a novel relational multi-task learning setting where we
leverage data point labels from auxiliary tasks to make more accurate predictions
on the new task. We develop MetaLink, where our key innovation is to build a
knowledge graph that connects data points and tasks and thus allows us to leverage
labels from auxiliary tasks. The knowledge graph consists of two types of nodes:
(1) data nodes, where node features are data embeddings computed by the neural
network, and (2) task nodes, with the last layer’s weights for each task as node
features. The edges in this knowledge graph capture data-task relationships, and the
edge label captures the label of a data point on a particular task. Under MetaLink,
we reformulate the new task as a link label prediction problem between a data node
and a task node. The MetaLink framework provides flexibility to model knowledge
transfer from auxiliary task labels to the task of interest. We evaluate MetaLink
on 6 benchmark datasets in both biochemical and vision domains. Experiments
demonstrate that MetaLink can successfully utilize the relations among different
tasks, outperforming the state-of-the-art methods under the proposed relational
multi-task learning setting, with up to 27% improvement in ROC AUC.

1 INTRODUCTION

The general idea of learning from multiple tasks has been explored under different settings, including
multi-task learning (Caruana, 1997), meta learning (Finn et al., 2017), and few-shot learning (Vinyals
et al., 2016; Cao et al., 2020a;b). While these learning settings have inspired models that can utilize
relationships among tasks (Chen et al., 2019; Zamir et al., 2018; Sener & Koltun, 2018; Lin et al.,
2019; Ma et al., 2020), they are not able to capture the full complexity of real-world machine learning
applications. Concretely, when learning from multiple tasks, current approaches assume that the test
data points have no access to the labels from other tasks when making predictions on a new task.
However, this assumption oversimplifies potential useful knowledge in many real-world applications.

For example, multi-task learning studies simultaneously learning multiple predictive tasks to exploit
commonalities between the tasks. At the test time the multi-task model predicts labels of a given data
point for the tasks of interests, e.g., predicting whether the chemical compound x is non-toxic. At the
same time, one may also have access to the data point’s labels for some other auxiliary tasks, e.g., the
compound x has a positive result on two toxicology tests. Such auxiliary task labels could greatly
help with improved predictions.

However, current deep learning architectures cannot model such knowledge transfer between auxiliary
tasks/labels and the target tasks. Naively concatenating the known labels to the input features has its
limitations, especially since such labels are sparsely available, and it is also unclear how to use the
approach for new and unseen tasks. Another potential solution to model such flexible and conditional
inference is through generative models (Dempster et al., 1977; Koller & Friedman, 2009). Although
generative models are powerful, they are notoriously data-hungry, thus it is very difficult to construct
and train a generative model for high dimensional data (Turhan & Bilge, 2018).

∗The two first authors made equal contributions.
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Figure 1: In the relational multi-task setting, the model learns to incorporate auxiliary knowledge in
making predictions to achieve data efficiency. Concretely, given observations x(i) and their labels
{y(i)j } (0/1 in this example) on subsets of tasks {tj}, the goal is to build a model that can harness

the auxiliary task labels {y(i)j } and make predictions on a new task tn. A standard approach is to
build a multi-head deep neural network, with a prediction head for each individual task tj . However,
such approach cannot utilize auxiliary labels. In contrast, our proposed MetaLink reinterprets the last
layer’s weights of each task as task nodes and creates a knowledge graph where data points and tasks
are nodes and labeled edges provide information about labels of data points on tasks. Then, when
predicting data point’s label for a given task tj , MetaLink uses labels from other tasks to improve
predictive performance.

Here we propose a new multi-task learning setting called relational multi-task learning. In our setting
we distinguish between the target tasks (e.g., predicting molecule toxicity), which are tasks we aim to
predict, and auxiliary tasks, which are tasks for which data point’s labels are available at the inference
time. Note that under our setting, each data point might have labels available for a different subset of
auxiliary tasks. The goal then is to achieve strong predictive performance through leveraging labels
of a given data point on some subset of auxiliary tasks.

To tackle the relational multi-task learning, we propose MetaLink1, a general discriminative model
that can explicitly incorporate the knowledge from auxiliary tasks. Our key innovation is to build
a knowledge graph that connects different tasks tj and data points x(i) (Figure 1). The first step of
our approach is to take input data points x(i) and the feature extractor (i.e., neural network) fθ to
get its embedding z(i). Then we build the knowledge graph which consists of two types of nodes:
data nodes x(i) and task nodes tj . A data node x(i) connects to a task node tj if data point x(i)

participates in task tj and the edge is annotated with the label y(i)j of x(i) on task tj . We initialize
data node features to be the last layer embedding z(i) in the feature extractor fθ, and task node tj
features are instantiated as the last layer’s weights wj .

Given our knowledge graph, we reformulate the multi-task learning problem as a link-label prediction
problem between data nodes and task nodes. This means that at the inference time MetaLink is able
to use all the information about a given data point x(i) (including its labels on auxiliary tasks {tj}) to
predict its label on a new task tn. We solve this link label prediction learning task via a Graph Neural
Network (GNN) (Hamilton et al., 2017; He et al., 2019; Xue et al., 2021). Unlike previous works,
e.g., ML-GCN (Chen et al., 2019), that solely model relationships among tasks, MetaLink allows
flexible and automatic modeling for data-task, data-data and task-task relationships.

We evaluate MetaLink on six benchmark datasets in both biochemical and vision domains under
various settings. Empirical demonstrate that MetaLink can successfully utilize the relations among
different tasks, outperforming the state-of-the-art methods under the proposed relational multi-task
learning setting, with up to 27% improvement in ROC AUC.

2 RELATIONAL MULTI-TASK LEARNING SETTINGS

Here we first formally introduce the settings for relational multi-task learning. Suppose we have m
machine learning tasks {tj}j∈T , where T = {1, 2, ...,m} is integers between 1 and m. We propose
to categorize different settings in two dimensions: (1) whether the task is a relational task, i.e., if
auxiliary task labels can be used at inference time; and, (2) whether the task is a meta task, i.e., if the

1Source code is available at https://github.com/snap-stanford/GraphGym
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Figure 2: Our MetaLink framework allows for modeling four different multi-task learning settings:
© represent data nodes and � represent task nodes. Blue represents the data/tasks seen in the training
stage and white denotes the data/tasks seen only in the test stage. During model inference (for both
the training and the test stage), the label of a data-task pair with solid line is known, while we want to
predict labels of the data-task pairs with dotted lines.

task at test time has been seen at the training time. Altogether, there are four possible task settings,
which are illustrated in Figure 2 and below.

Standard supervised setting. Let x(i) denote the input and y
(i)
j denote the corresponding label

associated with task tj , i.e., y(i)j ∼ tj . Standard supervised multi-task learning can be represented as

Train:
{
x(i) → {y(i)j ∼ tj}j∈T

}
Test:

{
x(i) → {y(i)j ∼ tj}j∈T

}
where→ connects the input and the output. Training and test sets cover non-overlapping data points.
We use y

(i)
j to concisely represent y(i)j ∼ tj later on.

Relational setting. In relational setting, in addition to input x(i), we assume we also have access
to auxiliary task labels when making predictions. Taux and Ttest are partitions of integers (T ) that
relates to subsets of tasks. Specifically, Taux refers to the indices of tasks that input x has access
to, and Ttest are the indices of tasks that we wish to predict; these two sets are non-overlapping,
i.e., Taux ∩ Ttest = ∅, and input-dependent, i.e., the partition T

(1)
test and T

(2)
test can be different. The

input-output pairs are now in the form of

Train:
{
(x(i), {y(i)j }j∈T (i)

aux
)→ {y(i)j }j∈T (i)

test

}
Test:

{
(x(i), {y(i)j }j∈T (i)

aux
) → {y(i)j }j∈T (i)

test

}
Meta setting. In the meta setting, we want to learn to predict unseen tasks at the test time. Formally,

let Ts, Tu denote the set of partitions for seen tasks (used at training time) and unseen tasks (used at
test time), where Ts ∩ Tu = ∅. Here, we have access to a batch of samples with labels as the support
set S and the objective is to correctly predict samples in the query set Q.

Train: given S =
{
(x(i), {y(i)j }j∈Ts)

}
, predict Q =

{
x(i) → {y(i)j }j∈Ts

}
Test: given S =

{
(x(i), {y(i)j }j∈Tu)

}
, predict Q =

{
x(i) → {y(i)j }j∈Tu

}
Relational meta setting. Relational meta setting combines the features of relational setting and

meta setting. Similar to the meta setting, we aim to predict unseen tasks Tu at test time; meanwhile,
similar to the relational setting, we also assume having labels on a limited number of auxiliary tasks
Taux ⊆ Ts to harness. Formally, we have a support set and a query set in the form of

Train: given S =
{
(x(i), {y(i)j }j∈T (i)

s
)
}
, predict Q =

{
(x(i), {y(i)j }j∈T (i)

aux
)→ {y(i)j }j∈T (i)

s \T
(i)
aux

}
Test: given S =

{
(x(i), {y(i)j }j∈T (i)

u
)
}
, predict Q =

{
(x(i), {y(i)j }j∈T (i)

aux
)→ {y(i)j }j∈T (i)

u

}
3
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3 METALINK FRAMEWORK

Next, we describe our MetaLink framework, which allows us to formulate the above multi-task
learning settings in a single framework. In particular, MetaLink formulates them as a link label
prediction task on a heterogeneous knowledge graph, this way, MetaLink can harness the relational
information about data and tasks.

3.1 BUILD A KNOWLEDGE GRAPH ON TASK HEADS

We first recap the general formulation of a neural network. Given data points {x(i)}ni=1 and labels
{{y(i)j }j∈T }ni=1, a deep learning model can be formulated as a parameterized embedding function
fθ (which is deep) and a task head fw, consisting of only a single weight matrix w. fθ maps a
data point x(i) to a vector embedding space, fθ(x(i)) = z(i) ∈ RD. fw then maps an embedding
z(i) to prediction ŷ(i) ∈ R2, fw(z(i)) = wT z(i) = ŷ(i). When a task head involves multi-layer
transformation, we have fw(z(i)) = wT g(z(i)) = ŷ(i), where g(·) can be an arbitrary function. In
multi-task learning settings, people usually assign multiple task heads to a neural network. Suppose
we have m tasks {tj}mj=1, then there are m task heads such that ŷ(i)j = fwj

(z(i)).

Here, our observation is that the weights in task heads w1, . . . ,wj , and the data embeddings z(i)
play symmetric roles in a multi-task prediction task (due to the dot product). Therefore, instead of
viewing weights w1, . . . ,wj as parameters in a neural network, we propose to represent w1, . . . ,wj

as another type of input that supports the prediction. Essentially, we reformulate a task head from
ŷ
(i)
j = fwj

(z(i)) to ŷ
(i)
j = fφ(wj , z

(i)). This new perspective, where both task weights wj and
embedding z(i) are viewed as input, enables us to build a more sophisticated predictive model fφ.
fφ in the sense that it contains two main steps, i.e., GraphConv(·) and EdgePred(·). In general,
EdgePred(·) has a similar model complexity as fwj

, whereas GraphConv(·) provides additional
expressiveness.

In MetaLink, we propose to build a knowledge graph over task weights wj and embedding z(i). By
building this knowledge graph, we can succinctly represent relationships between data points and
tasks, as well as different multi-task learning settings. Concretely, a knowledge graph helps us easily
express any data-task relationship (e.g., a data point has a label on a given task), data-data relationship
(e.g., two data points are similar or not), or task-task relationship (e.g., hierarchy of different tasks).
Moreover, a knowledge graph greatly simplifies the representation of all the multi-task learning
settings that we outlined in Section 2; in fact, all the settings can be viewed as link label prediction
tasks where different portions of the knowledge graph can be constructed, as illustrated in Figure 2.

We define the knowledge graph as G = {V,E}, where V is the node set and E ⊆ V × V is
the edge set. We define two types of nodes, data nodes Vd = {x(1), . . . ,x(n)} and task nodes
Vt = {t1, . . . , tm}. We can then define edges between data and task nodes Edt ⊆ Vd × Vt, within
data nodes Edd ⊆ Vd×Vd, and within task nodes Ett ⊆ Vt×Vt. MetaLink framework can work with
all three types of edges; however, since most benchmark datasets do not have information on data-
data or task-task relationship, we focus on data-task relationship Edt in the remaining discussions.
Specifically, we define Edt based on task labels, Edt = {(x(i), tj) ∼ y

(i)
j∈Taux

}, i.e., we connect a data

node x(i) with a task node tj if label y(i)j exists.

3.2 LEARN FROM THE KNOWLEDGE GRAPH VIA A HETEROGENEOUS GNN

Given the constructed graph, we then discuss how MetaLink learns from the built knowledge graph.

Initialize node/edge features. First, we initialize features for the knowledge graph. Concretely,
we initialize data node features to be the data embeddings z(i) computed from the feature extractor
fθ(·), h(0)

i = z(i). We initialize the seen task node embeddings using the weights in task heads wj ,
h
(0)
j = wj . In meta settings where unseen task nodes appear during test time, we will initialize those

nodes by a constant vector of 1; such initialization ensures that MetaLink can generalize to unseen
tasks, since the node feature construction process is inductive.

2Without loss of generality, we assume a task is a binary classification or 1-D regression
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Predict via a heterogeneous GNN. We implement the predictive model fφ over data nodes and task
nodes as a GNN. The goal of GNN is to learn expressive node embeddings hv based on an iterative
aggregation of local network neighborhoods. The l-th iteration of GraphConv(·), or the l-th layer,
can be written as:

h(l)
v = AGG(l)

(
{MSG(l)(h(l−1)

u ), u ∈ NG(v)},h(l)
v

)
(1)

where h
(l)
v is the node embedding after l iterations, h(0)

v have been initialized as explained above,
andNG(v) denotes the direct neighbors of v. AGG is the acronym for aggregation function and MSG
is the acronym for message function. We perform L GNN layers on top of the knowledge graph G
that we have built. After updating data and task node embeddings, we can make predictions on the
given task through EdgePred(·) in the form of ŷ(i)j = MLP

(
CONCAT(h

(L)
i ,h

(L)
j )

)
.

In general, MetaLink should work with any GNN architecture that follows the definition in Equation
1. We use the GraphSAGE layer (Hamilton et al., 2017) in MetaLink (W(l), U(l) are trainable):

h(l)
v = U(l)CONCAT

(
MEAN

(
{RELU(W(l)h(l−1)

u ), u ∈ N (v)}
)
,h(l−1)

v

)
(2)

Next, we discuss the special GNN design used in MetaLink which has shown to be successful.

Special GNN designs in MetaLink. We make three extensions in the formulation in Equation 1.
First, since there are two types of nodes in our knowledge graph, we define different message passing
functions for different message types, i.e., the message from data nodes to task nodes, and the message
from task nodes to data nodes. Second, we include edge features in the message computation. This is
especially important for our formulation, since the task label values y(i)j are included as edge features,
and should be considered during GNN message passing. Concretely, we extend Equation 2 into:

h(l)
v = U(l)CONCAT

(
MEAN

(
{RELU(W

(l)
1[v∈Vd,u∈Vt]

h(l−1)
u +O(l)y(u)v ), u ∈ N (v)}

)
,h(l−1)

v

)
(3)

where 1[v ∈ Vd, u ∈ Vt] indicates the message type (whether from task to data, or data to task),
and O(l) is an additional trainable weight that allows task label y(u)v participates in message passing.
Finally, we let each GNN layer make a prediction and sum them up as the final prediction; this way,
the final prediction is obtained from mixed information from different hops of node neighbors. We
observe this multi-layer ensemble technique can help MetaLink make robust predictions.

MetaLink for relational meta setting. Here we provide a detailed description on how to ap-
ply MetaLink for the relational meta setting in Algorithm 1. At training time, since most
of the existing multi-label datasets are not designed for meta setting, we manually simulate
such setting by sampling a mini batch with support S =

{
(x(i), {y(i)j }j∈T (i)

s
)
}

and query set{
(x(i), {y(i)j }j∈T (i)

aux
)→ {y(i)j }j∈T (i)

s \T
(i)
aux

}
. We make sure the sampled meta tasks T (i)

s and auxiliary

knowledge tasks T (i)
aux have no intersection. We first use the feature extractor fθ to get data embeddings

and use the embeddings to initialize data nodes. To initialize task nodes, we either: (1) use 1 to
initialize if the task is a meta task; Or, (2) use trained weights otherwise. We construct the edge set
E by connecting each data-task pair based on

{
{y(i)j }j∈T (i)

s

}
in the support set and

{
{y(i)j }j∈T (i)

aux

}
(we eliminate the relations we want to predict) in query set. Now that we have all the components of
the knowledge graph, we can apply the predictive graph model fφ to learn expressive data and task
node embeddings and make predictions.

At test time, we use the same pipeline as in training to construct the knowledge graph and run
inference. Please refer to Appendix A for the pipelines of relational or meta settings.

4 EXPERIMENTS

Here we experimentally show that our proposed MetaLink flexibly handles different settings and
leverages knowledge from auxiliary tasks. We first evaluate our algorithms on Tox21 (Huang
et al., 2016), Sider (Kuhn et al., 2016), ToxCast (Richard et al., 2016), and MS-COCO (Lin et al.,
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Algorithm 1 MetaLink Training in Relational Meta Setting

Require: Dataset Dtrain = {(x, y)}. A parameterized embedding function fθ. Last layer weights for
each task wj . A parameterized heterogeneous GNN fφ. Number of GNN layers L.

1: for each iteration do
2: S,Q← SampleMiniBatch(Dtrain) . Simulate meta setting in training
3: {z} ← fθ(x) for x ∈ (S,Q)

4: V
(0)
d = {h(0)

i ← z for z ∈ {z}} . Initialize data nodes
5: V

(0)
t = {h(0)

j ← 1 if meta else wj for each wj} . Initialize task nodes

6: E = {eij ← (x(i), tj) for y(i)j ∈ (S,Q)} . Initialize edges
7: for l = 1 to L do
8: V

(l)
d , V

(l)
t ← GraphConv(V (l−1)

d , V
(l−1)
t , E) with fφ

9: logits← EdgePred(V (L)
d , V

(L)
t ) with fφ

10: Backward
(

Criterion(logits, {{y(i)j }j∈T (i)
s \T

(i)
aux
} ∈ Q)

)

2014) datasets with various controllable settings on relational multi-task learning. To additionally
demonstrate the advantage of MetaLink, we also include experiments on a well-studied task: few-shot
learning. Our core algorithm is developed using PyTorch (Paszke et al., 2017). We use one NVIDIA
RTX 8000 GPU for each experiment and the most time-consuming one (MS-COCO) takes less than
24 hours. Please refer to Appendix A for additional low-level implementation details.

4.1 EVALUATING METALINK ON RELATIONAL MULTI-TASK SETTINGS

Datasets. We simulate four relational multi-task settings (Figure 2) using four widely-used multi-
label datasets. Tox21 (Huang et al., 2016) contains 12 different toxicological experiments for each
sample with binary labels (active/inactive). Sider (Kuhn et al., 2016) is a database of marketed
drugs and adverse drug reactions (ADR), grouped into 27 tasks. ToxCast (Richard et al., 2016)
contains about 8K pairs of molecular graphs and corresponding 617-dimensional binary vectors that
represent different experimental results. Microsoft COCO (Common Objects in Context) (Lin et al.,
2014) is originally a large-scale object detection, segmentation dataset. By counting whether each
type of object exists in a scene as a single task, it also serves as the default large-scale dataset for
benchmarking multi-label classification in vision. There are 80 binary classification tasks with an
average of 2.9 positive labels per image.

Experimental setting. We evaluate MetaLink on all four settings described in Figure 2, and we
summarize the detailed configurations as follows. STANDARD SETTING: standard supervised learning.
In order to have a fair comparison, we evaluate the same set of tasks with unknown labels as we
sampled in relational settings. RELATIONAL SETTING: we assume each example has access to labels
of 20% of all tasks in each dataset. We evaluate on the rest of the tasks with unknown labels. META
SETTING: we hold out 20% of the tasks at the training time. We only evaluate on the held-out tasks
at the test time. We use 256-shot setting, meaning at test time, we use 256 data points as a support set
to initialize the prototypes of unseen tasks. The reason why the number of shots is much larger than
what is commonly used in few-shot learning (1-shot, 5-shot) is that positive labels are sometimes
sparse in certain tasks. RELATIONAL META SETTING: we hold out the same 20% of the tasks at the
training time as in the meta setting. At test time, we assume each unseen task has access to 20% of
the labels of seen tasks. We will release our splits of meta setting to promote reproducibility.

Baselines. Though the main motivation of our work is to utilize auxiliary task labels, we still include a
few baselines under the standard supervised setting in order to benchmark state-of-the-art results. The
simplest one is (1) Empirical risk minimization (ERM): we train the network with cross-entropy loss
under the standard supervised setting; (2) Various commonly used graph neural network architectures
designed for molecules, MPNN (Gilmer et al., 2017), DMPNN (Yang et al., 2019), MGCN (Lu et al.,
2019), AttentiveFP (Xiong et al., 2019); (3) GROVER (Rong et al., 2020) integrates Message Passing
Networks into the Transformer-style architecture. By leverage pretraining, it achieves state-of-the-art
results on the aforementioned molecule datasets; (4) Baseline++ (Chen et al., 2018): since there is no
prior work on addressing meta setting for multi-task learning, we adapt Baseline++ from few-shot
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Table 1: Results of different multi-task learning settings on graph classification tasks, measured in
ROC AUC. MetaLink can successfully utilize the relations among different tasks, outperforming the
state-of-the-art method GROVER (Rong et al., 2020) under the relational setting.

Method Setting Tox21 (12 tasks) Sider (27 tasks) ToxCast (617 tasks)

MPNN (Gilmer et al., 2017)

Standard

80.8±2.4 59.5±3.0 69.1±1.3
DMPNN (Yang et al., 2019) 82.6±2.3 63.2±2.3 71.8±1.1

MGCN (Lu et al., 2019) 70.7±1.6 55.2±1.8 66.3±0.9
AttentiveFP (Xiong et al., 2019) 80.7±2.0 60.5±6.0 57.9±1.0

GROVER(48M) (Rong et al., 2020) 81.9±2.0 65.6±0.6 72.3±1.0
GROVER(100M) (Rong et al., 2020) 83.1±2.5 65.8±2.3 73.7±1.0

MetaLink

Standard 82.3±2.2 (KG layer = 1) 60.9±2.4 (KG layer = 5) 69.3±1.6 (KG layer = 3)
Relational 83.7±1.9 (KG layer = 1) 76.8±3.0 (KG layer = 2) 79.4±1.0 (KG layer = 4)

Meta 77.5±2.1 (KG layer = 2) 57.9±5.0 (KG layer = 2) 71.3±2.2 (KG layer = 2)
Relational+Meta 79.2±2.9 (KG layer = 2) 65.4±4.3 (KG layer = 5) 84.3±1.2 (KG layer = 5)

learning to this setting. We first train a feature extractor on the training set. At test time we use the
support set to train a linear classification layer.

Results on biochemical datasets. Table 5 summarizes the results on Tox21, Sider, and ToxCast
datasets. We first clarify that when performing MetaLink under the standard setting, where there
is no auxiliary task label to leverage, the knowledge graph we built degenerates to a trivial set
since the edge set is empty. It has a negligible difference compared with training a vanilla network
with cross-entropy loss. Thus, it is reasonable that MetaLink under the standard setting has similar
performance with the baselines. GROVER has better performance because it leverages large-scale
pretraining. In terms of comparing relational setting with standard setting, we conclude that the
proposed MetaLink successfully leverages the auxiliary knowledge for each sample. Notably, with
auxiliary labels from 20% of the tasks, MetaLink surpassed GROVER with large-scale pretraining
by a large margin. In addition, we observe similar improvements between meta and relational meta
settings. The empirical results for meta or relational meta setting are very close to the performance in
standard setting, proving the potential of data-efficient research in biochemical domains.

Results on MS-COCO. Table 2 summarizes the results on MS-COCO. Note that as also mentioned
in the settings, we need a large support set to ensure each task in the meta testing stage has at least
one positive label. This blocks the feasibility of using a large model and input size as it is done in
common benchmarks. Thus, we use ResNet-50 with an input size of 224 for all the experiments. We
observe consistent improvements for both relational setting and relational meta setting. MetaLink
also outperforms Baseline++ in the meta setting. Note that since label distribution for most of the
tasks is highly skewed, mAP degrades more in the meta setting than for the biochemical datasets.

Table 2: Results on MS-COCO (80 tasks) dataset. We report the average accuracy and standard
deviation over 5 runs on the validation set. We use ResNet-50 and our input size is 224. MetaLink
achieves the best performance in relational settings through harnessing the auxiliary labels efficiently.

Method Setting mAP

ML-GCN (Chen et al., 2019)1 Standard 69.15 ± 0.19
ERM Standard 71.22 ± 0.15

Baseline++ (Chen et al., 2018) Meta 30.46 ± 0.69

MetaLink

Standard 71.58 ± 0.16
Relational 75.36 ± 0.16

Meta 41.75 ± 0.92
Relational+Meta 49.73 ± 0.88

4.2 ABLATION STUDIES

Does MetaLink truly learn to utilize correlations between tasks? To better understand the im-
provement of our algorithm, we first plot the Pearson correlation heat map on Sider (Figure 3). We

1https://github.com/Megvii-Nanjing/ML-GCN
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Figure 3: Pearson correlation heat map on 27
tasks of Sider dataset.
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Table 3: ROC AOC on 3 tasks with the lowest
average Pearson correlation to other tasks (tasks 2,
17, 22), as well as 3 tasks with the highest average
Pearson correlation to other tasks (tasks 5, 20, 21)
on the Sider dataset. We observe MetaLink gains
more improvement on the tasks with high Pearson
correlation.

Setting Low Corr Tasks High Corr Tasks

Standard 57.5 ± 8.4 61.0 ± 4.1
Relational 70.1 ± 7.8 80.6 ± 3.3

Improvement 21.9% 32.1%

then find the top 3 tasks with the highest and lowest average correlation with respect to the rest of the
tasks. We report the performance of MetaLink on these two subsets of tasks, respectively (Table 3).
We observe that MetaLink demonstrates larger improvement on tasks with higher correlations. This
experiment verifies that MetaLink learns to utilize correlations between tasks as expected.

How does MetaLink perform with varying ratio of auxiliary task labels? We vary the ratio of
additional labels per test point and report the results in Figure 4. We observe consistent improvement
as we gradually increase the number of auxiliary labels in each dataset. This experiment demonstrates
that MetaLink can successfully utilize marginal information whenever auxiliary task labels are added
to the dataset. The improvement is usually prominent for the first few added labels.

Figure 4: We vary the ratio of auxiliary labels per test point and plot the ROC AUC with the error bar.
We also plot the state-of-the-art method (GROVER) as the dash line which cannot utilize additional
auxiliary task labels. The performance of MetaLink consistently improves as more tasks are utilized.
In Sider, MetaLink can outperform GROVER by up to 27% when 90% auxiliary labels are provided.

4.3 EVALUATING METALINK ON STANDARD FEW-SHOT LEARNING DATASETS

Since the relational multi-task setting is novel, there is a very small number of baselines that we can
compare against. The major aim of this section is to show the advantage of MetaLink in a well-studied
problem: few-shot learning. Note that there is a slight difference between the meta setting above and
few-shot learning setting here. For few-shot learning, for all the link label prediction tasks related
to an input, there will be only one positive link. This inductive bias could be easily incorporated by
modeling all the link label predictions together using cross-entropy loss.

Experimental setting. We evaluate performance on two standard benchmarks: mini-
ImageNet (Vinyals et al., 2016) and tiered-ImageNet (Ren et al., 2018). We compare against
MatchNet (Vinyals et al., 2016), Baseline++ (Chen et al., 2018), MetaOptNet (Lee et al., 2019), and
Meta-Baseline (Chen et al., 2020b), who only assume the input is a vector.

8
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Table 4: Results on 5-way, 5-shot classification on mini-ImageNet and tiered-ImageNet datasets. We
report the average accuracy and standard deviation over 800 randomly sampled episodes. MetaLink
demonstrates consistent improvement from stacking KG layer = 0 to 2.

Method mini-ImageNet tiered-ImageNet

MatchNet (Vinyals et al., 2016) 78.72 ± 0.15 80.60 ± 0.71
Baseline++ (Chen et al., 2018) 77.76 ± 0.17 83.74 ± 0.18
MetaOptNet (Lee et al., 2019) 78.63 ± 0.46 81.56 ± 0.53

Meta-Baseline (Chen et al., 2020b) (KG layer = 0) 79.26 ± 0.17 83.29 ± 0.18

MetaLink (KG layer = 1) 79.86 ± 0.18 83.91 ± 0.17
MetaLink (KG layer = 2) 81.13 ± 0.17 84.68 ± 0.17

Results. Table 4 shows that our MetaLink outperforms the standard few-shot learning benchmarks.
Note that if we set KG Layer = 0, the proposed MetaLink degenerates to Meta-Baseline. The
experiments clearly demonstrate the benefits of building a knowledge graph on the last layer. Fur-
thermore, as an ablation study we manipulate the number of KG layers and find that in the few-shot
image recognition setting, there’s an improvement for stacking 2 KG layers instead of 1, meaning
non-linearity is useful. We do not observe further improvements for more than 3 layers.

5 RELATED WORK

Multi-task learning. Multi-task learning is a learning paradigm that jointly optimizes a set of tasks
with shared parameters. It is generally believed that relations across different tasks can improve the
overall performance. Some works cast it as a multi-objective optimization problem and introduce
multiple gradient-based methods to reduce negative transfer among tasks (Fliege & Vaz, 2016; Lin
et al., 2019). Other works assign (adaptive) weights for different tasks using certain heuristics (Kendall
et al., 2018; Chen et al., 2018). Our empirical study is also closely related to multi-label learning,
where the problem is usually decomposed into multiple binary classification tasks (Tsoumakas &
Katakis, 2007). There is a line of work learning to leverage the relationship among tasks (Haller
et al., 2021; Zamir et al., 2020). Wang et al. (2016) utilized recurrent neural networks to transform
labels into embedded label vectors to learn the correlation among labels. The most recent work is
ML-GCN (Chen et al., 2019), which uses a GCN to map label graph into a set of inter-dependent
classifiers. Although the major motivation of our work is also about leveraging correlation among
tasks, our problem formulation is new and thus yields a novel algorithm.

Exploring graph structure for data and tasks. There are prior works exploring graph structure for
data points or tasks, and graph structure was proven to be effective in some tasks. Satorras & Estrach
(2018) explores graph neural representations over data points only for few-shot learning. Besides,
some works study how to transfer knowledge among tasks through constructing a graph over task
nodes/classifiers only (Liu et al., 2019; Chen et al., 2020a). Along this direction, instead of building
a fully connected graph, recent works utilize auxiliary task structure/knowledge graph to build the
graph (Chen et al., 2019; Lee et al., 2018). In contrast, and orthogonal to the papers above, we
focus on modeling data-task relationships with the reinterpretation of the last layer. In addition, with
data-task relationships solely, we are still able to capture data-data, task-task relationships implicitly
through higher-order message passing.

6 CONCLUSION

We introduced relational multi-task settings in which the methods are required to learn to leverage
labels on auxiliary tasks to predict on the new task. These settings are impactful in the biomedical
domain where labels of different tasks are often scarcely available. To address these settings, we
propose MetaLink, which is general enough to allow us formulating the above settings in a single
framework. We demonstrated that MetaLink can successfully utilize the relations among tasks,
outperforming the state-of-the-art methods under the proposed relational multi-task learning setting,
with up to 27% improvement in ROC AUC. We limit our focus to model data-task relationships since
most benchmark datasets do not have information on data-data or task-task relationships, though
MetaLink is expressive enough to model such relationships. We leave extending MetaLink to more
complex relationships or tasks for future work.
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A ADDITIONAL IMPLEMENTATION DETAILS

Implementation details for biomedical datasets. We use an adapted version of GraphSAGE
Hamilton et al. (2017) as the base neural architecture, and implement MetaLink based on the
descriptions in the main paper. We use Adam optimizer, with initial learning of 0.001 and cosine
learning rate scheduler. The model is trained with a batch size of 128 for 50 epochs. We search over
the number of layers of [2, 3, 4, 5], and report the test set performance when the best validation set
performance is reached.

Implementation details for MS-COCO. We use ResNet-50 with an input size of 224×224 as the
base neural architecture, and implement MetaLink based on the descriptions in the main paper. We
perform standard data augmentation, including random crop and horizontal flipping. We use Adam
optimizer with an initial learning rate of 0.002, weight decay of 1× 10−4. The model is trained with
a batch size of 256 for 40 epochs. We use the same set of hyper-parameters for all the four settings
mentioned in the main paper.

Implementation details for few-shot learning. We use the widely adopted backbones ResNet-12
with an input size of 84×84 (Chen et al., 2020b). We perform standard data augmentation, including
random crop and horizontal flipping. We use SGD optimizer with an initial learning rate of 0.001,
momentum of 0.9, weight decay of 5×10−4. The model is trained with a batch size of 4 for 20 epochs.
Notice one batch includes a support set (with 5×5 examples) and a query set(with 15 examples).
In a nutshell, we use the same set of hyperparameters as (Chen et al., 2020b), which is exactly the
degenerated model if we set KG layer = 0.

Additional algorithms. We summarize the steps of MetaLink for relational setting in Algorithm 2,
for meta setting in Algorithm 3.

Code release. We will make all the source code public at the time of publication.

Algorithm 2 MetaLink Training in Relational Setting

Require: Dataset Dtrain = {(x, y)}. A parameterized embedding function fθ. Last layer weights for
each task {wj}. A parameterized heterogeneous GNN fφ. Number of GNN layers L.

1: for each iteration do
2: {(x, {y(i)

j∈T (i)
aux
}, {y(i)

j∈T (i)
test
}} ← SampleMiniBatch(Dtrain)

3: {z} ← fθ(x) for x ∈ {(x, {y(i)
j∈T (i)

aux
}, {y(i)

j∈T (i)
test
}}

4: V
(0)
d = {h(0)

i ← z for z ∈ {z}} . Initialize data nodes
5: V

(0)
t = {h(0)

j ← wj for wj ∈ {wj} . Initialize task nodes

6: E = {eij ← (x(i), tj) for y(i)j ∈ {y
(i)
j∈Taux

} . Initialize edges
7: for l = 1 to L do
8: V

(l)
d , V

(l)
t ← GraphConv(V (l−1)

d , V
(l−1)
t , E) with fφ

9: logits← EdgePred(V (L)
d , V

(L)
t ) with fφ

10: Backward
(

Criterion(logits, {{y(i)j }j∈T (i)
test

)
)

B ADDITIONAL DISCUSSIONS

Limitations. i) In principle, MetaLink leverages task correlation to achieve data efficiency/gain
better performance. Thus, it is less effective when tasks are not correlated. We believe it is fair to
assume a multi-task learning system will work worse when tasks as not correlated. ii) Though our
method is general to model diverse multi-task scenarios, we limit our empirical study to multi-label
learning mostly due to the limitation of dataset availability. We hope that the proposed MetaLink can
inspire researchers to collect more multi-task learning datasets with diverse use cases.
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Algorithm 3 MetaLink Training in Meta Setting

Require: Dataset Dtrain = {(x, y)}. A parameterized embedding function fθ. A parameterized
heterogeneous GNN fφ. Number of GNN layers L.

1: for each iteration do
2: S,Q← SampleMiniBatch(Dtrain) . Simulate meta setting in training
3: {z} ← fθ(x) for x ∈ (S,Q)

4: V
(0)
d = {h(0)

i ← z for z ∈ {z}} . Initialize data nodes
5: V

(0)
t = {h(0)

j ← 1} . Initialize task nodes

6: E = {eij ← (x(i), tj) for y(i)j ∈ S} . Initialize edges
7: for l = 1 to L do
8: V

(l)
d , V

(l)
t ← GraphConv(V (l−1)

d , V
(l−1)
t , E) with fφ

9: logits← EdgePred(V (L)
d , V

(L)
t ) with fφ

10: Backward
(

Criterion(logits, {{y(i)j }j∈Ts} ∈ Q)
)

Social impact. In practice, collecting high-quality datasets is often expensive and time-consuming.
In the biomedical domain, labeling requires domain expertise and hence is very resource-intensive.
In some applications, it requires long-term experiments to get the ground truth labels. The approach
that we proposed could reduce the high labeling cost by utilizing auxiliary task labels that are already
available. In principle, MetaLink attempts to leverage correlation among tasks. Thus, when it comes
to future deployment, we suggest being careful about defining tasks. Because it might come across
similar issues related to fairness as in other supervised learning problems, where the algorithm learns
biased correlations from the datasets that are not considered to be appropriate. The datasets we
used for experiments are among the most widely-used benchmarks, which should not contain any
undesirable bias.

C ADDITIONAL RESULTS

Advantages on using heterogeneous weights. As discussed in Section 3, we proposed to learn
from the knowledge graph constructed via a heterogeneous GNN. Here we empirically demonstrate
the improvement of using distinct weights for updating data nodes and task nodes. Results are
summarized in Table 5.

Table 5: Results of ROC AUC (for biomedical) and mAP (for MS-COCO) datasets.

Setting Weights Tox21 (12 tasks) Sider (27 tasks) ToxCast (617 tasks) MS-COCO (80 tasks)

Relational Shared 83.1 ± 1.6 75.8 ± 2.5 78.1 ± 1.3 74.02 ± 0.16
Hetero 83.7 ± 1.9 76.8 ± 3.0 79.4 ± 1.0 75.36 ± 0.16
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