Under review as a conference paper at ICLR 2025

CAN VLMS PLAY ACTION ROLE-PLAYING GAMES?
TAKE BLACK MYTH WUKONG AS A STUDY CASE

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, large language model (LLM)-based agents have made significant ad-
vances across various fields. One of the most popular research areas involves
applying these agents to video games. Traditionally, these methods have re-
lied on game APIs to access in-game environmental and action data. However,
this approach is limited by the availability of APIs and does not reflect how hu-
mans play games. With the advent of vision language models (VLMs), agents
now have enhanced visual understanding capabilities, enabling them to interact
with games using only visual inputs. Despite these advances, current approaches
still face challenges in action-oriented tasks, particularly in action role-playing
games (ARPGs), where reinforcement learning methods are prevalent but suffer
from poor generalization and require extensive training. To address these limi-
tations, we select an ARPG, “Black Myth: Wukong”, as a research platform to
explore the capability boundaries of existing VLMs in scenarios requiring visual-
only input and complex action output. We define 13 tasks within the game, with
76.9% focusing on combat, and incorporate several state-of-the-art VLMs into
this benchmark. Additionally, we will release a human operation dataset contain-
ing recorded gameplay videos and operation logs, including mouse and keyboard
actions. Moreover, we propose a novel VARP (Vision Action Role-Playing) agent
framework, consisting of an action planning system and a human-guided trajec-
tory system. Our framework demonstrates the ability to perform basic tasks and
succeed in 90% of easy and medium-level combat scenarios. This research aims
to provide new insights and directions for applying multimodal agents in com-
plex action game environments. The code and datasets will be made available at
https://varp-agent.github.io/.

1 INTRODUCTION

In recent years, LLM-based agents have achieved significant breakthroughs across various fields
(Deng et al., |2023; |Gur et al.| 2024} |He et al., [2024; Wang et al.l [2024a; [Zhang et al., 2023b)), par-
ticularly with the integration of tools and memory modules(Zhou et al.| |2024), as seen in AutoGPT
and Reflection (Yang et al.l 2023} Shinn et al., 2023). Among these, applying LLM-based agents in
video games has become one of the most popular areas of research.(Qian et al., 2024} [Park et al.,
2023} |Li et al.||2024;Wang et al., 2023b};2024b) These methods input information from video games
into LLMs, which then undergo complex reasoning and integration through agent frameworks, ulti-
mately producing keyboard and mouse commands that can directly interact with the game to com-
plete tasks. Previous works have mostly focused on accessing video game APIs to read in-game
environmental and action information. For instance, the framework proposed by Wang et al.(Wang
et al.|[2023a) has been successfully applied in the game Minecraft. Agents can achieve autonomous
mining, building, and attacking enemies in the game. However, this approach does not align with
how humans play games, and most games do not offer open APIs, which limits the widespread ap-
plication of this method. Recently, the emergence of vision language models (VLMs) like GPT-40
has further enhanced the visual understanding capabilities of these agents, showcasing broader po-
tential in mobile apps and games. For example, the Cradle framework (Tan et al., 2024) has been
implemented in Red Dead Redemption 2 (RDR2). It directly uses game screenshots from RDR?2 as
input, rather than using an API to read game memory information. However, Cradle relies heavily
on text-based guiding information in the game screenshots to create new skills. For tasks or games


https://varp-agent.github.io/

Under review as a conference paper at ICLR 2025

Table 1: Comparison of several existing agents. Among them, “API” refers to the model’s use
of video game APIs to access in-game environmental and action information, whereas “Screen”
indicates that visual understanding is derived solely from game screenshots.

Agents Agent Type Game Game Type Environment
Reflexion (Shinn et al.|[2023) LLM-based | ALFWorld Text-based Adventure API
ReAct (Yao et al.[[2023) LLM-based | ALFWorld Text-based Adventure API
Voyager (Wang et al.||2023a) LLM-based | Minecraft Sandbox API
CreativeAgent (Zhang et al.[[2023a) VLM-based | Minecraft Sandbox API and Screen
Cradle (Tan et al.[[2024) VLM-based RDR2 AAA Action Adventure Screen
DQN (analoganddigital][2021) RL-based Sekiro AAA Action Role-Playing Screen
Other Project (Cat][2024][fange[[2024) | RL-based BMW AAA Action Role-Playing Screen
VARP (Ours) ) i VLM-based BMW AAA Action Role-Playing Screen

with weak textual guidance, such as some action role-playing games(ARPG), Cradle is unable to
leverage the effective performance of VLMs. For ARPGs, many researchers employ reinforcement
learning methods, where penalties and rewards are predefined for specific tasks. After extensive
training periods and numerous iterations, the trained agents can complete the given specific tasks.
However, RL-based agents can only accomplish tasks within the environment they were trained in
and find it challenging to transfer to other tasks. ARPGs contain a large number of specialized tasks,
which pose a significant challenge for RL-based agents with poor generalization capabilities. We
conducted a comparison of some representative methods in Tab.

Thus, most of the existing research focuses on relatively simplified settings. This simplification
arises primarily from two significant challenges: 1) Immediate visual input. Since environmen-
tal data is not always accessible through game APIs, learning from visual input becomes a more
straightforward strategy, especially in AAA games (characterized by A lot of time, A lot of re-
sources, A lot of money), where understanding the immediate visual input is crucial. 2) Action-
oriented tasks. Action games are immensely popular among players; however, in this domain,
RL-based agents still dominate, which require extensive training time and have poor generalization
ability. For VLM-based agents, the game interfaces of ARPGs provide very few textual hints, and
most of the actions need to be learned through experience and self-innovation. As a result, previous
agents have found it challenging to extract effective guidance information from visual inputs.

In this paper, we will select the “Black Myth: Wukong,” abbreviated as BMW, an AAA ARPG,
as our research platform for extensive experimentation. We are dedicated to establishing a VLM-
based agent framework to thoroughly investigate the capability boundaries of existing models (e.g.
GPT-40, Gemini) in scenarios requiring visual-only input and complex action output. Among them,
visual-only input refers to the model making decisions solely by understanding and analyzing the
game screenshot, while complex action output necessitates the model to perform intricate and con-
tinuous actions, such as precise operations in combat scenarios.

To achieve this goal, we define 12 tasks in the game “Black Myth: Wukong,” with 75% of these tasks
being combat-related. Several state-of-the-art VLM models, including GPT-40, will be incorpo-
rated into this benckmark to comprehensively explore their performance boundaries. Subsequently,
to advance the development of VLM-based agents in AAA action games, we will open-source a
human operation dataset, which includes records of mouse and keyboard commands as well as
gameplay recordings. Lastly, we innovatively propose a VARP(Vision Action Role-Playing) agent
framework, consisting of an action planning system and a human-guided trajectory system. Specif-
ically, the action planning system is responsible for generating action combos that are suitable for
combat scenarios, while the human-guided trajectory system learns from human data via retrieval.
Through extensive evaluations, our proposed framework demonstrates the capability to accomplish
basic tasks such as picking up items and opening treasure chests, while also succeeding in 90% of
esay and medium battles. We hope this research will provide new insights and directions for the
application of multi-modal agents in complex action game environments. The main contributions of
this paper are summarized as follows:

* Benchmark. We define 12 tasks based on the game “Black Myth: Wukong,” with 75% of these
tasks focused on combat. Several state-of-the-art VLM models, including GPT-40, will be incor-
porated into this benckmark to thoroughly explore their capability boundaries.

» Dataset. We release a dataset containing recorded gameplay videos along with relevant operation
logs, including mouse movements, clicks, and keyboard actions, which includes 1000 records.



Under review as a conference paper at ICLR 2025

* Framework. We propose a VARP agent framework, which comprises an action planning system
and a human-guided trajectory system. Through these systems, the agent can execute complex
action combos and learn from human operation.

2 RELATED WORK

2.1 LLM AND VLM-DRIVEN AGENTS

In recent years, various intelligent agents driven by large language models (LLM) and multimodal
language models (VLM) have gradually come to the forefront, demonstrating immense potential
in multitasking and autonomous learning. For LLM, Reflexion (Shinn et al., [2023)) enhances the
decision-making ability of language agents through a framework of linguistic feedback and self-
reflection, allowing agents to autonomously reflect in the face of feedback signals and maintain
contextual memory during task execution and decision-making processes. ReAct (Yao et al.|[2023),
on the other hand, emphasizes real-time information retrieval and strategy adjustment. By combin-
ing reasoning with action and interacting with external knowledge sources (such as the Wikipedia
API), it adds dynamic information retrieval capabilities, providing greater interpretability and con-
trollability. Voyager (Wang et al.| [2023al) can explore and learn skills in an unsupervised manner
within the Minecraft environment, continuously exploring the world, acquiring diverse skills, and
making new discoveries without human intervention through a combination of automated courses,
skill libraries, and iterative prompting mechanisms.

For VLM, CreativeAgent (Zhang et al., 2023a)) focuses on creative tasks, employing multimodal
generation to achieve the construction of complex structures. Its combination of an imagination
module and controller enables efficient planning and execution based on free-form language in-
structions and the generated task details. Cradle (Tan et al., [2024) takes video images displayed on
a screen as input, extracting text and visual information to make decisions through a workflow of
“reflecting on the past, summarizing the present, and planning for the future,” outputting control sig-
nals for keyboard and mouse interaction, allowing Al agents to interact with software like humans
without relying on any internal APIs.

3 METHODOLOGY

Human-Guided Library - Action Library - - -

1
= (.
1
next frame |
T=i

Human-
Guided
Trajectol

Retrieval
—_—

def pre_func()

Update

———===

=i+l
[mouse] move left.. "

r Situation Library --- 3 B pfsleltateltateluly ety |
Analysis 1 Action pdate 1
_ [ def new_func_a() 1
1 Images OCR Text . et
, o] ! !
¢ Workflow of Action Planning — == = === = = = = = = = = — - — — — e o~ = -
! 1
: ‘ Action Function Generation }—’ ! IL"‘\:‘::\ Enemy Sub-module Action :
! Combat Sub-module {iecution : Best Action
1| Information Self Task Skill 1 I
!l Gathering Reflection Inference H Curation E> Health Sub-module : 6
1 Spell-skill Sub-module 1
! 1
! Self-Optimizable Action Generation (SOAG) Decomposable Task-Specific Auxiliary (DTSA)!
1 I P P )

7

Figure 1: Pipeline of VARP. We propose a novel framework named the VARP agent, which directly
takes game screenshots as input and generates keyboard and mouse operations to play the ARPG.

3.1 OVERVIEW

We propose a novel framework named the VARP agent, which directly takes game screenshots as
input. Through inference by a group of Vision-Language Models (VLMs), it ultimately generates
actions in the form of Python code, which can directly operate the game character. Each action is
a sequence that consists of various combinations of atomic commands. These atomic commands
include light attack, dodge, heavy attack, restore health, and others. Meanwhile, the VARP agent



Under review as a conference paper at ICLR 2025

maintains three libraries: a situation library, an action library, and a human-guided library. These
libraries can be retrieved and updated to store intensive knowledge for self-learning and human
guidance. Overall, the VARP agent is divided into two systems: the action planning system and the
human-guided trajectory system, as shown in Fig.[I] In the action library, “def new_func_a()” repre-
sents the new action generated by the action planning system, while “def new_func_h()” represents
the new action generated by the human-guided trajectory system. “def pre_func()” represents the
predefined actions. The following sections will elaborate on each system in detail.

3.2 ACTION PLANNING SYSTEM

The action planning system is primarily used for action reasoning and generation. This system
utilizes a situation library and an updatable action library as knowledge retrieval bases. Guided
by input game screenshots, the system employs a group of VLMs to select or generate actions
appropriate for the current situation. The generated situations and actions are stored or updated in
the two libraries. Additionally, We propose decomposable task-specific auxiliary modules to break
down large tasks into smaller subtasks, which are then distributed across multiple VLMs to reduce
the occurrence of model forgetting and hallucinations. We also introduce a self-optimizable action
generation module to encourage VLMs to generate new actions specific to some hard tasks, thereby
completing complex tasks more efficiently and with higher quality.

3.2.1 BAsIic VLMs GROUP

Inspired by Cradle (Tan et al.,|[2024), our main pipeline continues to adopt the five basic modules
from Cradle, with some of these basic modules calling the VLM for reasoning, forming a basic
group of VLMs. During initialization, we manually predefined some actions and placed them into
the action library as the prior knowledge. Each action is a Python function with detailed textual
annotations, and we computed the embeddings of these annotations for storage. Information Gath-
ering is responsible for gathering information from sampled game screenshots, including textual and
visual information related to situations and actions. The textual information primarily includes text
guides, text labels, and notifications; the visual information mainly covers environmental positions,
character actions, and interface icons. The former is assisted by OCR tools for text recognition, while
the latter uses the object detection tools for visual localization. Self Reflection takes a few game
screenshots from the last video in the situation library as input to assess whether the last executed
action successfully produced the correct effect and whether the current task has been completed. If
execution fails, the module needs to provide a reason for the failure to guide the next step in action
generation. Task Inference infers the current task to be executed based on the results of previous
modules, and generates the task description. Skill Curation calculates the similarity between the
task description’s embedding and the embeddings of the textual annotations in the action library
to find some matching actions, which form the candidate action set. Decision Making utilizes the
Chain of Thought (CoT) (Wei et al.,|2023) approach to reason through and deeply analyze multiple
sequential questions (such as whether to enable combat mode, restore health, or select from avail-
able spell skills, etc.). Finally, the module infers the most suitable action from the candidate action
set, executes the Python code, and operates the keyboard and mouse to control the player character
to complete the corresponding task. These five basic modules will record each intermediate product
into the situation library.

3.2.2 SELF-OPTIMIZABLE ACTION GENERATION MODULE

The basic VLMs group can only acquire actions from a predefined action library or from game
screenshots with clear textual prompts. For certain tasks in ARPGs that have weak textual guidance,
such as real-time combat, this method is unable to learn new actions. Therefore, we propose a
self-optimizable action generation module (SOAG) that allow the VARP agent to summarize the
enemy’s actions during combat, thereby optimizing existing actions and generating new ones to
counter enemy attacks. The new actions are combinations of the two atomic commands: dodging
and light strikes. The optimization goal is to maximize the evasion of enemy attacks and the ability
to strike the enemy while minimizing the player character’s health loss.

Specifically, in SOAG, we introduce a component responsible for action function generation. This
component takes the information gathering and self reflection results, along with the current and



Under review as a conference paper at ICLR 2025

last game screenshots, as input. It analyzes the characteristics of the enemy under the current task,
such as name, appearance, weapon, etc. Most importantly, it needs to analyze the enemy’s current
and previous actions. For example, for the hard enemy named Bullguard, its attack actions can be
roughly categorized as: “charging forward with the axe”, and “chopping the axe downwards three
times consecutively”, etc. Therefore, this component needs to inference new actions for dodging
and counterattacking based on the current enemy actions. For instance, for “charging forward with
the axe,” the new action should be to dodge once and then attack continuously; for “chopping the axe
downwards three times consecutively,” the new action should be to dodge three more times before
counterattacking. The generated new actions are permutations of the atomic operations “dodge” and
“light attack.” The generated actions are stored in the action library with detailed textual annotations.

3.2.3 DECOMPOSABLE TASK-SPECIFIC AUXILIARY MODULES

In ARPGs, especially in BMW game, the VLM’s inference involves a large number of tokens, in-
cluding multiple images and long texts. The attention mechanism used by VLMs allocates attention
to all tokens in long texts. As the input length increases, the attention distribution becomes in-
creasingly diluted. In the basic VLMs group, due to the excessive number of input tokens for each
module, the model may fail to effectively focus on key information, leading to errors such as forget-
ting and hallucination. This issue is particularly evident in the decision-making module, where the
VLM frequently makes mistakes when answering multiple questions.

To address this problem, we decomposed the basic modules and added multiple parallel auxiliary
sub-modules for specific tasks, which are then integrated by the VLM. The structure is similar to an
MLP. Specifically, as shown in the workflow of action planning in Fig. [I] we decomposed the origi-
nal decision-making module that handled multiple tasks into 5 sub-modules. 1) Enemy Sub-module
is used to analyze the enemy’s status (such as its health, position, etc.) and action description, which
assists the agent in obtaining detailed information of the enemy. 2) Combat Sub-module determines
which combat method to use, including light attack or heavy attack, by observing the heavy-attack
status in the bottom right corner of the game screen. 3) Health Sub-module is responsible for con-
stantly monitoring the player’s health bar. If the health is consumed excessively, it assists the agent
by prioritizing the action of recovering health. 4) Spell-skill Sub-module monitors the status of the
player’s spell skills while simultaneously analyzing the situation in the combat state to determine
the appropriate time to use available spell skills. 5) The integration sub-module is responsible
for integrating the outputs of all sub-modules and reasoning to determine the best action from the
candidate action set for the current specific task. The decomposable task-specific auxiliary modules
decompose long tokens and focus on each individual question, significantly improving the accuracy
of the decision-making module.

3.3 HUMAN-GUIDED TRAJECTORY SYSTEM

Human actions are seen as valuable data, implicitly rich in knowledge of the physics and game
world, which can lead to advanced action combinations for very complex tasks, such as way-finding
tasks and high-difficulty combat tasks. To learn the human experience from this implicit data, we
first collected a human dataset and then used it to improve the performance of our VARP agent. The
collection process of human operation data and dataset analysis will be detailed in Sec. 3.1, which
consists of mouse keyboard logs, and recording game screenshots. In this section, we focus on how
to use it to implement a human-guided trajectory system. In this section, we refer to our annotated
dataset as the human-guided library. It is a collection of pairs consisting of game screenshots and
human operations, with each pair having a unique timestamp.

For very hard tasks in the game, we first take a screenshot of the current game interface. Based
on this game screenshot, we query the human-guided library for the screenshot with the highest
similarity. We then input this screenshot along with the subsequent n-frame screenshots and their
corresponding operations into the human-guided trajectory system. This system will utilize a VLM
to analyze and summarize the input images and operations, ultimately outputting a new human-
guided action, which is then stored in the action library for the action planning system to choose and
execute.



Under review as a conference paper at ICLR 2025

(a) Task 2 (b) Task 3 (c) Task 4 (d) Task 5

(h) Task 9

(i) Task 10 (j) Task 11 (k) Task 12 (1) Task 13

Figure 2: Image examples of defined tasks.

4 EXPERIMENTS

4.1 DATASET COLLECTION

We collected a human operation dataset that includes mouse and keyboard logs, as well as recordings
of game screenshots. Specifically, we recruited 200 volunteers to play the BMW game and record
their operations, with approximately 70% of them experiencing this game for the first time. To
ensure the dataset’s quality, we eliminated invalid data from volunteers who did not complete the
tasks. Over the course of two weeks, we ultimately gathered a total of 1,000 valid data entries.
Specifically, over 90% of tasks 11 and 12 (i.e., Defeat Guangzhi and Defeat Wandering Wight) were
discarded, indicating that defeating these bosses in a single attempt poses a significant challenge for
players. Moreover, we observed that volunteers exhibited redundant actions during the annotation
process, such as excessive mouse clicks and scrolling. Therefore, some volunteers will be asked to
play the game again to identify the optimal actions, and this refined data will be labeled as “clean” in
our released dataset. Please refer to the supplementary material for more details about our dataset.

4.2 BENCHMARK AND TASK DEFINITION

To investigate the capabilities of existing VLMs in playing action games, we define 10 basic tasks
and 3 challenging tasks aligned with the game’s narrative, with 76.9% of these tasks occurring in
combat scenes. As illustrated in Tab. [2] and Fig. [2} all tasks are concentrated in the first chapter
of the game, due to the limited understanding and reasoning abilities of VLMs. In terms of bench-
marking, we allow the agent to test each task 5 times and calculate the success rate for each task.
For combat tasks, a task is deemed successful if the player’s character defeats the enemy, while a
task is considered a failure if the player’s character is defeated and killed by the enemy. We have
manually assessed the difficulty of 13 tasks, categorizing them as easy, medium, hard, and very
hard. Due to the absence of maps and guidance, and the presence of numerous “invisible walls” in



Under review as a conference paper at ICLR 2025

Table 2: Task definitions in Black Myth: Wukong (BMW), where “*” indicates the challenging task.

Task ID | Task Name Description Diffuculty
1 Guidance | Defeat Erlang, the Sacred Divinty Easy
2 Combat 1 Defeat WolfScout Easy
3 Gather Gather Easy
4 Combat 2 Defeat WolfStalwart Easy
5 Combat 3 Defeat WolfSwornsword Easy
6 Open Open Easy
7 Combat 4 Defeat WolfSoldier Easy
8 Combat 5 Defeat Croaky Easy
9 Combat 6 Defeat Crow Diviner Middle
10 Combat 7 Defeat Bullguard Hard
*11 Combat 8 Defeat Guangzhi Very Hard
*12 Combat 9 Defeat Wandering Wight Very Hard
*13 Move Autonomous Navigation Very Hard

the BMW game, we classify task 13, autonomous navigation (i.e., moving from the spawn point to
the Bullguard’s location within five minutes), as a very hard task. This is a challenging task even for
human novices. We utilize the success rates from this benchmark to evaluate the performance of the
VARP agent and various VLMs.

4.3 IMPLEMENTATION DETAILS

All evaluations are performed on a machine equipped with an NVIDIA RTX 4090 GPU running
the Windows operating system. We use three of the most popular VLMs to drive our agent: GPT-
40-2024-05-13(0OpenAl, 2024)), Claude 3.5 Sonnet(Anthropicl [2024), and Gemini 1.5 pro(Googlel
2024)). We also utilize OpenAl’s text-embedding-ada-002(Sonnet, 2022) model to generate embed-
dings for each action. The size of game interface for the BMW game is set to 1920 x 1080. During
the inference of VLMs, we pause the game using the photo mode. We employ Grounding DINO(Liu
et al., [2024) for object detection of people and objects in game screenshots to assist the VLMs in
better extracting useful information.

4.4 PERFORMANCE EVALUATION

To evaluate the performance of the VARP agent without human guidance, we conducted experiments
on our proposed benchmark while disabling the human-guided trajectory system of the VARP agent.
In this performance evaluation, we only tested the benchmark and compared the VARP agent with
human novice players.

We calculated the success rates of the VARP agent driven by different VLMs and human novice
players when completing each task. As shown in Fig. [3] both the VARP agent and human novice
players achieved high success rates on tasks 1 to 8, reaching nearly 100% on most tasks. In task
9, the VARP agent’s average success rate was 40%, which also confirms its “middle” difficulty.
The enemy in task 10 is the first boss-level monster that the player encounters in the game. For
human novice players, the success rate for this task was 15.63%, while the VARP agent’s average
success rate was 20%. Task 11 and 12 are classified as “very hard,” so the success rates for both
human novices and the VARP agent were very low. Specifically, the VARP agent is limited by the
reasoning speed of VLMs, making it unable to input every game frame in real-time and only able
to input keyframes at second-level intervals. In ARPGs, this can easily result in missing critical
information about enemy attacks. Therefore, task 11 and 12 are particularly challenging for the
agent. In terms of autonomous navigation, humans can easily find the final boss enemy of the level
within five minutes, but for VLM, this is an almost impossible task. Without human guidance, the
success rate is 0%. Since the game provides no guidance or hints for navigation tasks and contains
many “invisible walls,” VLMs lack the ability to perceive the correct path in the 3D scene without
human assistance.

To explore the performance boundary of the VLM-based VARP agent, we chose a very-hard task
and used the health of the enemy “Guangzhi” in task 11 as a metric. Due to the constraints of GPT-
40’s maximum token count and inference time, we were unable to input all the video frames, which



Under review as a conference paper at ICLR 2025

led to the VARP agent being unable to defeat the highly aggressive “Guangzhi”. However, during
the combat, the VARP agent was capable of reducing the enemy’s health by an average of about
40%, which may have reached the ability boundary of VLM for purely visual ARPG gameplay.

In summary, the VARP agent’s performance on tasks 1 through 12 is already close to that of novice
human players. However, in terms of 3D scene perception and prior knowledge, the VARP agent is
still far inferior to humans.

100

GPT-40
Claude
Gemini

801

Human

Success Rate (%)

20 A

0

ceat \;‘\3‘_‘:'1* \\:o\fSC“‘“ f;.\\\\t-( ‘Sm\\u Omswﬁ‘A 0?‘“ \gsn\d“-" \Uo'&“ D \m-' B\‘\“’\md U\\ani*\ G .b
Pel D\‘-\""“ et Wol QMSW ,“_.“ Crow pef yande’
DT pefent De et Pef Auton®

\\\&\ oYy \La\‘o
Figure 3: Evaluation results on various VLMs and human.

4.5 COMPARISION EVALUATION

To ensure a fair comparison, we adapted Cradle (Tan et al.,2024) to the BMW game. Specifically, we
redesigned the predefined skills in Cradle to align with those of the VARP agent. We also revised the
prompts for each module in Cradle to focus on combat tasks for the BMW game. Additionally, we
used photo mode to pause the game. The VLM used in all experiments is GPT-40. The experimental
results are shown in Tab. [3

In combat tasks, the success rate of VARP shows a significant improvement compared to Cradle,
especially in medium and difficult tasks such as tasks 9-10. During the experiments, we found
that Cradle tends to input a large amount of textual prompts into the VLM all at once during the
decision-making process. This often leads to decision-making errors by the VLM, such as attempt-
ing to recover health when at full health, or forgetting to use spell skills when they are available.
Furthermore, Cradle can only generate new actions based on textual prompts from game screen-
shots. However, in ARPG games, complex actions are a combination of various atomic operations,
and there are no explicit textual prompts available for them. As a result, Cradle fails in medium and
difficult tasks due to its inability to learn new actions.

Table 3: Comparison results with Cradle.

Method | 1 2 3 4 5 6 7 8 9 10
Cradle (Tan et al.{[2024) | 100% 80% 100% 60% 60% 100% 40% 100% 20% 0%
VARP 100% 100% 100% 100% 80% 100% 100% 100% 60% 40%

4.6 ABLATION STUDY

To evaluate the effectiveness of the self-optimizable action generation module(SOAG) and the de-
composable task-specific auxiliary module(DTSA) in the action planning system, we conducted
experiments with each of these modules removed separately, calculating the success rate on the
benchmark. The VLM used in this part of the experiment is GPT-40-2024-05-13. As shown in
Fig. @] without SOAG, the agent’s performance significantly declines in the middle and hard tasks.
This is because the enemies in these tasks have high health points, resulting in prolonged battles. The
function of SOAG is to continuously learn the enemies’ attack patterns, aiding players in dodging
and counterattacking. Therefore, in long-duration tasks like middle and hard tasks, the effectiveness
of SOAG becomes more apparent. On the other hand, DTSA aims to decompose large tasks into
smaller ones, focusing more on precision. This approach helps prevent global errors caused by local
issues such as the forgetting and hallucination of the VLM. Hence, without DTSA, the agent tends
to fail in some easy tasks.



Under review as a conference paper at ICLR 2025

100

Full pipeline
wio DTSA
wio SOAG

Success Rate (%)

201

o EAANE Lyfseont Gathet jovart aord O oSt cpoaky pwimes 1guard
et Dcf"‘“\w\ pefeat ‘D“S\af ax‘?*‘““swnms pefeat ST petest Dﬁeﬂc‘wm ()cfﬂ“B“\g
Dt

Figure 4: Ablation study.
4.7 CASE STUDIES

In this section, we will showcase some predefined actions and more newly generated actions with
the corresponding game screenshots. For the VARP agent, these generated actions originate from
two sources: one is the human-guided trajectory system, and the other is the SOAG in the action
planning system. The VLM is GPT-4o.

To validate the effectiveness of the human-guided trajectory system, we introduced human guidance
and conducted a case study on task 13, a task of very hard difficulty. The objective was for the VARP
agent to control the player character to move from the “Earth Temple” spawn point to the location
of the Bullguard enemy within 5 minutes. GPT-40 was chosen as the VLM. The experimental re-
sults showed a success rate of 40%. This indicates that human guidance can significantly enhance
the decision-making accuracy of the agent. Fig.[5]shows the new action responsible for pathfinding
generated by the human-guided trajectory system during the execution of task 13. Additionally,
Fig. |3| depicts the new action generated by SOAG in response to the enemy, Bullguard, during the
initial phase of this combat task.The enemy’s current action indicates an impending attack: “swing-
ing the axe downwards three times consecutively.” Therefore, the new action should be to dodge
consecutively more than three times before counterattacking.

def move_forward_turn_left(duration, angle): def fight_new_action_bullguard_raise_weapon():
Move forward quickly for 'duration' second, Enemy actions: The enemy named Bullguard
then turn left 'angle' degrees. raises his weapon above his head.
io_env.key_hold("w, shift", duration) io_env.key_press('whitespace’, 4)
io_env.mouse_move_horizontal_angle(angle) io_env.mouse_click_button(LEFT, clicks=5)

Figure 5: Simple cases of new actions generated by human guidance and SOAG.

As the combat task continues, the VARP agent can use or learn more complex actions to cope
with more challenging scenarios. As shown in Figl6] the actions in the first and second rows are
predefined functions. The VARP agent automatically detects whether to use these actions based on
the input visual information. For example, if the immobilization spell skill can be used, the agent
executes the “fight_immobilization_spell_skill” action. Similarly, if the player’s health is low, it
uses the “recover_health” action.

The actions in the third row are generated by the human-guided trajectory system. Human prior
knowledge can effectively guide the agent to improve efficiency in navigation tasks.



Under review as a conference paper at ICLR 2025

def fight_immobilization_spell_skill():

Fight agains the enemy using
the 'immobilization' spell skill.

io_env.key_press(‘whitespace', 2)
io_env.key_press('1')
io_env.mouse_click_button(LEFT, clicks=5)

def recover_health():

Press 'R' to recover health
when health is low.

io_env.key_press('whitespace', 3)
io_env.key_hold('s', 1)
io_env.key_press('r', 2)

def move_forward_turn_left():

Move forward quickly,
and turn left.

io_env.key_hold("w, shift", 2)
io_env.mouse_move_horizontal_angle(-83)
io_env.key_hold("w, shift", 1)

def fight_new_action_bullguard_raise_weapon():
Enemy actions: Bullguard raises up his weapon.

io_env.key_press('whitespace', 1)
io_env.mouse_click_button(LEFT, clicks=2)
io_env.key_press('whitespace, 1)
io_env.mouse_click_button(LEFT, clicks=3)

def fight_new_action_bullguard_swing_weapon():
Enemy actions: Bullguard swings his weapon.

io_env.key_press('whitespace', 1)
io_env.mouse_click_button(LEFT, clicks=1)
io_env.key_press('whitespace', 3)
io_env.mouse_click_button(LEFT, clicks=2)

Figure 6: Complex cases of some actions and corresponding game screenshots.

The new actions in the fourth and fifth rows are summarized by SOAG after each combat interac-
tion between the player character and the enemy and stored in the action library. These actions are
specific to particular enemies and their attack patterns. For instance, in the fourth row, when the
agent observes that an enemy named Bullguard is raising up his weapon, it indicates that the enemy
is about to perform the action “chopping the axe downwards three times consecutively.” The agent
can then find a specific counter-action in the action library. At the beginning of the combat, this
“fight_new_action_bullguard_raise_weapon” action is defined as dodging four times consecutively,
followed by attacking five times, as shown in Fig[5] As the combat progresses, this action is opti-
mized to counterattack during the intervals between dodges, significantly increasing the success rate
and efficiency in defeating the enemy, as illustrated in the fourth row of Figle] This demonstrates
that SOAG can continuously optimize the actions it generated.

5 CONCLUSION

In this study, we have explored the boundaries of current Vision Language Models (VLMs) in the
context of complex action role-playing games (ARPGs) using “Black Myth: Wukong” as our exper-
imental platform. Our proposed framework, VARP, introduces a novel approach to game interaction
by leveraging visual-only inputs for action planning in ARPG environments. The VARP framework
demonstrates its potential by achieving an 90% success rate in basic and moderate combat scenarios,
suggesting that VLMs can be effectively utilized in tasks traditionally dominated by reinforcement
learning. Our proposed benchmark can effectively evaluate the performance of visual-only agents
in the BMW game. Additionally, the human operation dataset we provide offers a valuable resource
for future research, enabling the study of human-like gameplay and action decision-making in visu-
ally complex environments. Our findings underscore the promise of multimodal agents in enhancing
generalization and performance in action-oriented tasks within video games. Moving forward, the
insights gained from this research could pave the way for more sophisticated agent designs that can
handle a broader range of challenges in ARPGs and beyond.

10



Under review as a conference paper at ICLR 2025

REFERENCES

analoganddigital. Dqn_play_sekiro. https://github.com/analoganddigital/DQN_
play_sekiro, 2021. Accessed: 2024-09-17.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253-279, 2013.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Turing’s Cat. Ai-wukong:  Rl-based arpg gamebot. https://github.com/
Turing—-Project/RL-ARPG-Agent) 2024.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web, 2023. URL https://arxiv.
org/abs/2306.06070.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob Foerster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative multi-
agent reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

fange, 2024. URL https://www.bilibili.com/video/BV1n74yIm7U3/|
Google. Gemini, 2024.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and pro-
gram synthesis, 2024. URL https://arxiv.org/abs/2307.12856.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models,
2024. URL https://arxiv.org/abs/2401.139109.

Max Jaderberg, Wojciech M Czarnecki, lain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in 3d multiplayer games with population-based reinforcement learning. Sci-
ence, 364(6443):859-865, 2019.

Karol Kurach, Anton Raichuk, Piotr Stainczyk, Michat Zajac, Olivier Bachem, Lasse Espeholt, Car-
los Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research
football: A novel reinforcement learning environment. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 4501-4510, 2020.

Junkai Li, Siyu Wang, Meng Zhang, Weitao Li, Yunghwei Lai, Xinhui Kang, Weizhi Ma, and Yang
Liu. Agent hospital: A simulacrum of hospital with evolvable medical agents. arXiv preprint
arXiv:2405.02957, 2024.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan Li,
Jianwei Yang, Hang Su, Jun Zhu, and Lei Zhang. Grounding dino: Marrying dino with grounded
pre-training for open-set object detection, 2024. URL https://arxiv.org/abs/2303.
05499,

OpenAl. Gpt-40. https://www.openai.com/} 2024.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th annual acm symposium on user interface software and technology, pp. 1-22, 2023.

11


https://github.com/analoganddigital/DQN_play_sekiro
https://github.com/analoganddigital/DQN_play_sekiro
https://github.com/Turing-Project/RL-ARPG-Agent
https://github.com/Turing-Project/RL-ARPG-Agent
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2306.06070
https://www.bilibili.com/video/BV1n74y1m7U3/
https://arxiv.org/abs/2307.12856
https://arxiv.org/abs/2401.13919
https://arxiv.org/abs/2303.05499
https://arxiv.org/abs/2303.05499
https://www.openai.com/

Under review as a conference paper at ICLR 2025

Siyuan Qi, Shuo Chen, Yexin Li, Xiangyu Kong, Junqi Wang, Bangcheng Yang, Pring Wong, Yifan
Zhong, Xiaoyuan Zhang, Zhaowei Zhang, et al. Civrealm: A learning and reasoning odyssey in
civilization for decision-making agents. arXiv preprint arXiv:2401.10568, 2024.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 15174-15186, 2024.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

Claude 3.5 Sonnet. New and improved embedding model, 2022.

Weihao Tan, Wentao Zhang, Xinrun Xu, Haochong Xia, Ziluo Ding, Boyu Li, Bohan Zhou, Jun-
peng Yue, Jiechuan Jiang, Yewen Li, Ruyi An, Molei Qin, Chugiao Zong, Longtao Zheng, Yu-
jie Wu, Xiaogiang Chai, Yifei Bi, Tianbao Xie, Pengjie Gu, Xiyun Li, Ceyao Zhang, Long
Tian, Chaojie Wang, Xinrun Wang, Borje F. Karlsson, Bo An, Shuicheng Yan, and Zongqing
Lu. Cradle: Empowering foundation agents towards general computer control, 2024. URL
https://arxiv.org/abs/2403.03186.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models,
2023a. URL https://arxiv.org/abs/2305.16291l

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Ji-
tao Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception,
2024a. URL https://arxiv.org/abs/2401.16158.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin,
Zhaofeng He, Zilong Zheng, Yaodong Yang, Xiaojian Ma, and Yitao Liang. Jarvis-1: Open-
world multi-task agents with memory-augmented multimodal language models, 2023b. URL
https://arxiv.orqg/abs/2311.05997.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with large language models enables open-world
multi-task agents, 2024b. URL https://arxiv.org/abs/2302.01560.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al. Out-
racing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):223—
228, 2022.

Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
additional opinions. arXiv preprint arXiv:2306.02224, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.036209.

Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang Tong, Yifei Zhou, Alane Suhr, Sain-
ing Xie, Yann LeCun, Yi Ma, and Sergey Levine. Fine-tuning large vision-language models as
decision-making agents via reinforcement learning, 2024. URL https://arxiv.org/abs/
2405.10292.

12


https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2403.03186
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2401.16158
https://arxiv.org/abs/2311.05997
https://arxiv.org/abs/2302.01560
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2405.10292
https://arxiv.org/abs/2405.10292

Under review as a conference paper at ICLR 2025

Chi Zhang, Penglin Cai, Yuhui Fu, Haoqi Yuan, and Zongqing Lu. Creative agents: Empowering
agents with imagination for creative tasks, 2023a. URL https://arxiv.org/abs/2312.
02519,

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang
Yu. Appagent: Multimodal agents as smartphone users, 2023b. URL https://arxiv.org/
abs/2312.13771l

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, Huajun Chen, and Yuchen Eleanor Jiang. Sym-
bolic learning enables self-evolving agents. 2024. URL https://arxiv.org/abs/2406.
18532.

A APPENDIX

A.1 OVERVIEW

* Clarifications and Limitations (§A.2)
Additional Related Work (§A.3)
Additional Dataset Collection (§A.4)
Additional Performance Evaluation (§A3))
Ethical Consideration (§A.6)

Demo Video (§A.7)

A.2 CLARIFICATIONS AND LIMITATIONS

Thank you for reading our paper. We would like to begin by clarifying and explaining some potential
concerns that may arise due to the extreme popularity of the BMW game. We want to emphasize that
our framework has broad applicability and will subsequently be generalized to include more games
and other scenarios, not just limited to the BMW game. In this paper, we explored the potential
of using VLMs to execute action combos in game tasks, particularly focusing on how it achieves
victory against medium-powered monsters by leveraging the advantages of both action planning and
visual trajectory modules. Additionally, we provided a human operation dataset, which presents pos-
sibilities for integrating technologies such as multi-modal retrieval-augmented generation, imitation
learning, and reinforcement learning.

We must also candidly acknowledge some limitations in our research, specifically: 1) Task Defini-
tions: As LLM- and VLM-based agents are still evolving, the current task definitions are somewhat
simplistic. 2) Game Scenarios: Our research has only been tested within the BMW game and has
not yet been extended to other scenarios. 3) Dataset Size: We have a limited amount of data, and
in the future work, we plan to recruit more volunteers to collect higher quality data to enhance the
depth of our research. 4) Model Capabilities: As shown in the performance evaluation section, there
is still room for improvement in existing VLMs, including speed and accuracy. Therefore, it would
be interesting to train an ARPG-specific VLM, such as VideoGameBunnyﬂ

Finally, we sincerely welcome your new ideas and feedback regarding this work, or even contribute
your game records. Please feel free to reach out to us, and we look forward to exploring together,
ultimately making VLMs play games as well as humans.

A.3 ADDITIONAL RELATED WORK
A.3.1 RL-BASED AGENTS IN ARPGs

Reinforcement learning (RL) has shown significant improvements in video games(Zhai et al., 2024;
Bellemare et al., [2013} [Kurach et al., [2020; Berner et al., [2019; [Ellis et al., [2024; |Samvelyan et al.,
2019; [Jaderberg et al., |2019; Q1 et al.l 2024} Wurman et al.| 2022) especially action role-playing

"https://videogamebunny.github.io/

13


https://arxiv.org/abs/2312.02519
https://arxiv.org/abs/2312.02519
https://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2406.18532
https://arxiv.org/abs/2406.18532

Under review as a conference paper at ICLR 2025

games (ARPG). DQN-play-sekiro (analoganddigital, 2021) employs the deep Q-network (DQN) al-
gorithm to train Al to automate gameplay in “Sekiro: Shadows Die Twice.” This project observes
the game visuals and makes decisions based on the current state, gradually mastering the game
strategy to defeat boss-level enemies. Additionally, Al achieves interactive learning based on rein-
forcement learning in “Black Myth: Wukong” by recognizing game images and scripting simulated
keyboard input signals(Cat, 2024 fange| 2024). This method uses successful dodging as positive
feedback while being attacked by monsters as negative feedback, prompting the Al to optimize its
decision-making process.

These creative works not only showcase the potential of Al in complex gaming environments but
also provide effective means for game testing and automated gameplay. However, agents trained
solely using RL methods can only be applied to a limited range of specific tasks. For new tasks,
the agent needs to be retrained. Therefore, agents based on this method have poor generalization
capabilities.

A.4 ADDITIONAL DATASET COLLECTION

We collected a total of approximately 1,000 valid data samples, each representing a video segment
of a human completing a task along with the corresponding mouse and keyboard operation records.
Among these, 4.0% represent task 1, 12.5% represent task 2, and so on. The specific information is
shown in Fig.[7}

Tasks
S 30%. . 46%
2] Task 2

Task 3
Task 4
Task 5
Task 6
Task 7
Task 8
Task 9
Task 10

\‘ 15.4%
‘ Task 11
Task 12
Task 13
17.4%
17.1%
4.1%

15.1%
Figure 7: Dataset composition.

0.9‘]/04%

12.8%

A.5 ADDITIONAL PERFORMANCE EVALUATION

Based on Sec. 3.4 of the main text, we also recorded the average time and average inference count
for the VARP agent without human guidance to complete each task. Each inference count represents
the generation of an executable action, with each combat action containing an average of 8.6 atomic
operations. Additionally, we recorded the number of atomic operations performed by human for
each task. By dividing this number by 8.6, we estimated the inference count of human in combat
tasks. As shown in Tab. ] compared to humans, the VARP agent has a much lower inference
count in task 1, task 9, and task 10. This indicates that humans tend to perform a large number of
redundant operations when completing more difficult or time-consuming tasks in ARPGs, which is
not conducive to task completion. In contrast, the actions generated by the VARP agent in these
tasks are relatively more refined and concise.

14



Under review as a conference paper at ICLR 2025

Table 4: Additional evaluation results of the average time (in minutes) and average inference count.

Task ID ‘ GPT-4o (time) Claude (time) Gemini (time) ‘ GPT-40 (count) Claude (count) Gemini (count) Human(count)

1 16.09 19.12 17.14 71.6 88 71 98.7
2 0.53 0.65 0.63 3.8 5 4.4 2.3
3 0.18 0.23 0.18 1.4 1.6 1.4 1.7
4 0.57 0.68 0.64 4.6 52 4.6 3.0
5 0.69 0.77 0.68 5.5 6.25 5.4 35
6 0.27 0.25 0.11 2 1.8 1.2 1.3
7 0.81 0.78 0.69 54 5.7 5.75 3.0
8 0.41 0.42 0.38 3.8 32 2.8 2.6
9 1.24 1.19 1.19 8.3 9 8.5 16.7
10 2.20 - 2.06 13.5 - 13 36.6

A.6 ETHICAL CONSIDERATION

Our method can automatically play ARPGs, which may lead to game cheating and false advertising.
This can have a significant negative impact on society. Therefore, it is crucial to consider meth-
ods that can reliably distinguish between genuine and forged content. We strongly condemn the
unauthorized and malicious use of this technology and emphasize the need to consider ethical issues
when using our method.

A.7 DEMO VIDEO

We have provided a detailed demo video to demonstrate the effectiveness of our VARP agent. Please
refer tohttps://varp—agent.github.io/.

15


https://varp-agent.github.io/

	Introduction
	Related Work
	LLM and VLM-Driven Agents

	Methodology
	Overview
	Action Planning System
	Basic VLMs Group
	Self-Optimizable Action Generation Module
	Decomposable Task-Specific Auxiliary Modules

	Human-Guided Trajectory System

	Experiments
	Dataset Collection
	Benchmark and Task Definition
	Implementation Details
	Performance Evaluation
	Comparision Evaluation
	Ablation Study
	Case Studies

	Conclusion
	Appendix
	Overview
	Clarifications and Limitations
	Additional Related Work
	RL-based Agents in ARPGs

	Additional Dataset Collection
	Additional Performance Evaluation
	Ethical Consideration
	Demo Video


