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Department of Computer Engineering

Koç University
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Abstract

We propose SigCLR: Sigmoid Contrastive Learning of Visual Representations.
SigCLR utilizes the logistic loss that only operates on pairs and does not require a
global view as in the cross-entropy loss used in SimCLR. We show that logistic loss
shows competitive performance on CIFAR-10, CIFAR-100, and Tiny-IN compared
to other established SSL objectives. Our findings verify the importance of learnable
bias as in the case of SigLUP, however, it requires a fixed temperature as in the
SimCLR to excel. Overall, SigCLR is a promising replacement for the SimCLR
which is ubiquitous and has shown tremendous success in various domains.

1 Introduction

Contrastive learning has been widely adopted as a pretraining objective in vision tasks to develop
universal vision backbones, addressing the scalability challenges of supervised learning due to the
high labeling costs [7, 8, 12, 18, 24, 27, 41]. This approach not only eliminates the need for labeled
data but also allows models to be trained on large-scale image datasets [29], aiming to replicate
the success seen in the language domain [36, 28]. However, a significant limitation of contrastive
learning is its reliance on negative samples, which necessitates large batch sizes [7]. In contrast,
non-contrastive methods [1, 4, 10, 13, 16, 30, 44, 5] focus solely on positive pairs and tend to perform
well, particularly in scenarios where smaller batch sizes are used.

Although non-contrastive objectives have a clear advantage over contrastive objectives in vision
pretraining, their usage is limited [34, 46, 47]. On the other hand contrastive learning has been
extensively used and shown to excel as a domain-agnostic representation learning objective. This
includes language [14, 15, 35, 31, 26], language-image [32, 45, 23], graphs [43], biology [38],
chemistry [33] and medicine [39, 6].

SSL models that are cast under contrastive learning usually modify InfoNCE objective[37] which
can also be described as softmax contrastive loss. A simple alternative to softmax contrastive
loss is to use sigmoid loss and treat every pair as a binary classification problem. Even though it
has a very straightforward recipe, it has been shown to be inferior to softmax objective in image
pretraining [7, 20]. SigLIP Zhai et al. [45] revisits the sigmoid objective and demonstrates that it is a
more efficient and equally performant model as the CLIP [32] which employs the softmax contrastive
objective. The central innovation in the SigLIP [45] lies in its adoption of learnable temperature and
bias. This stands in contrast to the softmax approach, which relies solely on a fixed temperature in its
loss formulation.

An important consideration is whether the success of SigLIP can be applied to vision pretraining.
With this in mind, we revisit the sigmoid loss in the context of vision pretraining, where it falls short
compared to softmax. To explore this further, we introduce SigCLR: Sigmoid Contrastive Learning
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Figure 1: SigCLR follows a highly similar setup as SimCLR [7]. We randomly select two distinct data
augmentation operators, denoted as t ∼ T and t′ ∼ T , from the same family of augmentations from
[30]. These operators are applied independently to each data example, resulting in two correlated
views. The training process involves optimizing a base encoder network, denoted as f(·), and a
projection head, denoted as g(·), to maximize agreement between the representations produced by
the augmented views. This optimization is achieved through the utilization of a sigmoid contrastive
loss. Upon completion of training, the projection head is discarded and only encoder embeddings are
utilized for evaluations.

of Visual Representations to investigate the potential of sigmoid-based contrastive pretraining for
vision.

Our findings are consistent with SigLIP which emphasizes the significance of learnable bias for the
sigmoid loss. During initialization, the substantial imbalance introduced by a multitude of negative
samples prevails in the loss, prompting the need for substantial initial optimization steps to address this
inherent bias [45]. Likewise, We observe the same phenomenon in vision pretraining and therefore
utilize a learnable bias. The addition of learnable bias significantly enhances the performance of
sigmoid loss, however, a fixed temperature is necessary to achieve the pinnacle performance of
SigCLR.

We test SigCLR in widely used benchmarks such as CIFAR-10, and CIFAR100 [21], Tiny Ima-
geNet [22] and ImageNet 100 [22] always outperforms SimCLR and have competitive results with
other objectives. Thus, sigmoid contrastive learning stands as a simple yet powerful objective that
later can be extended to other domains in which softmax is used.

2 Method

SigCLR learns representations by maximizing the similarity between distinctively augmented per-
spectives of a given data instance by applying the sigmoid contrastive loss within the latent space.
We present the illustration of SigCLR in Figure 1. This alternative eliminates the need for calculating
global normalization factors. The sigmoid-based loss operates independently on each image pair,
transforming the learning task into a standard binary classification across all pair combinations in the
dataset. Positive labels are assigned to pairs consisting of augmented views, while negative labels are
assigned to all other pairs. The formulation of the loss is as follows:

− 1

|2B|

|2B|∑
i=1

|2B|∑
j=1

kij log
1

1 + ezij(−txi·yj−b)︸ ︷︷ ︸
Lij

where zij is the label for a given image inputs, which equals 1 if they are positive, and −1 otherwise.
kij is 0 when xi and yj are the same view otherwise 1. Furthermore, We provide pseudocode in
Algorithm A.3.
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Table 1: Top-1 accuracies (%) under linear evaluation on different datasets. Results are reported from
[11, 30]. We bold all top results that are statistically indistinguishable.

Method CIFAR-10 CIFAR-100 Tiny-IN

ResNet-18 ResNet-18 ResNet-18

SimCLR [7] 90.74 65.78 48.84
SimSiam [10] 91.40 66.04 -
BYOL [16] 92.58 70.46 51.00
W-MSE 2 [13] 91.55 66.10 49.22
MoCo-V2 [9] 92.94 69.89 -
Barlow [44] 92.10 70.90 -
VICReg [1] 92.07 68.54 -

SimCLR* 91.69 65.49 48.16
SigCLR 91.77 66.98 48.94

3 Experimental Setup

We perform our experiments on CIFAR-10, CIFAR-100 [21], Tiny-IN [22].

The experimental process consists of two successive phases: pretraining and linear evaluation.
Initially, we employ the unsupervised pretraining of the encoder network using the proposed SigCLR
method outlined in Section 2 on the training dataset. Once pretraining is completed, we proceed with
linear evaluation—a standardized protocol used to assess the quality of the acquired representations,
as established in prior research [7, 16].

We employ a variant of the ResNet-18 [19], similar to the configurations described in SimCLR [7].
The projector network is a three-layer MLP with ReLU activation functions for the hidden layers and
linear activation functions for the output layer. The dimensions of the CIFAR-10, CIFAR-100, and
Tiny-IN datasets are 1024-1024-128.

In the pretraining phase, we create two augmented versions of each input image by applying random
cropping, resizing, and diverse operations including horizontal mirroring, color jittering, grayscale
conversion, and Gaussian blurring. The augmentation parameters follow those of [30, 16]. In the
training phase of linear evaluation, a single augmentation comprises random cropping, resizing,
and a horizontal flip. During the test phase of linear evaluation, we use resizing and center crop
augmentations, similar to the approach in [1, 44].

We employ 1000 epochs of pretraining on CIFAR-10, CIFAR-100, Tiny-IN. We use Lars [42] with
cosine annealing and linear warmup, starting with a learning rate of 0.3 and linearly scaling with a
starting batch size of 64. We incorporate a 10-epoch linear warmup with cosine annealing [25] and
apply a weight decay of 0.000001.

Since we employ different data augmentations than the original SimCLR, we also reproduced
SimCLR on CIFAR-10, CIFAR-100, and Tiny-IN. We report these results as SimCLR* in table 1
and also ablations in table 3.

Table 2: Effect of bias and temperature (CIFAR10 linear evaluation accuracy). In case of learnable
bias, we initialize it to be -10. In all experiments batch size is 128.

Temp. = 1 Temp. = 2 Temp. = 5 Temp. = 10
Fixed Temp. w/ Learnable Bias 90.76 91.25 91.53 89.80
Learnable Temp. w/ Learnable Bias 84.16 84.11 84.07 84.67
Fixed Temp. No Bias 87.17 84.22 27.15 17.37
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Table 3: Results of SimCLR* across Datasets and Batch Sizes

Batch Size

Dataset 64 128 256 512 1024

CIFAR-10 90.56 91.69 92.23 92.42 92.26
CIFAR-100 62.85 65.49 66.67 67.26 66.49
Tiny-IN 46.08 48.16 49.92 49.16 49.94

Table 4: Results of SigCLR across Datasets and Batch Sizes

Batch Size

Dataset 64 128 256 512 1024

CIFAR-10 91.26 91.77 92.11 92.59 92.62
CIFAR-100 66.52 66.98 67.86 68.57 68.58
Tiny-IN 47.53 48.94 49.62 50.56 51.54

4 Results

Chen et al. [7] demonstrated that temperature-normalized logistic loss significantly underperforms
compared to temperature-normalized softmax loss on ImageNet. To further investigate, we reevaluated
this setup on CIFAR-10 and observed that models with lower temperatures still lag behind established
SSL objectives, while higher temperatures lead to notably poor performance.

Additionally, we examined the most effective approach from SigLIP [45], which recommends both
learnable temperature and bias. While the learnable bias helps maintain reasonable performance
across different temperatures, the best performance achieved remains inferior to that of the standard
logistic loss.

Consequently, we implement a setup using a learnable bias to maintain consistent performance across
temperatures, paired with a fixed temperature to optimize results. With these two straightforward
modifications, we find that the logistic loss achieves performance comparable to state-of-the-art SSL
objectives.

We further extend the evaluation of SigCLR to CIFAR-100 and Tiny-IN, where it shows competitive
performance, highlighting the effectiveness of the sigmoid contrastive loss.

Lastly, we assess both SimCLR* and SigCLR across varying batch sizes to investigate whether the
large batch size issues seen in softmax-based contrastive learning are present. Our results indicate that
SigCLR performs exceptionally well with smaller batch sizes, aligning with the findings of SigLIP.

5 Future Work and Limitations

Achieving results on ImageNet is crucial for establishing the credibility of SSL objectives. Therefore,
the lack of such results considerably reduces the impact of our work. A key focus of future work is to
extend our experiments to the final dataset, ImageNet-1k, as we believe this will provide a stronger
foundation for our findings. However, the main limitation remains the significant computational
resources required to train and evaluate this dataset.

6 Conclusion

We introduce SigCLR, a performant contrastive vision pretraining objective that employs sigmoid
instead of the conventional softmax utilized in SimCLR. SigCLR demonstrates notable performance
on established benchmarks, establishing itself as a strong contrastive objective. The straightforward
objective of SigCLR eliminates the need for global normalization, a bottleneck for softmax, resulting
in a highly efficient contrastive loss with enhanced performance.
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A Appendix

A.1 Related Work

Sigmoid contrastive learning

The sigmoid is rather unpopular compared to InfoNCE [37] which greatly promotes the softmax-based
contrastive learning however sigmoid has been used in unsupervised dimensionality reduction [17],
supervised learning [40, 2].

SigLIP

While conventional methodologies rely on softmax normalization, demanding a comparison of each
image against the entire dataset, SigLIP [45] takes a different approach by utilizing a sigmoid loss
with learnable temperature and bias. This pairwise loss function directly operates on individual image-
text pairs, eliminating the need for a comprehensive assessment of all pairwise similarities. This
approach translates to significant enhancements in memory efficiency, allowing for the utilization of
larger batch sizes and faster training, even when confronted with limited hardware resources. Notably,
SigLIP simplifies implementation compared to softmax-based methods. Despite its straightforward
design, models like SigLiT, built upon the foundation of SigLIP, have demonstrated state-of-the-art
performance in tasks such as ImageNet zero-shot image classification, outperforming models trained
with traditional contrastive learning. The combined benefits of accuracy, efficiency, and simplicity
position SigLIP as a compelling alternative for pre-training models that adeptly handle visual-textual
relationships

Contrastive image pretraining

SimCLR [7] stands out due to its simplicity and adaptability. It employs a single encoder to extract
representations from two augmented versions of an image. The subsequent comparison of these
representations involves a temperature-scaled normalized cross-entropy loss. This process encourages
the identification of features distinguishing positive pairs from negative ones with the temperature
parameter adjusting the difficulty and fostering fine-grained feature discrimination.

On the other hand, MoCo [18] takes a different approach by using a two-encoder system: a query
encoder for generating representations and a momentum encoder that gradually catches up to the
query. Positive pairs are formed during training as each image passes through both encoders. MoCo
uniquely leverages a queue of past representations, enabling the query encoder to learn from a diverse
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set of examples beyond the current batch. This queue acts as a historical memory bank, enhancing
the overall training process.

NNCLR [12] acts as a bridge between SimCLR and MoCo, utilizing a single encoder like SimCLR
but with a twist in forming positive pairs. Instead of relying on two augmented views of the same
image, NNCLR incorporates a memory bank similar to MoCo’s queue. However, it identifies positive
pairs by locating the k nearest neighbors of the current query representation in the memory bank.
This neighbor-based approach focuses on representations sharing similar features, further refining the
learned features through a dedicated nearest-neighbor contrastive loss.

Non-Contrastive image pretraining Recent progress in visual self-supervised learning extends
beyond the conventional contrastive paradigm, exploring innovative approaches to diminish re-
liance on negative samples. These methods are purposefully crafted to enhance the quality of
augmented representations, operating independently of negative samples and forming a subset known
as non-contrastive objectives. To tackle challenges like model collapse, various strategies have been
introduced, including the incorporation of asymmetric architectures [16, 10], utilization of feature
decorrelation techniques [1, 44, 13, 30], and the integration of clustering methods [4, 3].

A.2 Efficient Chunked Sigmoid Implementation

The anticipated strength of the sigmoid loss function lies predominantly in distributed training
scenarios. While in single-device training, the softmax loss still necessitates two passes of data,
it appears to have minimal impact. In contrast, the softmax loss tends to exhibit slightly faster
performance, attributed to the inherent masking operations of the sigmoid loss. Although the observed
difference is marginal, it becomes more apparent and advantageous when scaling up to distributed
training environments. The distinctive characteristics of the sigmoid loss make it particularly well-
suited for handling distributed training workloads, where efficiency and scalability are paramount
considerations. Thus, we also utilize the efficient chunked sigmoid implementation from SigLIP [45].

Contrastive training often utilizes data parallelism, which involves dividing data across D devices.
However, computing the loss in this setup requires collecting all embeddings [45], which entails costly
all-gathers. Moreover, it mandates the creation of a memory-intensive |B| × |B| matrix for pairwise
similarities. In contrast, the sigmoid loss is better suited for a memory-efficient, fast, and numerically
stable implementation, effectively addressing both challenges. By expressing the per-device batch
size as b = |B|

D , the loss can be redefined as:

− 1

|B|

D∑
di=1︸︷︷︸

A: ∀ device di

B: swap negs
across devices︷︸︸︷

D∑
dj=1

C: per device
loss︷ ︸︸ ︷

b(di+1)∑
i=bdi︸ ︷︷ ︸
all local
positives

b(dj+1)∑
j=bdj︸ ︷︷ ︸

negs from
next device

Lij

This is particularly straightforward for the sigmoid loss since each pair serves as an independent term
in the loss function. In essence, we start by calculating the loss component corresponding to the
positive pairs and subsequently address b− 1 negative pairs in the computation.

Afterward, we permute representations among devices, enabling each device to incorporate negatives
from its adjacent device in the subsequent iteration of the summation (B). The loss is subsequently
computed to this chunk (sum C). This process is carried out independently on each device, ensuring
that each device calculates the loss based on its local batch b.

Losses can be efficiently computed by aggregating them across all devices (designated as A). The
individual collective permutes for the sum (B) exhibit fast performance, often surpassing the speed of
two all-gathers between D devices. Simultaneously, the memory requirement at any given moment is
diminished from |B|2 to b2 (for the sum C). Typically, b remains constant, as the scaling of |B| is
accomplished by increasing the number of accelerators. However, the vanilla loss computation faces
rapid scaling bottlenecks due to its quadratic dependency on the batch size [45].
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A.3 Pseudocode

Algorithm 1 Jax-like sigmoid loss pseudocode.

1 # img_emb: embedding of augmented views [2n, dim]
2 # t, b : fixed temperature and learnable bias
3 # n : mini -batch size
4 # cos_sims : cos_sim of all pairs [2n,2n]
5 # sim_mask : positive -negative pairs mask
6 # loss_mask: mask for loss of the same view
7
8 diag_range = arange (2n)
9 shift_range = roll(diag_range ,n)

10
11 sim_mask = -ones(2n,2n)
12 loss_mask = ones(2n,2n)
13 sim_mask[diag_range ,shift_range] = 1
14 loss_mask[diag_range ,diag_range] = 0
15
16 emb_1 , emb2 = img_emb[:,None ,:], img_emb[None ,:,:]
17 cos_sims = t * cos_sim(emb_1 ,emb2) + b
18
19 log_lik = -log_sigmoid(cos_sims * sim_mask)
20 loss = mean(log_lik * loss_mask)
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