
Under review as a conference paper at ICLR 2022

ZERO-COST OPERATION SCORING IN
DIFFERENTIABLE ARCHITECTURE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Differentiable neural architecture search (NAS) has attracted significant atten-
tion in recent years due to its ability to quickly discover promising architectures
of deep neural networks even in very large search spaces. Despite its success,
many differentiable NAS methods lack robustness and may degenerate to trivial
architectures with excessive parameter-free operations such as skip connections
thus leading to inferior performance. In fact, selecting operations based on the
magnitude of architectural parameters was recently proven to be fundamentally
wrong, showcasing the need to rethink how operation scoring and selection oc-
curs in differentiable NAS. To this end, we formalize and analyze a fundamental
component of differentiable NAS: local “operation scoring” that occurs at each
choice of operation. When comparing existing operation scoring functions, we
find that existing methods can be viewed as inexact proxies for accuracy. We also
find that existing methods perform poorly when analyzed empirically on NAS
benchmarks. From this perspective, we introduce new training-free proxies to
the context of differentiable NAS, and show that we can significantly speed up
the search process while improving accuracy on multiple search spaces. We take
inspiration from zero-cost proxies that were recently studied in the context of
sample-based NAS but shown to degrade significantly for larger search spaces
like DARTS. Our novel “perturbation-based zero-cost operation scoring” (Zero-
Cost-PT) improves searching time and accuracy compared to the best available
differentiable architecture search for many search space sizes, including very large
ones. Specifically, we are able improve accuracy compared to the best current
method (DARTS-PT) on the DARTS CNN search space while being over 40×
faster (total searching time 25 minutes on a single GPU). Our code is available at:
https://github.com/avail-upon-acceptance.

1 INTRODUCTION

Since the recent dawn of deep learning, researchers have designed new architectures of neural
networks on an unprecedented scale, with more efficient and accurate networks being proposed each
year (Iandola et al., 2016; Howard et al., 2017; Tan & Le, 2019; 2021). However, the manual design
of better DNN architectures has proven quite challenging, requiring extensive domain knowledge
and persistent trial-and-error in search of the optimal hyperparameters (Sandler et al., 2018; Tan &
Le, 2021). Recently this process has been successfully aided through automated methods, especially
neural architecture search (NAS) which can be found behind many of the state-of-the-art deep neural
networks (Real et al., 2019; Wu et al., 2019; Cai et al., 2020; Moons et al., 2020). However, one of
the biggest problems in NAS is the computational cost – even training a single deep network can
require enormous computational resources and many NAS methods need to train tens, if not hundreds,
of networks in order to converge to a good architecture (Real et al., 2019; Luo et al., 2018; Dudziak
et al., 2020). A related problem concerns the search space size – a larger search space would typically
contain better architectures, but requires longer searching time (Real et al., 2019).

Differentiable architecture search (DARTS) was first proposed to tackle those challenges, showcasing
promising results when searching for a network in a set of over 1018 possible variations (Liu et al.,
2019). Unfortunately, DARTS has significant robustness issues as demonstrated through many recent
works (Zela et al., 2020a; Shu et al., 2020; Yu et al., 2020). It also requires careful selection of hyper-
parameters which makes it somewhat difficult to adapt to a new task. Recently, Wang et al. (2021)
showed that operation selection in DARTS based on the magnitude of architectural parameters (α) is
fundamentally wrong, and will always simply select skip connections over other more meaningful
operations. They proposed an alternative operation selection method based on perturbation, where
the importance of an operation is determined by the decrease of the supernet’s validation accuracy

1

https://github.com/avail-upon-acceptance

Under review as a conference paper at ICLR 2022

when it is removed. Then the most important operations are selected by exhaustively comparing them
with other alternatives on each single edge of the supernet, until the final architecture is found.

In a parallel line of work that aims to speed up NAS, proxies are often used instead of training
accuracy to obtain an indication of performance quickly without performing expensive full training
for each searched model. Conventional proxies typically consist of a reduced form of training with
fewer epochs, less data or a smaller DNN architecture (Zhou et al., 2020). Most recently, zero-cost
proxies, which are extreme types of NAS proxies that do not require any training, have gained interest
and are shown to empirically outperform conventional training-based proxies and deliver outstanding
results on common NAS benchmarks (Abdelfattah et al., 2021; Mellor et al., 2021). However, their
efficient usage on a large search spaces, typical for differentiable NAS, has been shown to be more
challenging and thus remains an open problem (Mellor et al., 2021).

The objective of our paper is to shed some light onto the implicit proxies that are used for operation
scoring in differentiable NAS, and to propose new proxies in this setting that have the potential of
improving both search speed and quality. We decompose differentiable NAS into its two constituent
parts: (1) supernet training and (2) operation scoring. We focus on the second component and we
formalize the concept of “operation scoring” that happens during local operation selection at each
edge in a supernet. Through this lens, we are able to empirically compare the efficacy of existing
differentiable NAS operation scoring functions. We find that existing methods act as a proxy to
accuracy and perform quite poorly on common NAS benchmarks, consequently, we propose new
operation scoring functions based on zero-cost proxies that outperform existing methods in both
search speed and accuracy. Our main contributions are:

1. Formalize “operation scoring" in differentiable NAS and perform a first-of-its-kind analysis of
the implicit proxies that are present in existing differentiable NAS methods.

2. Propose, evaluate and compare perturbation-based zero-cost operation scoring (Zero-Cost-PT)
for differentiable NAS building upon recent work on training-free NAS proxies.

3. Perform a thorough empirical evaluation of Zero-Cost-PT in six search spaces and 3 datasets
including DARTS, DARTS subspaces S1-S4 and NAS-Bench-201.

2 RELATED WORK

Classic NAS and Proxies. Zoph & Lee were among the first to propose an automated method
to search neural network architectures, using a reinforcement learning agent to maximize rewards
coming from training different models (Zoph & Le, 2017). Since then, a number of alternative
approaches have been proposed in order to reduce the significant cost introduced by training each
proposed model. In general, reduced training can be found in many NAS works (Pham et al., 2018;
Zhou et al., 2020), and different proxies have been proposed, e.g. searching for a model on a smaller
dataset and then transfer the architecture to the larger target dataset (Real et al., 2019; Mehrotra et al.,
2021) or incorporating a predictor into the search process (Wei et al., 2020; Dudziak et al., 2020; Wu
et al., 2021; Wen et al., 2019).

Zero-cost Proxies. Very recently, zero-cost proxies (Mellor et al., 2021; Abdelfattah et al., 2021) for
NAS emerged from pruning-at-initialisation literature (Tanaka et al., 2020; Wang et al., 2020; Lee
et al., 2019; Turner et al., 2020). Such proxies can be formulated as architecture scoring functions
S(A) that evaluate the potential or “saliency” of a given architecture A in achieving accuracy at
initialization, without the expensive training process. In this paper, we adopt the recently proposed
zero-cost proxies (Abdelfattah et al., 2021; Mellor et al., 2021), namely grad_norm, snip, grasp,
synflow, fisher and nwot. Those metrics either aggregate the saliency of model parameters to
compute the score of an architecture (Abdelfattah et al., 2021), or use the overlapping of activations
between different samples within a minibatch of data as a performance indicator (Mellor et al., 2021).
In a similar vein, Chen et al. (2021) proposed the use of training-free scoring for operations based on
the neural tangent kernel (Jacot et al., 2021) and number of linear regions in a DNN; the operations
with the lowest score are pruned from the supernet iteratively until a subnetwork is found.

Differentiable NAS and Operation Perturbation. Liu et al. first proposed to search for a neural
network’s architecture by parameterizing it with continuous values (called architectural parameters
α) in a differentiable way. Their method constructs a supernet, i.e., a superposition of all networks
in the search space, and optimizes the architectural parameters (α) together with supernet weights
(w). The final architecture is extracted from the supernet by preserving operations with the largest
α. Despite the significant reduction in searching time, the stability and generalizability of DARTS
have been challenged, e.g., it may produce trivial models dominated by skip connections (Zela et al.,

2

Under review as a conference paper at ICLR 2022

n(2)

n(3)

n(1)

A + (e(2),o(1))A - (e
(2),o(1))

discretize e(2)perturb e(2)

e(2)={o(0),o(1),o(2)}

n(2)

n(3)

n(1)

e(2)=o(1)

n(2)

n(3)

n(1)

e(1)={o(0),o(1),o(2)}

e(2)={o(0),o(2)}e(3)={o(0),o(1),o(2)} e(3)={o(0),o(1),o(2)} e(3)={o(0),o(1),o(2)}

e(1)={o(0),o(1),o(2)} e(1)={o(0),o(1),o(2)}

Figure 1: Visualization of perturbation and discretization of an edge in a supernet. Middle: a supernet
is composed of three edges {e(i)}i=1,2,3, each consisting of three possible operations {o(i)}i=1,2,3

which are applied in parallel to the same input. Left: edge e(2) is perturbed by removing o(1) from
the set of candidate operations assigned to this edge. Right: the same edge e(2) is discretized with
operation o(1) by removing all other candidate operations leaving o(1) as the only choice left.

2020a). SDARTS (Chen & Hsieh, 2020) proposed to overcome such issues by smoothing the loss
landscape, while SGAS (Li et al., 2020) considered a greedy algorithm to select and prune operations
sequentially. The recent DARTS-PT (Wang et al., 2021) proposed a perturbation-based operation
selection strategy, showing promising results on DARTS space. In DARTS-PT operations are no
longer selected by optimizing architectural parameters (α), but via a scoring function evaluating the
impact on supernet’s validation accuracy when the operation is removed.

3 RETHINKING OPERATION SCORING IN DIFFERENTIABLE NAS
In the context of differentiable NAS, a supernet would contain multiple candidate operations on
each edge as shown in Figure 1. Operation scoring functions assign a score to rank operations and
select the best one. In this section, we empirically quantify the effectiveness of existing operation
scoring methods in differentiable NAS, with a specific focus on DARTS (Liu et al., 2019) and the
recently-proposed DARTS-PT (Wang et al., 2021). Concretely, we view these scoring functions as
proxies for final subnetwork accuracies and we evaluate them on that basis to quantify how well these
functions perform. We challenge many assumptions made in previous work and show that we can
outperform existing methods with lightweight alternatives.

3.1 OPERATION SCORING PRELIMINARIES
For a supernet A we want to be able to start discretizing edges in order to derive a subnetwork.
When discretizing we replace an edge composed of multiple candidate operations and their respective
(optional) architectural parameters α with only one operation selected from the candidates. We will
denote the process of discretization of an edge e with operation o, given a model A, as: A+ (e, o).
Analogously, the perturbation of a supernet A by removing an operation o from an edge e will be
denoted as A − (e, o). Figure 1 illustrates discretization and perturbation. Furthermore, we will
use A, E and O to refer to the set of all possible network architectures, edges in the supernet and
candidate operations, respectively – extra details about notation can be found in the Appendix A.1.

NAS can then be performed by iterative discretization of edges in the supernet, yielding in the process
a sequence of partially discretized architectures: A0, A1, ..., A|E|, where A0 is the original supernet,
A|E| is the final fully-discretized subnetwork (result of NAS), and At is At−1 after discretizing a next
edge, i.e., At = At−1 + (et, ot) where t is an iteration counter. The problem of finding the sequence
of (et, ot) that maximizes performance of the resulting network AE has an optimal substructure and
can be reduced to the problem of finding the optimal policy π : A× E → O that is used to decide on
an operation to assign to an edge at each iteration, given current model (state). This policy function is
defined by means of an analogous scoring function f : A× E ×O → R, that assigns scores to the
possible values of the policy function, and the policy is then defined as argmax or argmin over f ,
depending on the type of scores produced by f . 1

We begin by defining the optimal scoring function that we will later use to assess quality of different,
practical approaches. For a given partially-discretized model At, let us denote the set of all possible
fully-discretized networks that can be obtained from At after a next edge e is discretized with an
operation o as At,e,o. Our optimal scoring function can then be defined as:

πbest-acc(At, e) = argmax
o∈Oe

max
A|E|∈At,e,o

V ∗(A|E|) (1)

1Since a scoring function clearly defines a relevant policy function, we will sometimes talk about a scoring
function even though the context might be directly related to a policy function – in those cases it should be
understood as the policy function that follows from the relevant scoring function (and vice versa).

3

Under review as a conference paper at ICLR 2022

where V ∗ is validation accuracy of a network after full training (we will use V to denote validation
accuracy without training). It is easy to see that this policy meets Bellman’s principle of optimal-
ity (Bellman, 1957) – in fact its definition follows directly from it – and therefore is the optimal
solution to our problem. However, it might be more practical to consider the expected achievable
accuracy when an operation is selected, instead of the best. Therefore we also define the function
πavg: πavg-acc(At, e) = argmax

o∈Oe

E
A|E|∈At,e,o

V ∗(A|E|) (2)

In practice, we are unable to use either πbest-acc or πavg-acc since we would need to have the final
validation accuracy V ∗ of all the networks in the search space. There have been many attempts at
finding approximate operation scoring functions, in the following we consider the following practical
alternatives from DARTS (Liu et al., 2019) and DARTS-PT (Wang et al., 2021):

πdarts(At, e) = argmax
o∈Oe

αe,o (3)

πdisc-acc(At, e) = argmax
o∈Oe

V ∗(At + (e, o)), πdarts-pt(At, e) = argmin
o∈Oe

V (At − (e, o)) (4)

where αe,o is the architectural parameter assigned to operation o on edge e as presented in DARTS (Liu
et al., 2019). πdisc-acc uses accuracy of a supernet after an operation o is assigned to an edge e – this
is referred to as “discretization accuracy” in DARTS-PT and is assumed to be a good operation
scoring function (Wang et al., 2021), most intuitively, it could approximate favg-acc. πdarts-pt is the
perturbation-based approach used by DARTS-PT – it is presented as a practical and lightweight
alternative to πdisc-acc (Wang et al., 2021).

Zero-Cost Operation Scoring. We argue that the scoring functions (3) and (4) are merely proxies
for the best achievable accuracy (Equation 1). As such, we see an opportunity to use a new class of
training-free proxies that are very fast to compute and have been shown to work well within NAS,
albeit not in differentiable NAS, nor within large search spaces. We present the following scoring
functions that use a zero-cost proxy S instead of validation accuracy when discretizing an edge or
perturbing an operation. Note that the supernet is randomly-initialized and untrained in this case.

πdisc-zc(At, e) = argmax
o∈Oe

S(At + (e, o)), πzc-pt(At, e) = argmin
o∈Oe

S(At − (e, o)) (5)

Note that TE-NAS (Chen et al., 2021) also uses training-free scoring of operations, however, they use
different scoring metrics to prune operations from a supernet as opposed to discretizing or perturbing
operations as we show above. We include a comparison to TE-NAS throughout our paper.

3.2 EMPIRICAL EVALUATION OF OPERATION SCORING METHODS
In this subsection we investigate the performance of different operation scoring methods. Because we
want to compare with the optimal fbest-acc and favg-acc, we conduct experiments on NAS-Bench-201
which contains the validation accuracy for all 15,625 subnetworks in the search space (Dong &
Yang, 2020). We conduct our investigation in two settings, initial and progressive. The first setting
compares operation scoring functions while making their first decision (iteration 0) during NAS. The
second (progressive) setting takes into account retraining that occurs between iterations for some of
the differentiable NAS algorithms that we consider like darts-pt (Wang et al., 2021). Throughout this
section, whenever we discuss a method based on zero-cost scoring, we use naswot metric (Mellor
et al., 2021).

3.2.1 INITIAL OPERATION SCORING
For the supernet A0 we compute the operation scores for all operations on all edges, at the first
iteration (iteration 0) of NAS, that is, f(A0, e, o) ∀ e ∈ E , o ∈ Oe. In our first experiment, we collect
the scores produced by different scoring methods, per operation, per edge, then compute the Spearman
rank correlation for operations on each edge, and finally average the rank correlation coefficient over
all edges (details of our experiments and illustrative examples are provided in Appendix A.3). The
resulting averaged rank correlation is indicative of how well an operation scoring method would do
when making the first discretization decision, relative to a perfect “oracle” search. We plot the rank
correlation coefficients in Figure 2a, showing many surprising findings. First, disc-acc is inversely
correlated to best-acc. This refutes the claim in the DARTS-PT paper that disc-acc is a reasonable
operation score (Wang et al., 2021) – these findings are aligned with prior work that has already shown
that the supernet accuracy is unrelated to the final subnetwork accuracy (Li et al., 2020). Second, the
darts-pt score does not track disc-acc, in fact, it is inversely-correlated to it as well, meaning that the
darts-pt score is not a good approximation of disc-acc. However, darts-pt is weakly-correlated to the
“oracle” best-acc and avg-acc scores which supports (empirically) why it works well. Third, our zc-pt

4

Under review as a conference paper at ICLR 2022

(a)

Iteration

(b)
Figure 2: (a) Spearman’s rank correlation coefficient of different operation scoring metrics with each
other at the first iteration of NAS. (b) Rank correlation coefficient of different operation scoring
functions vs. best-acc when invoked iteratively for each edge. In iteration i, only edge i is discretized
then all scores for all operations on the remaining edges is computed and correlated against best-acc.

Table 1: Model selected based on maximizing each operation strength independently.

best-acc avg-acc disc-acc darts-pt zc-pt disc-zc darts tenas
Avg. Error1[%] 5.63 6.24 13.55 19.43 5.81 22.96 45.7 7.19
Rank in NAS-Bench-201 1 166 12,744 13,770 14 14,274 15,231 1,817
1 Computed as the average of all available seeds for the selected model in NAS-Bench-201 CIFAR-10 dataset.

is strongly-correlated with both the best-acc and avg-acc metrics, indicating that there could be huge
promise when using this scoring function within NAS. Note that disc-zc, like disc-acc is inversely
correlated with the oracle score suggesting that perturbation is generally a better scoring paradigm
than discretization. Fourth, tenas (Chen et al., 2021), which also utilizes training-free operation
scoring, performs fairly well, with Spearman-ρ =0.44, but still falls short of the performance of zc-pt
(ρ =0.77). Finally, the original darts α score is weakly and inversely correlated with the oracle scores,
further supporting arguments in prior work that this is not an effective operation scoring method.

In Table 1 , we show the discovered NAS-Bench-201 architecture when applying the seven scoring
functions (Eq. (1) – (5)) for operation selection on all edges. As expected, best-acc chooses the best
subnetwork, while avg-acc selects a very good model but not the best one, likely due to the large
variance of accuracies in NAS-Bench-201. zc-pt selected one of the top models in NAS-Bench-201
as expected from the strong correlation with the oracle best-acc function; while tenas selected a good
model, in the top 15% of the NAS-Bench-201 dataset, commensurate with the average correlation
shown in Figure 2a. The remaining operation scoring functions failed to produce a good model
in this experiment, suggesting that these metrics do not make a good initial choice of operations
at iteration 0 of differentiable NAS. While this signals a major weakness of those differentiable
NAS proxies, it’s worthwhile to further analyze these methods in the progressive setting which
would show what happens in later iterations of NAS. To further investigate the initial behaviour of
different scoring methods, as well as their effects on NAS performance, we run similar experiments
on NAS-Bench-1shot1 search space, the results can be found in Appendix A.8.

3.2.2 PROGRESSIVE OPERATION SCORING
Until now, we have only investigated the performance of operation scoring functions in the first
iteration of NAS. This approach is relevant for methods like DARTS, where operation scoring function
f does not depend on At in any way (only A0), but is not truly representative of other methods that
work iteratively. Because of that, we extend our analysis to investigate what happens in later iterations
of NAS. In order to do that, we calculate the correlation of scoring functions in the progressive setting
by performing the following steps: (1) score operations on all undiscretized edges, (2) discretize edge
i, (3) retrain for 5 epochs (darts-pt and disc-acc only), (4) increment i and repeat from step 1 until all
edges are discretized. At each iteration i, we calculate the scores for the operations on all remaining
undiscretized edges and compute their Spearman rank correlation coefficients (Spearman-ρ) with
respect to best-acc. This is plotted in Figure 2b, averaged over four seeds.

Our results confirm many of our initial (iteration-0) analysis. zc-pt continues to be the best operation
scoring function, and darts-pt is the second-best, improving in correlation from 0.4 to 0.6 between
the first and last iterations, indeed showing that retraining and/or progressive discretization helps.
However, disc-acc continues to be unrepresentative of operation strength even when used in the
iterative setting. This is not what we expected, especially in the very last iteration when disc-acc is
supposed to match a subnetwork exactly. As Figure 2b shows, the variance in the last iteration is
quite large – we believe this happens because we do not train to convergence every time we discretize

5

Under review as a conference paper at ICLR 2022

an edge, and instead we only train for 5 epochs. Our progressive analysis provided further empirical
evidence that supernet discretization accuracy should not be used as a proxy for subnetwork accuracy,
contradicting Wang et al. (2021). However, we have confirmed that darts-pt does in fact improve
when retraining is performed between NAS iterations, but could still be improved upon with zc-pt –
it performed exceptionally well as a proxy for accuracy on NAS-Bench-201, and has the potential to
make differentiable NAS both much faster and of higher accuracy.

4 ZERO-COST-PT NEURAL ARCHITECTURE SEARCH

In this section, we propose a NAS algorithm called Zero-Cost-PT based on zero-cost perturbation,
and perform ablation studies to find the best set of heuristics for our search methodology.

4.1 ARCHITECTURE SEARCH WITH ZERO-COST PROXIES
Our algorithm contains two stages: architecture proposal and validation. It begins with an untrained
supernet A0 which contains a set of edges E , the number of proposal iterations N, and the number
of validation iterations V. In each proposal iteration i, we discretize the supernet A0 based on our
proposed zero-cost-based perturbation function fzc-pt that achieved promising results in the previous
section. After all edges have been discretized, the final architecture is added to the set of candidates
and we begin the process again for i+1 starting with the original A0. After N candidate architectures
have been constructed, the validation stage begins. We score the candidate architectures again
using a selected zero-cost metric (the same which is used in fzc-pt), but this time computing their
end-to-end score rather than using the perturbation paradigm. We calculate the zero-cost metric for
each subnetwork using V different minibatches of data. The final architecture is the one that achieves
the best total score during the validation stage. The full algorithm is outlined as Algorithm 1 in
Appendix A.2. Our algorithm contains four main hyperparameters: N, V, ordering of edges to follow
when discretizing, and the zero-cost metric to use (S). In the following we present detailed ablations
to decide on the best possible configuration of these.

4.2 ABLATION STUDY ON NAS-BENCH-201
Table 2: Comparison in test error (%) with the state-of-the-art
perturbation-based and zero-cost NAS on NAS-Bench-201
(Best in red, 2nd best in blue. Same for all following tables).

Method CIFAR-10 CIFAR-100 ImageNet-16
Zero-Cost-PT with different proxies (Section 4.2)
fisher 10.64±1.27 38.48±1.96 82.85±12.63

grad_norm 10.55±1.11 38.43±2.10 80.71±12.10

grasp 9.81±3.42 36.52±6.33 64.27±8.82

snip 8.32±2.02 34.00±4.03 65.35±11.04

synflow1 6.24±0.00 28.89±0.00 58.56±0.00

nwot 5.97±0.17 27.47±0.28 53.82±0.77

Baselines and SOTA approaches (Section 5.1)
Random 13.39±13.28 39.17±12.58 66.87±9.66

DARTS 45.70±0.00 84.39±0.00 83.68±0.00

DARTS-PT 1 11.89±0.00 45.72±6.26 69.60±4.40

DARTS-PT (fix α) 2 6.20±0.00 34.03±2.24 61.36±1.91

NASWOT(synflow) 3 6.54±0.62 29.53±2.13 58.22±4.18

NASWOT(nwot) 3 7.04±0.80 29.97±1.16 55.57±2.07

TE-NAS 6.10±0.47 28.76±0.56 57.62±0.46

1 Only 1 model was selected across all 4 seeds.
2 Results on CIFAR-10 taken from (Wang et al., 2021). Results on other datasets com-
puted using official code in (Wang et al., 2021) across 4 seeds.
3 Using N=1000 for both proxies and averaged over 500 runs as in (Mellor et al., 2021).

We conduct ablations of the proposed
Zero-Cost-PT approach on NAS-
Bench-201 (Dong & Yang, 2020).
NAS-Bench-201 constructed a uni-
fied cell-based search space, where
each architecture has been trained
on three different datasets, CIFAR-
10, CIFAR-100 and ImageNet-16-
1202. In our experiments, we take
a randomly initialised supernet for
this search space and apply our Zero-
Cost-PT algorithm to search for ar-
chitectures without any training. We
run the search with four different ran-
dom seeds (0, 1, 2, 3) and report the
average and standard deviation of the
test errors of the obtained architec-
tures. All searches are performed
on CIFAR-10, and obtained architec-
tures are then additionally evaluated
on the other two datasets.
Different Zero-cost Metrics. Since
our focus is to understand how the ex-
isting zero-cost metrics can be successfully applied to a large-space NAS, we begin our investigation
by analysis how different metrics behave when used in the proposed combination with perturba-
tion-based search. In particular, we consider the following metrics that have been proposed in recent
zero-cost NAS literature (Abdelfattah et al., 2021; Mellor et al., 2021): grad_norm (Abdelfattah
et al., 2021), snip (Lee et al., 2019), grasp (Wang et al., 2020), synflow (Tanaka et al., 2020),
fisher (Theis et al., 2018) and nwot (Mellor et al., 2021). Table 2 compares the average test
errors of architectures selected by different proxies on NAS-Bench-201. We see that nwot and
synflow perform considerably better across the three datasets than the others, where nwot offers

2We use the three random seeds available in NAS-Bench-201: 777, 888, 999.

6

Under review as a conference paper at ICLR 2022

Table 3: Test error (%) of Zero-Cost-PT when using different search orders on NAS-Bench-201.

Search Order1 # of Perturbations2 CIFAR-10 CIFAR-100 ImageNet-16
fixed |O||E| 5.98±0.50 27.60±1.63 54.23±0.93

global-op-iter 1
2
|O||E|(|E|+ 1) 5.69±0.19 26.80±0.51 53.64±0.40

global-op-once 2|O||E| − |O| 6.30±0.57 28.96±1.66 55.04±1.47

global-edge-iter 1
2
|O||E|(|E|+ 1) 6.23±0.45 28.42±0.59 54.39±0.47

global-edge-once 2|O||E| − |O| 6.30±0.57 28.96±1.66 55.04±1.47

random |O||E| 5.97±0.17 27.47±0.28 53.82±0.77

1 All methods use nwot metric, N=10 architecture proposal iterations and V=100 validation iteration.
2 Number of perturbations per search iteration.

3180 3200 3220 3240 3260 3280

92.5

93

93.5

94

94.5

N

random(n=1000)

random(n=100)

global_op_gready(n=100)

random(n=10)

CIFAR10

score_1

ac
c

Te
st

 A
cc

ur
ac

y

Architecture Score
3180 3200 3220 3240 3260 3280

92.5

93.0

93.5

94.0

94.5

random
(N=10)
random
(N=100)

random
(N=1000)

global-op-iter
(N=10)

(a)

1 10 100

93

93.5

94

94.5

1 10 100 1 10 100

CIFAR10

V V V

ac
c

N=10 N=100 N=1000

Te
st

 A
cc

ur
ac

y
V=1

93.0

93.5

94.0

94.5

V=10 V=100 V=1 V=10 V=100 V=1 V=10 V=100

N=10 N=100 N=1000

(b)
Figure 3: (a) Accuracy vs. score of architectures discovered on CIFAR-10 by Zero-Cost-PT with
different N. (b) Accuracy distribution of discovered architectures with different N and V.

around 0.27% improvement over synflow. However, even the worst performing fisher and
naive grad_norm outperform the state-of-the-art DARTS-PT on this benchmark (see Table 2). This
confirms that the zero-cost metrics, when combined with the perturbation-based NAS paradigms as in
Zero-Cost-PT, could become promising proxies to the actual trained accuracy. We also observed that
the ranking of those metrics are quite stable on the three datasets (descending order in terms of error
as in Table 2), indicating that architectures discovered by our Zero-Cost-PT have good transferability
across datasets. nwot consistently performs best, reducing test errors on all three datasets by a
considerable margin.
Edge Discretization Order. We also study how different edge discretization order may impact the
performance of our Zero-Cost-PT approach. We consider the following edge discretization orders:

• fixed: discretizes the edges in a fixed order, where in our experiments we discretize from the
input towards the output of the cell structure;

• random: discretizes the edges in a random order;
• global-op-iter: iteratively evaluates S(A − (e, o)) for all operations on all edges in E ,

selects the edge e containing the operation o∗ with globally best score. Discretizes e with o∗, then
repeats to decide on the next edge (re-evaluating scores) until all edges have been discretized;

• global-op-once: only evaluates S(A − (e, o)) for all operations once to obtain a ranking
order of the operations and decide the edge order upfront based on it, then starts following the
algorithm as usual, calculating scores of operations at each edge iteratively;

• global-edge-iter: similar to global-op-iter but iteratively selects edge e from E
based on the average score of all operations on each edge;

• global-edge-once: similar to global-op-once but uses the average score of operations
on edges to obtain the edge discretization order.

In this experiments we run N=10 architecture proposal iterations and V=100 validation iterations
for all variants, using naswot metric. Table. 3 shows the performance of the approaches. We see
that the global-op-iter consistently performs best across all three datasets, since it iteratively
explores the search space of remaining operations, while greedily selecting the current best. However,
it comes with a higher cost than fixed or random, since we need to perform 1

2 |O||E|(|E| + 1)
perturbations in total, while the latter require |O||E|.On the other hand, we see that the performance
of global-op-once is inferior since it determines the order of perturbation by assessing the
importance of operations once for all at the beginning, which may not be appropriate as discretization
continues. Note that when discretizing an edge according to the obtained order, global-op-once
still need to perturb the |O| operations on each remaining edge. We observe similar behaviour in
global-edge-iter and global-edge-once, both of which use the average importance of
operations on edges to decide search order, leading to suboptimal performance. It is also worth

7

Under review as a conference paper at ICLR 2022

pointing out that fixed performs relatively well comparing to the other variants, offering com-
parable performance with random. This shows that Zero-Cost-PT is generally robust to the edge
discretization order. For simplicity, in the following experiments we use random order with a
moderate setting in architecture proposal iterations (N=10) to balance exploration and exploitation
during search, while maintaining the efficiency of Zero-Cost-PT.

Table 4: Comparison with the state-of-the-art differentiable
NAS methods on the DARTS CNN search space (CIFAR-10).

Method Test Error (%) Params (M) Cost2

Avg. Best
DARTS 3.00±0.14 - 3.3 0.4
SDARTS-RS 2.67±0.03 - 3.4 0.4
SGAS 2.66±0.24 - 3.7 0.25

DARTS-PT 2.61±0.08 2.48 3.0 0.8
DARTS-PT+none

1 2.73±0.13 2.67 3.2 0.8

TE-NAS 2.63±0.064 - 3.8 0.05

Zero-Cost-PTrandom 2.64±0.16 2.43 4.7 0.018
Zero-Cost-PTglobal-op-iter 2.62±0.09 2.49 4.6 0.17
1 Results obtained by re-enabling none operation in DARTS-PT (Wang et al., 2021).
2 In GPU days. Cost of existing approaches taken from (Wang et al., 2021). Cost of
Zero-Cost-PT measured on a single 2080Ti GPU.

Proposal vs. Validation. We study
the impact of different architecture
proposal iterations N and validation
iterations V when Zero-Cost-PT uses
random as the search order and
nwot metric. Intuitively, larger N
leads to more architecture candidates
being found, while V indicates the
amount of data used to rank the
search candidates. As shown in Fig-
ure 3a, we see larger N does lead to
more architectures discovered, but
not proportional to the value of N on
NAS-Bench-201 space. For N=100
we discover 27.8 distinct architec-
tures on average, but when increased
to N=1000 the number only roughly
doubles. We also see that even with N=10, Zero-Cost-PTrandom can already discover top models in
the space, demonstrating desirable balance between search quality and efficiency. On the other hand,
as shown in Figure 3b, larger V tends to reduce the performance variance, especially for smaller N.
This is also expected as more validation iterations could stabilise the ranking of selected architecture
candidates, helping Zero-Cost-PT to retain the most promising ones with a manageable overhead
of V minibatches. We provide additional ablations regarding the effects of N and V conducted on
the DARTS CNN space in Appendix A.7. We also revisit our comparison between zc-pt and
zc-disc from Section 3.2 by comparing our Zero-Cost-PT when run with either scoring method
on NAS-Bench-201 in Appendix A.6.3.

5 RESULTS
In this section we perform extensive empirical comparisons of Zero-Cost-PT with the state-of-the-art
differentiable and zero-cost NAS algorithms on a number of search spaces, including NAS-Bench-
201 (Dong & Yang, 2020), DARTS’ CNN space (Liu et al., 2019) and the four DARTS subspaces
S1-S4 (Zela et al., 2020a). Detailed experimental settings are in Appendix A.5.

5.1 COMPARISON WITH SOTA ON NAS-BENCH-201
Table 5: Comparison with the state-of-the-art differentiable
NAS methods on the DARTS CNN search space (ImageNet).

Method Error [%] Params Cost
Top-1 Top-5 [M] [GPU-days]

DARTS 26.7 8.7 4.7 0.4
SDARTS-RS 25.6 8.2 - 0.4
DARTS-PT 25.5 8.0 4.6 0.8
PC-DARTS 25.1 7.8 5.3 0.1
SGAS 24.1 7.3 5.4 0.25

TE-NAS 26.2 8.3 6.3 0.05

Zero-Cost-PT1(best) 24.4 7.5 6.3 0.018
Zero-Cost-PT1(4 seeds) 24.6±0.13 7.6±0.09 6.3 0.018
1 We use the same training pipeline from DARTS (Liu et al., 2019).

Table 2 shows the average test er-
ror (%) of the competing approaches
and our Zero-Cost-PT on the three
datasets in NAS-Bench-201. Here
we include the naive random search
and original DARTS as baselines,
and compare our approach with
the recent zero-cost NAS algorithm
NASWOT (Mellor et al., 2021), TE-
NAS (Chen et al., 2021), as well
as the perturbation-based NAS ap-
proaches DARTS-PT and DARTS-
PT (fix α) (Wang et al., 2021). As
in all competing approaches, we per-
form search on CIFAR-10 and evalu-
ate the final model on all three datasets. We see that on all datasets our Zero-Cost-PT (with nwot)
consistently offers superior performance, especially on CIFAR-100 and ImageNet-16. On the other
hand, the best existing perturbation-based algorithm, DARTS-PT (fix α), fails on those two datasets,
producing suboptimal results with small improvements compared to random search, suggesting that
architectures discovered by DARTS-PT might not transfer well to other datasets. TE-NAS is second
best on CIFAR but as we show in § 5.2, performance deteriorates on larger datasets like ImageNet.

8

Under review as a conference paper at ICLR 2022

5.2 DARTS CNN SEARCH SPACE
We now move to the much larger DARTS CNN search space. We use the same settings as in
DARTS-PT (Wang et al., 2021), but instead of pre-training the supernet and fine-tuning it after
each perturbation, we take an untrained supernet and directly perform Zero-Cost-PT algorithm as in
Section 4.1. As in previous experiments, we run with N=10 architecture proposal iterations and V=100
validation iteration, using the same random seeds as in DARTS-PT. We then train the selected four
architectures under different initializations (seeds 0-3) for 600 epochs, and report both the best and
average test errors on both CIFAR-10 and ImageNet. Experimental details, discovered architectures
and additional baselines can be found the in Appendix A.5, A.10 and A.6.
Results on CIFAR-10. As shown in Table 4 the proposed Zero-Cost-PT approaches can achieve
much better average test error then the original DARTS and comparable to its newer variants SDARTS-
RS (Chen & Hsieh, 2020) and SGAS (Li et al., 2020) at a much lower searching cost (especially when
using random edge ordering). There is a significant search cost reduction compared to DARTS-PT.
While DARTS-PT needs to perform retraining between iterations, Zero-Cost-PT only evaluates the
score of the perturbed supernet with zero-cost proxies (Snwot), requiring no more than a minibatch of
data. Note that here the cost of Zero-Cost-PT reported in Table 4 is for N=10 architecture proposal
iterations (random edge discretization order), and thus a single proposal iteration only takes about
a few minutes to run. The other variant Zero-Cost-PTglobal-op-iter offers better performance with
lower variance compared to random but incurs slightly heavier computation.
Results on ImageNet. Table 5 shows the ImageNet classification accuracy for architectures searched
on CIFAR-10. Our Zero-Cost-PTrandom algorithm is able to find architectures with a comparable
accuracy much faster than previous work, further reinforcing its efficacy in this setting. While
TE-NAS results on CIFAR-10 were very close to Zero-Cost-PT, a much larger difference is observed
on ImageNet with an accuracy drop of 1.8 pp and a runtime that is ∼2.5× slower than Zero-Cost-PT.
5.3 ROBUSTNESS ANALYSIS Table 6: Comparison in test error (%) with state-of-the-

art perturbation-based NAS on DARTS spaces S1-S4.

Space DARTS1 DARTS-PT1 Zero-Cost-PT2

Best Best Best (fix α) Avg. Best
CIFAR-10
S1 3.84 3.5 2.86 2.75±0.28 2.55
S2 4.85 2.79 2.59 2.49±0.05 2.45
S3 3.34 2.49 2.52 2.47±0.09 2.40
S4 7.20 2.64 2.58 5.23±0.76 4.69

CIFAR-100
S1 29.64 24.48 24.4 22.05±0.29 21.84
S2 26.05 23.16 23.3 20.97±0.50 20.61
S3 28.9 22.03 21.94 21.02±0.57 20.61
S4 22.85 20.80 20.66 25.70±0.01 25.69

SVHN
S1 4.58 2.62 2.39 2.37±0.06 2.33
S2 3.53 2.53 2.32 2.40±0.05 2.36
S3 3.41 2.42 2.32 2.34±0.05 2.30
S4 3.05 2.42 2.39 2.83±0.06 2.79

1 Results taken from (Wang et al., 2021).
2 Results obtained using random seeds 0 and 2.

It is well known that DARTS could generate
trivial architectures with degenerative perfor-
mance in certain cases. Zela et al. (2020a)
have designed various special search spaces
for DARTS to investigate its failure cases
on them. As in DARTS-PT, we consider
spaces S1-S4 to validate the robustness of
Zero-Cost-PT in a controlled environment
(detailed specifications can be found in Ap-
pendix A.4). As shown in Table 6, our ap-
proach consistently outperforms the original
DARTS, the state-of-the-art DARTS-PT and
DARTS-PT(fix α) across S1 to S3 on both
datasets CIFAR-10 and CIFAR-100, while
on SVHN it offers competitive performance
comparing the competing algorithms (best in
S1, second best in space S2/S3 with .08/.02%
gap). This confirms that our Zero-Cost-PT
is robust in finding good performing archi-
tectures in spaces where DARTS typically
fails, e.g. it has been shown (Wang et al.,
2021) that in S2 DARTS tends to produce trivial architectures saturated with skip connections. On the
other hand, we observe that Zero-Cost-PT doesn’t perform well in search space S4, struggling with
operation noise, which simply outputs a random Gaussian noise N (0, 1) regardless of the input.
This is expected as score S(A\o) can be completely random if o = noise. However, since noise
operation is not useful in NAS, we are satisfied with the robustness of Zero-Cost-PT on S1-S3.
6 CONCLUSION
In this paper, we formalized the implicit operation scoring proxies that are present within differentiable
NAS algorithms to both analyze existing methods and propose new ones. We showed that lightweight
operation scoring methods based on zero-cost proxies empirically outperform existing operation
scoring functions such as DARTS Liu et al. (2019), DARTS-PT Wang et al. (2021) and TE-NAS (Chen
et al., 2021). We also found that perturbation is more effective than discretization when scoring an
operation, leading to our lightweight NAS algorithm, Zero-Cost-PT. Our approach outperforms the
best available differentiable architecture search in terms of searching time and accuracy even in very
large search spaces – something that was previously impossible with zero-cost proxies.

9

Under review as a conference paper at ICLR 2022

7 REPRODUCIBILITY STATEMENT

In our paper, we adhere to the NAS best practice checklist (see below) (Lindauer & Hutter, 2020) to
ensure reproducibility. Our code (both NAS and training pipeline) is available in the supplementary
material. We report all the details of our experimental setup, and describe all hyperparameters for
both NAS and the final evaluation pipeline, as well as random seeds used in our main paper, appendix
and code. We perform multiple runs of our experiments with the reported random seeds and provide
average and standard deviation of the results. We report the wall-clock time for the search cost of our
approach, and the training time for the discovered models are discussed in appendix. We also provide
the detailed information on confounding factors, such as GPU hardware, versions of DL libraries,
different runtimes of our experiments, in the appendix and the code (README in supplementary
material).

When applicable we also compare to random search and other naive baselines (e.g. max-param
models as detailed in appendix), and also use tabular benchmarks (NasBench-201) for in-depth
evaluations and ablation study of our approach. For all existing NAS methods compared in this
paper, we use exactly the same NAS benchmark as described in the literature and associated public
repositories, including the same dataset (with the same training-test split), search space and code for
training the architectures, and hyperparameters for that code. We use the same evaluation protocol
for the methods being compared, as provided in their code repositories.

7.1 NAS BEST PRACTICE CHECKLIST

1. Best Practices for Releasing Code
For all experiments you report:
(a) Did you release code for the training pipeline used to evaluate the final architectures?

[Yes]
(b) Did you release code for the search space [Yes]
(c) Did you release the hyperparameters used for the final evaluation pipeline, as well as

random seeds? [Yes]
(d) Did you release code for your NAS method? [Yes]
(e) Did you release hyperparameters for your NAS method, as well as random seeds? [Yes]

2. Best practices for comparing NAS methods
(a) For all NAS methods you compare, did you use exactly the same NAS benchmark,

including the same dataset (with the same training-test split), search space and code for
training the architectures and hyperparameters for that code? [Yes]

(b) Did you control for confounding factors (different hardware, versions of DL libraries,
different runtimes for the different methods)? [Yes]

(c) Did you run ablation studies? [Yes]
(d) Did you use the same evaluation protocol for the methods being compared? [Yes]
(e) Did you compare performance over time? [N/A]
(f) Did you compare to random search? [Yes]
(g) Did you perform multiple runs of your experiments and report seeds? [Yes]
(h) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes]

3. Best practices for reporting important details
(a) Did you report how you tuned hyperparameters, and what time and resources this

required? [Yes]
(b) Did you report the time for the entire end-to-end NAS method (rather than, e.g., only

for the search phase)? [N/A]
(c) Did you report all the details of your experimental setup? [Yes]

10

Under review as a conference paper at ICLR 2022

REFERENCES

Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas Donald Lane. Zero-cost
proxies for lightweight NAS. In International Conference on Learning Representations (ICLR),
2021. URL https://openreview.net/forum?id=0cmMMy8J5q.

Richard Bellman. Dynamic Programming. Dover Publications, 1957. ISBN 9780486428093.

Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target
task and hardware. In International Conference on Learning Representations (ICLR), 2019. URL
https://arxiv.org/pdf/1812.00332.pdf.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once for all: Train one network
and specialize it for efficient deployment. In International Conference on Learning Representations
(ICLR), 2020. URL https://arxiv.org/pdf/1908.09791.pdf.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet in
four gpu hours: A theoretically inspired perspective. In International Conference on Learning
Representations, 2021.

Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via perturbation-
based regularization. In International Conference on Machine Learning (ICML), pp. 1554–1565.
PMLR, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2009.

Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending the Scope of Reproducible Neural Architec-
ture Search. In International Conference on Learning Representations (ICLR), 2020.

Łukasz Dudziak, Thomas Chau, Mohamed S. Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas D.
Lane. BRP-NAS: Prediction-based NAS using GCNs. In Neural Information Processing Systems
(NeurIPS), 2020.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications. arXiv preprint arXiv:1704.04861, 2017.

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5mb model size.
arXiv:1602.07360, 2016.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks (invited paper). In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2021, pp. 6, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450380539. doi: 10.1145/3406325.3465355.
URL https://doi.org/10.1145/3406325.3465355.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. In International Conference on Learning Representations (ICLR),
2019.

Guohao Li, Guocheng Qian, Itzel C Delgadillo, Matthias Muller, Ali Thabet, and Bernard Ghanem.
Sgas: Sequential greedy architecture search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1620–1630, 2020.

Marius Lindauer and Frank Hutter. Best practices for scientific research on neural architecture search.
Journal of Machine Learning Research, 21(243):1–18, 2020.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations (ICLR), 2019.

Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
NIPS’18, pp. 7827–7838, Red Hook, NY, USA, 2018. Curran Associates Inc.

11

https://openreview.net/forum?id=0cmMMy8J5q
https://arxiv.org/pdf/1812.00332.pdf
https://arxiv.org/pdf/1908.09791.pdf
https://doi.org/10.1145/3406325.3465355

Under review as a conference paper at ICLR 2022

Abhinav Mehrotra, Alberto Gil Ramos, Sourav Bhattacharya, Łukasz Dudziak, Ravichander Vipperla,
Thomas Chau, Mohamed S. Abdelfattah, Samin Ishtiaq, and Nicholas D. Lane. NAS-Bench-ASR:
Reproducible Neural Architecture Search for Speech Recognition. In International Conference on
Learning Representations (ICLR), 2021.

Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J. Crowley. Neural architecture search without
training. In International Conference on Machine Learning (ICML), 2021.

Bert Moons, Parham Noorzad, Andrii Skliar, Giovanni Mariani, Dushyant Mehta, Chris Lott,
and Tijmen Blankevoort. Distilling optimal neural networks: Rapid search in diverse spaces.
arXiv:2012.08859, 2020.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameters sharing. In International Conference on Machine Learning (ICML), pp. 4095–4104,
2018.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized Evolution for Image
Classifier Architecture Search. In AAAI Conference on Artificial Intelligence (AAAI), 2019.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 4510–4520, 2018. doi:
10.1109/CVPR.2018.00474.

Yao Shu, Wei Wang, and Shaofeng Cai. Understanding architectures learnt by cell-based neural
architecture search. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=BJxH22EKPS.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural
networks. In International Conference on Machine Learning (ICML), 2019.

Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller models and faster training. arXiv:2104.00298,
2021.

Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. In Neural Information Processing Systems
(NeurIPS), 2020.

Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszár. Faster gaze prediction with
dense networks and fisher pruning. arXiv:1801.05787, 2018.

Jack Turner, Elliot J. Crowley, Michael O’Boyle, Amos Storkey, and Gavin Gray. Blockswap:
Fisher-guided block substitution for network compression on a budget. In International Conference
on Learning Representations (ICLR), 2020.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations (ICLR), 2020.

Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui Hsieh. Rethinking
architecture selection in differentiable NAS. In International Conference on Learning Representa-
tions (ICLR), 2021. URL https://openreview.net/forum?id=PKubaeJkw3.

Chen Wei, Chuang Niu, Yiping Tang, and Ji min Liang. Npenas: Neural predictor guided evolution
for neural architecture search. arXiv:2003.12857, 2020.

Wei Wen, Hanxiao Liu, Hai Li, Yiran Chen, Gabriel Bender, and Pieter-Jan Kindermans. Neural
predictor for neural architecture search. arXiv:1912.00848, 2019.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 10726–10734, 2019. doi: 10.1109/CVPR.2019.01099.

Junru Wu, Xiyang Dai, Dongdong Chen, Yinpeng Chen, Mengchen Liu, Ye Yu, Zhangyang Wang,
Zicheng Liu, Mei Chen, and Lu Yuan. Weak NAS predictors are all you need. arXiv:2102.10490,
2021.

12

https://openreview.net/forum?id=BJxH22EKPS
https://openreview.net/forum?id=PKubaeJkw3

Under review as a conference paper at ICLR 2022

Kaicheng Yu, Christian Sciuto, Martin Jaggi, and Mathieu Salzmann Claudiu Musat. Evaluat-
ing the search phase of neural architecture search. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=H1loF2NFwr.

Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hutter.
Understanding and robustifying differentiable architecture search. In International Conference on
Learning Representations (ICLR), volume 3, pp. 7, 2020a.

Arber Zela, Julien Siems, and Frank Hutter. Nas-bench-1shot1: Benchmarking and dissecting
one-shot neural architecture search. arXiv preprint arXiv:2001.10422, 2020b.

Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and
Wanli Ouyang. Econas: Finding proxies for economical neural architecture search. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations (ICLR), 2017.

13

https://openreview.net/forum?id=H1loF2NFwr

Under review as a conference paper at ICLR 2022

Figure A1: Visualisation of the searching tree related to a hypothetical supernetwork with 3 nodes
(represented by different colors) and 2 candidate operations (represented by different numbers). The
root node of the tree represents a full supernetwork. Each descendant node represents a non-unique
network architecture obtained by discretizing an edge identified by the color of the node, with an
operations encoded by a number in the node, given an architecture represented by a parent node. A is
the set of all possible architectures, including the supernet A0, partially-discretized networks like A1

and fully-discretized networks. The set of all fully-discretized networks is additionally denoted as
A|E|, and the set of all fully-discretized networks that are achievable after operation o(2) is assigned
to edge e(1), given A0, is labeled as A0,e(1),o(2) . The arrow from A0 to A1 represents a possible first
step during the discretization process which closes all grayed-out configurations. While performing
NAS, at each tree level we need to decide which edge to follow; this is achieved by assigning scores
to all/some of the edges that we are willing to consider in each iteration using different scoring
functions which are the main focus of our analysis in Section 3.

A APPENDIX

A.1 EXTRA DETSILS ABOUT NOTATION USED IN THE PAPER

All sets are denoted with stylised capital letters using latex’s matcal font. Letters denoting elements
of different sets use the same letters as the sets, e.g. e ∈ E , A ∈ A, etc. For any element, we use
subscript for indexing iterations of the discretization process – e.g., A0 is a network architecture at
the beginning of iteration 0, e2 is an edge that is being investigated in iteration 2, etc. To identify
different elements in any other context we use superscript, e.g. e(1) might denote the first edge in a
supernet, which might be different from e1 which denotes the edge that is first going to be dicretized
following a relevant discretization order.

To better understand meaning of each used symbol, consider a hypothetical supernet with 3 edges
– e(1), e(2), e(3) – repented by different colors (green, blue and red, respectively) and 2 candidate
operations – o(1), o(2) – represented by different numbers (1 and 2). Figure A1 visualises the entire
space related to the decision process that is happening in order to perform NAS in this setting,
including the first discretization step A1 = A0+(e0, o0), where e0 = e(1), o0 = o(2), and the related
set of all achievable fully-discretized models A0,e0,o0 – a concept central to our definition of the
optimal scoring function.

A.2 DETAILED ZERO-COST-PT ALGORITHM

Algorithm 1 presents the proposed Zero-Cost-PT algorithm introduced in Section 4.1. It has two
stages: searching and validation, where we first iteratively discretize the supernet A0 based on
zero-cost-based perturbation function fzc-pt (line 1 - 16), and then in the second stage we use the a
zero-cost metric (the same which is used in fzc-pt) to score the candidate architectures (line 17 - 20),
and select the one with the highest end-to-end score. In particular for DARTS CNN search space, our
Zero-Cost-PT algorithm has an additional topology selection step (line 8 - 14), where for each node
in architecture we only retain the top two incoming edges based on the zc-pt score – this is similar to
the vanilla DARTS algorithm (Liu et al., 2019). For NAS-Bench-201 space our algorithm skips this
topology selection step.

14

Under review as a conference paper at ICLR 2022

Algorithm 1: Zero-Cost Perturbation-based Architecture Search (Zero-Cost-PT)
Input :An untrained supernetwork A0 with set of edges E and set of nodesN , # of architecture proposal

iterations N, # of validation iterations V
Result: A selected architecture A∗|E|
// Stage 1: propose architecture candidates

1 C = ∅
2 for i = 1 : N do
3 for t = 1 : |E| do
4 Select next edge et using the chosen discretization ordering
5 ot = πzc-pt(At−1, et)
6 At = At−1 + (et, ot)
7 end
8 while |N | > 0 do // prune the edges of the obtained architecture A|E|
9 Randomly select a node n ∈ N

10 forall Input edge e to node n do
11 Evaluate the zc-pt score of the architecture A|E| when e is removed
12 end
13 Retain only edges e(1)∗n , e(2)∗n with the 1st and 2nd best zc-pt score, and remove n fromN
14 end
15 Add A|E| to the set of candidate architectures C
16 end
// Stage 2: validate the architecture candidates

17 for j = 1 : V do
18 Calculate S(j)(A) for each A ∈ C using a random mini-batch data;
19 end
20 Select the best architecture A∗|E| = argmaxA∈C

∑
j=1:V S

(j)(A);

A.3 MORE ON OPERATION SCORING

This section provides more experimental details and examples of our analysis of the operation scoring
functions introduced in Section 3.

A.3.1 DETAILED SCORING METHODOLOGY

As discussed in Section 3.2.1, our analysis on the on the initial operation scoring aims to investigate
how well an operation scoring method can perform when making the first discrietization decision,
with respect to the perfect search (the best-acc approach). Here “the first discrietization decision”
is made at the first iteration (iteration 0) of a progressive operation selection algorithm, and in our
experiment we compute the score for all operations on an edge and later average across all edges to
account for random selection of the first edge. Concretely, we compute the score per operation across
all edges, then compute the Spearman rank correlation for operations on each edge. After that, we
average the rank correlation coefficient over all edges.

Consider the example shown in Figure A2. Suppose we have a supernet with just two edges as in
Figure A2. In this case, an operation scoring function should pick just one operation per edge. For
a given operation scoring function, we compute the scores for each operation on each edge. Then
for each edge, we compute the rank correlation of the oracle scores (best-acc or avg-acc) against
the scores from the other operation scoring function (e.g. zc-pt or darts-pt). We then average their
correlation coefficient across all edges in a supernet to get an average correlation for each operation
scoring function. The resulting average rank correlation is indicative of how well a given operation
scoring function (starting with a random edge) would do when making the first discretization decision,
relative to the oracle search.

A.3.2 EXPERIMENTAL DETAILS

Here, we provide some additional experimental details for the data presented in Section 3. The
following list describes how we compute each operation score.

• best-acc: To get the score for an operation o on a specific edge e, we find the maximum test
accuracy of all NAS-Bench-201 architectures with (o, e).

15

Under review as a conference paper at ICLR 2022

op1 op2 op3

node 2

node 1

op1 op2 op3

node 3

Edge 1

Edge 2

op 1 op2 op3 correlation

best-acc 78 91 34 -

zc-pt 0.5 0.9 0.3 1.00

darts-pt 10 5 2 0.50

op 1 op2 op3 correlation

best-acc 91 42 55 -

zc-pt 1.2 0.7 0.7 0.86

darts-pt 21 7 18 1.00

avg. correlation

zc-pt 0.93

darts-pt 0.75

Average
correlation
over edges

Figure A2: An example showing how correlations of different proxies are computed in our analysis
on initial operation scoring in Section 3.2.1

• avg-acc: Same as best-acc but we average all NAS-Bench-201 architecture test accuracies
instead of finding the maximum.

• disc-acc: We discretize one edge e by selecting an operation o, then we train for 5 epochs3 and
record the supernet accuracy – this is used as the score for (o, e).

• darts-pt: We perturb one edge with one operation A− (e, o) and record the validation accuracy.
For perturbation-based scoring functions, we multiply the score by −1 before computing
correlations.

• disc-zc: We discretize one edge e by selecting an operation o and then compute the zero-cost
metric.

• zc-pt: We perturb one edge with one operation A− (e, o) and compute the zero-cost metric.
For perturbation-based scoring functions, we multiply the score by −1 before computing
correlations.

• darts: We record the value of the architecture parameters α after 60 epochs of training the
supernet.

• tenas: We perturb one edge with one operation A − (e, o) and compute the κN and the R̂N
(number of linear regions). Then we rank κN ascendingly and descendingly rank the R̂N . At
last, we add those two ranks together to get the final ranks of the operations. We multiply the
score by −1 before computing correlations.

A.3.3 DETAILED OPERATION SCORES

Table A8 (at the end of this Appendix) shows all operation scores at iteration 0. This data was used to
compute Spearman-ρ in Figure 2a. Note that we compute Spearman-ρ per edge and average over all
edges – this summarizes how well each score tracks our “oracle” best-acc score.

A.4 DESCRIPTION OF DARTS SUBSPACES (S1-S4)

RobustDARTS introduced four different DARTS subspaces to evaluate the robustness of the original
DARTS algorithm (Zela et al., 2020a). In our work, we validate the robustness of Zero-Cost-PT
against some of the more recent algorithms using the same subspaces originally proposed in the
RobustDARTS paper (Section 5.3). The search spaces are defined as follows:

3DARTS-PT defines discretization accuracy as the accuracy after convergence. We elected to only train for 5
epochs to make our experiments feasible but we are now investigating whether longer training will affect our
results.

16

Under review as a conference paper at ICLR 2022

• in S1 each edge of a supernet consists only of the two candidate operations having the highest
magnitude of α in the vanilla DARTS (these operations can be different for different edges);

• S2 only considers two operations: skip_connect and sep_conv_3x3;
• similarly, S3 consists of three operations: none, skip_connect and sep_conv_3x3;
• finally, S4 again considers just two operation: noise and sep_conv_3x3, where noise

operation generates random Gaussian noise N (0, 1) in every forwards pass that is independent
from the input.

A.5 EXPERIMENTAL DETAILS

All searches were run multiple times with different searching seeds (usually 0, 1, 2 and 3). Addition-
ally, each found architecture was trained multiple times using different training seeds – for DARTS
the same set of seeds was used for training and searching, for NAS-Bench-201 (NB201) training seeds
were taken from the dataset (777, 888 and 999, based on their availability in the dataset). Therefore,
for each experiment we got a total of searching_seeds × training_seeds accuracy values.
Whenever average performance is reported, it is averaged across all obtained results. Similarly, best
values were selected by taking the best single result from the searching and training seeds.

A.5.1 EXPERIMENTAL DETAILS – NAS-BENCH-201

Searching was performed using 4 different seeds (0, 1, 2, and 3) to initialise a supernet. Whenever
we had to perform training of a supernet during the searching phase (Section 3), we used the same
hyperparameters as the original DARTS-PT code used. When searching using our Zero-Cost-PT
we used batch size of 256, N=10, V=100 and S=nwot, unless mentioned otherwise (e.g., during
ablation studies). Inputs for calculating zero-cost scores came from the training dataloader(s), as
defined for relevant datasets in the original DARTS-PT code (including augmentation). For zero-cost
proxies that require a loss function, standard cross-entropy was used. For any searching method, after
an algorithm had identified a final subnetwork, we extracted the final architecture and queried the
NB201 dataset to obtain test accuracy – one value for each training seed available in the dataset.

All experiments concerning operation scoring (Sections 3 and A.3) used averaged accuracy of models
from NB201 for simplicity.

We did not search for architectures targeting CIFAR-100 or ImageNet-16 directly – whenever we
report results for these datasets, we used the same architecture found using CIFAR-10.

A.5.2 EXPERIMENTAL DETAILS – DARTS

DARTS experiments follow a similar methodology to NB201. Each algorithm was run with 4 different
initialisation seeds for a supernet (0, 1, 2 and 3). When running Zero-Cost-PT, we used the following
hyperparameters: batch size of 64, N=10, V=100 and S=nwot. Inputs and loss function for zero-cost
metrics were defined analogically to NB201. We did not run any baseline method on the DARTS
search space (all results were taken from the literature), so we did not have to perform any train
a supernet. After an algorithm had identified a final subnetwork, we then trained it 4 times using
different initialisation seeds again (0, 1, 2 and 3). When training subnetworks, we used a setting
aligned with the previous work (Liu et al., 2019; Wang et al., 2021).

Unlike NB201, whenever different datasets were considered, (Section 5.3) architectures were searched
on each relevant dataset directly.

For CIFAR-10 experiments, we trained models using a heavy configuration with init_channels
= 36 and layers = 20. Models found on CIFAR-100 and SVHN were trained using a mobile setting
with init_channels = 16 and layers = 8. Both choices follow the previous work (Zela et al.,
2020a; Wang et al., 2021).

A.6 MORE BASELINES

A.6.1 MAXIMUM-PARAM BASELINE

As shown in Table 4 and Table 5 in Section 5.2, our approach tends to select architectures with
comparable or slightly more parameters than the state-of-the-art. However, this does not mean any
larger models would lead to superior performance, i.e. simply maximizing FLOPs/Params is not an

17

Under review as a conference paper at ICLR 2022

appropriate searching methodology in general. Below are the results of training 4 random models
with separable convolution 5x5 (the most expensive operation in the DARTS search space) selected
everywhere and random connections between layers. The evaluation methodology follows all other
experiments, i.e. we have 4 searched models trained 4 times with different training seeds, and we
report the average and minimum error.

Table A1: Randomly selected architectures with only opera-
tion sep_conv_5x5 on DARTS CNN space.

S. seed 1
Test Error(%)

Training seed 2
Avg. Best

0 1 2 3

0 3.07 2.93 2.89 2.85 2.94±0.30 2.85
1 2.92 2.93 3.17 3.05 3.02±0.20 2.92
2 2.98 2.97 2.93 2.90 2.95±0.06 2.95
3 2.87 2.83 3.02 2.78 2.88±0.18 2.78

1 Random seeds for searching the architectures.
2 Random seeds for training the selected architectures.

Overall, the test error (%) of this
method is 2.93±0.23 (avg.) and 2.78
(min), vs. ours 2.64±0.16 (avg.) and
2.43 (min). This confirms that sim-
ply selecting models with maximu
FLOPs/Params is not an appropriate
searching methodology in general,
as evidenced by the above results
on the DARTS search spaces. We
also show that the results translate to
ImageNet in later sections. On the
other hand, on simple search spaces
like NAS-Bench-201 (NB201), this
maximum-param baseline may per-
form relatively better, e.g. it can
find the model with test accuracy of
93.76% (165th position in the ranking), but our method can still do better, discovering the 33rd best
model in the search space (test accuracy 94.03%).

In summary, on both NB201 and DARTS space, the proposed combination of the perturbation
paradigm with zero-shot proxies does better than the naive usage of the proxies presented in (Ab-
delfattah et al., 2021; Mellor et al., 2021), as shown in Tables 2, 4, 5 and A2. Note that we are better
than the plain perturbation-based baseline (Wang et al., 2021) and recent zero-cost NAS (Chen et al.,
2021) on NB201 (Table 2), and comparable/better on DARTS and derived subspaces (Table 4 and 5),
while being much cheaper to run.

The structures of models are provided as Genotype objects below for reproducibility.

random_max_0 = Genotype(normal=[["sep_conv_5x5", 0], ["sep_conv_5x5", 1],
["sep_conv_5x5", 0], ["sep_conv_5x5", 1], ["sep_conv_5x5", 0], ["

sep_conv_5x5", 3], ["sep_conv_5x5", 1], ["sep_conv_5x5", 4]],
normal_concat=range(2, 6), reduce=[["sep_conv_5x5", 0], ["
sep_conv_5x5", 1], ["sep_conv_5x5", 0], ["sep_conv_5x5", 1], ["
sep_conv_5x5", 0], ["sep_conv_5x5", 1], ["sep_conv_5x5", 0], ["
sep_conv_5x5", 1]], reduce_concat=range(2, 6))

random_max_1 = Genotype(normal=[["sep_conv_5x5", 0], ["sep_conv_5x5", 1],
["sep_conv_5x5", 0], ["sep_conv_5x5", 2], ["sep_conv_5x5", 0], ["

sep_conv_5x5", 2], ["sep_conv_5x5", 1], ["sep_conv_5x5", 4]],
normal_concat=range(2, 6), reduce=[["sep_conv_5x5", 0], ["
sep_conv_5x5", 1], ["sep_conv_5x5", 0], ["sep_conv_5x5", 1], ["
sep_conv_5x5", 0], ["sep_conv_5x5", 1], ["sep_conv_5x5", 0], ["
sep_conv_5x5", 1]], reduce_concat=range(2, 6))

random_max_2 = Genotype(normal=[["sep_conv_5x5", 0], ["sep_conv_5x5", 1],
["sep_conv_5x5", 0], ["sep_conv_5x5", 2], ["sep_conv_5x5", 0], ["

sep_conv_5x5", 3], ["sep_conv_5x5", 1], ["sep_conv_5x5", 4]],
normal_concat=range(2, 6), reduce=[["sep_conv_5x5", 0], ["
sep_conv_5x5", 1], ["sep_conv_5x5", 0], ["sep_conv_5x5", 1], ["
sep_conv_5x5", 0], ["sep_conv_5x5", 1], ["sep_conv_5x5", 0], ["
sep_conv_5x5", 1]], reduce_concat=range(2, 6))

random_max_3 = Genotype(normal=[["sep_conv_5x5", 0], ["sep_conv_5x5", 1],
["sep_conv_5x5", 0], ["sep_conv_5x5", 1], ["sep_conv_5x5", 0], ["

sep_conv_5x5", 2], ["sep_conv_5x5", 1], ["sep_conv_5x5", 4]],
normal_concat=range(2, 6), reduce=[["sep_conv_5x5", 0], ["
sep_conv_5x5", 1], ["sep_conv_5x5", 0], ["sep_conv_5x5", 1], ["
sep_conv_5x5", 0], ["sep_conv_5x5", 1], ["sep_conv_5x5", 0], ["
sep_conv_5x5", 1]], reduce_concat=range(2, 6))

A.6.2 RANDOM-SAMPLING BASELINE

18

Under review as a conference paper at ICLR 2022

Table A2: Comparison with randomly sampled
networks in DARTS CNN space (CIFAR-10).

Sample Size Test Error(%) Cost (GPU-Days)
Avg. Best

2500 2.99±0.22 2.66 0.018
20000 2.73±0.09 2.58 0.083
50000 2.70±0.09 2.52 0.208

Zero-cost-PT 2.64±0.16 2.43 0.018

In Section 5.1, we compared our method to
sampling-based zero-cost NAS in Table 2 (see NAS-
WOT lines). Our results are empirically better on
all three datasets. Additionally, our method com-
putes the operation score per edge in a supernet,
whereas the sampling-based approach computes the
end-to-end network score. The relationship between
the number of subnetworks and the number of op-
erations is exponential. Therefore, we anticipate
having to sample exponentially many networks in
sample-based NASWOT (Mellor et al., 2021) com-
pared to our proposed Zero-Cost-PT.

In order to extend the comparison between zero-cost NAS (NASWOT) and our zero-cost PT to the
DARTS CNN search space, we have conducted further experiments, in which we allow NASWOT
to sample and score random models from the DARTS search space for for a specified amount of
samples (2500, 20000, 50000, corresponding to roughly 25min, 2h, and 5h on a single 2080Ti GPU)
and the best model, according to the nwot metric, is selected as the result of a search. For each of the
three sampling budgets, we run the entire process 4 times using different searching seeds (0-3), thus
resulting in 3×4 = 12 final architectures (9 unique ones are selected). Each of the final architectures
was then trained 4 times using different training seed (0-3). The results are presented in details in
Table A2.

As expected, both average and best performance of the sample-based zero-cost search increases
with more samples. However, the results are visibly behind our proposed method, even for the most
expensive searches (5 hours). In addition, we see that increasing searching budget from 2 hours to 5
hours does not result in a proportional gains in accuracy, compared to 25min, suggesting diminishing
returns. We hypothesize it is related to the mentioned fact that the number of architectures grows
exponentially, so we’d need to sample significantly more networks before the probability of hitting a
good one increases noticeably. In fact, we find that when increasing searching budget from 20000 to
50000 samples in our experiments, the baseline only get better results in one out of 4 cases (searching
seeds), and in one it actually made the results worse. This further suggests diminishing returns.
Finally, for a similar time budget to ours (25 min), the average performance of the baseline is actually
much closer to the random search (3.29±0.15) (Liu et al., 2019) than to our method, with significant
variance.

A.6.3 ZERO-COST-DISC BASELINE

Table A3: Comparison in test error (%) between zero-cost
perturbation-based and discretization-based NAS on NAS-
Bench-201.

Method1 CIFAR-10 CIFAR-100 ImageNet-16
Zero-Cost-DISC 6.22±0.84 28.18±2.01 55.14±1.77

Zero-Cost-PT 5.97±0.17 27.47±0.28 53.82±0.77

1 We use the same hyperparameter settings as reported in the main paper: N=10,
V=100, nwot zero-cost metric and random edge discretization order.

In Section. 3, we propose two
zero-cost operation scoring function
πdisc-zc and πzc-pt, and study their cor-
relation with an oracle metric best-
acc on NAS-Bench-201 (Dong &
Yang, 2020). We find that discretiza-
tion is generally a weaker scoring
paradigm than perturbation, as shown
by their correlations with respect to
the oracle score best-acc. To further
evaluate the end-to-end NAS perfor-
mance of discretization vs. perturbation with zero-cost metrics, we consider a baseline named
Zero-Cost-DISC, which discretizes the supernet based on πdisc-zc instead of πzc-pt. Details on how
disc-zc computes the operation scores can be found in Appendix A.3.2. We compare the performance
of Zero-Cost-DISC and our proposed Zero-Cost-PT on NAS-Bench-201 (Dong & Yang, 2020), as
shown in Table A3. We see that discretization (Zero-Cost-DISC) results in inferior performance
compared to the proposed perturbation-based approach (Zero-Cost-PT) on all datasets, confirming
our previous analysis on their correlations with the oracle metric.

A.7 ADDITIONAL ABLATION STUDY ON DARTS CNN SPACE

We conducted ablation study of our Zero-Cost-PT algorithm on NAS-Bench-201 (Dong & Yang,
2020) in Section. 4.2, aiming to decide the best possible configuration of the main hyperparameters of
our algorithm: architecture proposal iterations N, validation iterations V, ordering of edges to follow

19

Under review as a conference paper at ICLR 2022

when discretizing, and the zero-cost metric to use. In the following we present additional ablations
on the much larger DARTS CNN space, in particular to study the impact of different architecture
proposal iterations N and validation iterations V when Zero-Cost-PT uses random as the search
order and nwot metric.

Table A4: Detailed performance of Zero-Cost-PTrandom with
N=1, V=0, nwot metric on DARTS CNN space.

S. seed 1
Test Error (%)

Training seed 2
Avg. Best

0 1 2 3

0 2.72 2.55 2.83 2.71
1 3.25 3.26 3.28 3.20
2 2.59 2.84 2.59 2.79
3 2.43 2.77 2.52 2.66

2.81±0.29 2.43

1 Random seeds for searching the architectures.
2 Random seeds for training the selected architectures.

As detailed in Algorithm 1, Zero-
Cost-PTrandom firstly proposes N
candidate architectures using the
proposed zero-cost perturbation
paradigm, which are then evaluated
in a lightweight manner during the
validation phase to come up with
a single outcome of a search. It
extends the existing zero-cost NAS
approach such as NASWOT (Mel-
lor et al., 2021) by including more
sophisticated architecture selection
phase based on the combination of
zero-cost metrics and perturbations.

Table A5: Detailed performance of Zero-Cost-PTrandom with N=10,
V={1, 10, 100}, nwot metric on DARTS CNN space.

V S. seed 1
Test Error (%)

Training seed 2
Avg. Best

0 1 2 3

1

0 3.08 3.16 3.06 2.96
1 2.74 2.91 2.92 2.92
2 2.96 3.10 3.06 2.90
3 2.86 2.85 2.85 2.65

2.93±0.14 2.65

10

0 3.08 3.16 3.06 2.96
1 2.74 2.91 2.92 2.87
2 2.77 2.71 2.65 2.76
3 2.83 3.00 2.82 2.87

2.88±0.14 2.65

100

0 2.86 2.97 2.77 2.82
1 2.51 2.47 2.56 2.43
2 2.74 2.73 2.54 2.62
3 2.43 2.77 2.52 2.64

2.64±0.16 2.43

1 Random seeds for searching the architectures.
2 Random seeds for training the selected architectures.

We first consider an ex-
treme case, setting archi-
tecture proposal iteration
N=1, where Zero-Cost-
PT only proposes one ar-
chitecture candidate (with
random edge discritiza-
tion order), and with
no validation stage per-
formed. The detailed re-
sults are shown in Ta-
ble A4. As can be seen,
the average performance
is affected quite signif-
icantly. However, the
best model still happens
to be on-par with our
main results. This sug-
gests what has already
been mentioned in our
main paper, that search-
ing phase alone tends to
“find” many different ar-
chitectures depending on,
broadly speaking, random seed, and this randomness is especially visible in the case of random edge
ordering (Figure 3a). While the high variance might seem undesired at first, we empirically observe
that the higher exploration resulting from it is beneficial for finding some very good models, e.g.,
global-op-iter discretization order tends to be less sensitive to random seed as it takes away
one degree of randomness (edge order), producing more stable results on average, but at the same
time limiting its ability to maximize performance of the best model found (Table 4). In order to
maximize performance of our method, we balance exploration (higher N + random edge order) and
exploitation (higher V) in the searching and validation phase respectively.

Admittedly, the interplay between those two phases is crucial for our method. To further showcase
how the validation phase complements the searching phase, we run additional ablations on the
DARTS CNN space with N=10 and V={1,10,100}, the results are shown in Table A5. The results
are consistent with what is shown in the main paper: higher V produces better results on average but
does not affect the best case that much (the best model is still upper-bounded by what was found with
N=1).

20

Under review as a conference paper at ICLR 2022

Search Space 1 Search Space 2 Search Space 3

be
st

_t
es

t

avg_test best_val avg_val zc-ptdarts avg_test best_val avg_val zc-ptdarts avg_test best_val avg_val zc-ptdarts

av
g_

te
st

be
st

_v
al

av
g_

va
l

da
rts

Figure A3: Spearman’s rank correlation coefficient of different operation scoring metrics with each
other at the first iteration of NAS evaluated on NAS-Bench-1Shot1 benchmark.

A.8 ADDITIONAL EXPERIMENTS ON NAS-BENCH-1SHOT1

In addition to experiments on NAS-Bench-201 (Dong & Yang, 2020), DARTS CNN space (Liu
et al., 2019) and DARTS subspaces S1-S4 (Wang et al., 2021), we perform additional experiments
on NAS-Bench-1shot1 (Zela et al., 2020b) to further evaluate the performance of our Zero-Cost-PT
algorithm. We first extend our correlation analysis from Section 3 (in particular, the initial operation
scoring as in Section 3.2.1). We compare to DARTS as it is already available in the NB1shot1
codebase 4. As in Figure A3, the results show that DARTS is surprisingly well-correlated to both
best and avg accuracy, in some cases even better than our proposed ZC-PT. We believe that this is
because the search space does not contain skip connections and overall is rather unusual compared to
others used with differentiable NAS, so it is possible that it constitutes an edge-case where DARTS
performs relatively well.

Table A6: Performance of DARTS (Liu et al.,
2019) and our Zero-Cost-PT on NAS-Bench-
1Shot1 (Zela et al., 2020b).

Method Space Test Error (%)

Avg. Best

DARTS 1 6.67±0.08 6.44
Zero-Cost-PT 6.76±1.05 5.45

DARTS 2 6.68±0.36 6.24
Zero-Cost-PT 6.84±0.40 6.14

DARTS 3 6.64±0.12 6.5
Zero-Cost-PT 7.45±0.94 6.03

Table A6 shows the NAS results. We can see
that DARTS retains its high performance. On
the other hand, our ZC-PT achieves worse aver-
age performance, with noticeable variance (espe-
cially on the largest Space 3), but is also able to
find better models in the best-case scenario. We
would like to notice that unlike DARTS or NAS-
Bench-201, NAS-Bench-1shot1 supernet con-
tains architectural parameters associated with
entire connections between cells (α and γ in the
paper (Zela et al., 2020b)), additionally to the
standard ones associated with candidate opera-
tions in a single layer (β in the paper). What it
means for our method is that for those param-
eters we no longer perturb a single edge of a
supernet but rather the entire path, making the
setting for our algorithm noticeably different.
Further extending our method from operation scoring to path scoring is a very relevant goal for future
work.

A.9 ADDITIONAL EXPERIMENTS ON MOBILENET-LIKE SEARCH SPACE

In addition to the DARTS-like search spaces (including NAS-Bench-201, DARTS CNN Space,
DARTS subspaces S1 - S4) studied in our paper, for completeness we also conduct additional
experiments on the MobileNet-like search space, to verify the robustness and generalization capability
of the proposed Zero-Cost-PT approach.

It is well known that most of the existing NAS algorithms designed for MobileNet-like space constrain
the model #FLOPS/Params during the search process. However, our method is not designed for such
constrained NAS context (like the original DARTS and DARTS-PT). To the best of our knowledge,

4https://github.com/automl/nasbench-1shot1

21

https://github.com/automl/nasbench-1shot1

Under review as a conference paper at ICLR 2022

Table A7: Error and search cost of Zero-Cost-PT on MobileNet-like search space (ImageNet)

Architecture Top-1 Error (%) Top-5 Error (%) Params. (M) Cost (GPU Days)

ProxylessNAS (GPU) 24.9 7.5 7.1 8.3

Zero-Cost-PT(seed 0) 24.0 7.0 8.0 0.041
Zero-Cost-PT(seed 1) 23.6 6.8 8.0 0.041
Zero-Cost-PT(seed 2) 23.9 7.0 8.3 0.041

so far there is no clear solution on how one could constrain #FLOPS/Params of the resulting final
architecture during the process of discritizing operations on edges of the supernet. Essentially, to do
that, when selecting the operations on an edge of the supernet we need to consider both their scores
and the potential contributions to the sum of FLOPS/Params of the final model, which is potentially a
NP hard problem. Therefore, in our experiments on MobileNet-like search space, we do not enforce
constraints on #FLOPS/Params during search, as it is less relevant to the proposed approach.

A.9.1 EXPERIMENT SETTING

We adopt the same settings as in (Cai et al., 2019) and construct a supernet with 21 choice blocks,
and each block has the following 7 alternative operations:

• 3×2 = 6 MobileNet blocks, with 3 different kernel sizes {3, 5, 7} and 2 expansion ratio {3, 6}).
• skip connection.

We follow the previous work (Cai et al., 2019) on this space and search directly on ImageNet
dataset (Deng et al., 2009), with input_size = 224. We use 3 different random seeds (0-2) to
perform architectures search, and train the discovered final models (3 models searched and trained
in total). We use batch-size = 1024 and training was performed on 8 NVIDIA V100 GPUs for
300 epochs, with initial learning rate set to 0.5. We use colour-jitters, random horizontal flip and
random crop for data augmentation, set label_smooth = 0.1. All other training setting is identical
to ProxylessNAS (Cai et al., 2019).

A.9.2 RESULTS

Table A7 shows the performance (error %) of the architectures discovered by the proposed Zero-Cost-
PT algorithm on ImageNet. We see that comparing to ProxylessNAS, our approach can find models
with comparable or better accuracy, with much less search cost. This further confirms the robustness
and transferability of the Zero-Cost-PT approach, on a different search space in addition to the
DARTS-like spaces studied in our paper. Noticeably the models found by our approach have higher
#Params comparing to ProxylessNAS, but as we discussed above, constraining #FLOPS/Params is
less relevant in our context, and the aim of this experiment is to show our Zero-Cost-PT can also
discover good performing architectures on MobileNet-like space with low search cost.

A.10 DISCOVERED ARCHITECTURES

Figures A4 and A5 present cells found by our Zero-Cost-PT on the DARTS CNN search space
(Section 5.2) when using global-op-iter and random discretization orders, respectively (see
Section 4.2 for the definition of the two discretization orders). Figures A7 through A18 show cells
discovered on the four DARTS subspaces and the three relevant datasets (Sections 5.3 and A.4).
Figure A19 shows architectures found by our Zero-Cost-PT approach on MobileNet-like search
space.

c_{k-2}

0
skip_connect

1
sep_conv_3x3

2sep_conv_3x3

3
sep_conv_3x3

c_{k-1}

sep_conv_5x5

sep_conv_5x5

sep_conv_3x3

c_{k}

sep_conv_3x3

(a) Normal cell

c_{k-2}
0

dil_conv_3x3

1
sep_conv_3x3

2

sep_conv_5x5 3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_5x5

sep_conv_3x3

sep_conv_3x3 c_{k}

(b) Reduction cell

Figure A4: Cells found by Zero-Cost-PT (global-op-iter discretization order) on the DARTS
search space using CIFAR-10.

22

Under review as a conference paper at ICLR 2022

c_{k-2}

0

skip_connect
1

sep_conv_3x3

2

sep_conv_3x3

3
sep_conv_3x3

c_{k-1}
sep_conv_5x5

sep_conv_5x5

sep_conv_3x3

c_{k}
sep_conv_5x5

(a) Normal cell

c_{k-2}
0

sep_conv_5x5

1
sep_conv_3x3

2

sep_conv_5x5 3

sep_conv_3x3

c_{k-1}

sep_conv_5x5

sep_conv_5x5

sep_conv_3x3

sep_conv_5x5 c_{k}

(b) Reduction cell

Figure A5: Cells found by Zero-Cost-PT (random discretization order) on the DARTS search space
using CIFAR-10.

c_{k-2}

0

sep_conv_5x5 1
sep_conv_5x5

3
sep_conv_5x5

c_{k-1}
sep_conv_3x3

sep_conv_3x3
2sep_conv_5x5

c_{k}sep_conv_3x3

sep_conv_5x5

(a) Normal cell

c_{k-2}
0

dil_conv_3x3

1
sep_conv_5x5

2

sep_conv_5x5 3

sep_conv_5x5

c_{k-1}

skip_connect

sep_conv_5x5

sep_conv_5x5

sep_conv_3x3 c_{k}

(b) Reduction cell

Figure A6: Cells found by Zero-Cost-PT (random discretization order) on the DARTS search space
using ImageNet.

c_{k-2}

0

skip_connect

3

sep_conv_3x3

c_{k-1}

dil_conv_5x5

1

sep_conv_3x3

2

sep_conv_3x3
dil_conv_3x3
sep_conv_3x3

c_{k}
dil_conv_5x5

(a) Normal cell

c_{k-2}
0

max_pool_3x3

1

max_pool_3x3

c_{k-1}
dil_conv_3x3

avg_pool_3x3
2

sep_conv_3x3

c_{k}

dil_conv_5x5
3dil_conv_5x5

dil_conv_5x5

(b) Reduction cell

Figure A7: Cells found by Zero-Cost-PT (random discretization order) on the DARTS-S1 space
using CIFAR-10.

c_{k-2}

0
sep_conv_3x3

2
sep_conv_3x3

c_{k-1} skip_connect 1

sep_conv_3x3

sep_conv_3x3 3

sep_conv_3x3
sep_conv_3x3

sep_conv_3x3
c_{k}

(a) Normal cell

c_{k-2}
0

sep_conv_3x3

1
skip_connect

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

skip_connect

sep_conv_3x3

sep_conv_3x3 c_{k}

(b) Reduction cell

Figure A8: Cells found by Zero-Cost-PT (random discretization order) on the DARTS-S2 space
using CIFAR-10.

c_{k-2} 0sep_conv_3x3

2skip_connect
c_{k-1}

sep_conv_3x3

1sep_conv_3x3

3

sep_conv_3x3

sep_conv_3x3

c_{k}sep_conv_3x3
sep_conv_3x3

(a) Normal cell

c_{k-2}
0

sep_conv_3x3

1
sep_conv_3x3

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3 c_{k}

(b) Reduction cell

Figure A9: Cells found by Zero-Cost-PT (random discretization order) on the DARTS-S3 space
using CIFAR-10.

c_{k-2} 0sep_conv_3x3

c_{k-1}
noise

1

noise 2

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

3sep_conv_3x3
c_{k}sep_conv_3x3

(a) Normal cell

c_{k-2}
0

sep_conv_3x3

1
sep_conv_3x3

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3 c_{k}

(b) Reduction cell

Figure A10: Cells found by Zero-Cost-PT (random discretization order) on the DARTS-S4 space
using CIFAR-10.

23

Under review as a conference paper at ICLR 2022

c_{k-2}

0

dil_conv_3x3

3

sep_conv_3x3

c_{k-1}

dil_conv_5x5

1

sep_conv_3x3

2

sep_conv_3x3
dil_conv_3x3
sep_conv_3x3

c_{k}
dil_conv_3x3

(a) Normal cell

c_{k-2}

0

avg_pool_3x3 1

avg_pool_3x3

c_{k-1}

dil_conv_3x3
2sep_conv_3x3

3
avg_pool_3x3

dil_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k}

(b) Reduction cell

Figure A11: Cells found by Zero-Cost-PT (random discretization order) on the DARTS-S1 space
using CIFAR-100.

c_{k-2}

0

skip_connect 1

sep_conv_3x3

c_{k-1}

sep_conv_3x3

2sep_conv_3x3
3sep_conv_3x3

sep_conv_3x3

sep_conv_3x3 c_{k}

sep_conv_3x3

(a) Normal cell

c_{k-2}
0

sep_conv_3x3

1
skip_connect

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

skip_connect

sep_conv_3x3

sep_conv_3x3 c_{k}

(b) Reduction cell

Figure A12: Cells found by Zero-Cost-PT (random discretization order) on the DARTS-S2 space
using CIFAR-100.

c_{k-2}

0sep_conv_3x3

1
skip_connect

c_{k-1}

sep_conv_3x3 2

sep_conv_3x3
3

sep_conv_3x3

sep_conv_3x3
c_{k}sep_conv_3x3

sep_conv_3x3

(a) Normal cell

c_{k-2}
0

skip_connect

1
sep_conv_3x3

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

skip_connect

skip_connect

sep_conv_3x3

sep_conv_3x3 c_{k}

(b) Reduction cell

Figure A13: Cells found by Zero-Cost-PT (random discretization order) on the DARTS-S3 space
using CIFAR-100.

c_{k-2}

0
noise

1noise 2
sep_conv_3x3

c_{k-1} sep_conv_3x3
sep_conv_3x3 3

sep_conv_3x3

c_{k}
sep_conv_3x3

sep_conv_3x3

(a) Normal cell

c_{k-2}
0

sep_conv_3x3

1
sep_conv_3x3

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3 c_{k}

(b) Reduction cell

Figure A14: Cells found by Zero-Cost-PT (random discretization order) on the DARTS-S4 space
using CIFAR-100.

c_{k-2}

0

dil_conv_3x3 1
dil_conv_5x5

3

sep_conv_3x3

c_{k-1} dil_conv_5x5
sep_conv_3x3

2

sep_conv_3x3

sep_conv_3x3
c_{k}

dil_conv_3x3

(a) Normal cell

c_{k-2}

0
max_pool_3x3

1max_pool_3x3
3

avg_pool_3x3

c_{k-1}
dil_conv_3x3

2

sep_conv_3x3

dil_conv_5x5
c_{k}dil_conv_5x5

dil_conv_5x5

(b) Reduction cell

Figure A15: Cells found by Zero-Cost-PT (random discretization order) on the DARTS-S1 space
using SVHN.

c_{k-2}

0
skip_connect

2
sep_conv_3x3

c_{k-1} sep_conv_3x3 1

sep_conv_3x3

sep_conv_3x3 3

sep_conv_3x3
sep_conv_3x3

sep_conv_3x3
c_{k}

(a) Normal cell

c_{k-2}
0

skip_connect

1
sep_conv_3x3

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

skip_connect

sep_conv_3x3 c_{k}

(b) Reduction cell

Figure A16: Cells found by Zero-Cost-PT (random discretization order) on the DARTS-S2 space
using SVHN.

24

Under review as a conference paper at ICLR 2022

c_{k-2}

0

skip_connect
2

sep_conv_3x3

c_{k-1} sep_conv_3x3

1sep_conv_3x3

3
sep_conv_3x3

sep_conv_3x3

sep_conv_3x3 c_{k}

sep_conv_3x3

(a) Normal cell

c_{k-2}
0

sep_conv_3x3

1
sep_conv_3x3

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

skip_connect

sep_conv_3x3

sep_conv_3x3 c_{k}

(b) Reduction cell

Figure A17: Cells found by Zero-Cost-PT (random discretization order) on the DARTS-S3 space
using SVHN.

c_{k-2}

0

noise

1

sep_conv_3x3

c_{k-1}
sep_conv_3x3 noise

2
sep_conv_3x3

3sep_conv_3x3
c_{k}

sep_conv_3x3

sep_conv_3x3

(a) Normal cell

c_{k-2}

0

sep_conv_3x3

1

sep_conv_3x3
3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3 2
sep_conv_3x3

sep_conv_3x3

c_{k}
noise

(b) Reduction cell

Figure A18: Cells found by Zero-Cost-PT (random discretization order) on the DARTS-S4 space
using SVHN.

Figure A19: Discovered Architectures in MobileNet-like Search Space

25

Under review as a conference paper at ICLR 2022

Table A8: Raw values of operation scoring functions at iteration 0 to reproduce Figure 2a.

edge\op none skip_connect nor_conv_1x1 nor_conv_3x3 avg_pool_3x3

be
st

-a
cc

0 94.15 94.18 94.44 94.68 93.86
1 94.24 94.16 94.49 94.68 94.09
2 94.25 94.43 94.49 94.68 94.19
3 94.16 94.68 94.03 94.04 93.85
4 94.29 94.18 94.56 94.68 94.23
5 94.05 94.16 94.68 94.56 94.1

av
g-

ac
c

0 77.36 81.02 83.81 86.38 87.32
1 80.03 83.11 85.23 85.99 81.52
2 82.9 82.44 84.05 84.49 81.98
3 74.02 85.17 87.3 88.28 81.38
4 80.14 83.05 85.09 85.7 81.89
5 77.61 83.43 86.18 86.95 81.74

di
sc

-a
cc

0 83.27 82.24 65.0 71.76 54.31
1 84.94 83.23 73.23 76.77 83.45
2 83.87 83.73 77.33 76.83 83.25
3 65.77 84.44 75.82 78.68 62.7
4 83.57 82.03 75.02 76.09 82.56
5 83.95 82.45 66.69 71.36 80.31

da
rt

s-
pt

1

0 -85.43 -17.02 -78.13 -59.09 -85.34
1 -85.52 -36.1 -84.39 -80.95 -85.49
2 -85.51 -80.29 -81.86 -77.68 -85.32
3 -85.49 -9.86 -81.79 -59.18 -85.48
4 -85.45 -51.15 -78.84 -64.64 -85.14
5 -85.54 -32.43 -81.04 -72.75 -85.51

di
sc

-z
c

0 3331.01 3445.49 3366.88 3437.55 3423.18
1 3429.07 3435.75 3407.87 3434.58 3421.44
2 3428.8 3423.36 3440.93 3437.29 3416.89
3 3408.99 3464.05 3359.89 3382.18 3431.81
4 3433.99 3435.57 3424.47 3431.14 3423.15
5 3434.42 3437.66 3418.57 3397.52 3424.17

zc
-p

t1

0 -3455.23 -3449.9 -3449.54 -3441.82 -3461.18
1 -3452.15 -3448.7 -3441.81 -3440.65 -3453.74
2 -3446.52 -3447.61 -3435.46 -3436.4 -3449.28
3 -3453.81 -3435.99 -3444.04 -3445.6 -3447.07
4 -3451.06 -3449.8 -3442.63 -3441.13 -3453.31
5 -3450.97 -3448.21 -3440.8 -3443.24 -3452.99

da
rt

s

0 0.14 0.48 0.13 0.18 0.07
1 0.12 0.55 0.11 0.12 0.09
2 0.24 0.33 0.15 0.17 0.11
3 0.06 0.65 0.08 0.13 0.07
4 0.12 0.48 0.13 0.17 0.1
5 0.16 0.49 0.12 0.14 0.09

te
na

s

0 -38.5 -48.0 -31.0 -6.0 -37.5
1 -7.0 -55.0 -10.0 -15.0 -39.0
2 -31.5 -10.0 -30.0 -16.5 -36.5
3 -34.0 -44.0 -53.5 -23.0 -30.0
4 -32.0 -32.5 -36.5 -32.0 -52.0
5 -38.5 -16.0 -20.0 -17.0 -27.5

1 Lower is better so we add a negative sign to *-pt scores.

26

	Introduction
	Related work
	Rethinking Operation Scoring in Differentiable NAS
	Operation Scoring Preliminaries
	Empirical Evaluation of Operation Scoring Methods
	Initial Operation Scoring
	Progressive Operation Scoring

	Zero-Cost-PT Neural Architecture Search
	Architecture Search with Zero-cost Proxies
	Ablation Study on NAS-Bench-201

	Results
	Comparison with SOTA on NAS-Bench-201
	DARTS CNN Search Space
	Robustness Analysis

	Conclusion
	Reproducibility Statement
	NAS Best Practice Checklist

	Appendix
	Extra detsils about notation used in the paper
	Detailed Zero-Cost-PT Algorithm
	More on Operation Scoring
	Detailed Scoring Methodology
	Experimental Details
	Detailed Operation Scores

	Description of DARTS subspaces (S1-S4)
	Experimental Details
	Experimental Details – NAS-Bench-201
	Experimental Details – DARTS

	More Baselines
	Maximum-param Baseline
	Random-sampling Baseline
	Zero-Cost-DISC Baseline

	Additional Ablation Study on DARTS CNN Space
	Additional Experiments on NAS-Bench-1shot1
	Additional Experiments on MobileNet-like Search Space
	Experiment Setting
	Results

	Discovered Architectures

