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ABSTRACT
Personalized real-time recommendation has had a profound impact
on retail, media, entertainment and other industries. However, de-
veloping recommender systems for every use case is costly, time
consuming and resource-intensive. To fill this gap, we present a
black-box recommender system that can adapt to a diverse set of sce-
narios without the need for manual tuning. We build on techniques
that go beyond simple matrix factorization to incorporate important
new sources of information: the temporal order of events [Hidasi
et al., 2016], contextual information to bootstrap cold-start users,
metadata information about items [Rendle 2012] and the additional
information surrounding each event. Additionally, we address two
fundamental challenges when putting recommender systems in
the real-world: how to efficiently train them with even millions
of unique items and how to cope with changing item popularity
trends [Wu et al., 2017]. We introduce a compact model, which we
call hierarchical recurrent network with meta data (HRNN-meta) to
address the real-time and diverse metadata needs; we further pro-
vide efficient training techniques via importance sampling that can
scale to millions of items with little loss in performance. We report
significant improvements on a wide range of real-world datasets
and provide intuition into model capabilities with synthetic experi-
ments. Parts of HRNN-meta have been deployed in production at
scale for customers to use at Amazon Web Services and serves as
the underlying recommender engine for thousands of websites.

CCS CONCEPTS
• Information systems→ Enterprise applications; Personaliza-
tion; Recommender systems; Learning to rank; • Computing
methodologies → Sequential decision making.
KEYWORDS
recommender systems, recurrent neural networks, real-time, collab-
orative filtering, content filtering, hybrid model, negative sampling
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1 INTRODUCTION
Personalized recommendation systems aim to present the right
items to a user, at the time that it is most useful to her. They typi-
cally use two sources of information: user-item interaction histories
and user/item features [21]. User histories aid the discovery of per-
sonalized items by observing patterns about what “similar people
typically do”. On the other hand, the user/item features help users
discover new items from other users who have had similar contexts
and information needs. Both sources of information add funda-
mental value by helping users find useful information efficiently;
information that is otherwise buried in the “long-tail” of a large
catalog or website. Machine learning provides a way forward to-
ward building a system that could address the following distinct
challenges - the system should adapt to user requests in real-time;
learn from long user histories including hundreds of events; be
effective for “cold-start” users and items; debias historical trends to
“predict the future”; and scale to large item catalogs.

Many recommendation models are implicitly or explicitly built
on user and item latent representations, whose inner-products
represent the relevance of the item to the user, e.g. by decomposing
a matrix of user-item interaction counts [10, 22, 26]. Traditionally,
these approaches are limited in their ability to use information
in the timing and order of user events, and as a result are less
responsiveness to changes in user behavior, e.g. new interests. This
need has motivated novel user-state models ranging from multi-
hot auto-encoders [24] to n-gram factorization machines [21] and
recurrent recommender networks [11, 34]. Extending recurrent
language models [4, 13], these models preserve order information
and can adapt to new user events in real-time.

In addition to the order of events, the timing of interactions
is key to building models that can deal with long user histories.
One typical assumption is that user behaviors can be grouped into
sessions, within which the users tend to have similar intents, e.g.,
watching different episodes of the same series. To model long user
sequences with temporal patterns, Quadrana et al. [20] proposed a
two-layer hierarchical GRU (HGRU) model: one layer models intra-
session dynamics and another layer, which performs updates only
at the end of each session, captures inter-session dynamics. HGRU
can learn from longer sequences because the hierarchical structure
allows for shorter gradient paths to distant pasts. However, the
specific implementation of HGRU can be inefficient since it requires
direct manipulation of the RNN hidden states. In this paper, we
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show that we can encode time information at the input, through a
learned embedding, and achieve comparable or even better results.
This not only achieves computational efficiency but also allows us
to potentially extend these hierarchical structures to other RNNs
(e.g., LSTMs) and beyond (e.g., TCNs, Transformers). We call our
model HRNNs. Through evaluation on a number of real world
datasets, we show that HRNNs achieve most of the performance of
models like HGRU, with a 4x-10x reduction in computational costs,
due to a 4x smaller network and utilization of GPU local cache.

Time is only one example of contextual meta-data that a rec-
ommendation model may learn from. We extend HRNN to include
user and item features such as location, language preference, item
location, item pricing, and other sources of information, by stack-
ing the contextual information on top of the respective user/item
latent vectors through “field-aware” multi-layer perceptrons [14],
an extension we call HRNN-meta. We see that it is able to gen-
eralize based on features and improve recommendation coverage
in “cold-start” scenarios. We show close-to-SOTA recalls on CIKM
2016 semantic search challenge (Figure 4), with bag-of-words rep-
resentations of query tokens and product descriptions as contexts.

To further improve cold-start item recommendation over time,
we model item state evolution, inspired by [34]. We decompose
item states into two parts: a trend-following bias term and a time-
invariant user-affinity score. We contribute theoretical insights for
the decomposition. Without such a decomposition, RNN models
learn item selection policies that maximize the likelihood of user
interaction. These policies may suffer from exposure bias, where
popular or often recommended items tend to get higher scores over
time, even after they are no longer as popular. When we explic-
itly impute a per item popularity bias term, the residual scores
become consistent with the log-click-rate of an item when a user is
actually exposed to the item - that is we can account for some ex-
posure bias. In Figure 5, we show that we can combine user-affinity
scores with updated item trend biases in real-time to achieve better
performance, even with models that are updated less frequently.

Practical recommender systems must be able to serve large item
catalogues, while being trained in reasonable amounts of time.
Large item sizes often cause throughput and memory challenges
in vanilla RNN models. Consider a standard setting with 32 length
BPTT, 32 mini-batch size and 256-dimensional hidden layers on a
GPU with 16GB of memory. The “dense” decoder layer of a RNN
becomes a computational bottleneck when the number of unique
items 𝑚, exceeds 𝑚 > 100𝑘 and a storage bottleneck for BPTT
gradient propagation when𝑚 > 1𝑀 . Inspired by recent progress
in language models [12, 13] and large-scale recommender systems
[36], we use importance sampling (IS) to approximate the expected
gradients in back-propagation. Table 8 shows that IS achieves sim-
ilar speed and accuracy performance when “dense” decoders are
available, but 10x speedup and better accuracy when the “dense”
decoders are at the limit of some modern hardware.

2 HIERARCHICAL RECURRENT NETWORKS
WITH META DATA (HRNN-META)

We start with the problem of making personalized recommenda-
tions based on an interaction dataset, where each row contains a his-
torical record of {(time, user id, item id, value)} = {(𝑡𝑘 , 𝑢𝑘 , 𝑎𝑘 , 𝑣𝑘 ) :

𝑘 = 1, . . . , 𝑛}. Value can be used to represent e.g. click vs. purchase.
We will further extend the representation to include other con-
texts, e.g. time of interaction, rating, purchase value, user profiles,
product features, etc. In the next sections we describe each of the
components of the HRNN model, and demonstrate some of their
theoretical and empirical properties.

2.1 Sequence Models of User Interactions
Sequence models gain statistical power by aggregating “people
who watched X also watched” from individual user histories, with
the added ability to capture recency and trends in customer be-
haviour. We group interactions into ordered user histories, X𝑖 =

[𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑘𝑖 ],with temporal re-indexing, where𝑥𝑖𝑘 = (𝑎𝑖𝑘 , 𝑡𝑖𝑘 , 𝑣𝑖𝑘 )
and 𝑡𝑖𝑘 > 𝑡𝑖 𝑗 if 𝑘 > 𝑗 (most prior work ignores the timestamp 𝑡𝑖𝑘 ,
and only uses the order of events). We omit user indices 𝑖 below,
noting that we learn a global model of items-to-item dynamics
across users by stochastic gradient descent on mini-batches of user
histories. We use RNNs such as GRUs to predict the probability
that a user may interact with a specific item given their history,
similar to how language models learn to predict the next word in a
sentence [28]. Let 𝐴𝑘+1 be a random variable representing the next
item 𝑎𝑘+1, 𝑥1:𝑘 = (𝑥1, . . . , 𝑥𝑘 ) be the history, and 𝝓 = (𝜙1, . . . , 𝜙𝑚)⊤
be the scoring vector function for each of the𝑚 items; we model:

𝑎𝑘+1 ∼ 𝑝 (𝐴𝑘+1 | 𝑥1:𝑘 ) = softmax(𝝓 (h(𝑥1, . . . 𝑥𝑘 ))), (1)

where h𝑘 = h(𝑥1:𝑘 ) is a learned (hidden state) representation of
the corresponding user history. A naive state can be the multi-hot
encoding of past items. If we use 𝒂𝑘 = (0, . . . , 0, 1, 0, . . . , 0)⊤ to
denote the indicator vector corresponding to the item index 𝑎𝑘 , the
hidden state is then h(𝑥1:𝑘 ) = 𝒂1 + · · · + 𝒂𝑘 . RNNs can be viewed
as a weighted sum of representations of past events, where the
weights are learned to ‘gate’ or ‘weigh’ representation updates by
the learned salience of every item interaction in the context of the
items that the customer has interacted with so far.

Figure 1 sketches RNN sequence models and our hierarchical ex-
tensions. While (1) describes the prediction of a single item given an
entire user history, in practice, we apply Back-Propagation Through
Time (BPTT) for all user events concurrently, up to a fixed length
of rolling histories and in a mini-batch of multiple users.

2.2 Hierarchical Models and Contextual Inputs
RNNs may have a limited ability to model long sequences due to
vanishing gradients. In our model, hierarchical sessions are used
to divide long user histories into short activity intervals within
which the sequence has some consistency, e.g. a single user intent.
Session breaks can be inferred from periods of inactivity, or pro-
vided. HGRU [20] uses separate RNNs for inter- and intra-session
dynamics which are combined at the end of each session. We re-
produce this separation logic in Figure 2 and we introduce one
modification to rerun the intra-session GRU after the inter-session
HGRU updates, which leads to better prediction for the first item in
each session. However, when the mini-batch size is longer than the
average session length, multiple GRU layers must be sequentially
executed before moving to the next time-stamp, because the higher
layers are used by more than one user in expectation. This leads
to slow training speed. As an alternative, we simply concatenate a

Applied Data Science Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

2292



? 
Hierarchical Recurrent Network Learned User

Representation

Figure 1: HRNN sequence model to predict the next item in a recurrent fashion. The time-deltas since the last clicks often
positively correlate with the possibilities of changes in attention and intent.

Run GRU Ctrl>0? Run HGRU Ctrl>1?

Reset HGRU

Reset GRUDone Rerun GRU
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Y

NN

Figure 2: Example two-levelHGRUwith time-delta controls.

session start “control signal” with the input, shown as the second
input bit in Figure 2. Our experiments empirically verify that allo-
cating such special “control” inputs allows the model to learn to
reset states as appropriate, in properly trained hierarchical models.

While the control input captures the time-delta context between
the current recommendation and the one before, we may incorpo-
rate other contextual features in a similar manner. We concatenate
user features (e.g., age) and user dynamic features (e.g., device
or language of the request) with the one-hot encoded item id inputs
and control inputs. Additionally, we concatenate encoded feed-
back events (e.g., ratings, purchases, costs, view duration etc.) of
the previous item as input context to the next recommendation. For
example, HRNN can learn from previous rating values to predict
future rating values as part of the scoring basis. HRNN can also
learn to be language/device aware while matching semantically
similar contents. Besides concatenation, we also explored more
complex models such as multiplying the RNN states with scalar
feedback values or deep-cross models [32]. However, they yielded
similar performance in our preliminary experiments, likely due to
the representation power of the internal gates in GRU cells.

Our novel contribution of feedback encoding together with the
session control inputs allows better response to implicit nega-
tives, e.g., a refresh without any clicks, or a short dwell time. This
is possible when the model is trained with larger (smaller) weights
on losses associated with positive (negative) feedback. Due to con-
nections to explicit feedback (Section 3), the model learns both the
relative user-affinity of these items and their temporal associations.

2.3 Item Features and Cold Start
Item features can naturally be included in HRNNs, once we notice
the connection between RNN decoders and factorization models.
Standard RNN decoders compute the score of the jth item with
function 𝜙 𝑗 (h𝑘 ) =

(
w⊤

𝑗
h𝑘 + 𝑏 𝑗

)
, where w𝑗 ∈ R𝑟 represents the

HRNN

Score (!j’)Score (!j)

Item 
features (fj)

Item 
features (fj’)

Last item 
id ("k)

Start of 
session?

Last 
feedback

User 
features

wj, bj wj’, bj’w(⋅), b(⋅) w(⋅), b(⋅)

(k-1) (k+1)

hk

Figure 3: HRNN-meta cell model.

coefficients and 𝑏 𝑗 ∈ R is the intercept. Alternatively, let f𝑗 be the
feature vector for item 𝑗 ; we view w𝑗 = w𝑗 (f𝑗 ) as the embedding
vector of the jth item and 𝑏 𝑗 = 𝑏 𝑗 (f𝑗 ) as the feature-related bias.
We reconsider the decoder as a second-order interaction model
between w𝑗 and h𝑘 and combine both views as:

𝜙 𝑗 (h𝑘 ) = (1 − _)𝜙 𝑗 (h𝑘 ) + _𝜙 ′(h𝑘 , f𝑗 ), where
𝜙 𝑗 (h𝑘 ) =

(
w⊤

𝑗 h𝑘 + 𝑏 𝑗
)
and 𝜙 ′(h𝑘 , f𝑗 ) =

(
w(f𝑗 )⊤h𝑘 + 𝑏 (f𝑗 )

)
, (2)

where w(·), 𝑏 (·) are learnable functions that embed item features
and 0 ≤ _ ≤ 1 is a mixing parameter.

Item features are particularly useful when recommending cold-
start items which have no interaction data. In this scenario, we
found that vanilla training resulted in learned item feature embed-
dings that were complements of the embeddings learned from the
stronger signal in user-item interactions and were not useful for
cold-start. We randomized _ during training, a form of dropout that
prevents co-training, [27] and were able to learn complementary
embeddings. Setting _ = 1 at inference time results in cold-start
inference based on metadata. To understand the statistical impli-
cations and alternative solutions, we will dive deeper into the loss
function in Section 3.

3 IMPLICIT AND EXPLICIT FEEDBACK
HRNNs are implicit-feedback models, which learn to optimize the
log-likelihood of the next item interacted with, out of the set of all
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items. This is equivalent to policy optimization in single-step envi-
ronments [15], which are designed to maximize on-policy expected
rewards with reduced variance and provable eventual convergence
[18]. However, it becomes useful to model explicit feedback in
scenarios of negative sampling, item cold-start, and non-uniform
rewards. In this section, we discuss some connections in this line.

Following (1), we use 𝝓 (h𝑘 ) ∈ R𝑚 to denote the vector of all
item scores for a user at time 𝑡𝑘+1. Let r(𝑡𝑘+1) ∈ [0, 1]𝑚 be the true
reward vector, e.g. the expected click counts, after integrating out
the internal stages of candidate retrieval and item exposure. Let
q(𝑡𝑘+1) be an imputed exposure bias vector. We focus on model
consistency in infinite data case, under the influence of exposure
bias, and omit from the notation dependencies that are clear from
context. The original softmax cross-entropy loss solves for:

argmax𝝓 r⊤
[
𝝓 − log

∑
𝑗

(
𝑒𝜙 𝑗

)
1
]

⇒ 𝝓∗ = log r +𝐶𝑜𝑛𝑠𝑡 . (3)

3.1 Negative Sampling
Negative Sampling (NS) is a process by which only a small subset
of weights are updated with each example, to speed up training.
NS with a softmax objective is a special case in noise-contrastive
estimation [8]. When the item space exceeds𝑚 ≥ 100𝑘 , it becomes
inefficient to compute every entry of 𝝓 ∈ R𝑚 for every user-item
pair. Instead, between any pair of random items 𝑎 𝑗 , 𝑎 𝑗 ′ , the probabil-
ity that 𝑎 𝑗 is the true item is given by 𝑟 𝑗

𝑟 𝑗+𝑟 𝑗′ = sigmoid(𝜙∗
𝑗
−𝜙∗

𝑗 ′) (3).
As a consequence, we may sub-sample negative items uniformly
to replace the set of full items. Sub-sampling converts an implicit-
feedback model on all items to an explicit-feedback model of pair-
wise comparisons. While not “negatively” sampled, the true item
can be considered “positively” sampled by nature from the same
distribution, when the estimated model converges to the true model.

When the true item coverage is low, uniform sampling may have
low hit-rates, which leads to insufficient sampling over potentially
relevant items and ineffective training. [8] proposed to sample from
a known distribution q, which is fast to sample from, yet close to
the true distribution r. Since∑

𝐽

[
𝑟 𝐽 1{𝐽 =𝑗 }

]
=
∑

𝐽 𝑞 𝐽
[ 𝑟 𝐽
𝑞 𝐽

1{𝐽 =𝑗 }
]
, (4)

the probability of a successful draw with the new distribution is pro-
portional to (𝑟 𝑗/𝑞 𝑗 ). We therefore revise the loss to 𝑟 𝑗 /𝑞 𝑗

𝑟 𝑗 /𝑞 𝑗+𝑟 𝑗′/𝑞 𝑗′
=

sigmoid
(
(𝜙∗

𝑗
− log𝑞 𝑗 ) − (𝜙∗

𝑗 ′ − log𝑞 𝑗 ′)
)
. I.e., we subtract (log q)

from the estimated scores and evaluate loss only on the sampled
subset. We follow [13] to extend sigmoid to softmax with multiple
negative draws. On the other hand, different from [13], we use
item frequencies to construct q to be more adaptive to varying item
probabilities, and use the Alias Method [30] to improve sampling
speed. Negative sampling imputes exposure bias, it does not change
the recommendation scores - the resulting models will always be
consistent regardless of the sampler choice, as shown in Table 8.

3.2 Item Trend Decomposition
Item trend decomposition is our attempt to separate out the impact
of item popularity changes and exposure bias. It changes how we
impute negative feedback and thus changes the recommendation
scores. It is particularly important in cold-start scenarios. Suppose
the imputation is correct, i.e., 𝑞 𝑗 truly reflects the propensity score

that the user might have access to item 𝑎 𝑗 . If we further sub-sample
the items from q after the data is collected, the chance that an item
is both sampled and clicked becomes 𝑟 𝑗/𝑞 𝑗 , due to (4). From (3), we
obtain that the HRNN solution on the sub-sampled data becomes
𝜙∗
𝑗
= log(𝑟 𝑗/𝑞 𝑗 ). This is desirable, because we effectively solved for

the item Click-Through Rate (CTR), conditioned on the user being
exposed to the item. Instead of sub-sampling, we may add the bias
term (log q) to the full score vector to reduce variance for small
item spaces. To summarize, we mathematically decompose the next-
item click/interaction probability with multiplicative factors of item
CTR and item exposure rate,

𝑎𝑘+1 ∼ 𝑝 (𝐴𝑘+1 |h𝑘 , 𝑡𝑘+1) ∝ 𝑝 (𝐴𝑘+1 |h𝑘 )𝑞(𝐴𝑘+1 |𝑡𝑘+1). (5)

A practical estimator for item exposure rate may come from its
global popularity in the last time period. In Figure 5, we use item
trend decomposition to successfully improve performance on news
recommendation, where the news trends change quickly.

3.3 Non-Uniform Rewards
Using the connections to policy optimization [15], we assign non-
negative weight values 𝑟𝑎𝑘+1 to achieve non-uniform rewards. Sup-
pose all items are presented uniformly at random, the reward-
weighted cross-entropy objective leads to asymptotic convergence
to the expected reward of every item in logarithmic terms (3), up to
a global constant shared by all items. This allows our models to pick
the highest-reward items. When the items are presented according
to a different distribution q, the objective combines both effects
from item exposure and user feedback, to improve upon previous
recommendation policies. If the exposure distributions are logged
or can be imputed, we may use (5) to further decompose the scores
to reflect the expected reward of every exposed item [3, 29].

An alternative to reward-weighting is direct reward estimation.
Comparatively, reward-weighting provides “safe” improvements
when the item exposure distributions are positively biased, with
data collected from previous recommendation results. Reward esti-
mation yields smaller variance on well-balanced data. Our future
work considers both approaches for bias-variance trade-off [33].

4 EXPERIMENTS ON REAL DATASETS
We conduct studies to show the effects of different aspects of HRNN-
meta, including session information, user and item features, and
interaction feedback in different scenarios such as cold start and
with large numbers of items. Clearly separating out the effects of
some features required simulated data, which we describe in the
extended version. The primary test dataset we use isMovieLens
[9], a dataset of movie ratings, though we also report results on
other datasets including Yoochoose, Reddit, Outbrain and Taobao.
The conclusions were largely insensitive to specific training hyper-
parameters. We typically used hyper-parameters that have been
successful in language models 1. We use perplexity (PPL, [2]) as
a measure of model inaccuracy. A recommendation system with
a PPL of p is equivalent to one that recommends a uniform ran-
dom selection of p items, one of which is the true next item. We
also measure Precision, Recall, Mean-Reciprocal Recall (MRR), and
Normalized Discounted Cumulative Gain (NDCG) [25].

1https://github.com/dmlc/gluon-nlp/
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4.1 Meta-Data Models
Table 1 evaluates the full meta-data model from Figure 3. The results
show that each modeling aspect was useful. We use movielens
data (ml-20m) as a public, real-world dataset for movie recom-
mendations. It contains 20 million interactions, 131 263 items,2 and
138 493 unique users. We split the data by user into 80% train and
validation set and 20% test set, and hold out interactions from the
last few time steps (a temporal hold out) of the validation set. Table 1
shows that our vanilla RNN implementation achieved 3x the perfor-
mance of popularity baseline, i.e., PPL 447 versus 2228, similar to
[5].3 The meta data model also improved the prediction accuracy,
decreasing PPL to 429 and 410. Here, item features were the movie
genre vectors, interaction feedback were the standardized rating
values. Notice, using just the item features of the last item the user
interacted with (row 2), improved over the popularity baseline to
PPL 1342, showing that the model can personalize recommenda-
tions based on just the genre of the user’s last interaction.

Table 1: Using meta-data lowers the PPL, which indicates a
higher likelihood of recommending relevant items on ml-
20m. For details on the toy dataset see the extended version.

Seq User Item Feedback Toy ml-20m

× × × × 100 2228
× × ✓ × 54 1342
✓ × × × 3 447
✓ ✓ ✓ ✓ 1 410

4.2 Hierarchies, Sessions and Time
Hierarchical models are based on the hypothesis that users tend to
have similar intentswithin-session andmay change intents between
sessions. During training, hierarchical models provide short gra-
dient paths across sessions avoiding vanishing gradients and thus
allowing models to have longer memory. We investigate if HRNNs
trained on MovieLens do indeed learn such a temporal pattern. As a
qualitative example, we consider a user who watched the following
titles: Secret of Roan Inish (Children|Drama|Fantasy|Mystery) , Post-
man (Comedy|Drama|Romance), Thin Blue Line (Documentary),
Say Anything... (Comedy|Drama|Romance) and Babe: Pig in the
City (Children|Comedy). In Table 2 we see that for the same item
watch history HRNN-meta generates different recommendations
for different time-delta gaps between last interaction and recom-
mendation time, indicating that the model has learned to place
some weight on the temporal inputs. When the recommendation is
made by HRNN within session, i.e. when a short time delta is used
at query time, the theme of the recommended item stays relatively
similar to the last watched item. When the input session control
indicates a large time delta or hierarchy, the recommended genres
tend to be more diverse, i.e., diminishing personalization effects, as
expected. Note, the popularity is not monotonic for shorter time
deltas, making this statement subjective.
2We treat the size of the index space as the number of items despite only 26 744 unique
items being included in the interaction data.
3There are no standard temporal train-test splits on ml-20m, so we cannot make a
more direct comparison.

Table 2: Top-1 recommendation to the same user changes as
the inference time changes. As time between last click and
inference increases, the recommendations change but stay
in the genres the user has interacted with.

Δ𝑡 title genres popularity

0 Purple Rose of Cairo Comedy|Drama 0.000236
60 Unbearable Lightness Drama 0.000209

3600 Local Hero Comedy 0.000195
86400 Big Comedy|Drama 0.001130

Table 3: Hit@5 on the Reddit dataset. We pick one-hour
browsing gaps as sessions break signals. We observe perfor-
mance improvements as the session-basedmodel gains com-
plexity. The eventual performance also depends on other
factors such as the size of the hidden states. Hierarchical
models improve performance for small model sizes.

GRU HRNN HGRU Pop BPR5

50 hidden 0.26 0.42 0.47 0.11 0.39200 hidden 0.55 0.55 0.55

4.3 RNNs vs. HRNNs
To see if hierarchies are useful, we compare the three models – a
vanilla GRU, HRNN with input encoding and a Hierarchical GRU
on a Reddit dataset4, where some prior work has indicated the
value of hierarchies [23]. The dataset contains users, subreddits
they interacted with and the timestamps of those interactions. The
dataset has 18 271 users and 27 452 items, results are in Table 3. We
use the same train and test splits as in [23]. Similar to [23], we see
that for small hidden sizes (50), HGRU and HRNN substantially
outperform vanilla RNN. HRNN is 10 times faster than HGRU, about
as fast as an RNN. A preliminary conclusion is that allowing the
model to learn to encode the input timestamps provides much of
the benefit of HGRU at a substantially lower computational cost.

We then experimented with larger hidden layer sizes and alter-
native algorithms. We see that BPR performs much better than
initially reported GRU numbers in [23]. With hidden layer size of
200, our GRU substantially improves over HGRU with small hidden
dimension and BPR. Incremental improvements with HRNN and
HGRU on this dataset were small. We conclude that, given suffi-
cient data, a large RNN performs well even for datasets which seem
to have substantial session level effects. In Section 4.6 we explore
improving the scaling and throughput of large RNN models.

We next test feedback encoding - the ability to encode and use
the type or quality of interaction - within the context of sequential
rating predictions, with results in Table 4. In this task we predict
the rating of each item the user interacts with, and use Root Mean
Square Error (RMSE) between the true rating the user assigned
to the item and the predicted rating, to measure performance (lower
is better). Standard RNNs without feedback encoding are unaware
of the user rating patterns and do not outperform a rolling average

4https://www.kaggle.com/colemaclean/subreddit-interactions
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baseline which predicts the next item rating as the average of the
item average rating and user average rating. This reflects the fact
that each user has a distinct rating pattern on this dataset, and
highlights the challenges we face when directly using RNNs and
sequential models like HGRU for rating prediction. RNNs with
feedback encoding not only outperformed the baselines but also
our implementation of Factorization machines and I-AutoRec. The
gating mechanism in RNN learns to automatically trade-off and
appropriately weight short-term attention and long-term memories.
We see similar performance in the Netflix dataset5 in Table 5.

Table 4: ml-20m rating prediction. Feedback encoding (one
of our meta data fields) is the key to improve rating RMSE
beyond the rolling average baseline.

RMSE

Rolling average baseline 0.933
Factorization machine [21] 0.916
I-AutoRec [24] 0.871
RNN wo. feedback encoding 0.941
RNN w/ feedback encoding 0.857
HRNN w/ feedback encoding 0.846

Table 5: Netflix-full rating prediction. Feedback encoding
distinguishes HRNN models from previous approaches.

RMSE

Rolling average baseline 0.954
TimeSVD++ [16] 0.928
PMF [19] 0.925
RRN [34] 0.910
HRNN w/ feedback encoding (ours) 0.856

In Table 6 we compare RNNs and HRNNs on the Recsys2015 Yoo-
choose dataset6, following the evaluation strategy in [11]. Again
we see that well trained RNNs perform very well when compared
with baselines, on most of the metrics we measure. Since an RNN
with a large hidden dimension can capture some hierarchical ef-
fects if sufficient data is available it may hard to obtain substantial
improvements over well trained RNNs with hierarchical models.

4.4 Cold Start with Item Metadata and IPS
One important application of item meta data models is recommend-
ing items without prior interaction histories, e.g. new items, in a
personalized manner. Offline evaluation of cold-start recommenda-
tion quality on public datasets is difficult since, almost by definition,
cold start items rarely occur. We simulate cold-start by holding out
items on two real-world datasets.

5https://www.netflixprize.com/. We used the full version of the dataset, with a test
set from the full month of December 2005 and train set containing all previous 98.1M
interactions, for a total of 17.7k unique items, following [34].
6https://2015.recsyschallenge.com/

Table 6: Yoochoose ranking loss (MRR@20, Hit@20, and
NDCG@20 in percentiles) and perplexity. HRNN with
time-delta contexts outperforms our GRU implementation,
which further outperforms the original GRU4Rec.

MRR Hit nDCG PPL

Popular items 0.1 0.6 0.2 17683
Hidasi et al. [11] 26.9 63.2 - -
GRU (ours) 30.1 69.4 45.1 225
HRNN (ours) 31.4 70.8 46.4 204

MovieLens Cold Start with Genre Information. To test the HRNN-
meta model with cold start, we held out half of all items (selected
uniformly at random from the entire movielens (ml-1m) interac-
tions dataset) and evaluated the recommendation performance only
on the held-out items. Notice, a baseline strategy that does not
use meta-data can only recommend items uniformly at random,
since without any history even item popularity is unknown. Table 7
shows that HRNN-meta model significantly improved cold-start
recommendation over the uniform-random baseline. We used (2)
with _ = 𝑈 [0, 1] during training and _ = 1 during inference to
recommend cold-start items only using their meta data.

Table 7: ML-1M item cold start. Cold-start items have no in-
teraction histories so won’t be recommended by a collabo-
rative filtering algorithm. We use the HRNN-meta model to
find relevant cold start movies using the genre meta-data.

Random choice HRNN-meta

MRR 0.109 0.323
Precision@5 0.039 0.162
Precision@25 0.041 0.133
NDCG@5 0.075 0.208
NDCG@25 0.187 0.388

CIKM Cup 2016 Semantic Search. 7 To measure meta data perfor-
mance, we use bag-of-words (BoW) features and a product search
dataset. Following Zhang et al. [35], we consider 37.7k train queries
and 16k test queries as users, and all 184k unique products as candi-
dates. Query/product features come from their bag-of-words (BoW)
representation, where we used only the top 3000 frequent words
and performed a square-root transform on the BoW features. To
study the effects of IPS off-policy correction, we imputed a global
impression bias by counting item frequency in the training set.

Figure 4(a) shows that the NDCG with our meta-data model is
comparable with SOTA from Zhang et al. [35] (green versus dot-
dash blue line at the top). Using cold-start models hurt performance
because there is no significant distribution shift between the train
and test splits, i.e., total-variation loss is lower between train/test
(15%) than two random folds splitting the test set (18%). We compare
6 models : referencing (2), 𝜙 ′(h, f𝑗 ) a model based only on meta-
data, 𝜙 𝑗 (h) a model based only on interaction data, a full meta-
data model, a cold start model ((2) with _ = 1 during evaluation)
7https://cikm2016.cs.iupui.edu/cikm-cup/
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Figure 4: IPS off-policy correction on CIKMCup 2016 search
challenge. Lower temperature implies more weight on the
IPS term. (a) The original all-item search does not have sig-
nificant distribution drifts; static 𝜙 (h𝑘 ) is the primary sig-
nal and IPS may hurt overall accuracy. (b) Cold-start simu-
lation by splitting items between train/test sets. Meta-data
𝜙 ′(h𝑘 , f𝑗 ) is the primary signal and IPS is beneficial.

and two non-personalized models. We see that models that include
interaction data consistently outperformmodels that do not. We see
that priors from meta-data embedding are washed out by evidence
from interactions data, when there is no distribution shift.

To simulate distribution shift, we split items into train and test
so that the test set only contains cold-start items. Figure 4(b) shows
that the meta-data embedding is useful in the cold start scenario
and that IPS helps address the distribution shift. Cold-start with
_ = 1 also alleviates distribution shifts when IPS temperature is ∞.

4.5 Retraining with Item Trend Corrections
In addition to the one-time item cold-start case, many application
domains, such as news and live events require the model to identify
trends when new items are continuously introduced and old items
removed. We show how to use a combination of retraining and
item frequency correction to solve the problem.

To demonstrate that modeling item dynamics and user-item cor-
relations separately could benefit the learning process and improve
performance, we tested our model on the Outbrain news recom-
mendation dataset. We chose this dataset because it has the nice
property that the item popularity changes often as news articles ex-
pire quickly. Outbrain covers 2 weeks user-item interaction history.
We filtered the dataset by selecting interactions based on items with
a specific publisher ID. We performed a temporal train-test split
and used the first 70% data for training and the rest 30% for testing.

We further divided the test data into 1 hour frames. OfflineHRNN
was tested iteratively on the 1 hour frames while the (batch) online
HRNN was retrained after each frame. Online HRNN also leverages
item popularity information to debias the fast-changing item trends
and stabilize the learning process, so it can be retrained on a longer
history without worrying that the model may capture the outdated
item trends. We use recent popularity as our baseline, a model
which predicts the next item solely based on item popularity over
a recent window.

In the experiment, both offline and online HRNN are trained for
5 epochs. During retraining, the online HRNN is trained on most
recent 10 hours and tested on the next 1 hour slot, and we calcu-
late item popularity on an hourly basis and feed it into the model.
Similarly, the Recent Popular model calculates item popularity for
each hour and uses it to predict over the next hour. As shown in
Figure 5, the performance of offline HRNN drops drastically in the
first 20 steps (20 hours) and then remains stable. The online HRNN
and Recent Popular, show significantly better performance when
compared with offline HRNN, albeit with some fluctuations. The
dataset is strongly popularity biased, with dynamic item trends
which makes Recent Popular a competitive baseline. Online HRNN
outperforms Recent Popular most of the time illustrating that it
learns personalized recommendation on top of item popularity.
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Figure 5: Comparing offline/online learning with/without
IPS corrections. News articles are time-sensitive. The offline
models quickly become outdated. Performance can bemuch
improved from IPS corrections and batch online retraining.

4.6 Large Catalogs and Importance Sampling
Table 8 shows throughput and accuracy comparisons between
dense output layers and IS layers. The movielens datasets used a
GRU model with 43-dimensional hidden states. All models were
trained for 4 epochs. The PPL and NDCG were measured on pre-
dictions of held out last-items for test users, using their previous
histories as inputs.

IS-based training yields models with quality consistent with the
original dense training on movielens datasets - differences seem
to be primarily due to other modeling factors, and were not sig-
nificant even given the sizes of the datasets. We also conducted
experiments on a large-scale dataset from Taobao8 described in
[36]. We followed the train/test splits as in [36] - i.e., we held out
10𝑘 users for testing where we evaluated on the second half of
items they interacted with, using the first half of the items as input
- maintaining a temporal split. We used an additional filtering step,
only retaining users and items with at least 10 historical interac-
tions in the training data. The filtering step resulted in a less than
5% data drop, but significant decrease in item catalogue size from
around 4𝑀 to around 1𝑀 . Even with this smaller catalog, the dense
model requires >16GB memory which is only available on new and
expensive hardware. On the other hand, IS reduces the memory
footprint by 2.5x (from 30GB to 14GB) and yields a 11x speed-up.
8https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
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Table 8: HRNN throughput and accuracy. Bold-
fonts/underlines show significant/insignificant differences,
respectively. IS significantly improved model training for
up to 1M unique items (Taobao dataset). Additionally, the
densemodel for the Taobao dataset requires >16GBmemory
for BPTT, which is infeasible on many GPUs.

Output ml-1m ml-10m ml-20m Taobao

Output size IS 62 255 362 1087
(𝑚) Dense 1683 65 134 131 263 1 183 451

Throughput IS 23k 20k 20k 7.8k
(#items/sec) Dense 23k 23k 17k 631

PPL IS 377 405 455 17.6k
Dense 409 439 494 119k

NDCG IS 0.128 0.123 0.12 0.15
Dense 0.123 0.119 0.115 0.08

We limited training time to 6 hours. Due to its higher throughput,
the IS-approx model yielded significantly better performance on
the test set- a 6x improvement on the perplexity metric and 2x
increase in the NDCG@25 value.

From the throughput and accuracy experiments, we conclude
that when number of items𝑚 < 100𝑘 , recurrent layer computations
dominate the training time and IS-approximation is not useful.
When𝑚 ≥ 1𝑀 , we see significant improvements in throughput,
leading to much better model performance given the same amount
of training time.

Table 9: Comparing IS-approximated HRNN with other
large-scale methods. The values are comparable, suggesting
good recommendation quality, with the exception of HRNN
dense on Taobao dataset (>1𝑀 output size), which is so inef-
ficient that it failed to train in limited time (<6 hours).

ml-20m Taobao
p@10 r@10 p@200 r@200

YouTube product-DNN 11.87% 8.71% 1.48% 7.58%
TDM attention-DNN 14.06% 10.55% 2.00% 10.81%

HRNN dense 24.81% 11.16% 0.85% 3.97%
HRNN IS-approx 23.23% 10.87% 1.54% 7.97%

Our IS-approximated HRNN model performed about as well as
external benchmarks, suggesting good recommendation quality.
Exact comparisons are subject to other factors such as training time
and model complexity. For example, we trained for only 6 hours
with a generic IS sampler by raising the item frequencies to the
0.75-th power, whereas for the better performing state-of-the-art
TDM attention-DNN model [36] the original authors did not report
training time. We speculate that some data errors are possible: e.g.
we discovered negative time stamps in the dataset, which may add
some uncertainty to the benchmarks.

We conclude that IS approximations lead to large throughput
improvements and near-state-of-the-art results with short training
time (<6 hours). Two additional epochs in three hours improved

our results to p@200=1.66% and r@200=8.57%, respectively. We
believe the remaining performance gaps can be closed by additional
training time and/or better IS negative samplers. Our goal is to
achieve good results while reducing training time, so we do not
explore this further here. Besides [36], other possible improvements
include self-contrastive estimators [6] and IRGAN [31].

5 RELATEDWORK
Our work builds on seminal work on applying RNNs to recommen-
dation systems. GRU4Rec [11], and follow up work that demon-
strated the value of choosing appropriate loss funcitons and the
idea of using hierarchical models to capture long term inter-session
intent dynamics using HGRUs [20]. Ruocco et al. [23] extend the
study of hierarchical models to new datasets, and focus on specific
evaluations e.g. recommendations at the start of a new session.
While much of this prior work used GRUs, Donkers et al. [5] show
that a modified recurrent unit can achieve better performance.

In this context our work further solidifies the case that RNNs
are good models of user behaviour for next item recommendation.
We show that HRNNs where time is an input to the model, rather
than an enforced hierarchical structure achieve a good trade-off
of efficiency and accuracy. In addition, our focus is on dynamic
systems with meta-data and cold start, and we demonstrate the
scaling value on the meta-data and item space. Most related to our
work is by Li et al. [17], who model time-deltas in recurrent models,
but without making the connection to hierarchical sessions and do
not consider meta-data, cold start and IS.

For dynamic recommendation, Wu et al. [34] show the value of
capturing item popularity dynamics using item specific RNNs. We
show that much of this value can be captured using item popularity
as a bias term, and further that we can improve item cold-start
performance with item trend decomposition.

For meta-data modeling, we took inspiration from a few impor-
tant papers on FactorizationMachines [21], Deep&Cross models [7],
and TimeSVD++ [16]. These models are able to regress click/rating
values on the meta-data features from all user/item pairs, which
naturally extends to feature-based cold-start item recommenda-
tion. Additionally, while the models are proposed as non-sequence
models, it is natural and often important to represent user activity
histories as part of their features by “multi-hot”-encoding their past
items with exponential moving weights. However, these models
are not easy to extend to large item catalogs with millions of items.
We instead built on the formulation of Sedhain et al. [24], which
jointly outputs multiple rating predictions on multiple items in the
same minibatch. This allows for fast scoring on multiple items at
inference time, and allows us to use ranking losses as opposed to
regression or classification losses.

Part of the reason for our choice of ranking loss over value re-
gression is summarized by [1] and the related work therein. The
main argument we rely on is that the desired goal should be to
contrast positive events against explicit negatives that are shown at
the same time, to cancel out the effects from confounding variables,
such as un-modeled seasonality and time varying item popularity.
When explicit negatives are unavailable, Bottou et al. [1] suggest
propensity fitting of the impression data from observed variables.
We extend the idea to solve the item cold-start problem in dynamic
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environments with time varying item propensities and show con-
vincing empirical evidence that propensity fitting improves the
recommendation of both regular and cold-start items.

Negative sampling in large-catalog problems follows similar ar-
guments, but it is considered beneficial bias to bootstrap model
training. Jozefowicz et al. [13] use the idea of negative sampling to
solve large-scale language training up to 800k unique items. The
idea is to generate good-quality candidate items and learn to dis-
criminate the true items from the fake. Other similar formulations
include [31, 36], that extend the discriminator and generator to
more complex forms. We adapt the solution to recommendation
problems at scale and bring connections between the dynamic item
popularity drifts and generative-discriminative modeling.

6 CONCLUSION
Our work sought to investigate five important directions in modern
recommendation systems: how to represent long interaction se-
quences, how to incorporate contextual information when systems
collect varied richmeta data, how to handle large item catalogs, how
to provide recommendations for cold start items and how to pro-
vide useful recommendations in non-stationary domains. HRNNs
achieve SOTA results on numerous datasets and have been deployed
in production at scale for customers to use at AmazonWeb Services.
Our work also provides support to the importance of sequential
models that can also capture temporal context during training and
inference, something that we will continue to explore in future
work. Practical recommender systems are often simultaneously
influenced by multiple sources of information, where failures in
any model/data component can lead to catastrophic consequences.
It is therefore important future work to identify or suggest root-
causes to accuracy issues. We also found limitations in open-source
datasets to study the complex interplays between multiple factors
that are important in dynamic environments.
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