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ABSTRACT

We study the risk-sensitive reinforcement learning (RL), which is crucial in sce-
narios involving uncertainty and potential adverse outcomes. However, existing
works on risk-sensitive RL either only focus on a specific risk measure or over-
look the offline RL setting. In this work, we investigate the provably efficient
risk-sensitive RL under the offline setting with a general risk measure, the opti-
mized certainty equivalent (OCE), which captures various risk measures studied
in prior risk-sensitive RL works, such as value-at-risk, entropic risk, and mean-
variance. To the best of our knowledge, we (i) introduce the first offline OCE-
RL frameworks and propose corresponding pessimistic value iteration algorithms
(OCE-PVI) for both dynamic and static risk measures; (ii) establish suboptimality
bounds for the algorithms, which can reduce to known results for risk-sensitive
RL as well as risk-neutral RL with appropriate utility functions; (iii) derive the
first information-theoretic lower bound of the sample complexity of offline risk-
sensitive RL, matching the upper bounds and certifying optimality of our algo-
rithms; and (iv) propose the first provably efficient risk-sensitive RL with linear
function approximation for both dynamic and static risk measures, together with
rigorous suboptimality bounds, yielding a scalable and model-free approach.

1 INTRODUCTION

Risk-sensitive reinforcement (risk-sensitive RL) is widely used by a variety of risk-sensitive in-
dustries, ranging from finance (Hambly et al., 2023), self-driving (Kamran et al., 2020), to wireless
networks (Khalifa et al., 2019). In risk-sensitive RL, the agent aims to optimize certain risk-sensitive
reward metrics such as mean-variance risk measure (Sood et al., 2023; Huang et al., 2022), entropic
risk (Hau et al., 2023), and conditional value-at-risk (CVaR) (Hakobyan et al., 2019). The risk-
sensitive nature of these fields makes data collection costly, motivating a line of work on offline
risk-sensitive RL (Ma et al., 2021; Zhang et al., 2024), in which the agent only has access to a
pre-collected dataset and cannot further interact with the environment.

However, existing offline risk-sensitive RL studies often focus on a single risk measure, and there is
no algorithm that is provably efficient for general risk-sensitive measures. Recently, the optimized
certainty equivalent (OCE) framework, introduced by Ben-Tal & Teboulle (2007), has emerged
as a suitable candidate for risk-sensitive RL research due to its ability to unify commonly used
risk measures such as CVaR, entropic risk measure, and mean-variance. Although these works
are sufficiently general in terms of risk metrics considered, they only consider the online setting,
with little guidance on how to best utilize a pre-collected dataset. The gap in research highlights
an intriguing question: Can we design offline risk-sensitive RL algorithms that are provably
efficient for the general OCE risk measure?

Answering the question posed requires addressing four challenges. First, while pessimism is well
understood in the risk-neutral offline RL (Jin et al., 2021; Levine et al., 2020; Nguyen-Tang et al.,
2023), it is unclear how pessimistic estimators can be constructed in the offline risk-sensitive RL
with general OCE risk measures, as earlier research relied on the mathematical properties of specific
risk measures (Zhang et al., 2024). Second, the risk-sensitive RL framework naturally leads to two
distinct formulations—dynamic risk and static risk—which introduce additional challenges in algo-



rithm design. A clear discussion and comparison between these formulations is still lacking. Third,
as we aim to find provably efficient algorithms for offline risk-sensitive RL, a corresponding lower
bound on sample complexity is crucial for validating our results. Finally, while earlier OCE-based
RL research focuses on the tabular setting (Xu et al., 2023; Wang et al., 2024), real-world problems
often contain large state spaces, and our framework needs to allow for function approximation.

Contributions. We make the following four main contributions as we derive a unifying framework
for offline risk-sensitive RL with general risk measures. First, we develop a provably efficient offline
RL algorithm under both dynamic and static OCE. Second, we provide the suboptimality bounds for
the algorithms, which can reduce to risk-neutral RL and various risk-sensitive RL. Third, we obtain
the first sample complexity lower bound for offline risk-sensitive RL, which holds for multiple types
of offline risk-sensitive RL with the property of OCE. Finally, we generalize our results to the linear
function approximation setting, which is the first provably efficient risk-sensitive RL algorithm with
linear function approximation for OCE.

Related Work. This work builds upon a growing body of research on offline risk-neutral RL, where
the central goal is to identify optimal policies using only pre-collected datasets, without additional
interaction with the environment (Levine et al., 2020). In such a setting, the agent is required to infer
the optimal policy exclusively from the dataset with no direct access to the underlying transition
dynamics. A series of recent studies have investigated this challenge from multiple angles, leading
to a rich line of results (Chen & Jiang, 2019; Jin et al., 2021; Rashidinejad et al., 2021; Xie et al.,
2021; Cheng et al., 2022; Nguyen-Tang et al., 2023).

Our work is closely related to a long line of research on risk-sensitive RL. For the entropic risk
measure, Fei et al. (2020) proposed an online algorithm in the tabular MDP setting, which was
later extended to the function approximation regime in Fei et al. (2021). For iterated CVaR, Du
et al. (2022) introduced a tabular algorithm, while Chen et al. (2023) extended this framework to
incorporate function approximation. Xu et al. (2023) developed a dynamic-OCE-based algorithm
for online tabular MDPs. In the offline setting, Zhang et al. (2024) proposed a linear function
approximation method with entropic risk. In terms of static-OCE risk formulations, Wang et al.
(2023) studied the online tabular CVaR-RL problem and further extended their framework to the
more general OCE measure in Wang et al. (2024). Beyond these, a number of earlier works have
laid theoretical foundations for risk-sensitive RL (Osogami, 2012; Shen et al., 2013; Béuerle &
Rieder, 2014; Prashanth, 2014; Shen et al., 2014; Ma et al., 2025).

There are also a number of works that focus on linear function approximation, which are closely
related to our work. Zhang et al. (2024) introduced a linear function approximation method for
offline RL under the entropic risk metrics. Our algorithmic design is further motivated by a broader
set of advances in function approximation and offline RL methods (Cai et al., 2020; Jin et al., 2020;
2021; Wang et al., 2020; Agarwal et al., 2020; Zanette et al., 2021; Qiu et al., 2022; Zhong & Zhang,
2023; Liu et al., 2023; Modi et al., 2024).

2 PROBLEM SETTING

Offline RL. We define an episodic Markov decision process (MDP) M using the tuple
(S, A,P,r,H), where S denotes a (possibly infinite) state space, A a finite action space, and H
the horizon. We let P = {P,}/Z_, denote the transition kernel, where P}, (s'|s, a) is the probability
of transitioning to state s’ € S from state s € S upon taking action a € A at step h. We assume a
deterministic reward function r = {r; }f1_,, where r, : § x A — [0, 1]. We assume both P, r are
unknown beforehand, and wlog assume that the initial state is fixed at some s.

We assume a pre-collected dataset is generated by some behavioral policy, formalized as follows.

Assumption 2.1 (Offline Dataset) Let D = {(s¥,aff, ru(sk, af))},"" | be a pre-collected
dataset consisting of K trajectories. Assume that the dataset is generated by an unknown behavioral

policy u via interacting with the environment.

For any policy 7, define its state-action distribution as dj (s,a) = Pr(sp, = s, ap = alm,s1),
where d] (s) = Pr(s, = s|m, s1). In line with existing offline RL research, we define the single
concentrability coefficient as follows.

Definition 2.1 (Single Concentrability) For an optimal policy 7*, we define C* to be the smallest
dr” (s,a) < O*

h
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value such that maxXpe(my, (s,a)esxA



Optimized Certainty Equivalent. This work focuses on risk-sensitive offline RL incorporating a
general risk measure named optimized certainty equivalent (OCE) (Ben-Tal & Teboulle, 2007).
Definition 2.2 (OCE) Ler u : R — [—00,+00) be a closed, non-decreasing, and concave utility
function with a non-empty effective domain. The OCE of a random variable X is defined as

OCE"(X) = supyeg {b+ E[u(X — b)]}. (D)

We note that OCE is a sufficiently general risk measure. Depending on the choice of the utility func-
tion u, which typically satisfies ©(0) = 0 and 1 € du(0), OCE recovers commonly used risk metrics
such as conditional value-at-risk (CVaR), entropic risk, and mean variance. We refer interested read-
ers to Table 1 for a list of specific instantiations of OCE risk. In addition to its generality, OCE has
several key properties, including monotonicity, translation invariance, and positive homogeneity. We
defer detailed discussions to Appendix A.l. This paper investigates the OCE risk measure in both
of its two formulations, dynamic-OCE RL and static-OCE RL.

Dynamic-OCE RL. Under this setting, we have a Markovian policy 7 = {m;, }}L_,, where 7, (als)
is the probability of taking action a at state s at step h and II is the associated policy class. To incor-
porate risk measures into sequential decision-making, the dynamic-OCE RL formulation has been
proposed in prior works (Ruszczynski, 2010; Biuerle & Glauner, 2022; Xu et al., 2023), leading to
the following Bellman equation that applies the OCE risk measure iteratively from step H to 1:

Qf (snyan) = rh(sn, an) +OCEY,  p, (1sn.an) Vitk1(5041))s Vil (sn) = (QF (sn, ) T (:lsn)) 4
where V;7 and ()} are the dynamic-OCE value function and dynamic-OCE Q-function at step h
under policy 7. With a slight abuse of notations, we let OCE{, _p, (.(5.0) (Vir1(8) := supyer{b +
By op, (-fs,0) [u(Vi 1 (s") — )] }. According to the definition of OCE in Equation 1, there exists an
optimal policy 7* = {m; }fL_| such that 7* = argmax, V"(s1) (Biuerle & Glauner, 2022). We
evaluate the performance of a policy 7 under dynamic-OCE RL by its suboptimality, defined as
SubOptp (1) = Vi (s1) — V™ (s1),
which quantifies the gap between the value of the optimal policy 7* and that of the policy 7 at the
initial state s;. A policy  is said to be e-approximate optimal if SubOptp(7) < €.

Static-OCE RL. The static-OCE setting considers when a dynamic programming formulation is not
possible (e.g. CVaR) for certain choices of u. As the optimal policy can be non-Markovian under
this setting, we consider the following specialized definition of OCE objective

OCE:,P( Zthl T (Sh, ah)) = SUPpe0,H] {b + ]EW7P[U(ZhH:1 Th(Sh, an) — b)]}7 (2)
where E p represents taking expectation following aj, ~ my, Sp41 ~ Pj, for all b € [H]. Note
that by Lemma A.1, the value of b in Equation 2 can be restricted to [0, H]. The key challenge is
that the optimal policies for the above problem are history-dependent (Wang et al., 2024). To tackle
this challenge, we employ the augmented MDP (Biuerle & Ott, 2011; Wang et al., 2024; Béuerle
& Glauner, 2021) with an expanded state space (sp,bn) € Swg = S x [0, H] for each step A,
comprising the state sp, and a budget variable by, that transitions via b1 = b, —r, with by € [0, H|
chosen by the learning algorithm. The budget variable tracks the cumulative rewards. Under such
construction, we define a Markovian policy in the form of 7, (ap|sp,br) (with a slight abuse of
notation). We define the augmented value functions as V7 (sp,, by,) :=Er p [u(zg:h Th (Spry Gpr)—
br)|sn, br]. Then, a Bellman-like equation is given by

Qh (s1,0nyan) = Eq, oy (lsnan) [Vime1 (Sn41,0n1) ], ViT (80, 0n) = (QF (s, b, ), T (- sh, b)) A-
where we use byi1 = b, — 1. By the definition of V)" (sp,b), we have Vi  (s,b) =
u(—b),V(s,b). Further by Equation 2, static-OCE RL equivalently solves max supy, o, g{b1 +
V™ (81, b1) }, where 7 is the Markovian policy defined on Syye. There always exist an initial budget b}
and an optimal policy 7* := {7}, } such that 7* with b] can maximize sup,, co, g{1b1 + Vi (s1,01)}
(Wang et al., 2024). Ideally, b, ought to be a variable in continuous interval [0, H]. However, for
practical and computationally efficient implementation, we discretize by, with a e-net of [0,H], de-
fined as NV, := {ne : n € |H/e|}. The approximation error introduced by this discretization is
negligible as long as ¢ is set to be small enough. Accordingly, the suboptimality under any policy 7
in static-OCE RL can be defined as

SubOptg(7) = SUDPy, [0, H] {bl + V7 (1, bl)} — SUPy, e[0, H] {bl + Vi (s1, bl)}.
For dynamic-OCE and static-OCE RL under the offline setting, our goal is to find policies 7 in their
corresponding policy classes such that SubOptp (7) or SubOptg () is sufficiently small.



Algorithm 1 DOCE-PVI Algorithm 2 SOCE-PVI

: Input: Offline data D = {(s‘;, a’;, rh(s:, aﬁ))}f:l(ykzl
: Initialize: Vi 41 (s, b) = u(—b) forall (s, b)

- . . H,K
: Input: Offline data D = {(s;‘L, a;‘, s 7“)1(5;1» a;i))}hzl,kzl

1 1
2: Initialize: Vi 41 (s) = O forall s 2
3:forh=H,H—1...,1 and all(s,a,b) € S x A X N, do
3:forh=H,H —1...,1 and all b S d = ’ e
or N »1 and all(s,a,b) € S x Ado 4:  Estimate Py, (+|s, @) and 7, (s, a) using D via Equation 3
4:  Estimate Pp, (-|s, a) and 7}, (s, a) using D via Equation 3 5. Th(s,a) = u(H — h) 21og(|S|[A|HK/5)
_ _ SN J max{1,Ny(s,a)}
5 Pulea) = /gy O =) —ulh = ONERSEREET 6 Letd’ i= b — (s, a) '
6 Qp(s,;a) =7u(s,a) + OCEY, 5 | [V;M(S’)] —Th(s,a) 70 Qu(s,a,0) =E_ 5, (|50 [Vh+1(s',0)] = Tw(s, a)
7: @1,(5,0,) :clip{@h(s,a),[O,H7h+1]} 8 Qn(s,a,b) :Clip{Qh(s,a,b),[u(—b),u(H—h+1—b)]}
8 #(--) = argmax, (Qn(- ), mn (1)) , 9: ®n(|s,b) = argmax, (Qn(s,b), ma(-[s, b)),
% 5 = 10 Vi(s,0) = (Qn(s, -, 0), @n(:|s, b))
9 Vi(s) = .. yan "
() ={(Qn( ), Tn(:| )>A 11: end for
10: end for 12: by = arg max, ¢, {b ;k Vi(sq, b)}
11: Return: 7 = {?rh}f:]. 13: Return: @ = {%h}f:],bb

3 RISK-SENSITIVE OFFLINE RL wiTH OCE

In this section, we study the learning algorithms for risk-sensitive offline RL with both dynamic-
OCE RL and static-OCE RL formulations in the tabular setting.

3.1 DyYNAMIC-OCE PESSIMISTIC VALUE ITERATION

Algorithm. We first propose a pessimistic value iteration algorithm for the dynamic-OCE RL setting
named Dynamic-OCE Pessimistic Value Iteration (DOCE-PVI), summarized in Algorithm 1. The
algorithm first estimates the transition and the reward via

K
Ni(s,a,s") (s, a) = Zk:l H{(sﬁ’a’}«i) - (Saa)}rh(sﬁvalfi) 3)
max{1, Ny(s,a)}’ ’ max{1, Ny(s,a)} ’

where I{-} is an indicator function and Nj(s,a,s’) and Np(s,a) are the state-action visitation

counters for the pre-collected data D, defined as Ny, (s, a, s') = Zle I{(sf,af, sk 1) =(s,a,8)}

and Ny (s,a) = Zszl I{(sF,a¥) = (s,a)}. The bonus, I'y, is constructed on Line 5, which
measures the uncertainty related to model estimation. The term explicitly incorporates the OCE risk
measure through the factor u(H — h) — u(h — H), a term that depends on the choice of the utility
function u. Lines 6 and 7 pessimistically estimate the Q-function, denoted by @), via the Bellman
equation formulation of the OCE risk in the dynamic-OCE setting. The clip{z, [a, b]} operator in
Line 7 projects x into the interval [a, b] to ensure boundedness. The estimated optimal policy at step
h, denoted by 7, is a greedy deterministic policy based on the Q-function estimate @y, and the

value function estimate V}, is then constructed using the learned policy. We note that the algorithm
degenerates to the risk-neutral pessimistic value iteration when w(¢) = ¢. The algorithm involves an

@h(s'|s,a) =

optimization problem of the form OCEZNEHS@) Vg1 (s)] = SUDpe (0, H—h] 2ses Pu(s']s, a)[b+

u(Vh41(s") — b)] in Line 6, which depends on the choice of u. Since u is concave, this becomes a
one-dimensional concave maximization problem with an efficient solution.

Theoretical Result. The following theorem establishes the suboptimality bound for Algorithm 1.

Theorem 3.1 For offline dynamic-OCE RL under the tabular setting, with probability at least 1 — §
Sor é € (0,1), the learned policy T via Algorithm 1 admits the following suboptimality bound

SubOpty (7) < O( Sy [u(H — ) — u(h — H)]\/CHISTK ).
where O hides logarithmic dependence on H, |S|, K, and 1/3.

In Theorem 3.1, the result depends on the utility function u in the OCE, reflecting the influ-
ence of risk consideration. As this is the first result of the upper bound on offline risk-sensitive
RL, we compare our approach with non-risk-sensitive offline value iteration algorithms to ex-
amine their similarities and differences, and to verify the effectiveness of our method. Com-
pared with the result of Xie et al. (2021), our algorithm achieves the same suboptimality upper

bound of O(v/C*5). With respect to the horizon H, we have SubOptp (%) < 2 Zthl[u(H) -

u(—H)]\/2C*SK~1log(SAHKS~1). Then our result includes a multiplicative factor [u(H) —
u(—H)], which represents the risk-sensitive term in the OCE formulation. This reveals that the
suboptimality is affected by the risk preferences encoded in the utility function u. Moreover, when

u(t) = t, the overall error scales as O( H?), matching the standard result for vanilla offline RL with




a Hoeffding-style bonus (Levine et al., 2020). That is to say, our algorithm attains the same maximal
sample complexity as the standard offline RL algorithms but with an additional risk-sensitive term
that captures the influence of risk preferences in the OCE.

To proof Theorem 3.1, we first show that the key point is to bound the error brought by the esti-
mation of Bellman operator, spacificed as {rs(s,a) + OCE{ p, (.|s.0){Va+1(s")}} — {Th(s,a) +
OCE! 5 (s a){IA/thl(s’ )}}. The biggest gap here is the nonlinear property of OCE. To facilitate

the proof, we design a novel probability measure based on IP, so as to transfer the problem to a linear
domain. The complete proof is presented in Appendix B.2.

3.2 STATIC-OCE RL PESSIMISTIC VALUE ITERATION

Algorithm. It is worth noting that the static-OCE RL formulation is distinct from that of the
dynamic-OCE RL, and the static-OCE RL requires a history-dependent policy. A detailed discus-
sion of this is provided in Appendix A.2. Based on the definition of static-OCE RL and the corre-
sponding history-dependent policy class, we introduce the Static-OCE Pessimistic Value Iteration
(SOCE-PVI) algorithm in Algorithm 2 based on the augmented MDP (AugMDP), thereby enabling
history-dependent policies via an iterative update on the augmented state space S, as shown in
Section 2 .

Algorithm 2 first estimates the transition and reward models via Equation 3 as well. The bonus term
I'y, is then computed in Line 5, which measures the model estimation uncertainty for each state-
action pair (s, a). The bonus term captures the OCE risk via the factor u(H — h). Importantly, the
bonus in Algorithm 2 is not the same as in Algorithm 1, which emphasizes that different problem
structures lead to distinct bonus designs. Line 6 presents the transition of the state b to " based on
the estimated reward 7. Lines 7 and 8 construct the pessimistic estimate of the Q-function as @ h
through the static-OCE RL Bellman equation and truncation operator clip. Line 9 gives the estimated
optimal policy 7, via a greedy optimization of Q—function. Line 10 presents the estimated value

function V},. The estimated optimal budget b; is computed via Line 12.

Algorithm 2 outputs a history-dependent policy involving Bh with a recursive update rule starting

from by, i.e., bpr1 = b, — 718, a) where 4, is the observed reward during policy deployment. Due
to the special structure of static-OCE RL, we note that Algorithm 2 applies the OCE only once at
the end of the algorithm rather than at every step as in Algorithm 1, thereby substantially lowering
the overall computational burden. On the other hand, because of this setup, an extra update for the
auxiliary state b is required and is performed iteratively during the algorithm. With different choices
of u, our algorithm can reduce to the risk-neutral offline RL algorithm and to other risk-sensitive
offline RL methods with different risk measures.

Theoretical Result. The following theorem establishes the suboptimality bound for Algorithm 2.

Theorem 3.2 For the offline static-OCE RL under the tabular setting, with probability at least 1 — 0,
foré € (0,1), the learned policy T via Algorithm 2 admits the following suboptimality bound

SubOpts(7) < O( 4L, u(H ~ h)/CHISI/K ),
where O hides logarithmic dependence on H,|S|, K, and 1/3.

This result demonstrates that the suboptimality is influenced by the utility function u in the OCE,
thereby capturing the effect of risk. Similar to Theorem 3.1, the result achieves a suboptimality upper

bound of O(+/C*|S]), which is consistent with the standard offline RL algorithms (Xie et al., 2021).
For the horizon H, we have SubOptg(7) < 237" u(H)\/2C*[S[K-1log(|S|[[A[HKs1).

When u(t) = t, the overall error scales as O(H?), matching the result for vanilla risk-neutral
offline RL. However, there remains a difference in the multiplicative factor, namely u(H ).

The potential of static-OCE lies not only in extending the problem to history-dependent policy, but
also in its its ability to handle stochastic rewards. Therefore, we undertake the more challenging
task of proving the suboptimality bound under the stochastic reward setting, which generalizes the
deterministic case. In this case, through wisely choice of b and reasonable bounding techniques,



we have SubOptg () < Vi*(s1,b}) — Vi(s1,b}) + Vi(s1,b7) — Vi (s1,b%), which serves as the
foundation for the subsequent analysis. The detailed proof is provided in Appendix B.4.

For completeness, we conduct a numerical simulation on a well-designed MDP to verify our al-
gorithms, as well as making a comparision between the dynamic and static OCE. Experiments are
performed with the CVaR risk measure for different // and K. The simulation results demonstrate
that the suboptimality decreases with the increase of K, and that static-OCE converges faster than
dynamic-OCE. These observations are consistent with the theorical results above. The detailed dis-
cussion is presented in Appendix F.

4 INFORMATION-THEORETIC LOWER BOUNDS

Then we provide the minimax lower bound of the suboptimality in Theorem 4.1.

Theorem 4.1 (Minimax Lower Bound) Consider an MDP M = (S, A, H,P, 1), where |S| > 3,
H>2|A>2C*>2 and K > %C’*SH. Let D denote a dataset collected from the underlying
MDP M. Then the following minimax lower bound holds:

%f mAz}lXSubOptD(M,Alg(D), s1) = Q([u(pH — b}) — u(=b7)]/C*|S|H/K)
9

%fdn}&xSubOpts(M,Alg(D),31) > Q([u(pH — b}) — u(—b})]\/C*|S|H/K),
g

where p € (0,1) is a constant and b} = arg maxye o ,g){b + Fru(pH —b) + (1 — 55 )u(=b)}.

For the first time, we incorporate risk into offline RL and establish the corresponding lower bounds.
In particular, we present a general formulation of the lower bound for both the dynamic-OCE and
static-OCE, accounting for dataset coverage, through a carefully designed hard-case MDP that in-
corporates the factor p. Leveraging the properties of OCE, our results can be specialized to various
offline risk-sensitive RL by appropriately choosing the utility function v and the parameter p. Thus,
we provide a general lower bound for offline risk-sensitive RL under broad classes of risk measures.

Letting a constant ¢ = pr;{’ ¢ € (0,1), the lower bound simplifies to Q(u(cpH)\/C*|S|HK1).
Hence, the lower bound in Theorem 4.1 aligns with the upper bounds in Theorems 3.1 and 3.2
in terms of the factor 2(,/C*|S|K~1). Nevertheless, a gap remains: the upper bounds scale as
O([u(H)—u(—H)]-H) and O(u(H)- H), whereas the lower bound only grows as Q(u(cpH)-v/H).

Moreover, Theorem 4.1 shows that under specially constructed hard instance settings, we observe
that both the dynamic-OCE and static-OCE algorithms have the same form of lower bound. The
underlying mechanism is that, for hard-case MDPs with a single step of OCE computation and
absorbing states, the two OCE settings can achieve the same lower bound. In Appendix C, we show
that it is reasonable to construct such hard instances.

To the best of our knowledge, this is the first information-theoretic lower bound for offline RL
with OCE. Therefore, in order to verify our results, we first compare against the lower bounds of
risk-neutral offline RL algorithms. Our algorithms attain the minimax lower bound Q(,/C*|S|),
matching the results of Xie et al. (2021); Rashidinejad et al. (2021). However, our lower bound
explicitly incorporates the risk-sensitive component through its dependence on the utility function
u, highlighting the additional complexity introduced by risk considerations in our framework.

Then, we compare our results with the prior lower bounds for online risk-sensitive RL. Xu et al.
(2023) proved a lower bound of Q([u((1—2/co) H —b}) —u(—b7)]\/C*|S|HK), c2 > 2, for online
dynamic-OCE RL. Our bound is consistent with theirs, in terms of risk-factor, setting p = 1 — 2/¢s.
Moreover, under specific choices of utility functions, our framework recovers several known online
risk-sensitive RL lower bounds: By choosing u(t) = —1[—t]; with a € (0,1] and p = Va2,
our result aligns with the iterated CVaR-based lower bound in Chen et al. (2023). With the same
utility function but p = y/a, the risk factor of our bound matches the result of Wang et al. (2023)
with CVaR. Setting u(t) = |i‘ (el*l* — 1) reduces our result to align with the entropic risk-sensitive
lower bound established by Fei et al. (2020). For CVaR and mean-variance risk measures, existing
lower bounds are restricted to the online setting. Nevertheless, the risk-sensitive terms identified in
those works offer valuable guidance for understanding the offline scenario. In addition, there are




related results on offline risk-sensitive RL via entropic risk measure (Zhang et al., 2024). For the
risk factor, our lower bound simplifies to Q(e"l‘;"l), which is consistent with their upper bound,

choosing u(t) = ﬁ(e‘“'t — 1) and p = «. The detailed proof of Theorem 4.1 is in Appendix C.2.

5 LINEAR FUNCTION APPROXIMATION FOR OFFLINE RL wiTH OCE

When facing the large state space, the proposed algorithms under the tabular setting would suffer
from high suboptimality bounds according to Theorems 3.1 and 3.2. A key technique for address-
ing such a challenge lies in employing function approximation. While function approximation has
been widely applied in RL, how to design a provable algorithm for RL with the OCE risk measure
remains unexplored. This section studies linear function approximation, a practical implementation
of function approximation, for offline RL with the OCE measure, and proposes learning algorithms
for both dynamic-OCE RL and static-OCE RL.

Linear MDP. Considering a commonly adopted linear MDP model, in which both the reward func-
tion and the transition kernel admit linear structure, we have

’I”h(S,G) - <9ha¢(8?a/)>’ IP)}L('|S7a’) = </’Lh(')7¢(87a)>a (4)

where [ [l (s)ds < v/d and [|6] < Vd. We define ¢ : S x A — R? to be a feature map
satisfying ||¢(s, a)|| < 1forall (s,a) € S x A. Itis also flexible enough to include the tabular MDP
setting as a special case by choosing d = |S| - |.A| and setting the feature map to the canonical basis
vector: ¢(s,a) = €(s,q)> assuming discrete state and action spaces.

5.1 DYNAMIC-OCE PESSIMISTIC LEAST-SQUARES VALUE ITERATION

Algorithm. In this section, we propose the pessimistic value iteration with linear function approxi-
mation for the dynamic-OCE RL, termed Dynamic-OCE Pessimistic Least-Squares Value Iteration
(DOCE-PLSVI), as summarized in Algorithm 3. Due to the special structure in the Bellman equa-
tion for dynamic-OCE RL, we consider linear function approximation from two separate aspects.
We directly perform the function approximation for the reward function r;, by solving the following
ridge regression

2
g;}ng L rn(sksap) — o(sy,ap) 0] + A|6]3, (5)

such that the estimated reward function is constructed as 7, (-,-) = o(, -)Té\h with ), being the
solution. On the other hand by exploiting the linear structure of the transition model, we have

]Es (e o [(Vigr (s = [su(Vara(s)) = b)) (n(s), ¢(s,a)) ds’ = (w(b), $(s, a)) where
= [o[u(Vis (s’ b)] n(s') ds'. Therefore, the algorithm performs a ridge regression via
ﬁndmg wp(b) to solve
5 2
min S [T ) — 8) — ook ) Tw®]* + Al ©

Then, we have ¢(s,a)’ @y, (b) ~ Egp,(|s,a) [u(\A/hH(s’) — b)] without explicitly estimate Py,
which is thus a model-free method. Thus, OCE;‘,NPIW(_‘&Q){‘A/;LH(S' )} can be estimated by
SUPpefo, —r 10 + B(s, a) "y (b)}, where the budget b is restricted to [0, H — h] by Lemma A.1.

Lines 4, 5, and 6 in Algorithm 3 estimate the parameters for the above least-squares problem. Line 7
constructs the bonus term ' (-, ) that measures the uncertainties in estimating the reward r, and the

term By p, (s,a) [u(Vig1(s') — b)] with 3 being set to O(d[1 + u(H — h)]\/log(2dHK 1)) that
depends on the utility function w. Line 8 and Line 9 construct the pessimistic Q-function @ p via the
Bellman equation and the estimates of the reward function as well as OCEZ,NR(,|S)Q){‘A/;L+1(5’ )}
as discussed above. Line 10 offers an estimated greedy optimal policy 7. The associated value
function XA/h is obtained in Line 11.

Theoretical Result. We establish the suboptimality bound for Algorithm 3.



Algorithm 3 DOCE-PLSVI Algorithm 4 SOCE-PLSVI

- — c k1 H. K
1: Input: Offline data D = {(5;1’ a;i, Th (Si» a;‘,,))}h:i.k:l

2: Tnitialize: V7 (s) = O forall s

H,K
h=1,k=1

1: Input: Offline data D = { (s}, af, v, (sF, al))}

2: Initialize: Vi1 (s, b) = u(—b) forall (s, b)

3: forh =H,H —1...,1do 3:forh=H,H—1...,1 and allb € N} do

4 Ap =K ok, af)p(sy,ak)T + AL 4 Ap =K ok, al)e(sk, af)T + AL

50 @n(d) = AN I, o(shs af)u(Viga(sh ) —b) 50 Br(b) = AN T b(shy ap) Vaga(shyys b — ma(sh, al)
6 O, =N ok ak)ru(sh, ak) 6 Th(-) = Bry/o(, ) TAT $( )

7 Th(e,-) = By/b(, )TA () 7 Qe b) = () T DR (b) = Th(-,-)

8 8

Qi) =6, )T 0 + subpeio b+ 6(, ) TD®)} = Tu(,) 8 Qul-, -, b) = clin{Q, (-, 'ib)’ [u(=b),u(H —h+1—b)]}

9. Qn(-,-) = clip{Qu(-,-), [0, H — h + 1]} 9 ®u(|-,b) = argmax,, (Qn(-,b), ma (-] b)) ,
100 7, (-]) = argmax, (Qn( ), 7n(-])) , 100 Vi (5, b) = (Qu(s - b), T (|- b)) 4

1n: V() = <@h(.7 ),7?,1(‘»}\ 11: end for R

12: end for 12: by = arg max,¢ x;, {b+ Vi(s1,b)}

13: Return: @ = {ﬁh}le. 13: Return: © = {%h}f;lzl,/l;].

Theorem 5.1 For the offline static-OCE RL with linear function approximation, with probability at
least 1 — 0, for § € (0, 1), the learned policy T via Algorithm 3 admits the suboptimality bound

).

where A Zle p(sk,ab)p(sh,af)T + AL A = 1. And let B = cd[l + u(H —
h)]\/log(2dH K6—1),where c is a constant satisfying ¢ > 0 and 121og(64c®) + 46 < % (@]
hides logarithmic dependence on H,d, K, and 1/.

SubOpty (7) < O(d 4, [1 + u(H = W)]Ex. [/ 6(sn, an) TA; 6(sn, an)

Like the tabular dynamic-OCE RL, the result in Theorem 5.1 explicitly depends on the utility func-
tion u used in the OCE, thereby capturing the effect of risk. By appropriately selecting parame-
ters, we can achieve a suboptimality bound O(d)u(H) ZhH:1 E, [\/gb(sh, an) A, (s, an)|s1]s

matching prior risk-sensitive offline RL algorithms (Zhang et al., 2024) by taking u(t) = L (e*—1).
When different utility functions « are chosen, the bound naturally adapts to the corresponding
risk measure. In particular, setting u(t) = ¢ reduces the result to the offline risk-neutral RL,

O(dH) Zthl IEW-[\/(;S(sh, an) T A d(sn,an)|s1] (Jin et al., 2021). Therefore, our algorithm at-
tains the same maximal sample complexity as standard offline RL algorithms, augmented by an
additional risk-sensitive term reflecting the influence of risk preferences in OCE.

Compared with Algorithm 1, Algorithm 3 provides a more general framework capable of handling
complex high-dimensional state and action spaces. When ¢(s,a) = e q) and d = [S] - |A],
we have Ay, = diag({Nn(s,a) + A} (s,a)esx.4), by the definition of Aj. Consequently, we have

Ew*[\/qﬁ(sh,ah)TAglqﬁ(sh,ah) |s1] = (Npn(sn,an) + A)~/2. Substituting this expression into
our suboptimality bound in Theorem 5.1 and following the proof in Appendix B.2 yields an upper
bound on suboptimality equivalent to O(SA) u(H) Zthl V/20*SK-1log(SAHKGS1). In prac-
tical scenarios, the feature dimension d is not necessarily large, and thus the result in Theorem 3.1
can match the result in Theorem 5.1.

To the best of our knowledge, this is the first effective OCE-RL algorithm with linear function ap-
proximation, either for online or offline settings. Since we proposed a completely new method of
function approximation, it requires totally new function class, which is significant in the theoretic
analysis, leading to novel methods of bounding the e—covering number. The detailed proof is pro-
vided in Appendix D.2.

5.2 STATIC-OCE RL LEAST-SQUARES VALUE ITERATION

Algorithm. To derive a gengeral and practiacl risk-sensitive RL algorithm, we propose the
pessimistic value iteration with linear function approximation for the static-OCE RL, termed
Static-OCE Pessimistic Least-Squares Value Iteration (SOCE-PLSVI). Based on the linear struc-
ture of the transition model, letting b = b — 74(s,a), there is By p, (|s,q) [Vh+1(s’,b’)] =
JslViir (8", 0] an (), é(s, a))ds’ = (w(b), (s, ). where w(b) = [[Visr (s',1)]jan()ds'.
Then, we can perform a ridge regression via finding the estimated wy, (b) to solve

K

~ 2
Jmin { > [Viir (50,0 = sk, b)) = o(sh,af) Tw(®)]” + Mw() I3}



Therefore, we have ¢(sf, af) T (b) ~ Eqp, (.fs.a)[Vat1(s'sb — 71(s,a))]. Unlike the dynamic-

OCE RL algorithm in Algorithm 3, with the ridge regressions above, we do not need to estimate
P}, and 7}, separately. In Algorithm 4, Lines 4 and 5 implements the estimation for the least-square
problem. Line 6 builds the bonus term, denoted by I';,(+, -) that captures the estimation uncertainty

with the station-action pair (s, a). In the bouns term, /3 is set to be O(d-u(H —h)+/log(2dHK§~1))
based on the utility function u. Line 7 and Line 8 implement the estimated Q-function via Bellman
equation, incorporating the influence of both risk and pessimism. Lines 9 and 10 respectively derive

the estimated optimal policy 7}, and the value function ‘A/h at step h. The optimal initial budget b;
in Algorlthm 4is estlmated in Line 12. With the budget b, which is updated starting from the initial

value by by bh+1 =Dy, — 3, we obtain the history-dependent policy 7(+|-, b). Notably, Algorithm 4
leverages the parameter b to avoid computing the OCE at every step. Similar to the tabular setting,
this simplification comes at the expense of enlarging the state space.

Theoretical Result. Next, we present the suboptimality bound for Algorithm 4.

Theorem 5.2 For the offline static-OCE RL with linear function approximation, with probability at
least 1 — 6, for § € (0, 1), the learned policy T via Algorithm 4 admits the suboptimality bound

SubOpts () < O(d S0y w(H — W)Ex- [\/é(sn an) TA; 6 (sn, an) 51,57 )

where b} = argmax, c(o gy {01 + Vi*(s1,01)}. And let Ay, = S d(sk ab)(sk af)T 4+ AL
A=1and 8 = ed - u(H — h)y/log(2dHK§~1), where c is a constant satisfying ¢ > 0 and
8log(64c?) + 34 < <. O hides logarithmic dependence on H,d, K, and 1/3.

The result explicitly depends on the utility function u and the optimal initial budget b7, reflecting the
global consideration of risk in the problem. Theorem 5.2 indicates that Algorithm 4 achieves a sub-
optimality upper bound of O(d)u(H ) ZhH:1 E,. [\/qb(s;“ an) T Ay o(sn, an)|s1, b;] with appropri-
ately chosen parameters. This result properly aligns with the findings of prior offline risk-sensitive
RL work (Zhang et al., 2024) when the OCE reduces to the entropic risk measure. Furthermore,

by setting u(t) = t, the bound simplifies to O(dH) Zthl E,. [\/(b(sh, an) TN (s, an)|s1, b1,
which matches the result of offline risk-neutral RL (Jin et al., 2021).

Moreover, compared with Algorithm 2, Algorithm 4 provides a more general version that can
handle complex high-dimensional state and action spaces. When choosing ¢(s,a) = e(,q) and
d = |S|-|Al, the matrix Ay, takes the form Aj, = diag({Ni(s,a) + A} (s a)esx.4). Accordingly, we

obtain E,. [\/¢(sh, an) TA;  (sh,an) | s1,b5] = (Nu(sn, an) +X)~1/2. If we insert this result into
the suboptimality bound of Theorem 5.2, and then follow the proof in Appendix B.4, we would ob-
tain the upper bound O(SA) u(H) ZhH:1 V/2C*SK-1log(SAHKS~1). Thus, in applied settings
where the feature dimension d is not excessively large, the result in Theorem 3.2 can be viewed as a
specific instance of the more general bound in Theorem 5.2.

Following the idea of Theorem 2, we try to prove the result extended to stochastic reward cases.
However, it becomes even more challenging since the joint distribution of the transition and stochas-
tic reward is required. Therefore, we propose an innovative way of function approximation, which
simplifies the problem so that we still have E[V},11(s',b — 7)] := ¢(s,a) "w(b). Additionally, due
to our novel construction, we analyse the new covering number in-depth in the proof. The detailed
proof of Theorem 5.2 is provided in Appendix D.4.

6 CONCLUSION

Since the majority of existing research on risk-sensitive RL primarily focuses on online settings or
specific risk measures, we address the offline risk-sensitive RL based on OCE. We develop provably
efficient offline RL algorithms for both dynamic-OCE and static-OCE, supported by rigorous theo-
retical analysis of suboptimality bounds. Additionally, we obtain the first minimax lower bound on
the sample complexity of offline risk-sensitive RL. Finally, we propose the first provably efficient
risk-sensitive RL with linear function approximation for both dynamic and static OCE and provide
rigorous suboptimality bounds.
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A DIscuUsSIONS OF OCE RL

A.1 PROPERTIES OF OCE

In this section, we demonstrate that the OCE can be reduced to various other risk measures, and
summarize some of its key properties. This highlights the flexibility, tractability, and expressive
power of the OCE framework.

Name OCE"(X) Utility functionu

—rule Mean E[X] u(t) =t

Entropic risk LlogE[e*™] u(t) = Let — L

Mean-Variance E[X] — cVar(X) u(t) = (t —ct?)I{t < 5=} + I{t > &
CVaR Elz|X < min{z|Fx(z) > a}] u(t) = —é[_th

Table 1: Special cases of OCE risk measure with corresponding w.

Furthermore, for any utility function u satisfying the above properties, a constant ¢ € R, and a
bounded random variable X, the OCE satisfies the following desirable properties:

1. OCE*(X +¢) = OCE"(X) +¢;

2. OCE“(¢c) = ¢

3. If X1 (w) < Xo(w) (w € Q), OCE*(X;) < OCE“(X,);

4. Forany p € (0,1), OCE"(uX;1 + (1 — ) X2) > pOCE*(X1) + (1 — p)OCE*(X3).

Moreover, for the optimization step in the OCE, when X is positive and bounded, it is sufficient to
optimize over a finite set of b values rather than the entire space of b, as shown in Lemma A.1.

Lemma A.1 For any bounded positive random variable X, where X € [0, M| for some M > 0,

we have,
OCE"(X) =sup{b+E[u(X —b)]} = sup {b+E[u(X —0b)]}.
beR bE[O’M]

Proof First, we define a function F'(b) as follows:
F(b) =b+E[u(X —b)].

Then, we have

0
S F(0) = 1—E[u/(X - )],
Since 1 € 0u(0) and u(-) is concave, for any t < 0 we have u'(t) > 1. Therefore, if b > M, it
follows that /(X — b) > 1, which implies %F(b) < 0. This shows that F(b) is decreasing for
b > M, and hence its supremum is attained at b < M. Similarly, if b < 0, we have v’ (X —b) < 1,
which implies %F(b) > 0. This means that F'(b) is increasing for b < 0, and thus its supremum is
attained at b > 0. Then, we conclude that

OCE"(X) =sup{F(b)} = sup {b+E[u(X —0)]}.

beR be[0,M]

Then we finish the proof.

A.2 DISCUSSION OF STATIC-OCE AND AUGMDP

For the static-OCE setting, our objective is to maximize OCE{>>", ;}. With the definition of
OCE in Equation 1, we have

OCE*{

H
1=

H
=, {0 B[]}

1 i=1

H
= max {b+maxElu( 3o —b)]}.
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There have been lots of methods proposed to solve the optimization problem of b. Thus, the rest of
our task is to solve max e, E[u(Zfil r; — b)]. Following the idea of RL, we define V{"(s1,b) =

E[U(Zfil r; — b)]. Then we can use dynamic programming to obtain V;*(s1,b). Following the
Augmented-MDP proposed by Biuerle & Ott (2011); Béauerle & Glauner (2021), we have

OCE*{ irz} = max} {b—l— Vfr»(sl,b)}

bel0,H

=5 0 e}

Under the setting of AugMDP, we have a history-independent policy 7 (-|s,b), regarding b as an
augmented state. However, from the aspect of the original MDP, 7 (:|s,b) is actually a history-
dependent policy. Since we have shown that the optimal policy 7*(+|s, b) is history-dependent, we
can conclude that no history-independent policy could exceed the history-dependent policy on the
original MDP. To explain this, considering the CVaR risk measure, we use the following MDP as an

example:
Figure 1: An MDP with the history-dependent optimal CVaR policy.
In this MDP, there are seven states (sy, Sa, . .., s7) in the state space S and two actions (aq, az) in

the action space A, we have

P(s1|s5,a) = P(s1]|s¢,a) =P(s1|s7,a) =1, Vaec A
P(s2|s1,a) =P(s3|s1,a) =0.5, Vae A

P(s4|s2,a) =P(s4s3,a) =1, Vae A

P(s5|s4,a1) = 0.75, P(s7|s4,a1) =0.25, P(sg|ss,a2) =1

and
T(Slv CL) = T(S?n CL) = T(847 CL) = T(S77 CL) = 07 Va € A
r(s2,a) =1, r(ss,a) =15, r(ss,a)=0.5, Vaec A

And we set H = 4. Based on this MDP, we can find that only the action at step & = 3 will influence

CVaR(Zf:1 rp,). Therefore, through computation, we can easily find that CVaR(ZfZ{:1 rp) = 0.5
for all possible history-independent policies 75 (+|sn—3) at step h = 3. Then we study the history-
dependent policy defined as 73 (-|sp—2, Sh—3). We define

m3(a1|sh=2 = 83, 8p=3 = 54) =1
7T3(a2|8h=2 = 82,8h=3 = 54) =1
By taking this history-dependent policy, we have the accumulated reward of the total 4 steps:

H
Z’I‘ { 0, wrp%

h = 7
— 15, wrp.g.
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Then we have CVaR(ZhH:1 rp) = 0.75. Therefore, we successfully constructed an MDP, where
there is at least one history-dependent policy that surpasses all the history-independent policies.
This shows that the optimal policy of static-OCE is history-dependent.

A.3 COMPARISON BETWEEN DYNAMIC-OCE RL AND STATIC-OCE RL

The dynamic-OCE formulation corresponds to the risk-sensitive RL objective commonly referred to
as “dynamic risk” (also known as iterated risk). In this setting, the optimization objective is

JR :OCEu{Tl(Sl, 04) + OCEZZNP](~|S,,a]){T2(827 ag) + OCEZNP,(~|SZ,az){T3(837 ag,)-‘r

{...OCE" Clomssan ‘){TH(SHyaH)}}}}}.

A key advantage of the dynamic (iterated) risk is the existence of Bellman equations and opti-
mal Markovian policies, which allow direct adaptations of standard RL algorithms. To illustrate,
consider the widely used mean-variance risk measure. By choosing u(t) = (t — ct?)I{t <
2=} + - I{t > 5=}, the dynamic-OCE objective reduces to

H H
Jr = Z Elr;] — Z Var[r;].

In contrast, under the static-OCE setting, when reduced to the mean-variance measure, the objective

becomes " "
Ja = E[Zm} —Var[Zm}.
1

1= 1=

In practice, decision-making often involves balancing the expected cumulative reward against its
overall variance. Due to the properties of variance, the dynamic-OCE formulation effectively be-
haves as a step-wise greedy strategy: it separately accounts for the variance of each stage reward.
Therefore, unlike the static-OCE formulation, the dynamic-OCE formulation also implicitly incor-
porates covariance terms across different time steps. This makes dynamic-OCE potentially less
stable, being overly aggressive in some cases and overly conservative in others, compared to the
static-OCE formulation. Moreover, when OCE reduces to CVaR, the dynamic-OCE formulation
becomes particularly difficult to interpret, as CVaR lacks favorable linearity properties. This further
highlights that dynamic-OCE risk, while algorithmically convenient, is generally less interpretable
than its static-OCE counterpart.

B PROOFS FOR SECTION 3

B.1 LEMMAS FOR THEOREM 3.1

Typically, the suboptimal relates to the model evaluation error. Here, we define ¢, as the error raised
by the estimated Bellman equation at step h as

t(s,a) = a(s,a) + OCEYL g {Vily1 ()} = Qn(s,a), @)
Based on the dynamic-OCE RL setting, we first define the Bellman operator,
B f(s,a) = ra(s,a) + OCEY Up, (1500 {F ()}
B f(s,a) = i(s,a) + OCEY 5\ {f(s)}.

Then, we define the event &},.
Definition B.1 Under the dynamic-OCE setting, define the event &,

& = {’Bh‘/}h—o—l(&a) - @h‘A/Hl(S, a)' < Th(s, a)},

where {T'y YL, is the bonus, satisfies P(ﬂthl En) >1-04.
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With event &, we can find that the upper bound of suboptimality is related to the Bellman estimation
error.

Lemma B.1 Under the dynamic-OCE setting, we have
By Vi (shyan) — B Vit (sn, an) < Egp, ([5.a) [V;Zil(ShH) — Vhga (8n11) |-
Proof For the left side of the inequality, we have
By Vi1 (Snyan) — IB%hYA/;H_l(sh, ap)
(Th(shv an) + OCEZ p, (.|s,0) {Vhﬂ1(8h+1)})
— (rh(sh,ah) + OCE{ <p, ([5,0) {Vh+1 Sha1 })

= sup {b+ By, (fs,0) [u(Vilpa (sn41) = )] |

bel0,H]
— sup {b + Esnp,(s,0) [u(r/h-i-l(sh—&-l) —b)] }
bel0,H)

Then by setting b' = arg maxye(o {0 + Eonp, (1s,a) WV (sht1) — b)]}, we have
By Vi (sh, an) — By Vig (s, an)
<Egnp,(|s,a) [U(Vﬂ1(3h+1) — ') — u(‘A/h+1(8h+1) - bT)}
<Esp,(|s,a) {V;ﬁ1(8h+1) - Vh+1(3h+1)]-

The last inequality holds due to 1 € Ju(0), 0 < ?h(sh) < V™ (sp) < H, as well as the concavity
and non-decreasing property of the utility function u. Here we finish the proof.

Lemma B.2 Under the dynamic-OCE setting, there is
Vi (sn) = Vi(sn)
(Banp, (fs.a) Vi1 (sn51) = Vigr (sn0)] + en(sn ), 7 Clsn)) 4
—(@n(sn, ), 7 (Isn) = F(-Isn)) -
Proof By the Bellman equation, there is
Vi (sn) — Vi(sn)
=(QF (sn, ), 7 (Isn)) 4 — (Qn(sn
=(QF (sns7), 7 (sn)) 4 — (Qnlsns ), 7" (-]
+(Qn(sn ), 7 Clsn))  — (@n (Sm ), 7(:[sn)) 4-
Then by rearranging the terms, we have
Vi (sn) = Va(sn)
=(QF (sn,-) — Qn(sn, D (lsn)) 4 — (Qn(sn, )y m* (-|sn) — 7(|sn)) 4
=(BViT (sn:) = BaValsn, ) + en(sn, )" (lsn)) 4 = (Q@nlsn, ), m" (lsn) = R(lsn)) 4
(B, (5,0 Vi1 (3041) = Vir1 (sne1)] + en(sn, ), 7 (lsn))
- <@h(5h7 )7 (-sn) — 7AT('|Sh)>A,

where the last inequality holds due to Lemma B. 1. This completes the proof.

), A (Isn)) 4
n)

Qn
Qn

Lemma B.3 Under the dynamic-OCE setting, we have

Vi (s1) — t(an, ap) |sl]

uMm



Proof In order to prove this lemma, we first define

(a]]hf) (S) = <f(sa ')a W*('|8)>A
(Prf)(s,a) = Egnp,(fs.a) [F(5)]-

By recursively using Lemma B.2 and the previous definitions, there is

Vl*(sl) - ‘71(51)

H h-1
( H Jh]P’h) Vi1 (sa+1) — ‘7H+1(5H+1)) + Z ( H Jh]Ph) (Tnen(sn,an))
h=1 h=1 i=1
H —
+>( Nl DB ) (@n (o), L) = R Clsn)
h= i=1
H lh 1 H h-1 R
ZZ ( JhPh) Jnen(sn,an) +Z (HJhPh)<Qh(5h7')a7T*('|5h) _%('|3h)>_,4
h=1 =1 h=1  i=1

t”ﬂm

H
Eri[t(an, an) \31] ZEw* [<@h(8h,')aﬂ*('|8h)—%('|5h)>A‘31]
h=1

>
Il
—

E, [(a;“ah |51]

>
I
—_

where the first equation holds since Vi | (sg11) = X/}HH(SHH) = 0forany sgy1 € S; and the

last inequality holds since 7(+|sy,) = arg max;(@h(sh, Y, 7 (-|8n))a implies (Qn(sn, ), 7 (|sp) —
7(-|sn)).a < 0. This completes the proof.

Definition B.2 With the dynamic-OCE setting, we define a new probability measure,
Ch(s'|s,a) = Pp(s'|s,a)Bpy1(s'),

where Bpi1(s') € Ou(ViT, ((s') — buy1), such that Eg.p, (s|s,a)[Brr1(s')] = 1. Due to the
nondecreasing property of the utility function u, for any s’ € S, Bpy1(s') > 0. This implies

> eecs Cn(s'ls,a) = 1.

Lemma B.4 Under the dynamic-OCE setting, it always holds that
OCET;’N]P’,LHS,a){‘7’1+1(Sh+1)} - OCE?wh(-\s,a){Vhﬁﬂ(shﬂ)}
SEgnc,(-|s,a) [Vh+1(8h+1) - Vi?+1(8h+1)}a
where C,(+|s, a) is a probability measure defined in Definition B.2.

Proof Setting bpi1 = arg maxyero gp{b + ESrN]P’h(Als,a)[Vh+1(8h+1) — b} and b, =
argmaxycio gr—p) {0 + Esnp, (-[s,0)[Vip1 (Snt1) — b]}, we have

OCE?’N]P’,LHS,a){‘7h+1(sh+1)} - OCEZ~P,L(-\s,a){Vh%Jrl(sthl)}

= x| {b + Egnp,(-]5,0) {U(‘Afh+1(5h+1) - b)} }

- i (B (e )
={Bns1 + Eur, (o [#(Visr (sn01) = B )|}

— {01 + B o [0 (Vs (sa1) =071 ) |}
< (gh+1 - biﬂ)

+ Eonp,(-|5,a) {Bh+1(5h+1) (Vh+1(5h+1) — Viy (Sht1) — <5h+1 - b%))]

18



Then, since the last inequality holds due to the concavity of u(-), which leads to the inequality
u(y) < u(z) + z2(y — x), z € Ou(x), we have

OCEY ., (s, { Vi1 (5n1) b = OCEL g, (o { Vilia (1) |
=(1=Ban (o [ B (sns1)] ) (B = i)

+ Egnp,(ls,0) {Bh+1(8h+1) (Vh+1(5h+1) - V;Z?+1(Sh+1)>}
=Es~c,(|s.0) [‘7th1(5th1) - V1f+1(3h+1)}~

The last equation holds because of Definition B.2 and the fact that 1 —Ey p (s, [Bh“ (sh+1)] =
0. This completes the proof.

Definition B.3 Under the definition of dynamic-OCE and Definition B.2. We define a new state-
action distribution,

Il
W N =

1, h
Ci(s2]s1,a1), h
D> > Cilsals1,a1)Calssls, a2) ... Choi(snlsn-1,an-1), h

$,ES s,€S s,,ES

wh (s, an) =

Y

where Cy,(+|s, a) is a probability measure defined in Definition B.2
Lemma B.5 Under the dynamic-OCE setting, we have

H
Vi(s1) = Vi (s1) < D B, [ — wn(sn,an)|s1],
h=1

where we slightly abuse the notation K, 4y, (., by Eu, .
Proof By the definition of Vi (s1) and Q1 (s1,ay), we have
Vi(s1) = Vi (s1)
<Q1(s1,a1) — QT (s1,01)
:(]@1‘72)(51&1) —Ti(s1,a1) - (Blvf) (s1,a1)
:(@1‘72>(51’a1) - (Bl%)(slaal) + (Bl‘A/z> (s1,01) — (BIV;) (s1,a1) —T'1(s1,01)
:(]@1‘%)(51,@1) - (31‘72)(817611) +B1(‘72 - ‘/2%)(81,(11) —Ti(s1,a1),

where the jjrst inequaliz;y holds because of a; = argmax,c 4 @1(51,(1) such that Vf(sl) =
maxge 4 Q7 (s1,a) > QT (s1,a1). Then by plugging in the definition of By,
Vi(s1) = Vi (1)
< (@1‘72) (s1,a1) — (Bl AQ) (s1,a1)
+ OCEZNPJ(-\S,@{%(&)} - OCEZNPJ(.\S,Q){V;(@)} —T'i(s1,a1)
S(ﬁ1‘72)(817a1) - (31‘72)(81,(11) +Esnc,(s,) [‘72(82) - ‘/2%(82)} —TI'1(s1,a1).

The last inequality holds based on Lemma B.4. By recursively using Equation B.5, based on Defini-
tion B.3, Equation 7 and the fact that Vi 1(s) = VIZIATH(S) = 0 forany s € S, we finish the proof
of Lemma B.5. This completes the proof.

Lemma B.6 Under event &, forall s € S, a € A, and h € [H], we have

th(8,b,a) > 0.
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Proof If Q,(s,a) < 0, by the definition of @h (s,a) in Algorithm 3, we have

@(s,a) = max { min {Q,(-,-), H —h+ 1}, O} = 0.
This leads to .
Lh(s, a) = Bth+1(S) Z 0.
IfQ,(s,a) > 0, we have
@(s,a) = max { min {@h(~,b, ), H—h+ 1},0} <Q(s,a).
Then, we have
tn(5,b,a) > By Vi (s) — (@hf/hﬂ(s) Ty (s, a)) >0,

where the second inequality holds following the definition of Ey,. Therefore, we complete the proof
of Lemma B.6.

By Lemma B.7, the upper bound of suboptimality depends on bonus I';, and IB%h\A/hH(s, a) —
Bth+1 (S, a).
Lemma B.7 With probability at least 1 — 6 and the dynamic-OCE setting, there is

Bahs1(5,0) — BuVasa (s, 0)| < Tu(s,a), ¥h € [H]),

where {Fh}hH:1 is the bonus. Then we have the suboptimal of Algorithm 1 and Algorithm 3 bounded
by
H

SubOpty (7) < Y Ea- [ta(sn, an)|s1],

h=1
where E.. is based on trajectory generated by 7*.

Notice that Lemma B.7 holds for both tabular and linear function approximation settings.
Proof Based on the definition of suboptimality, we can prove this lemma by

SubOptp (7) =V7*(s1) — V" (s1)
=Vi"(s1) — V1(81)+V1(51) Vi (s1)

H
SZ v(an, ap)|s1] +ZEw, uh(sn, an)|s1]
h=1 h=1

H

Z ah7ah ‘31]

where the first inequality holds due to Lemma B.3 and Lemma B.5, and the last inequality holds due
to Lemma B.6 guarantees Zthl Eo, [ —tn(sn,an) ’81] < 0. Here we finish the proof of Lemma B.7.

Lemma B.8 Foranyd € (0,1), any (s,a) € S x A, h € [H], and b* € [0, H — h), with probability
at least 1 — 6, the following inequality holds that

Eqmr, (o |0(Vht1(5n41) = 0)] =By 5 (oo [uPhsa(sn41) = %)

2 log [SIAITK
<u(H —h 2 :
<u( )\/max{l, Np(s,a)}

Proof When Ny (s,a) = 0, we have

Es P, (|s,0) {U(‘Afhﬂ(shﬂ) - b*)} —E. 8, (1s.0) [U (Vh+1(3h+1) - b*ﬂ
<u(H — h—0b") — u(-b")

I A

2 log ISIAIAK

<[u(H = h —b*) — u(-b")] \/max{1 Nyp(s,a)}’
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where the first inequality holds since the utility function v is nondecreasing and ‘7h+1 (s) €[0,H —
h). The last inequality holds due to the fact that log W > 1. When Ny (s,a) > 1, we have

ES,N@L(.|M) [u (Vthl (Sh41) — b*)}
K

“ray 2 (ko) = 6 u(Fin sk - ).
Then by setting
X; =E1((sh.af) = (5,0) Ju(Vis (sh 1) = )|
~1((shaf) = (5.0) Ju(Vaa (sh40) = 1),
we have

| X;| <u(H —h—b*) —u(=b"),
since Y7h+1(s) € [0,H — h]. And it is evident that for any i # j, X; and X; are independent.
Therefore, with Hoeffding’s inequality, with probability at least 1 — W, we have

K
>
i=1
:Nh(s,a)Es,Nph(.‘&a)[ (Vh+1(sh+1 — b )} iﬂ sh,ah (s a))u(‘Afh+1(st+1) ,b*)
k=1

=Ny (s, a)ES/NPh(.‘S’Q) [u (Vh+1(sh+1) — b*>} — Nip(s, G')IES’N@,,(‘ls,a) [u (‘7}1+1(Sh+1) - b*>}
SIAHE
—

<[u(H —h—b*) — u(-b")] \/2Nh(s, a) log

Therefore, we can conclude the following result with probability at least 1 — W,

Eg b, (-[s,a) {u(f/fﬁl(sh-i—l) - b*)} —E, 5 (1s,0) [U (Vh+1(8h+1) - b*ﬂ

2 log SIAIHE
<[uw(H —h—b*) —u(-b* 8 :
_[U( ) U( )] \/max{l,Nh(s,a)}
This completes the proof of Lemma B.8.

Lemma B.9 Forany § € (0,1), any (s,a) € S x A, and h € [H|, with probability at least 1 — 6,
the following inequality holds that

rr(s,a) —Th(s,a) < L
i PO =\ max{1, Ny (s,a)}
Proof When Ny (s,a) =0, (s, a) = 0, we have
Th(saa) 7?h(57a)

:Th(saa)
<1

1
_\/max{l, Nyp(s,a)}’
where the first inequality holds since ry,(s,a) € [0,1]. The last inequality holds due to the fact that
log W > 1. When Ny (s,a) > 1, we have

R 1
ri(s,a) —Th(s,a) =0 < \/maX{l,Nh(S’a)}.

Then we complete the proof of Lemma B.9.
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B.2 PROOF OF THEOREM 3.1

With Lemma B.7, we need to bound By, Vi, 11 (s, a) — By Viu41 (s, a), considering the definition of ¢,.
Based on the setting of dynamic-OCE, we have,

Bh‘/}h+1(s, a) — @hi}thl(S, a)

=1(s,0) = P(5,0) + OCEL g, (o { Visa (sn1) } = OCEE 5 Vi1 (i) |
=ru(s,a) = (s )+ max b+ B crom [0 (Vi (n0) = 0) | |

B be%l%x h] b+ Eq b (1) { (vh“(sh“) - b)}}
<rn(s,a) = Tn(s,a) + Egp,([s,a) |0 [ (Vh“(sh“) - b*)]

- Esw@,‘(.\s,a) [u (Vh+1($h+1) - b*)} )

where the first inequality holds when b* = arg max,c (o g—p{0+Es~p,(|s.0) [u(Vis1(shi1)—b)]}-
Then based on Lemma B.8 and Lemma B.9, with probability at least 1 — 4, we have

By Vi1 (s,a) — By Vi (s, a)

1 . . 2log 7|SH’%‘HK
S\/IIl&}({l,]\f;L(s,ct)} o [u(H = h = 7) —u(-b7)] \/max{l,Nh(s,a)}

1 2log 7‘5”“‘;‘HK
S\/maw({l, Ni(s,a)} + [u(H = h) —u(h — H)] \/max{l, Np(s,a)}”

Therefore we succeed to upper bound By, Vi1 (s, a) — By Vi1 (s, a). Then we can obtain
SubOptp, ()
S1, b){‘|

u 1 2log 7‘SH“‘}5|HK
2 hzzl [U(H —h) —ulh - H)]EW l\/max{l, Np(s,a)} + max{1l, Ny(s,a)}

) ISILAIHK
<QZ[U(H—h)—u(h—H)]Zd;‘(m)(\/ 1 +\/ 2log )

IN

max{1, Ny (s, a) max{1, Nh(s a)}

h=1 s,a
3 ’ 7f ISHAIHK
- e diy (s, a) 247 (s, a) log
_QE[U(H—h)—u(h—H)]EQW( Kdi(sja) \/ de,sa) .
Due to the fact that % ((S 9 < O we have
SubOptp, (7)
20* log ISIAIHK
<2;ZW<\F u(H — h) —u(h — H)]\/ogK5
3 * |S||A|HE
h ¢ 20* log 2HE2 2
:2;;‘;\/% (s,a).]l(a:a;‘)< K+[U(H_h)_“(h_Hﬂ\/K‘s>

S . *og ISIAIHK
2D des’“)'zﬂ(azaﬁ)< (;(HU(H—h)—u(h_H)]\/?Clg&)
h=1 s,a s,a

K
- « S log [SIAIHK
22(\/05 u(H — h)u(hﬂ)}\/QCSIgK 5 )

where a* is sampled by a’ ~ 7*(:|s). Here we finish the proof.
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B.3 LEMMAS FOR THEOREM 3.2

For the dynamic-OCE formulation, an additional advantage is its natural compatibility with stochas-
tic rewards in risk-sensitive RL, which makes it both more practical and more general. Motivated by
this, we extend the setting to stochastic reward functions where 75, ~ R(:|s, a) in the proof. When
R(rn|s,a) = 1, the problem degenerates to the deterministic reward case introduced in the paper.
Therefore, in this section we provide a more general proof, which is an extension of Theorem 3.2.
We first define the estimated error of the Bellman equation with stochastic reward at step h for any
s, a, and b,

Lh(sy b7 CL) = Es’~IP’,,(~\s,a),T'~R,,(‘|s,a) ‘7h+1(5/7 b— T):| - Q\h(sv ba CL). 3

In order to simplify the notations, we slightly abuse IES,J, =K B (1s,a)raR ([5,a) [VhH (s',b—1)].
Then, we define an event in order to upper-bound the suboptimality.
Definition B.4 Define an event £/,

5,1:{

where {T'y YL, is the bonus, satisfies P(ﬂthl &) >1—0.

Eo.oo Vis(5:6:0) = Bo_ s Vhsa(5.b.0)| < Tu(s.ba)

Then we can start the proof.

Lemma B.10 By the definition of I7h(s, b) and the static-OCE setting, we have
VI (o1.00) ~Vi(s1,0)
-3, [tnComs by an)[s1,b3] + ZE [(@nlsns By ) mClsn, Bi) = 7(-Lsns b)) 1,7 .

h=1
Proof Letting Ay (s,b) = (Qh(sh,bz, ), m(-|sn, b)) — 7(-|sn, b})), we have
Vi (sn,03) = Va(sn, b7)
=( QA (s i), m(-Lss 7)) = (Qnsnsbi ), 7 Clsn b))
=(QA(sn by ) wClsnsbi) ) = (Qn s b ) w1 7))
+ (@nlsns b ) mClsn, B7) ) = (Qnlsns b ). 7 Lsns 7))
=( Q7 (sn by ) = Qnsns i), w-lsns b)) + ( @nlsns B ), wClsns b7) = F-Jsns b))
(B | VAT (50 01) = Vil bi)| + tn(s.b, ) 7 Clisn, b)) + A, ).
Therefore, we have
Vir (sn: b7) = Vi (sn, )
= (B [ Vi (5,63 = Vi U3)| + 0n(5,5,), wC L B3) ) + A (s,b).

Since Vi 1 (sn,b};) — Virs (sn, by) = u(—=by 1) —u(=bj;, 1) = 0, by recursively applying Equa-
tion B.10, we can get

Vl (s1,b7) — Vl(Slabl)
:ZEW [bh(Shybh7ah)|317 + Z]E [<Qh Sh,b}“-)’ﬂ'(-‘sh,bZ) —%(-‘sh,b2)>‘81,bﬂ.

h=1
This completes the proof of Lemma B.10.
Lemma B.11 Under the definitions of Vi* (s1,b7) and Vi (s1,b}), it is always true that

H
Vi (s1,85) = Va(on,B1) < 3 B unCon, b an) s, b5
h=1
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Proof Using Lemma B.10 and the static-OCE setting, letting m = 7*, we have
Vi (s1,67) = Va(s1,b])

H
= Z Er-[th(sh,bn, an)|s1,b7]
h=1

H

+ > B [(@nlsnsbi ). 7 (Jonsbi) — %(-|sh,b2)>‘sl, bi]

H
< ZEw» [th(shs br,y an)|s1,bi].

The last inequality holds because of the definition of 7 = arg max,.{(Qn(sn, by, ), m(-|sn, b5))}
results in (Q (s, by, ), ™ (|sn, b}) — 7(-|sn, b},)) < 0. This completes the proof.
Lemma B.12 Under event &}, forall s € S, a € A b € [0,1], and h € [H], we have
0 < tp(s,b,a) < 2T(s,b,a).
Proof IfQ,,(s,b,a) < 0, by the definition oféh(s, b, a) in Algorithm 4, we obtain

~

Q(s,b,a) = max { min {Q, (-, b,),u(H — h — b)}u(—b)} = u(=D).
Furthermore, this leads to
(s, b,a) =Es, [‘7;1+1(sﬁ+1, b— rh)] —u(=b) >0,

where the last inequality holds due to the fact that Vi, (sfi1,b—7n) = u(=b). IfQy(s,b,a) >0,
we have

~

Q(Sv ba a) = max { min {@h('v b’ )’U(H —h— b)}a U(—b)} S @h(sv ba a)'
Then, we have

Lh(87 ba a) ZES,H,T,, |:‘7h+1(52+17 b— Th)i| - (Esh“,rh [‘7h+1(sz+1; b— Th)] - Fh(57 ba a))
>0

)

where the second inequality holds, following the definition of &; .Therefore, we complete the proof
of th(s,b,a) > 0. Then we will prove the other half of the inequality. On event &', by triangle
inequality we have

]ESM],’I”,L ‘7h+1 (87 b7 a) - Fh(87 b7 a) S ]ES,,H,T,L Vh+1 (87 ba a)~
This leads to
Qn(s.b,0) =E,, , Vig1(s,b,a) — Ti(s,b,a)
< Es,r Vat1(s,b,a)
<u(H—-h-0),
where the last inequality holds because of the definition of ‘7}1' Therefore, we have
@ = max { min {@h(-, b, ),u(H —h— b)},u(—b)}
= max {Qh('7 b7 ')7 U(—b)}

> Qu(s,b,a).
Applying the definition of v, (s, b, a) in Equation 8, we have
th(s,b,a) =Eg f}hﬂ(sﬁﬂ, b—rk)— @h(s, b,a)
< Es,,“,r,,‘A/thl(Sﬁﬂa b— T}’i) —Qp(s,0,0)
=E,. Vh-i-l (Sﬁ+1a b— TZ) - ]Eshwrh ‘7h+1 (5§+17 b— T,]fb) +T'(s,b,a)
< 2Ty (s,b,a).
Therefore, on the event E;, we finish to prove 0 < 1,(s,b,a) < 2T'(s, b, a).
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By the definition of suboptimality for static-OCE RL and event &;, we conclude the following
lemma.

Lemma B.13 Under the static-OCE setting, with probability at least 1 — 6, there is
Eor o Vi1 (5,5,0) = B, Vi (5, b,0)| < Tu(s,b,0), Vh € [H],

where {T'), } ,I;Izl is the bonus, Then the suboptimality of Algorithm 2 and Algorithm 4 can be bounded
by

SubOptg(7) < ZE [en(sn, by an)

S1, by :| ’
where K. is with respect to the trajectory generated by T*.

Lemma B.13 shows that the suboptlmahty is hlghly related to the estimated error of the Bellman

equation, which includes E, ., Vh+1 (s,b,a) — IES,+ . VhH(s b, a) and the bonus I';,. Again, the
Lemma B.13 holds for both tabular and hnear function approximation settings.

Proof SubOptg(7) can be split into two terms. By setting by = arg max{b + V;*(s1,b)}, we have
SubOptg(7) = OCE*{R(7*)} — OCE"{R(7)}

= sup {b—|—V1*(51,b)}— sup {b—|—Vf(51,b)}
be(0,H) be(0,H]

< {br+viGsion | - {1+ Vi Gsab)) )

= V{"(s1,07) — Vl%(slabf)

= Vi (s1,b7) = Vi(s1,b7) + Va1, b7) — V" (s, 05),
where R(m) = ZhH:1 7, with policy w. By applying Lemma B.10 with © = 7, we have

Vi(s1,b]) = Vi (s1,b]) = ZEA {Lh Sh,bh,ah)‘sl,b }
h=1

Then by using Lemma B.11 and Lemma B.12, on &], at every step,
SubOptg(7) < Vi*(s1) — Vi (s1)
= Vi (s1) = Va(s1) + Vals1) = Vi¥(s)

H H
< Z]E |:Lh Shabhaah)‘slabi} - ZE/TF |:Lh(sh7bh7ah)‘517b>{i|

h=1 =
H
Z [Lh sh,bh,ah)‘sl,bl]

Here we finish the proofofLemma B.13.

Lemma B.14 Forany § € (0,1), any (s,b,a) € S X A x Ny, and h € [H], with the probability at
least 1 — 0, we have

2 log ISIAIHK

max{1, Ny(s,a)}

EpVis1(s,b,a) — Ep Vi (s,0,a) < u(H —h — b>\/

Proof When Ny(s,a) =0, Pp(:|s,a) = 0, we have
Ehf}h+l (57 b7 a) - IEh‘/}}H*l(‘% ba a/)

:Eh‘/}h-',-l (S, b, CL)
<u(H — h —b)

9 log ISIAIK
<u(H —h — 0
<u( h b)\/max{l,Nh(s,a)}’
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where the first inequality holds since at each step ‘7}1 (s, b) is upper bounded. And the last inequality
above holds due to the fact that log W > 1. When Ny (s,a) > 1, we have

K

~ ~ 1 ~

EpVit1(s,b,a) = 7Nh(s a) E ]I((sﬁ,alﬁ) = (s,a))Vh_,_l(sﬁ_,_l,b).
P k=1

Setting Y; = E[I((s},af) = (s, a))VhH(shH,b)] I((sk,ak) = (s, a))Vh+1(sh+1,b), we have
il <u(H —h—b),
which is due to the fact that YA/hH(s) € [0, H — h — b]. And it is obvious that for any i # j, Y; and

Y; are independent. Therefore, with Hoeffding’s inequality, with probability at least 1 — W,
there is

K
ZYi =Nu(s,a)EpVisi(s, b, a) Z]I( sh.af) = (s a))u(‘Ath(sﬁH) _ b*)

=1 k=1
=N (s,0)EnVit1(s, b,a) — Niy(s, a)Ep, Vg1 (5,b, a)

<u(H —h — b)\/ZNh(s, a)log w

Therefore, we have

2 log ISIAIE

max{1, Nj(s,a)}’

EpVii1(s,b,a) — BpVigi(s,b,a) < u(H — h — b)\/
This completes the proof of Lemma B. 4.

B.4 PROOF OF THEOREM 3.2

We extend the the setting from deterministic reward to stochastic reward, in order to give a more
general result. Therefore the expectation of value function at step A is not only related to P, but
also related to Rj,. Note that when Ry, (ry]s,a) = 1 for all h, the proof reduce to the stochastic
reward setting, r = 7,(s, a), as we introduce in the paper. Based on Lemma B.13, we can bound the

suboptimality gap of the policy 7 by bounding E..p, r%, [Vhﬂ (,0)]-E, 5 , .5 [Vis1 (s, b))
which is equal to ¢y, (sp, bn, an) — T'n(sn, b, ar). In the following proof, we will slightly abuse the
notation by using Ej, V3, 41(s, b, a) to denote Ey.op, rr, [Vit1(s,D)], and E, V41 (s, b, a) to denote
E, 5 .z, [Vh+1(s,b)]. By Lemma B.14, we can conclude that with probability at least 1 — 4, we
have

2 log ISIAIHE

max{1, Nn(s,a)}

EpVig1(s,b,a) — BV (s, b,a) < u(H — h — b)\/

Here, we find the upper bound of E;, YA/hH (s,b,a) —Eh XA/hH (s, b, a) successfully. Then, with Lemma
B.13, we have

W(H — h— by)Es {\/ 2 log SIATE ‘sl,bﬂ

Mm

SubOptg(7) < 2 max{1, Ny(s,a)}
- |SIA|HK
2log =5
- B s
< hzz:l (H h bh ;dh )\/maX{LNh(S?a)}
o |SIIAIHK
- 2dj; (s, a) log =H5—
ZuH h — by) Z\/T L Kd) (s, a)
h=1
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Because of the fact that ‘g’“ ((j’;l)) < C*, we have

H . \S|\A|HK
201
SubOpts (7) < Z (H —h—bs) Z,/dﬂ \/ o
H * |S||A|HK
2C* log =i5——
=2 ult k) ) a)\/K
H * |S||A|HK
: 2C* log ===
<23t~ ;dﬁ(s,a)-;ﬂ(a:az)\/K‘s
H * [SIIA|HK
20 S log [SIAIE
<2 u(H - h)\/ "

>
Il
—

where a is sampled by a® ~ 7*(+|s). This concludes the proof of Theorem 3.2.

C PROOFS FOR SECTION 4

In this section, we give the proof structure of Theorem 4.1. We first need to construct a hard case
linear MDP M. Define an integer C' = min{|[C* |, |A|}. Therefore, under this assumption, we
have C* > 2and 2 < C < |A|, and C, H, K, |S| satisfies K > $CH|S|. Then we can construct
the MDP M with |S| + 2 possible states, A possible actions, and H steps. We define the MDP
M. to be the MDP M with a certian existing optimal action aj, ; € Aatstep h and state s; € S.

Set there are S so-called “bandit states” s, s2,...,5s and two absorbing states ”good state” s,
and “bad state” s,. Then the state space is S = {s1,52,...,5g, Sg, Sp} and we define the action
space A = {a1,az,...,a)4/}. Moreover, we sample the dataset uniformly, which indicates that

pn(ay ;lsi) = &. We set the i-th bandit state s; to have the following transition dynamics. The
transition of the MDP M, is defined as follows,

Prn(si|si,a) =1—2p, forallae A
Ph(sg|sza ) ]P)h(sb|8ia Cl) =D forall a 7é a';;,,i (9)
Pr(sqlsi,ap,,;) =p+7 for forall h € [1, H]

(

Pr(so|si, a}, ;) =p—7 for forall h € [1, H],

where p € (0,1) and 7 € (0,p) are the parameters yet to be determined. i < H, all the states are
absorbing states. The transition of the absorbing states is defined as follows,

Pi(sglsg,a) =1, forallaec A
Pr(sp|sp,a) =1, forallac A (10)
Pi(s;|sq,a) =0, forallie S,aec A
Pr(si|sp,a) =0, forallie S,ac A

Forany H < h < H, where H € [1, H] is an integer, and a € A, the reward function is defined as
follows,

rr(8i,an,;) = 0, For any s;

rh(8g,an,i) = 0, For any Lg h<H o
ri(sg,an) =1, Forany H < h < H

T}L(Sbvah,,z) 0, Forany 1 < h < H,

Therefore, for any bandit state s;, we can have the illustration of the transition dynamics in Figure
2.
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p+rifa,; =a
p,otherwise

1-2p

p—tifay; =a"
p,otherwise

Figure 2: Transition of MDP M,,..

In order to take as many as hard case into account, we need the MDP M to be more general. Under
this requirement, the construction consisting of bandit states and absorbing states is a wise choice.
Since it is simple and can be extend to many other constructions. For example, if we take only one
bandit state, we get the construction of Jin et al. (2021), and if we take add a tree structure before
the bandit states, we can get the construction of Xu et al. (2023); if we set the total steps to be 21
and H = H we get the hard case of Xie et al. (2021). In another word, our construction of hard
case MDP M is probably general enough to cover many hard cases. Furthermore, we find that
both kinds of OCE-PVI algorithms, the dynamic-OCE-PVTI and the static-OCE-PVI, have the same
information-theoretic lower bound under the hard case MDP M,,.-. Intuitively, the first property of
OCE, shown in Section A.1, makes the dynamic-OCE algorithm perform “true”” OCE only once at
a deterministic step, as long as we introduce the absorbing state setting. The theoretical proof can
be found in the proof of Lemma C.1. Besides, we define the “null” MDP M, that have the sane
structure as M., but with the transition dynamics defined as follows,

Pr(sglsi,a) = Pp(sp|si,a) =p, foralla € A.

C.1 LEMMAS FOR THEOREM 4.1

Under the constructed MDP M, we conclude Lemma C.1.

Lemma C.1 Under a constructed hard case MDP M' = (S, A, H,P,r), where S = {s1,54, sp},
A = {z1,29,...,24}, H € R, P is defined in Equation 9, Equation 10 and Equation 11, and
r ~ R(:|s,a) where R is defined in Equation 11. The suboptimality of Algorithm 3 and Algorithm
4 share the same form.

Proof By the hard case MDP defined in Lemma C.1, we discuss both the dynamic-OCE setting and
the static-OCE setting.
For the dynamic-OCE setting, notice that for any constant policy T and state s, we have Vi, (s) =

0. Let the state transfer to s, or sy at a deterministic step h < H, h* = max{h, H}. Then, based
on the property of the OCE, we have

H-hwrpp+T1
O,wpl—p—r.

Vh7t+1(5) = {

Then we have

Vi (s) = Vit (s)
- ocE! (Vi 41 (5)

SR (4] S,

= sup {b+pu(H—h"—0b)+(1—pu(-b)}.
be[0,H—h"]
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Therefore, we obtain
SubOptp (M., Algo(D))
= sup {b+(@+nu(H —h"=b)+(1—-p—7)u(-b)}
]

be[0,H—h
— sup  {b+pu(H—h*—b)+ (1—p)u(-b)}
be[0,H —h-]
> sup {b+(p+7)u(H—-n"=b)+(1—p—T)u(-b)}
be[0,H—h"]
— sup {b+pu(H—H-b)+ (1—pu(-b)}
be[0,H—h]

H S
>SS dn(si)r[u(H —H — b)) — u(=b7)] - Wan,: # a,; ),
h=11=1

where ayp, ; ~ Ty (+|s;) denotes the action sampled from the stochastic policy obtained by the algo-
rithm. For the static-OCE setting, if sp-11 = S4, we have

Vi+1(84,0) = u(=b), for any s,b
Vi (sg,0m) = u(l —b)

Vi1 (592 bns1) = u(H — h* —b).

And if sp-41 # Sg, there is,

VhTEJrl(Sb, bh*+1) = u(—b).
Then we have

V" (i, b1) = Vi (s, bn-)

=E[V; 115, br41)]

=pu(H —h* = b) + (1 — p)u(-b).
Therefore, we can get

OCE] = sup {b+V{(s;,b)}
bel0,H]

= sup {b+pu(H —h* —b)+ (1 —p)u(-b)}.
bel0,H]

Here we can find that with the hard case MDP we designed, V" (s;) under the dynamic-OCE setting
and OCEY, under the static-OCE setting have the same form, which will lead to the same form of
suboptimality. Similar to VT (s;), we can find the form of V{*(s;) for the two settings,

Vi(si) = su {b+ (p+7)u(H —h* —b)+ (1 —p—7)u(-b)}.
be[0,H—h-]

Therefore, with Gy, ; ~ T, (-|s;)we can obtain
SubOptg(M,-, Algo(D))
= sup  {b+(p+T)u(H =" =b)+ (1 —p—7)u(-b)}
]

be[0,H—h-
— sup  {b+pu(H—h*—b)+ (1 —p)u(-b)}
be(0,H—h-]
> sup {b+(p+7)u(H—-r"—b)+(1—p—T1)u(-b)}
be(0,H—h-]
— sup {b+pu(H—H-b)+ (1—pu(-b)}
be[0,H—h-]

H S
>SS dn(si)r[u(H —H = b)) — u(=b7)] - Wan,: # a,; ),
h=1 i=1
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where the first inequality holds due to the fact that u(-) is non-decreasing and h* > H, and last
inequality holds when setting b = argmax,c(, ;y_ {b+pu(H — H —b) + (1 — p)u(-b)}.
Therefore, we define

SubOpt(M,-, Algo(D)) = SubOpt (M,-, Algo(D)) = SubOptg(M,-, Algo(D))
to be the shared form of suboptimality of Algorithm 1 and Algorithm 2 under the MDP M,.. This
concludes the proof.
Lemma C.2 Forany [a; ) € {1,2,..., K}IS| in MDP M., we have

a5 (s,a)
sup ———— < C < C*,
h,s,a dZ( )

where T is the optimal policy for the MDP M,..
Proof Based on the definition of d} (s;) and dj (s;), we have
dyy (si) = djy(si) = (1 - 2p)" !
Also, we know that =};(aj, ;|si) = 1, and we sample the dataset uniformly where py(aj, ;|si) = &.

Then we have . .
d (si.ay,)  df (so)mi(ag lsi)

dy, (i, ah,i) dﬁ(si)/‘h(ahﬂsi)
Then we consider the good state s, and the bad state s,. There is
i h—1
) = X3 402
h—1

=> (1-2p) p+7).
J

The underlying policy i takes the action aj, ; with probability é then we have

h—1 1 1

di(sy) = D (1= 20) 7 (G0 +7) + (1 - Z)p)]
J
h—1 -
=Y -2y p+ I

zj:( Pyt A

Therefore, we can conclude that

di (sq)  p+7 ., p+T
dy(sq)  p+E  Cp+r
where the last inequality holds since C++ 1. Therefore for all the states including s;, s, and sy,
we have .
dy (s,a

Here we finish the proof of Lemma C.2.

C.2 PROOF OF THEOREM 4.1

For the certain MDP M defined in Theorem 4.1, we have the suboptimality of Algorithm 3 and
Algorithm 4 as follows,

SubOpt (M-, Alog(D))

H S|
>SN du(si)r[u(H —H = b)) —u(—07)] - Wana # af;}
h=11i=1
H S| _
sz (1—2p)" 'r[w(H = H = b}) — u(=b})] - Tan: # aj. ),
h=11i=1
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where @, ; ~ 7p(+|s;) and the last equation holds based on the definition of dj(s;). Then we have
max SubOpt (M, Algo(D))
>EASubOpt (/\/l, Algo(D))

C
2% Z E .. [SubOpt (Mo, Algo(D))]

H |S|
Z_:lEM [;2 5 )" [ulH —H = b)) = u(=b)]  an # oi, . }]
H S| C
—(1—2p)" " [u(H = H = b}) — u(=b?)] - ( CK|$| Z;(LE;EM [Nu(si,aj,;)])-

Then we need to bound the term Zh 1 lell Za 1 +E i [Nn(si, aj, ;)], where Ny (s;,aj, ;)
is the number of times that the action aj, ,; is selected at step h and state s;. Comparing
Em.. [Nn(si,aj, ;)] and Eaq, [Ni(si, aj, ;)] we have

1 * 1 *

?EM“‘ [Nh(si>ah,7;)] - ?EMO [Nh(si>ah,i)]
<Tv (IP/\/( ) ]P)M‘,)

1
<\/2KL(PM‘,»PM“)

1 p2 *
= ip log ImEM” [Nh (5i7 a’h,i>] ’

where the second inequality follows Pinsker’s inequality. Then we have

H |S| C

KZZ Z Et,. [Nn 317%1)]

h=11i=1a; =1

H | c
1 1 ’
2 {K]EM” [Ni(siyaf )] + \/Qp log ]ﬁEM” [Ni(si, aj, ;)] }
h=1i=1a; =1
H |S| C 1 p2
SODR 3P W SNENAE
h=1i=1a; =1

1
§H—|—H\/2plog 5 C’K|$|

where the first equation holds since 37 S7151 Za —1Em, [Nn(si,aj, ;)] < HK and the last
inequality holds because of Cauchy-Schwarz 1nequahty Therefore, we have

max SubOpt (M, Algo(D))

Ho1 — . 1 1 )1 p?
>H(1-2p)" rlu(H — H —b}) — u(-b7)] - (1 s C|S\/2plog pz_TzCK|5|>

H— — " 1 1 72

where the last inequality holds since C‘ SI L and log e P < ;— Then, by setting p = ﬁ (Itis
reasonable to set p = &, since H > 1 guarantees p € ( 2N, H =T[(1—p)H], where p € (0,1).

31



Then we have
max SubOpt (M, Algo(D))

21 (1= )" rlulol =) (=6 - (5~ g VPOHKIS)

2
1 1 T?HK
>= Rk IR XA I
—3HT[“(pH b7) —ul bl)} (2 C|S| )
where the last inequality holds since (1 — )71 > e™! > 1. LetT = 12}}9}( <p= 5. we
have
max SubOpt(M, Algo(D))
1 /CH|S]
D i bl ok Pk
=y % {U(PH b1) —u( bl)}
1 . . C*H|S|
Z@[u(pH —b7) — U(_b1)} K

where the last inequality holds based on Lemma C.2 and b} = arg maxbe(mpH){b + ﬁu(pH —
b) + (1 — 55 )u(—b)}. Leta function Fy(b) = b + s-u(pH — b) + (1 — 55)u(—b), we have
1 1
/ _ = o r(__
Fy(b) = 1= s (oH = b) = (1= 2 )u/(=b).

Based on the properties of the utility function u(-), we have F}(0) > 0 and F}(pH) < 0. Therefore,
there exists a b} € (0, pH) such that Fy/(b]) = 0. This concludes the proof of Theorem 4.1.

D PROOFS FOR SECTION 5

D.1 LEMMAS FOR THEOREM 5.1

Lemma D.1 Based on the dynamic-OCE RL setting, we have

0, +wh(b)H <[+ u(H - V.

Proof Based on the definition of wy,(b) and the dynamic-OCE RL setting, we have

sl -
<\f+/H "y = b)un(s) || ds’
<[1 4 u(H — R)Vd.

The third inequality holds since V (s) € [0, H — h] and b € [0, H — h]. This completes the proof.
Definition D.1 Define a function class V mapping from S x [0, H] to R with parametric form,

V(-) =max { max {min {$(-,a) "0+ sup {b+d(-,a) w(b)}
a be[0,H —h|

— By, 0) A0 ), H — h+1},0}},

w®)|| <L, f€0,B]and A = AI.
Lemma D.2 Under the dynamic-OCE RL setting, we have

where b € [0,1] is a parameter,

aK

@ (®)| < w1/ 5

s
i A .
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Proof Based on the definition of W, (b), we have

o0 = [ otk by (e - )|
<3 ot ok (Fuatohn) )|
k=1

it -nY | A7 tsh.ab)|
k=1

K
=u(H —h) Z \/gzﬁ(s’;“ af)TA, AT, g(sh al).

k=1
Then, based on the Cauchy-Schwarz inequality and the property of the trajectory, we have

| 0)] < wit - h>\/§ (4 i(b(sz,aﬁ)%(sg,am)

u(H — h\/>\/Tr Ah—/\I))
w(H — h\/iﬂ/TrA Ah
o

Following the same method, we can prove Hé\hH <
proof.
Lemma D.3 Based on the dynamic-OCE setting, for a fixed function f* : S — [0,14+u(H —h)] at

step h € [H|, under the assumption that D is obtained by an underlying policy p, for any A € (0, 1),
we have

2K with |ry,| < 1. Then we complete the

K
2
o (|| Y- otshabek o)
K=1
Proof Forany fixed h € [H| and k € {0,1, ..., K}, we have the o-algebra

7= o ({eh a0 0 s b )

Then for any k € [K], we have ¢(sh,a’fb) € FF, since (sk,ak) is measurable with respect to
Fy k=1 Then, with the fact that (r1, s, +1) is measurable with respect to }'h, for a fixed function
fh S = [0,1+u(H — h)] at step h, and k € [K], we have

er(f™)
=ry +u(f"(sky1) = bn) — Buf"(sy. ap)
ad

Therefore, {5 (f")}_, is a stochastic process with respect to the filtration {F}}X_ . Then with
Assumption 2.1, we have

o |eh(/MIFE

:ED[T§+U(fh(SZ+1) )H(’Shvah)}] 1’(rhﬂsh+1)j 1 ]Bhf (Shvaﬁ)
=0.

> [1+u(H—h)}2(210g% + dlog (1+ f))) <A.
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Based on the definition of €f ("), we have |ek (f*)| < 1+ w(H — h). Thus, for the fixed h and all
k € [K], € (f") is a zero-mean and [1 + u(H — h)]-sub-Gaussian random variable conditioning
on Fr~L. Based on Lemma E.1 with My = X\ and My, = \I + + Zszl o(s),al)p(s),al)T, for
all A € (0,1), we have

S E byl 2 det(Ay):
IP’D(H ;¢(Sh,ah)6h<f )HA > 2[1 +u(H — h))*log (Adet()\j))) <A

where the equation holds based on the fact that M = Ay,. By applying the definition of Ay, we
have ||Ap||2 < X\ + K which implies det(A) < (X + K)®. Therefore, we can get

oo | 32 otk ] > 0 atar - oms a4

<Pp (H g:lqs(s’;, aﬁ)eZ(Vh)Hi;\ > 2[1 4+ u(H — h))*log (m»

<A

Here we finish the proof.
Lemma D.4 Based on Definition D.1, for all h € [H| and € > 0, we have

g (1 + SQZBQ).

log My, () < dlog (1 + g) + dlog (1 + %) +d*lo

Proof For the function class V, we set A = B?A~L. Therefore, by the definition of function class V),
w(b)|| < Land ||A| < B%. Letting any two functions V1, Vo € V, it holds that

dist(V7, Va)

<sup

s,a

60 0+ sup {b+o(.0)Twi) )~ /ol a)T A, a)

be[0,H—h)

o CRICENE IR (L COREIO wuwnmu@H

be[0,H—h

<sup

s,a

[6C,) 00+ {b + 6 0) ()} = /6(,a)TAr6(,a)]

— [0, )T+ {b + 6, 0) (b)) - Mﬂﬂ&dﬂﬂ

< sup
i1l <1,0:(|10]| <T,w:||w|| <L

{91+w1¢ V¢TA1} [92+w2¢ \/¢TA2}

where the second inequality holds by setting b’ = arg maxye o, g—p) 10 + ¢+ a)Tw(b)}. Since

Wz — Yyl < |z —yl, forz >0,y >0, we have
dist(V4, V2)

< sup |(61 — 02 + wy — w2)g| — ’ T (A — Ag)gb‘
$:11lI<1,0:[10]| <T,w:||wl| <L

R R N o
S T Y M I oy

Let Cg be an § — cover of {6 € R | |w|| < T} with respect to the 2-norm, C,, be an 5 —

cover of {w € R | |lw|| < L} with respect to the 2-norm, and C be an 5 — cover of {A €
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R4 | ||A|lp < VdB?X~'} with respect to the Frobenius norm. By Lemma E.2, we have
4T\ 4
€
4LN\d
|Cw‘ § (1 + 7) ’
5
8\/332>d2
Ae? '

Cal < (1 +

By Equation D.4, for any Vi € V, there are 05 € Cy, wo € Cy and As € Ca such that Vy
parametrized by (02, wa, As) satisfies dist(Vy, Vo) < e. Therefore, we have N () < |Cy|-|Ci]-|Cal-
Then, we can conclude that

log Nip(¢) <log|Co| + log [Cu| + log |Ca]
4T 4L dB?
<dlog (1 + —) +dlog (1 v —) +dlog (1 v L).
€ € Ae?
This completes the proof of Lemma D.4.

D.2 PROOF OF THEOREM 5.1

Based on Lemma B.7, we begin to bound the difference between IB%hXA/hH(s, a) and @h‘/}h_lrl (s,a).
We first rewrite the difference as follows,

]Bh‘/}h+1(8, a) - @h‘/}thl(S, a)
—rn(5,a) — F(s, a) + OCEgNMW){Vhﬂ(shﬂ)} - OCE;{N@(,IS’Q){Vhﬂ(shﬂ)}

=rp(s,;a) — Th(s,a) + pelax {b + Esnp,(]5,0) [U (?h-&-l(sh—&-l) - b)] }

e e [ Fton )]}

=¢(s,a) 0 — o(,-) b
4+ max ]{b+¢(s,a)Twh(b)}— max ]{b+¢(s,a)T@h(b)}.

be[0,H—h be[0,H—h

Letting by, = arg maxye(o gy {0 + &(s,a) " @n(b)}, there is

Bh‘?h+1(8, a) — I@h‘/}h+1(87 (l)

<@(s,a) O — d(s,a) Oy + ¢(s,a) Twn(br) — ¢(s,a) D (by)
K

=¢(s, a)T(Gh + wh(bh)) — ¢(s, a)T [A;l Z ¢(SZ, alfl) <1"Z + u(‘A/;H_l(sfH_l) — bh)>]

k=1
=¢(s,a)" (6n + wn(bn))

K
- ¢(57 a)T Agl Z d)(S;Cm ai) (TZ(SI;U CLZ) + ES’NP,,(S,U,) [u(‘/}h+l(sﬁ+l) - bh):|>‘|
k=
K1 R
—os,0)T | A1 D 6(shaf) ({r2<827a2> +u(Vhia(shn) = bn) |
k=1

(ko) + By [u(Tasa o) — 1) })]

=(i) + (i), (12)
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where we let

(i) :==0(s,a) " (O + wn(bn))

K
—¢(s.0)" | A1 D o(sh.af) (r,i(sz, ah) + By, o [0 Vasa (1) - bh)m :
k=1
K
(i1) === (s, ) " [A;1 D o(sh.af) ({r;i(sﬁ, af) +u(Visa(sh) — ) }
k=1

- {TZ(SZ» alfi) + ES’NR(&G) [u(v}“rl(s];‘“) B bh)} }>] '

For term (), we have

|G)] =[o(s,0) (B0 +wn(0n)) = 6(5,)TAZY S (s, ab) (ra(sh, af)

ik

+ Esnp,(s,0) [u(‘A/thl(SIﬁH) - bh)m ‘
K

:’¢(s, a)T (O + wn(bn)) — 05, ) TAGT S 6(sh, al)o (s, ab)T (0 + wh(bh))’

k=1
:‘925(8’ a)" (6n + wn (b)) — (s, a) TAL T (Ap — M) (6 + wh(bh))‘

:/\‘¢(s, a)TAT (0, + wh(bh))‘.

Due to the Cauchy-Schwarz inequality, we can further bound the term as follows,

@] <A HAE H Heﬁwh bn) H H¢ 5@ H (13)

<(1+u(H - h))\/ﬁ\/qb(s, a)TA 6 (s, a),

where the last inequality holds due to Lemma D.1. Next, we need to bound the term (77). We first
define

er () ={rk +ulf(s5ip1) —bn)} — {ri(sk,af) + Egrp, (s.a) [w(f(shi1) — bn)] },

where f : S — [0, fimax] is an arbitrary function. Then we have

At i B(sy, ak) ({r,’i(si, ay) + u(‘A/h_H(sZH) - bh) }
k=1
- () + Buc o (T -] )|
‘ (iéf’ (sh,ap)er Vh+1))‘
k=1

<[5 ook bk T, - 700 A 6.
k=1 "

(i) =‘¢>(s a)’

Therefore, we need to bound || Zi{:l B(sk, a’,i)e’,?b(f/h“) HA .. Based on Definition D.1, we have
Vig1 € V. Let Njy41(e) be the e-cover of V (), we can find a function Vi 41 € Niy1(e) such that

sug |X7h+1(s) —Via(s)| <e
sE
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Therefore, we have
‘“(Vhﬂ(s) —bn) — U(V}ZH(S) - bh)|

<|Vat1(5) = Viiya (5)]
<e.

The first inequality holds based on the property of the utility function u that w is concave, nonde-
creasing, and 1 € Ju(0). Then, we can get

[E b, ([s.0) [u(ffhﬂ(s) —bn)] — Egop, (fs,0) [w(Vi41(s) = bn)]|

§|ES'NP,,(‘|S,LL) [u(f}h-i-l(s) - bh) - u(‘/li-&-l(s) - bh)] |
<e.

Therefore, by the triangle inequality, we have

2e > (u(Vir1(s) = bn) — Egnp, (fs,0) [u(Vir1(s) — b)])
- ( (Vh+1(s) —bp) — Eswﬂ”h('\s,a) [“(Véﬂ(s) - bh)])‘
This can further guarantee that R
|en(V) = en (V)] < 2=
Then based on the fact that [|a 4 b]|3 - < 2[|a[|3-. + 2/[b]|3 ., we can then get

H EKI CRACTUN]

<2H Z¢ Shaah)eh(vh-&-l)Hz

k=1 (14)
R 2
+ QH Z(f)(s]fl,alﬁ) [k (Vis1) — 65 (Vi) HA
2 Re2 K2
<2 sup ‘ B(sy, ak )H + .
VEN (&) Z i 1) A A

Here we can get an upper bound without the influence of the dataset D. Combining Lemma D.3 and
the union bound, we have

Pp { sup B(sF, ak)er )H
VEN,,.(e) Z )6 A

> [1+u(H - h)]Q(QIOg% +dlog (1 + %))}

<ANp1(8)]-
Letting A = ﬁ, for 6 € (0,1). Then at any step h, with probability 1 — %, we have
ne1 (€
H|Nny1(e)| K
, 1 H—h2217d1<1 f).
Vewgg)\qusshaheh >HA, 1+ u( >1< og — 5 - dlog (1+ 5

Then, with Equation 14, with probability at 1 — ¢, for all Yh € [H], there is

K N 2
| 37 lsheab)eh (W)
K=1 "

o TN )

8e2K?
A

§2[1+u(H—h)]2(21 +d10g(1+§)> + ,Vh € [H].
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Then we need to bound to bound log(\,+1(g)). With Lemma D.2, we set T = /%5 and L =

u(H —h)/ % Lete = 42 B =28, 8 = cd[1 +u(H — h)]/C, and ¢ = log(2dHK 5~ '), where

¢ > 01is a constant. Notice that u(H — h) < u(H) < H, due to the concavity of the utility function
u along with 1 € Ju(0). Then by using Lemma D.4, we have

log My (e) <dlog (1 + g) + dlog <1 + %) + d%log (1 + 8\2232)
<dlog (14+4d *K:H™ ') +dlog (1 + 4uw(H — h)d *K:H ")
+d*log (1+8B*d *K*H?) (15)
<2dlog (1+4d™>K*) + d*log (1 4 32¢°d* K*()
<3d*log (14 32¢°d* K*()
<3d®log (64c*d* K*().
Then with the fact that log ¢ < ¢, log(1 + K) < log(2K) < ¢, and Equation 15, we can get

H Z o(s, af,)e (Vh+1)H2 ‘

21+uH—h)2

[ ( 2log(H6™") + 4d” log(64c*d* K*¢) + dlog(1 + K) + 4d?)
21 +u(H — h))?
(1 + u(

]
J?(2log(H6 ") 4 6d log(64c?) + 6d°C + 3d* log(dK™) + d¢ + 4d°)
2[1 + u(H — h))*(3d* log(dHK*5™") + 6d* log(64¢?) + 11d°()
2(1+u(H — h))*(3d*log(dHKS™") + 9d° log K + 6d° log(64¢”) + 11d°(¢)
<d?[1 +w(H — h)]*¢(121log(64c*) + 46).
By setting 12log(64c?) + 46 < %2, the following inequality holds,

K

H Z ¢(5§aa§)62(vh+1)HA ]

K=1 "

Therefore, based on Equation 12, Equation 13, Equation 16, we have
Es [Vhﬂ(s, b—r)] - IAES/J [‘A/hﬂ(s’, b—r)] ‘

<([1+u(H - n)]Vd+ %cd[l +ulH = W]V /ols,0)T A o5, a)

INIA A

< %cd[l +u(H — )]/ =

02|

(16)

<B\/o(s,0)TA; (s, 0).

Then we finish proving Theorem 5.1.

D.3 LEMMAS FOR THEOREM 5.2

Similar to the dynamic-OCE formulation with tabular setting, we extend the setting to stochastic
reward functions where 7, ~ R(-|s,a) in the proof. When R(rp|s,a) = 1, it reduce to the deter-
ministic reward case used in the paper. Therefore, in this section we actually provide a more general
proof, which extends Theorem 5.2. Under the stochastic reward setting with linear MDP, we slight
change the setting to

Pr([s,a) = (un(), ¢(s,a))
Ri(-[s.a) = (va(-), (s, a)).
Therefore we set a matrix ®(s,a) € RY*?, a vector &,(s',7) € R¥*! and a a vector ¢(s',r) €
R > satisfying
B(s,a) = (s, a)e(s, )
&n(s',1)ixars = (valr) T)Z-,j
(

¢(s,@)ixa+; = ® &a)
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Then we have

Eg b, ([5,a)0R, (]s,a) [V (5,0 = 7)] :/Rh(~|s,a)/ Py (s,a)V(s',b—r)ds'dr

T s’

To(s, a)p(s,a) (s )V (s',b =)

=vp(r

where the last equality holds when w,(b) = & (s',7)V(s’,b — r). Here we success-
fully extend the setting from Eg.p, (.(s,a),r=r, (s,a) |V (5,0 — 7)] with deterministic reward to
Eg b, (-s,0),r~R, (-|s,a) [V(s’ b — r)} with stochastic reward. Therefore, in the stochastic reward
setting, we can still use ¢(s, a) " @, (b) to estimate the transition.

Lemma D.5 Based on the definition of @y, (b) and Vi1 (s',b — 1), we have

Proof The wy,(b) is defined as follows,

wh(b):/// (s, 7 Vigr(s' b —r)ds'dr.

Then we can get

Hwh(b)H = H /r/é (s, 7 Vgt (s’ b— r)ds'drH
< u(H —h—b)Vd.

For wy,(b), we have

0] = A { 3 otk Fana(sh e - b}
k=1
<y A7 (ks ab) Vaea (k00— )
k=1

<u(H —h—b) i |87 o5k, ah)|
k=1

K
=u(H~h-b)Y \/¢(s’;, al)TA A, S B(sk ab).
k=1
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Based on the Cauchy-Schwarz inequality, we have

[=30]

K
= A D ok ab) Vhsalshgn b= i) }
k=1

K
u(H—h—b)\/f D o(sh,af)TA o(sE, af)

k=1

K

Tr(A; "D é(sh, ab)Te(s), ab))

k=1

:u(H—h—b\/E\/Tr (A, — AI))
uw(H —h— b)[,/Tr(AglAh)

dK
B

K
=u(H —h—b)\/5

w(H — h—b)

Therefore, we finish the proof.

Lemma D.6 For afixed function Vi, : S — [0, u(H —h—by,)] at step h € [H), under the assumption
that D is obtained by an underlying policy , for any A € (0, 1), we have

]PD(H KEK; ¢(s’ﬁ7aﬁ)elﬁ(Vh)H2 > [u(H — h — by)]? (QIOg% + dlog (1 + I;))) < A.

A
Proof Forany fixed h € [H| and k € {0,1, ..., K}, we have the o-algebra
min{k+1,K}
‘7:;520({(8}17&%)}] 1 )

Then for any k € [K], we have ¢(sk,af) € FF, since (s}, af) is measurable with respect to Fy .
Then for a fixed function V3, : S — [0, u(H — h — by,)] at step h, and k € [K], we have

i (Va)
=Vi(shi1:bn = 75) = Bgi <, (fst.at)r~m, (lstar) [Va (8he1, bn = 71)]
EFF.

Therefore, {5 (V3,)}5_, is a stochastic process with respect to the filtration {F}}5_,. Then with
Assumption 2.1, we have

Ep [¢h (Vi) 7!
B [Vi(sh o1, bn = (55 al)Via | = B [Vi(sh 0, b0 = 7))
=0.

Based on the definition of €k (V3,), we have |ef (V3,)| < uw(H — h — by,). Thus, for the fixed h and all
k € [K), €} (V3) is a zero-mean and u(H — h — by,)-sub-Gaussian random variable conditioning on

Fr=Y. Based on Lemma E.1 with My = X\ and My, = X\ + + Zszl o(s),al (s, al)T, for all
A € (0,1), we have

PD<H é@ﬁ(sﬁvamg}i(vh)”:‘ > 2[u(H — h — by,)]? log (m)) <A,
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where the equation holds based on the fact that M = Ajp. By applying the definition of Ay, we
have ||Ap||2 < A + K which implies det(Ay) < (X + K)®. Therefore, we can get

Pp (H iéﬁ(sﬁ,aﬁ)e’ﬁ(Vh)H:A > [u(H —h— bh)]2(2 log% + dlog (1 + f)))

= ko ky k 2 2 det(An)*
SPD H Z ¢(Sh’ ah)e}L(Vh)HAa > 2[U(H — h — bh)] 10g (m)
k=1 "
<A
Here we finish the proof.

Definition D.2 Define the function class V mapping from S x [0, H] to R has the following para-
metric form,

V(~,b):mgx{max{min{¢(~ b) — B/ (- a)TA T4 )u(Hfhfb)},O}},

where b € [0,1] i w®)|| <L, Be0,Bland A = AI.
Lemma D.7 Based on Definition D.2, for all h € [H] and & > 0, we have

8[32).

4L
log NGy (2) < dlog (1+ ?) + & log (1+
Proof For the function class V), we set A = B2A1. Therefore, by the definition of function class V,
we have ||w(b)|| < L and ||A|| < 5. Letting any two functions Vi, Vs € V, we have

dist(V1, Va)
< sup [[wi(0)(s,0) = /o5, )T Aro(s. )] — [wab)o(s.a) ~ \/6(5,0)T A0(s,0)|

s,a,b

< sup ‘ [w1¢ Y ¢TA1¢} - {w%f? -V ¢TA2¢} ‘

¢l <1wi|lw||<L

< sp [y —wn)e| - [y/67 (A1 - A2)d)
o:llpll<1,wiflwl| <L

[ =] = e, = o =]+ ] =

where the third inequality holds due to |\/x — \/y| < \/|z —yl|, for & > 0,y > 0. Let C, be
an § — cover of {w € RY| |jw|| < L} with respect to the 2-norm, and C be an £ — cover of
{AeR™| Al < VAB?\=1Y with respect to the Frobenius norm. By Lemma E.2, we have

4L\4
|Cw‘ S (1+?) ’

8v/dB2 ) &
e '

ICal < (1 +

By Equation D.7, for any Vi € V, there are wa € Cy, and Ay € C4 such that Vo parametrized by
(wa, Ag) satisfies dist(Vy, V) < e. Therefore, we have N' () < |Cy| - |Ca|. Then, we can obtain

(2

4L
log MV}, (g) < log|Cyl| +log|Cal < dlog (1 + ?) + d*log

This completes the proof of Lemma D.7.

D.4 PROOF OF THEOREM 5.2

In this section, we extend the proof to stochastic reward, where r, ~ R(:|s, a), to get a more general
result. When R(:|s,a) = 1, we get exactly the proof of Theorem 5.2 with deterministic reward.
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With Lemma B.13, we need to bound E;. . [Vig1(s,b—7)] — ES,’T[‘A/;LH (s',b—r)], considering the
definition of ¢;,. We have

Es . [Vhﬂ(s, b— r)} — IES',T [‘711+1(8/, b— 7")}

K
=6(5,0) "wn(b) — Bls, ) A (D0 0sh a)Ew Vi (shn b — 75)

[~
/@\
»

T
%

~o(s,0) A

h+1<sﬁ+1’ b— 7"1]?)

Es » U/};H_l(slflﬂ, b— r,’i)] )} .

Then, we can get the following inequality,

Es » thﬂ(& b— 7")} - Es’ e [Vh+1(sla b— 7“)}

<|é(s.0) Twn(b) — é(s.0) A, {52 6ok e (s (o100 ]|

k=1 (17

K
+ ‘Qb(sva)TA}: {;(b Shaah (Vh+1(5h+1’b - T;CL)

Es » [‘7}1+1(3h+1’ b— Tﬁ)])} ‘

For the first term, |¢(s, a) Twy, (b) — ¢(s,a) T A [Srey o(sk, af) B [Vie1 (1,0 — ]|, we
have

0(s.0) Twn(b) = (s, 0) AT | 3 05k af)Eus Vi (50,0 = )] |

> 11>

[0, ) Twn(b) = 65, @) ALY [ D o5k ah) (s, af) Twn (b))

b
I
—

|05, @) Twn(®) = é(s,0) AL (An = AT)wn (0)]
:)\‘(b(& a)TAglwh(b)’.
Due to the Cauchy-Schwarz inequality, there is

[6(5,0) Twn () — 6(s,0) A, [Zassh,ah) cor[Vasa(shin b =rh)] |

k=1

Aot )| @)l

M wn )T AL w01/ 6(5,0) T A, (s, 0)
S)\HAfH;HwhH\/(b(s,a)TA,:l(é(s,a)
<A Aru(H —h— b)\/&\/¢>(s, a)TA; (s, a)

—u(H — h— bV é(s,)TA; " 6(s, a),
where the last inequality is based on Lemma D.5. Then for any function V' : S x [0, H] — [0, Vipax]

we set k k k k k
en(V) = V(3h+17 b—rp) — Es » [V(Sh-',-lv b— Th)]-
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Therefore, for the second term, |¢(s,a)TA; (S p, ¢(sh,af)(Viga(sh 1 b — 1f) —

Es’,r[‘/}thl(SﬁH’ b— 7’2)])) ) we have

K
605, @) TAG [ D élsh ah) (Vi (ks b= 78)

Eo i [Vig1(sh 41, b — rﬁ)])} ‘
:‘¢(s a [qu sk ab eh(vhﬂ)” (18)

k=1

<| iqza(s,’i,a,’z)eﬁ(VhH)HN o ) TA 0l5,0).
k=1 "

The rest of the problem is to upper bound || Zszl P(sk, ak)ek (Vig1) ||A . Obviously, by Definition

D.2, it holds that ‘A/;H_l € V. Set Nyy1(¢g) is an € — cover of V (-, ), there is a function Viel €
Np41(€) such that

sug “A/hﬂ(s, b) — Vi 11 (s, b)’ <e
s€

Hence, we can obtain

Es . [VhH(S, b)|sn.an] — Egr[Viy1(5,0)|sn, an] ’

=|Es Xy [‘711-&-1(57 b) - Vfi—i—l(sa b)|3h7 Gh] ‘
<e.

Then, by the triangle inequality, we have

‘ (‘7}#1(5/; b) — Eq [f/\'thl(s’7 b)]) - (V,;Jrl(s', b) — Eor [V (5, b)]) ‘ < 2e.

Thus, we get

ek (V) = ek (V)| <
Due to |ja + b||% < 2||a|Z + 2||b]|3, we have

2

H i o(sh.ab)eh (Vi) ||

h

2
<2H Z¢ Shvah)eh(vh-&-l)H

k=1

(19)
R 2
o 3 otk e () — )]
2 ,,
2 82 K?
’ + :
vei\lfl,? (e) ‘qu S )i )HA A

Here we have an upper bound that is not related to the dataset D. Then applying Lemma D.6 and
the union bound, we have

2

w |55 sk e
(V€M+(6 Z o n)€

> [u(H —h— bh)]Q [210g% + dlog (1 + %)})
SA’Nh_,_l(E)’.
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Set A = m, where ¢ € (0,1). For any A, with probability 1 — %, there is

K 2

sup || S alsh,al)eh (V)|
VeN..(e) " g1 A;
H|Npy1(e)|

K
5 + dlog (HX))

Then, with Equation 19, with probability at least 1 — J, the following inequality holds

<[u(H — b — b)) (21og

K 2
|37 stk abeh (Vo) |
K=1 "

K
+ dlog (1 + 7)) +

8?2 K?
A

H|Nh+1(5)|
1)

<2fu(H — h — by)]?(21og Yh e [H).

Setting € = dTH and A\ =1, L=u(H — h—bp),/ dTK, by Lemma D.7, we have

AL 8VdB?
< . 2
log My, (e) <dlog (1 + 8 ) + d” log (1 + = )
<dlog (1 S+ du(H — h— bh)d—iK%H—l) +d?log (1 + 832d—%K2H—2).
Then we set B = 23, 8 = cd - u(H — h — by)/C, and ¢ = log(2dHK &™), where ¢ > 0 is a

constant. Notice that u(H — h — by) < u(H) < H, due to the concavity of utility function u along
with 1 € du(0). Therefore, we have

log Niy() <dlog (1+4d™:K*) + d*log (1 + 32¢*d* K*()
<2d?log (1 + 32¢°d* K*() (20)
<2d”log (64c*d* K*().
Then with the fact that log ¢ < ¢, log(1 + K) < log(2K) < ¢, and Equation 20, we have
K N 2
| > stshoab)eh (V)|
K=1 "
<2[u(H — h — by,)]? (2 log(HG6 ™) + 4d? log(64c2d: K%¢) + dlog(1 + K) + 4d2)
<2[u(H — h — by,)]? (2 log(HS6™ ') + 4d? log(64c?) + 4d*¢ + 2d* log(dK*) + d¢ + 4d2)
<2[u(H — h — by)]? (2d2 log(dH K57 1) + 4d2 log(64c?) + 9d2<)
—2[u(H — h — by)]? (2d2 log(dHKO™Y) + 64 log K + 4d? log(64¢?) + 9d2g)
<d®fu(H — b — b)]*¢ (8log(64¢?) + 34).

By setting 8log(64c?) + 34 < <, it holds that

21

| ™

K
~ 1
H Z B(sy, ak)er (Vi) HA" < §Cd cu(H —h —bp)/C =
K=1 ’
Therefore, based on Equation 17, Equation 18, Equation 21, we have
‘ESW [XA/;H_l(s, b— 7')] - I/Eis/’r [17;H_1(5’, b— r)] ‘
1
< (w(H —h = b))V + Sed - u(H — h =) \/C) V(s,.0)T A (s, a)
<B\/6(s, @) TA; 65, a).
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Then, with Lemma B.7, we have

SubOptg(7)
H

< Z {2cd -u(H — h —bp)4/log 2d];K ‘E [\/(b(sh, an)TA; Yo (sn, ah)‘sl, b’{} }
h=1
{26d ~u(H — h)1/log Qd?K B [\/05(5}“ G}L)TA;1¢(5}“ an)|s1, byf] }7

where the last inequality holds because b;, > 0. Here we finish the proof of Theorem 5.2.

<

M=

h=1

E OTHER IMPORTANT LEMMAS

Lemma E.1 (Concentration of Self-Normalized Processes (Abbasi-Yadkori et al., 2011)) .

Let {F1}52, be a filtration and {e;};2, be an R-valued stochastic process such that e; is Fy-
measurable for all t > 1. Moreover, suppose that conditioning on F,_1, € is a zero-mean and
o-sub-Gaussian random variable for all t > 1, that is,

Ele)|Fi—1] =0, Elexp(Ae;)| Fi—1] < exp(A\?0?/2), VA €R.

Meanwhile, let {¢:}32, be an R%-valued stochastic process such that ¢, is F;_1-measurable for all
t > 1. Also, let M, € RY%4 pe a deterministic positive-definite matrix and

t
My =M+ bsd]
s=1

forallt > 1. For all A > 0, it holds that

t 2
> s
s=1

for all t > 1 with probability at least 1 — A.

Lemma E.2 (Covering Number of Euclidean Ball (Jin et al., 2020)) For any ¢ > 0, the ¢ —
covering number of the Euclidean ball in R with radius R > 0 can be upper bounded by (1 + %)d.

A

< 202 - log <det(Mt)1/2 'det(M0)1/2>

Mo

F NUMERICAL SIMULATION

To verify the algorithms and theoretical results we proposed, we operate the numerical simulation
under a specially designed MDP with S = {s1, s2, s3} and A = {a1,a2}. s1 is set to be the initial
state of every episode. The structure of the MDP is shown in Figure 3.

Figure 3: MDP for numerical simulation.

Starting from s;, the agent can transfer to sy and ss, consequently. At s3, the agent can return to
either s; or so with different probabilities according to the action the agent takes. Besides, to add
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randomness to the process, at any state the agent have a chance to ’stay”. The detailed transition
and reward function is

P(51|51,a1) =0. 1 P(52|51,a1) = 09, (51|51,a2) =0. 9 P(52|81,CL2) =0.1
]P’(32|52,a1) =0. 1 P(SngQ,CLl) = 09, (82|82, 2) =0. 9, ]P’(33|52,a2) =0.1
P(81|S3,a1) =0. 1 P(52|83,a1) = 0.1, (83|33, 1) =0.8
P(81|S3, ag) P(SQISg, ag) = 0.4, (83|83,a2) =0.2

and
r(s1,a) =0, Vae A
r(s2,a1) =0, 7(s2,a1)=0.5
r(s3,a1) =0, r(s3,a1)=1.

The idea of constructing this MDP basically follows the idea of making a dilemma”, where the
good action with a larger reward has a larger probability of leading the agent to a bad state. By this
construction, considering the risk is important. We evaluate the CVar scenario with @ = 0.5. The
result is shown in Figure 4.

Suboptimality of Dynamic-OCE Suboptimality of Static-OCE

10
—— H=20 —— H=20
—— H=15 — H=15
— H=10 . — H=10
— H=5 — H=5

Suboptimality
Suboptimality

N\ "

25000 50000 75000 100000 125000 150000 175000 200000 25000 50000 75000 100000 125000 150000 175000 200000
K K

Figure 4: The suboptimality of the learned policy from Algorithm 1 and Algorithm 2. The mean
results are plotted as solid lines. The error bar area corresponds to the 90% confidence interval.

By operating the simulation with H = 20, 15,10, 5, we can conclude that the history-dependent
policy learned by Algorithm 2 have lower suboptimality with the same H and K.

G STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

In the paper writing stage, large language models (LLMs), specifically OpenAI’s ChatGPT, were
employed to assist with tasks such as language polishing and grammar checking. GitHub Copilot
was occasionally used for code completion and checking when writing test code. The models were
not used to generate scientific content, proofs, research ideas, or code frameworks. All technical
contributions, theoretical derivations, algorithmic developments, and algorithm implementations are
the sole work of the authors. We have carefully reviewed and verified all text suggested by the LLMs
to ensure accuracy and compliance with academic standards.
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