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ABSTRACT

We study the risk-sensitive reinforcement learning (RL), which is crucial in sce-
narios involving uncertainty and potential adverse outcomes. However, existing
works on risk-sensitive RL either only focus on a specific risk measure or over-
look the offline RL setting. In this work, we investigate the provably efficient
risk-sensitive RL under the offline setting with a general risk measure, the opti-
mized certainty equivalent (OCE), which captures various risk measures studied
in prior risk-sensitive RL works, such as value-at-risk, entropic risk, and mean-
variance. To the best of our knowledge, we (i) introduce the first offline OCE-
RL frameworks and propose corresponding pessimistic value iteration algorithms
(OCE-PVI) for both dynamic and static risk measures; (ii) establish suboptimality
bounds for the algorithms, which can reduce to known results for risk-sensitive
RL as well as risk-neutral RL with appropriate utility functions; (iii) derive the
first information-theoretic lower bound of the sample complexity of offline risk-
sensitive RL, matching the upper bounds and certifying optimality of our algo-
rithms; and (iv) propose the first provably efficient risk-sensitive RL with linear
function approximation for both dynamic and static risk measures, together with
rigorous suboptimality bounds, yielding a scalable and model-free approach.

1 INTRODUCTION

Risk-sensitive reinforcement (risk-sensitive RL) is widely used by a variety of risk-sensitive in-
dustries, ranging from finance (Hambly et al., 2023), self-driving (Kamran et al., 2020), to wireless
networks (Khalifa et al., 2019). In risk-sensitive RL, the agent aims to optimize certain risk-sensitive
reward metrics such as mean-variance risk measure (Sood et al., 2023; Huang et al., 2022), entropic
risk (Hau et al., 2023), and conditional value-at-risk (CVaR) (Hakobyan et al., 2019). The risk-
sensitive nature of these fields makes data collection costly, motivating a line of work on offline
risk-sensitive RL (Ma et al., 2021; Zhang et al., 2024), in which the agent only has access to a
pre-collected dataset and cannot further interact with the environment.

However, existing offline risk-sensitive RL studies often focus on a single risk measure, and there is
no algorithm that is provably efficient for general risk-sensitive measures. Recently, the optimized
certainty equivalent (OCE) framework, introduced by Ben-Tal & Teboulle (2007), has emerged
as a suitable candidate for risk-sensitive RL research due to its ability to unify commonly used
risk measures such as CVaR, entropic risk measure, and mean-variance. Although these works
are sufficiently general in terms of risk metrics considered, they only consider the online setting,
with little guidance on how to best utilize a pre-collected dataset. The gap in research highlights
an intriguing question: Can we design offline risk-sensitive RL algorithms that are provably
efficient for the general OCE risk measure?

Answering the question posed requires addressing four challenges. First, while pessimism is well
understood in the risk-neutral offline RL (Jin et al., 2021; Levine et al., 2020; Nguyen-Tang et al.,
2023), it is unclear how pessimistic estimators can be constructed in the offline risk-sensitive RL
with general OCE risk measures, as earlier research relied on the mathematical properties of specific
risk measures (Zhang et al., 2024). Second, the risk-sensitive RL framework naturally leads to two
distinct formulations—dynamic risk and static risk—which introduce additional challenges in algo-
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rithm design. A clear discussion and comparison between these formulations is still lacking. Third,
as we aim to find provably efficient algorithms for offline risk-sensitive RL, a corresponding lower
bound on sample complexity is crucial for validating our results. Finally, while earlier OCE-based
RL research focuses on the tabular setting (Xu et al., 2023; Wang et al., 2024), real-world problems
often contain large state spaces, and our framework needs to allow for function approximation.

Contributions. We make the following four main contributions as we derive a unifying framework
for offline risk-sensitive RL with general risk measures. First, we develop a provably efficient offline
RL algorithm under both dynamic and static OCE. Second, we provide the suboptimality bounds for
the algorithms, which can reduce to risk-neutral RL and various risk-sensitive RL. Third, we obtain
the first sample complexity lower bound for offline risk-sensitive RL, which holds for multiple types
of offline risk-sensitive RL with the property of OCE. Finally, we generalize our results to the linear
function approximation setting, which is the first provably efficient risk-sensitive RL algorithm with
linear function approximation for OCE.

Related Work. This work builds upon a growing body of research on offline risk-neutral RL, where
the central goal is to identify optimal policies using only pre-collected datasets, without additional
interaction with the environment (Levine et al., 2020). In such a setting, the agent is required to infer
the optimal policy exclusively from the dataset with no direct access to the underlying transition
dynamics. A series of recent studies have investigated this challenge from multiple angles, leading
to a rich line of results (Chen & Jiang, 2019; Jin et al., 2021; Rashidinejad et al., 2021; Xie et al.,
2021; Cheng et al., 2022; Nguyen-Tang et al., 2023).

Our work is closely related to a long line of research on risk-sensitive RL. For the entropic risk
measure, Fei et al. (2020) proposed an online algorithm in the tabular MDP setting, which was
later extended to the function approximation regime in Fei et al. (2021). For iterated CVaR, Du
et al. (2022) introduced a tabular algorithm, while Chen et al. (2023) extended this framework to
incorporate function approximation. Xu et al. (2023) developed a dynamic-OCE-based algorithm
for online tabular MDPs. In the offline setting, Zhang et al. (2024) proposed a linear function
approximation method with entropic risk. In terms of static-OCE risk formulations, Wang et al.
(2023) studied the online tabular CVaR-RL problem and further extended their framework to the
more general OCE measure in Wang et al. (2024). Beyond these, a number of earlier works have
laid theoretical foundations for risk-sensitive RL (Osogami, 2012; Shen et al., 2013; Bäuerle &
Rieder, 2014; Prashanth, 2014; Shen et al., 2014; Ma et al., 2025).

There are also a number of works that focus on linear function approximation, which are closely
related to our work. Zhang et al. (2024) introduced a linear function approximation method for
offline RL under the entropic risk metrics. Our algorithmic design is further motivated by a broader
set of advances in function approximation and offline RL methods (Cai et al., 2020; Jin et al., 2020;
2021; Wang et al., 2020; Agarwal et al., 2020; Zanette et al., 2021; Qiu et al., 2022; Zhong & Zhang,
2023; Liu et al., 2023; Modi et al., 2024).

2 PROBLEM SETTING

Offline RL. We define an episodic Markov decision process (MDP) M using the tuple
(S,A,P, r,H), where S denotes a (possibly infinite) state space, A a finite action space, and H
the horizon. We let P = {Ph}Hh=1 denote the transition kernel, where Ph(s

′|s, a) is the probability
of transitioning to state s′ ∈ S from state s ∈ S upon taking action a ∈ A at step h. We assume a
deterministic reward function r = {rh}Hh=1, where rh : S × A → [0, 1]. We assume both P, r are
unknown beforehand, and wlog assume that the initial state is fixed at some s1.

We assume a pre-collected dataset is generated by some behavioral policy, formalized as follows.

Assumption 2.1 (Offline Dataset) Let D =
{(
skh, a

k
h, rh(s

k
h, a

k
h)
)}H,K

h=1,k=1
be a pre-collected

dataset consisting ofK trajectories. Assume that the dataset is generated by an unknown behavioral
policy µ via interacting with the environment.

For any policy π, define its state-action distribution as dπh(s, a) = Pr(sh = s, ah = a|π, s1),
where dπh(s) = Pr(sh = s|π, s1). In line with existing offline RL research, we define the single
concentrability coefficient as follows.
Definition 2.1 (Single Concentrability) For an optimal policy π∗, we define C∗ to be the smallest

value such that maxh∈[H], (s,a)∈S×A
dπ∗
h (s,a)
dµ
h(s,a)

≤ C∗.
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Optimized Certainty Equivalent. This work focuses on risk-sensitive offline RL incorporating a
general risk measure named optimized certainty equivalent (OCE) (Ben-Tal & Teboulle, 2007).
Definition 2.2 (OCE) Let u : R → [−∞,+∞) be a closed, non-decreasing, and concave utility
function with a non-empty effective domain. The OCE of a random variable X is defined as

OCEu(X) = supb∈R
{
b+ E

[
u(X − b)

]}
. (1)

We note that OCE is a sufficiently general risk measure. Depending on the choice of the utility func-
tion u, which typically satisfies u(0) = 0 and 1 ∈ ∂u(0), OCE recovers commonly used risk metrics
such as conditional value-at-risk (CVaR), entropic risk, and mean variance. We refer interested read-
ers to Table 1 for a list of specific instantiations of OCE risk. In addition to its generality, OCE has
several key properties, including monotonicity, translation invariance, and positive homogeneity. We
defer detailed discussions to Appendix A.1. This paper investigates the OCE risk measure in both
of its two formulations, dynamic-OCE RL and static-OCE RL.

Dynamic-OCE RL. Under this setting, we have a Markovian policy π = {πh}Hh=1, where πh(a|s)
is the probability of taking action a at state s at step h and Π is the associated policy class. To incor-
porate risk measures into sequential decision-making, the dynamic-OCE RL formulation has been
proposed in prior works (Ruszczyński, 2010; Bäuerle & Glauner, 2022; Xu et al., 2023), leading to
the following Bellman equation that applies the OCE risk measure iteratively from step H to 1:
Qπ

h(sh, ah) = rh(sh, ah)+OCEu
sh+1∼Ph(·|sh,ah)

(
V π
h+1(sh+1)

)
, V π

h (sh) =
〈
Qπ

h

(
sh, ·

)
, πh(·|sh)

〉
A,

where V π
h and Qπ

h are the dynamic-OCE value function and dynamic-OCE Q-function at step h
under policy π. With a slight abuse of notations, we let OCEu

s′∼Ph(·|s,a)
(
V π
h+1(s

′)
)
:= supb∈R{b+

Es′∼Ph(·|s,a)[u(V
π
h+1(s

′) − b)]}. According to the definition of OCE in Equation 1, there exists an
optimal policy π∗ = {π∗

h}Hh=1 such that π∗ = argmaxπ V
π
1 (s1) (Bäuerle & Glauner, 2022). We

evaluate the performance of a policy π under dynamic-OCE RL by its suboptimality, defined as
SubOptD(π) = V π∗

1 (s1)− V π
1 (s1),

which quantifies the gap between the value of the optimal policy π∗ and that of the policy π at the
initial state s1. A policy π is said to be ε-approximate optimal if SubOptD(π) ≤ ε.
Static-OCE RL. The static-OCE setting considers when a dynamic programming formulation is not
possible (e.g. CVaR) for certain choices of u. As the optimal policy can be non-Markovian under
this setting, we consider the following specialized definition of OCE objective

OCEu
π,P
(∑H

h=1 rh(sh, ah)
)
= supb∈[0,H]

{
b+ Eπ,P[u(

∑H
h=1 rh(sh, ah)− b)]

}
, (2)

where Eπ,P represents taking expectation following ah ∼ πh, sh+1 ∼ Ph for all h ∈ [H]. Note
that by Lemma A.1, the value of b in Equation 2 can be restricted to [0, H]. The key challenge is
that the optimal policies for the above problem are history-dependent (Wang et al., 2024). To tackle
this challenge, we employ the augmented MDP (Bäuerle & Ott, 2011; Wang et al., 2024; Bäuerle
& Glauner, 2021) with an expanded state space (sh, bh) ∈ Saug := S × [0, H] for each step h,
comprising the state sh and a budget variable bh that transitions via bh+1 = bh−rh with b1 ∈ [0, H]
chosen by the learning algorithm. The budget variable tracks the cumulative rewards. Under such
construction, we define a Markovian policy in the form of πh(ah|sh, bh) (with a slight abuse of
notation). We define the augmented value functions as V π

h (sh, bh) := Eπ,P[u(
∑H

h′=h rh′(sh′ , ah′)−
bh)|sh, bh]. Then, a Bellman-like equation is given by
Qπ

h(sh, bh, ah) = Esh+1∼Ph(·|sh,ah)

[
V π
h+1(sh+1, bh+1)

]
, V π

h (sh, bh) = ⟨Qπ
h(sh, bh, ·), πh(·|sh, bh)⟩A.

where we use bh+1 = bh − rh. By the definition of V π
h (sh, bh), we have V π

H+1(s, b) =
u(−b),∀(s, b). Further by Equation 2, static-OCE RL equivalently solves maxπ supb1∈[0,H]{b1 +
V π
1 (s1, b1)}, where π is the Markovian policy defined on Saug. There always exist an initial budget b∗1

and an optimal policy π∗ := {π∗
h} such that π∗ with b∗1 can maximize supb1∈[0,H]{b1+V π

1 (s1, b1)}
(Wang et al., 2024). Ideally, bh ought to be a variable in continuous interval [0, H]. However, for
practical and computationally efficient implementation, we discretize bh with a ε-net of [0,H], de-
fined as Nb := {nε : n ∈ ⌊H/ε⌋}. The approximation error introduced by this discretization is
negligible as long as ε is set to be small enough. Accordingly, the suboptimality under any policy π
in static-OCE RL can be defined as

SubOptS(π) := supb1∈[0,H]

{
b1 + V π∗

1 (s1, b1)
}
− supb1∈[0,H]

{
b1 + V π

1 (s1, b1)
}
.

For dynamic-OCE and static-OCE RL under the offline setting, our goal is to find policies π̂ in their
corresponding policy classes such that SubOptD(π) or SubOptS(π) is sufficiently small.
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Algorithm 1 DOCE-PVI
1: Input: Offline data D = {(sk

h, a
k
h, rh(s

k
h, a

k
h))}

H,K
h=1,k=1

2: Initialize: V̂H+1(s) = 0 for all s

3: for h = H,H − 1 . . . , 1 and all (s, a, b) ∈ S × A do

4: Estimate P̂h(·|s, a) and r̂h(s, a) using D via Equation 3

5: Γh(s, a) =
√

1
max{1,Nh(s,a)} + [u(H − h) − u(h − H)]

√
2 log(|S||A|HK/δ)

max{1,Nh(s,a)}

6: Qh(s, a) = r̂h(s, a) + OCEu

s′∼P̂h(·|s,a)

[
V̂h+1(s

′)
]
− Γh(s, a)

7: Q̂h(s, a) = clip
{
Qh(s, a), [0, H − h + 1]

}
8: π̂h(·|·) = argmaxπh

〈
Q̂h(·, ·), πh(·|·)

〉
A

9: V̂h(·) =
〈
Q̂h(·, ·), π̂h(·|·)

〉
A

10: end for

11: Return: π̂ =
{
π̂h

}H

h=1
.

Algorithm 2 SOCE-PVI
1: Input: Offline data D = {(sk

h, a
k
h, rh(s

k
h, a

k
h))}

H,K
h=1,k=1

2: Initialize: V̂H+1(s, b) = u(−b) for all (s, b)
3: for h = H,H − 1 . . . , 1 and all (s, a, b) ∈ S × A × Nb do
4: Estimate P̂h(·|s, a) and r̂h(s, a) using D via Equation 3

5: Γh(s, a) = u(H − h)
√

2 log(|S||A|HK/δ)

max{1,Nh(s,a)}
6: Let b′ := b − r̂h(s, a)

7: Qh(s, a, b) = Es′∼P̂h(·|s,a)[V̂h+1(s
′, b′)] − Γh(s, a)

8: Q̂h(s, a, b) = clip
{
Qh(s, a, b), [u(−b), u(H−h+1−b)]

}
9: π̂h(·|s, b) = argmaxπh

〈
Q̂h(s, ·, b), πh(·|s, b)

〉
A

10: V̂h(s, b) =
〈
Q̂h(s, ·, b), π̂h(·|s, b)

〉
A

11: end for
12: b̂1 = argmaxb∈Nb

{
b + V̂1(s1, b)

}
13: Return: π̂ = {π̂h}H

h=1 , b̂1 .

3 RISK-SENSITIVE OFFLINE RL WITH OCE

In this section, we study the learning algorithms for risk-sensitive offline RL with both dynamic-
OCE RL and static-OCE RL formulations in the tabular setting.

3.1 DYNAMIC-OCE PESSIMISTIC VALUE ITERATION

Algorithm. We first propose a pessimistic value iteration algorithm for the dynamic-OCE RL setting
named Dynamic-OCE Pessimistic Value Iteration (DOCE-PVI), summarized in Algorithm 1. The
algorithm first estimates the transition and the reward via

P̂h(s
′|s, a) = Nh(s, a, s

′)

max{1, Nh(s, a)}
, r̂h(s, a) =

∑K
k=1 I{(skh, akh) = (s, a)}rh(skh, akh)

max{1, Nh(s, a)}
, (3)

where I{·} is an indicator function and Nh(s, a, s
′) and Nh(s, a) are the state-action visitation

counters for the pre-collected dataD, defined asNh(s, a, s
′) =

∑K
k=1 I{(skh, akh, skh+1) = (s, a, s′)}

and Nh(s, a) =
∑K

k=1 I{(skh, akh) = (s, a)}. The bonus, Γh, is constructed on Line 5, which
measures the uncertainty related to model estimation. The term explicitly incorporates the OCE risk
measure through the factor u(H − h) − u(h −H), a term that depends on the choice of the utility
function u. Lines 6 and 7 pessimistically estimate the Q-function, denoted by Q̂h, via the Bellman
equation formulation of the OCE risk in the dynamic-OCE setting. The clip{x, [a, b]} operator in
Line 7 projects x into the interval [a, b] to ensure boundedness. The estimated optimal policy at step
h, denoted by π̂h, is a greedy deterministic policy based on the Q-function estimate Q̂h, and the
value function estimate V̂h is then constructed using the learned policy. We note that the algorithm
degenerates to the risk-neutral pessimistic value iteration when u(t) = t. The algorithm involves an
optimization problem of the form OCEu

s′∼P̂h(·|s,a)
[V̂h+1(s

′)] = supb∈[0,H−h]

∑
s′∈S P̂h(s

′|s, a)[b+
u(V̂h+1(s

′) − b)] in Line 6, which depends on the choice of u. Since u is concave, this becomes a
one-dimensional concave maximization problem with an efficient solution.

Theoretical Result. The following theorem establishes the suboptimality bound for Algorithm 1.
Theorem 3.1 For offline dynamic-OCE RL under the tabular setting, with probability at least 1− δ
for δ ∈ (0, 1), the learned policy π̂ via Algorithm 1 admits the following suboptimality bound

SubOptD(π̂) ≤ Õ
(∑H

h=1[u(H − h)− u(h−H)]
√
C∗|S|/K

)
,

where Õ hides logarithmic dependence on H, |S|,K, and 1/δ.

In Theorem 3.1, the result depends on the utility function u in the OCE, reflecting the influ-
ence of risk consideration. As this is the first result of the upper bound on offline risk-sensitive
RL, we compare our approach with non-risk-sensitive offline value iteration algorithms to ex-
amine their similarities and differences, and to verify the effectiveness of our method. Com-
pared with the result of Xie et al. (2021), our algorithm achieves the same suboptimality upper
bound of Õ(

√
C∗S). With respect to the horizon H , we have SubOptD(π̂) ≤ 2

∑H
h=1[u(H) −

u(−H)]
√

2C∗SK−1 log(SAHKδ−1). Then our result includes a multiplicative factor [u(H) −
u(−H)], which represents the risk-sensitive term in the OCE formulation. This reveals that the
suboptimality is affected by the risk preferences encoded in the utility function u. Moreover, when
u(t) = t, the overall error scales as Õ(H2), matching the standard result for vanilla offline RL with
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a Hoeffding-style bonus (Levine et al., 2020). That is to say, our algorithm attains the same maximal
sample complexity as the standard offline RL algorithms but with an additional risk-sensitive term
that captures the influence of risk preferences in the OCE.

To proof Theorem 3.1, we first show that the key point is to bound the error brought by the esti-
mation of Bellman operator, spacificed as {rh(s, a) + OCEu

s′∼Ph(·|s,a){V̂h+1(s
′)}} − {r̂h(s, a) +

OCEu
s′∼P̂h(·|s,a)

{V̂h+1(s
′)}}. The biggest gap here is the nonlinear property of OCE. To facilitate

the proof, we design a novel probability measure based on P, so as to transfer the problem to a linear
domain. The complete proof is presented in Appendix B.2.

3.2 STATIC-OCE RL PESSIMISTIC VALUE ITERATION

Algorithm. It is worth noting that the static-OCE RL formulation is distinct from that of the
dynamic-OCE RL, and the static-OCE RL requires a history-dependent policy. A detailed discus-
sion of this is provided in Appendix A.2. Based on the definition of static-OCE RL and the corre-
sponding history-dependent policy class, we introduce the Static-OCE Pessimistic Value Iteration
(SOCE-PVI) algorithm in Algorithm 2 based on the augmented MDP (AugMDP), thereby enabling
history-dependent policies via an iterative update on the augmented state space Saug as shown in
Section 2 .

Algorithm 2 first estimates the transition and reward models via Equation 3 as well. The bonus term
Γh is then computed in Line 5, which measures the model estimation uncertainty for each state-
action pair (s, a). The bonus term captures the OCE risk via the factor u(H − h). Importantly, the
bonus in Algorithm 2 is not the same as in Algorithm 1, which emphasizes that different problem
structures lead to distinct bonus designs. Line 6 presents the transition of the state b to b′ based on
the estimated reward r̂h. Lines 7 and 8 construct the pessimistic estimate of the Q-function as Q̂h

through the static-OCE RL Bellman equation and truncation operator clip. Line 9 gives the estimated
optimal policy π̂h via a greedy optimization of Q−function. Line 10 presents the estimated value
function V̂h. The estimated optimal budget b̂1 is computed via Line 12.

Algorithm 2 outputs a history-dependent policy involving b̂h with a recursive update rule starting
from b̂1, i.e., b̂h+1 = b̂h − rh(s, a) where rh is the observed reward during policy deployment. Due
to the special structure of static-OCE RL, we note that Algorithm 2 applies the OCE only once at
the end of the algorithm rather than at every step as in Algorithm 1, thereby substantially lowering
the overall computational burden. On the other hand, because of this setup, an extra update for the
auxiliary state b is required and is performed iteratively during the algorithm. With different choices
of u, our algorithm can reduce to the risk-neutral offline RL algorithm and to other risk-sensitive
offline RL methods with different risk measures.

Theoretical Result. The following theorem establishes the suboptimality bound for Algorithm 2.

Theorem 3.2 For the offline static-OCE RL under the tabular setting, with probability at least 1−δ,
for δ ∈ (0, 1), the learned policy π̂ via Algorithm 2 admits the following suboptimality bound

SubOptS(π̂) ≤ Õ
(∑H

h=1 u(H − h)
√
C∗|S|/K

)
,

where Õ hides logarithmic dependence on H, |S|,K, and 1/δ.

This result demonstrates that the suboptimality is influenced by the utility function u in the OCE,
thereby capturing the effect of risk. Similar to Theorem 3.1, the result achieves a suboptimality upper
bound of Õ(

√
C∗|S|), which is consistent with the standard offline RL algorithms (Xie et al., 2021).

For the horizon H , we have SubOptS(π̂) ≤ 2
∑H

h=1 u(H)
√

2C∗|S|K−1 log(|S||A|HKδ−1).
When u(t) = t, the overall error scales as Õ(H2), matching the result for vanilla risk-neutral
offline RL. However, there remains a difference in the multiplicative factor, namely u(H).

The potential of static-OCE lies not only in extending the problem to history-dependent policy, but
also in its its ability to handle stochastic rewards. Therefore, we undertake the more challenging
task of proving the suboptimality bound under the stochastic reward setting, which generalizes the
deterministic case. In this case, through wisely choice of b and reasonable bounding techniques,
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we have SubOptS(π) ≤ V ∗
1 (s1, b

∗
1) − V̂1(s1, b∗1) + V̂1(s1, b

∗
1) − V π̂

1 (s1, b
∗
1), which serves as the

foundation for the subsequent analysis. The detailed proof is provided in Appendix B.4.

For completeness, we conduct a numerical simulation on a well-designed MDP to verify our al-
gorithms, as well as making a comparision between the dynamic and static OCE. Experiments are
performed with the CVaR risk measure for different H and K. The simulation results demonstrate
that the suboptimality decreases with the increase of K, and that static-OCE converges faster than
dynamic-OCE. These observations are consistent with the theorical results above. The detailed dis-
cussion is presented in Appendix F.

4 INFORMATION-THEORETIC LOWER BOUNDS

Then we provide the minimax lower bound of the suboptimality in Theorem 4.1.
Theorem 4.1 (Minimax Lower Bound) Consider an MDPM = (S,A, H,P, r), where |S| ≥ 3,
H ≥ 2, |A| ≥ 2, C∗ ≥ 2, and K > 1

4C
∗SH . Let D denote a dataset collected from the underlying

MDPM. Then the following minimax lower bound holds:

inf
Alg

max
M

SubOptD(M, Alg(D), s1) ≥ Ω
([
u(ρH − b∗1)− u(−b∗1)

]√
C∗|S|H/K

)
inf
Alg

dmax
M

SubOptS(M, Alg(D), s1) ≥ Ω
([
u(ρH − b∗1)− u(−b∗1)

]√
C∗|S|H/K

)
,

where ρ ∈ (0, 1) is a constant and b∗1 = argmaxb∈(0,ρH){b+ 1
2H u(ρH − b) + (1− 1

2H )u(−b)}.

For the first time, we incorporate risk into offline RL and establish the corresponding lower bounds.
In particular, we present a general formulation of the lower bound for both the dynamic-OCE and
static-OCE, accounting for dataset coverage, through a carefully designed hard-case MDP that in-
corporates the factor ρ. Leveraging the properties of OCE, our results can be specialized to various
offline risk-sensitive RL by appropriately choosing the utility function u and the parameter ρ. Thus,
we provide a general lower bound for offline risk-sensitive RL under broad classes of risk measures.

Letting a constant c =
b∗

1

ρH , c ∈ (0, 1), the lower bound simplifies to Ω
(
u(cρH)

√
C∗|S|HK−1

)
.

Hence, the lower bound in Theorem 4.1 aligns with the upper bounds in Theorems 3.1 and 3.2
in terms of the factor Ω(

√
C∗|S|K−1). Nevertheless, a gap remains: the upper bounds scale as

Õ([u(H)−u(−H)]·H) and Õ(u(H)·H), whereas the lower bound only grows as Ω(u(cρH)·
√
H).

Moreover, Theorem 4.1 shows that under specially constructed hard instance settings, we observe
that both the dynamic-OCE and static-OCE algorithms have the same form of lower bound. The
underlying mechanism is that, for hard-case MDPs with a single step of OCE computation and
absorbing states, the two OCE settings can achieve the same lower bound. In Appendix C, we show
that it is reasonable to construct such hard instances.

To the best of our knowledge, this is the first information-theoretic lower bound for offline RL
with OCE. Therefore, in order to verify our results, we first compare against the lower bounds of
risk-neutral offline RL algorithms. Our algorithms attain the minimax lower bound Ω(

√
C∗|S|),

matching the results of Xie et al. (2021); Rashidinejad et al. (2021). However, our lower bound
explicitly incorporates the risk-sensitive component through its dependence on the utility function
u, highlighting the additional complexity introduced by risk considerations in our framework.

Then, we compare our results with the prior lower bounds for online risk-sensitive RL. Xu et al.
(2023) proved a lower bound of Ω([u((1−2/c2)H−b∗1)−u(−b∗1)]

√
C∗|S|HK), c2 > 2, for online

dynamic-OCE RL. Our bound is consistent with theirs, in terms of risk-factor, setting ρ = 1− 2/c2.
Moreover, under specific choices of utility functions, our framework recovers several known online
risk-sensitive RL lower bounds: By choosing u(t) = − 1

α [−t]+ with α ∈ (0, 1] and ρ =
√
α2−n,

our result aligns with the iterated CVaR-based lower bound in Chen et al. (2023). With the same
utility function but ρ =

√
α, the risk factor of our bound matches the result of Wang et al. (2023)

with CVaR. Setting u(t) = 1
|α| (e

|α|t − 1) reduces our result to align with the entropic risk-sensitive
lower bound established by Fei et al. (2020). For CVaR and mean-variance risk measures, existing
lower bounds are restricted to the online setting. Nevertheless, the risk-sensitive terms identified in
those works offer valuable guidance for understanding the offline scenario. In addition, there are
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related results on offline risk-sensitive RL via entropic risk measure (Zhang et al., 2024). For the
risk factor, our lower bound simplifies to Ω( e

|α|H−1
|α| ), which is consistent with their upper bound,

choosing u(t) = 1
|α| (e

|α|t − 1) and ρ = α. The detailed proof of Theorem 4.1 is in Appendix C.2.

5 LINEAR FUNCTION APPROXIMATION FOR OFFLINE RL WITH OCE

When facing the large state space, the proposed algorithms under the tabular setting would suffer
from high suboptimality bounds according to Theorems 3.1 and 3.2. A key technique for address-
ing such a challenge lies in employing function approximation. While function approximation has
been widely applied in RL, how to design a provable algorithm for RL with the OCE risk measure
remains unexplored. This section studies linear function approximation, a practical implementation
of function approximation, for offline RL with the OCE measure, and proposes learning algorithms
for both dynamic-OCE RL and static-OCE RL.

Linear MDP. Considering a commonly adopted linear MDP model, in which both the reward func-
tion and the transition kernel admit linear structure, we have

rh(s, a) =
〈
θh, ϕ(s, a)

〉
, Ph(·|s, a) =

〈
µh(·), ϕ(s, a)

〉
, (4)

where
∫
S ∥µh(s)∥ ds ≤

√
d and ∥θh∥ ≤

√
d. We define ϕ : S × A → Rd to be a feature map

satisfying ∥ϕ(s, a)∥ ≤ 1 for all (s, a) ∈ S×A. It is also flexible enough to include the tabular MDP
setting as a special case by choosing d = |S| · |A| and setting the feature map to the canonical basis
vector: ϕ(s, a) = e(s,a), assuming discrete state and action spaces.

5.1 DYNAMIC-OCE PESSIMISTIC LEAST-SQUARES VALUE ITERATION

Algorithm. In this section, we propose the pessimistic value iteration with linear function approxi-
mation for the dynamic-OCE RL, termed Dynamic-OCE Pessimistic Least-Squares Value Iteration
(DOCE-PLSVI), as summarized in Algorithm 3. Due to the special structure in the Bellman equa-
tion for dynamic-OCE RL, we consider linear function approximation from two separate aspects.
We directly perform the function approximation for the reward function rh by solving the following
ridge regression

min
θ∈Rd

∑K
k=1

[
rh(s

k
h, a

k
h)− ϕ(skh, akh)⊤θ

]2
+ λ∥θ∥22, (5)

such that the estimated reward function is constructed as r̂h(·, ·) = ϕ(·, ·)⊤θ̂h with θ̂h being the
solution. On the other hand, by exploiting the linear structure of the transition model, we have
Es′∼Ph(·|s,a)[u(V̂h+1(s

′)− b)] =
∫
S [u(V̂h+1(s

′)− b)]⟨µh(s
′), ϕ(s, a)

〉
ds′ = ⟨w(b), ϕ(s, a)⟩ where

w(b) :=
∫
S [u
(
V̂h+1(s

′) − b
)
]µh(s

′) ds′. Therefore, the algorithm performs a ridge regression via
finding ŵh(b) to solve

min
w(b)∈Rd

∑K
k=1

[
u
(
V̂h+1(s

k
h+1)− b

)
− ϕ(skh, akh)⊤w(b)

]2
+ λ∥w(b)∥22. (6)

Then, we have ϕ(s, a)⊤ŵh(b) ≈ Es′∼Ph(·|s,a)[u(V̂h+1(s
′) − b)] without explicitly estimate Ph,

which is thus a model-free method. Thus, OCEu
s′∼Ph(·|s,a){V̂h+1(s

′)} can be estimated by
supb∈[0,H−h]{b + ϕ(s, a)⊤ŵh(b)}, where the budget b is restricted to [0, H − h] by Lemma A.1.
Lines 4, 5, and 6 in Algorithm 3 estimate the parameters for the above least-squares problem. Line 7
constructs the bonus term Γh(·, ·) that measures the uncertainties in estimating the reward rh and the
term Es′∼Ph(·|s,a)[u(V̂h+1(s

′)− b)] with β being set to O(d[1 + u(H − h)]
√

log(2dHKδ−1)) that
depends on the utility function u. Line 8 and Line 9 construct the pessimistic Q-function Q̂h via the
Bellman equation and the estimates of the reward function as well as OCEu

s′∼Ph(·|s,a){V̂h+1(s
′)}

as discussed above. Line 10 offers an estimated greedy optimal policy π̂h. The associated value
function V̂h is obtained in Line 11.

Theoretical Result. We establish the suboptimality bound for Algorithm 3.
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Algorithm 3 DOCE-PLSVI
1: Input: Offline data D = {(sk

h, a
k
h, rh(s

k
h, a

k
h))}

H,K
h=1,k=1

2: Initialize: V̂H+1(s) = 0 for all s
3: for h = H,H − 1 . . . , 1 do
4: Λh =

∑K
k=1 ϕ(sk

h, a
k
h)ϕ(s

k
h, a

k
h)

⊤ + λI

5: ŵh(b) = Λ−1
h

∑K
k=1 ϕ(sk

h, a
k
h)u

(
V̂h+1(s

k
h+1) − b

)
6: θ̂h = Λ−1

h

∑K
k=1 ϕ(sk

h, a
k
h)rh(s

k
h, a

k
h)

7: Γh(·, ·) = β
√

ϕ(·, ·)⊤Λ−1
h ϕ(·, ·)

8: Qh(·, ·) = ϕ(·, ·)⊤θ̂h + supb∈[0,H−h]

{
b + ϕ(·, ·)⊤ŵh(b)

}
− Γh(·, ·)

9: Q̂h(·, ·) = clip
{
Qh(·, ·), [0, H − h + 1]

}
10: π̂h(·|·) = argmaxπh

〈
Q̂h(·, ·), πh(·|·)

〉
A

11: V̂h(·) =
〈
Q̂h(·, ·), π̂h(·|·)

〉
A

12: end for
13: Return: π̂ = {π̂h}H

h=1 .

Algorithm 4 SOCE-PLSVI
1: Input: Offline data D =

{(
sk
h, a

k
h, rh(s

k
h, a

k
h)

)}H,K

h=1,k=1

2: Initialize: V̂H+1(s, b) = u(−b) for all (s, b)
3: for h = H,H − 1 . . . , 1 and all b ∈ Nb do
4: Λh =

∑K
k=1 ϕ(sk

h, a
k
h)ϕ(s

k
h, a

k
h)

⊤ + λI

5: ŵh(b) = Λ−1
h

∑K
k=1 ϕ(sk

h, a
k
h)V̂h+1(s

k
h+1, b − rh(s

k
h, a

k
h))

6: Γh(·, ·) = β
√

ϕ(·, ·)⊤Λ−1
h ϕ(·, ·)

7: Qh(·, ·, b) = ϕ(·, ·)⊤ŵh(b) − Γh(·, ·)
8: Q̂h(·, ·, b) = clip

{
Qh(·, ·, b), [u(−b), u(H − h + 1 − b)]

}
9: π̂h(·|·, b) = argmaxπh

〈
Q̂h(·, ·, b), πh(·|·, b)

〉
A

10: V̂h(·, b) =
〈
Q̂h(·, ·, b), π̂h(·|·, b)

〉
A

11: end for
12: b̂1 = argmaxb∈Nb

{
b + V̂1(s1, b)

}
13: Return: π̂ = {π̂h}H

h=1 , b̂1 .

Theorem 5.1 For the offline static-OCE RL with linear function approximation, with probability at
least 1− δ, for δ ∈ (0, 1), the learned policy π̂ via Algorithm 3 admits the suboptimality bound

SubOptD(π̂) ≤ Õ
(
d
∑H

h=1[1 + u(H − h)]Eπ∗

[√
ϕ(sh, ah)⊤Λ

−1
h ϕ(sh, ah)

∣∣∣s1]),
where Λh ←

∑K
k=1 ϕ(s

k
h, a

k
h)ϕ(s

k
h, a

k
h)

⊤ + λI, λ = 1. And let β = cd[1 + u(H −
h)]
√
log(2dHKδ−1),where c is a constant satisfying c > 0 and 12 log(64c2) + 46 ≤ c2

4 . Õ
hides logarithmic dependence on H, d,K, and 1/δ.

Like the tabular dynamic-OCE RL, the result in Theorem 5.1 explicitly depends on the utility func-
tion u used in the OCE, thereby capturing the effect of risk. By appropriately selecting parame-

ters, we can achieve a suboptimality bound Õ(d)u(H)
∑H

h=1 Eπ∗ [
√
ϕ(sh, ah)⊤Λ

−1
h ϕ(sh, ah)|s1],

matching prior risk-sensitive offline RL algorithms (Zhang et al., 2024) by taking u(t) = 1
α (e

αt−1).
When different utility functions u are chosen, the bound naturally adapts to the corresponding
risk measure. In particular, setting u(t) = t reduces the result to the offline risk-neutral RL,

Õ(dH)
∑H

h=1 Eπ∗ [
√
ϕ(sh, ah)⊤Λ

−1
h ϕ(sh, ah)|s1] (Jin et al., 2021). Therefore, our algorithm at-

tains the same maximal sample complexity as standard offline RL algorithms, augmented by an
additional risk-sensitive term reflecting the influence of risk preferences in OCE.

Compared with Algorithm 1, Algorithm 3 provides a more general framework capable of handling
complex high-dimensional state and action spaces. When ϕ(s, a) = e(s,a) and d = |S| · |A|,
we have Λh = diag({Nh(s, a) + λ}(s,a)∈S×A), by the definition of Λh. Consequently, we have

Eπ∗ [
√
ϕ(sh, ah)⊤Λ

−1
h ϕ(sh, ah) | s1] = (Nh(sh, ah) + λ)−1/2. Substituting this expression into

our suboptimality bound in Theorem 5.1 and following the proof in Appendix B.2 yields an upper
bound on suboptimality equivalent to Õ(SA)u(H)

∑H
h=1

√
2C∗SK−1 log(SAHKδ−1). In prac-

tical scenarios, the feature dimension d is not necessarily large, and thus the result in Theorem 3.1
can match the result in Theorem 5.1.

To the best of our knowledge, this is the first effective OCE-RL algorithm with linear function ap-
proximation, either for online or offline settings. Since we proposed a completely new method of
function approximation, it requires totally new function class, which is significant in the theoretic
analysis, leading to novel methods of bounding the ε−covering number. The detailed proof is pro-
vided in Appendix D.2.

5.2 STATIC-OCE RL LEAST-SQUARES VALUE ITERATION

Algorithm. To derive a gengeral and practiacl risk-sensitive RL algorithm, we propose the
pessimistic value iteration with linear function approximation for the static-OCE RL, termed
Static-OCE Pessimistic Least-Squares Value Iteration (SOCE-PLSVI). Based on the linear struc-
ture of the transition model, letting b′ = b − rh(s, a), there is Es′∼Ph(·|s,a)[V̂h+1

(
s′, b′)] =∫

S [V̂h+1

(
s′, b′)]⟨µh(s

′), ϕ(s, a)⟩ds′ = ⟨w(b), ϕ(s, a)⟩, where w(b) :=
∫
S [V̂h+1

(
s′, b′)]µh(s

′)ds′.
Then, we can perform a ridge regression via finding the estimated ŵh(b) to solve

min
w(b)∈Rd

{ K∑
k=1

[
V̂h+1

(
skh+1, b− rh(skh, akh)

)
− ϕ(skh, akh)⊤w(b)

]2
+ λ∥w(b)∥22

}
.
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Therefore, we have ϕ(skh, a
k
h)

⊤ŵ(b) ≈ Es′∼Ph(·|s,a)[V̂h+1

(
s′, b − rh(s, a))]. Unlike the dynamic-

OCE RL algorithm in Algorithm 3, with the ridge regressions above, we do not need to estimate
Ph and rh separately. In Algorithm 4, Lines 4 and 5 implements the estimation for the least-square
problem. Line 6 builds the bonus term, denoted by Γh(·, ·) that captures the estimation uncertainty
with the station-action pair (s, a). In the bouns term, β is set to beO(d·u(H−h)

√
log(2dHKδ−1))

based on the utility function u. Line 7 and Line 8 implement the estimated Q-function via Bellman
equation, incorporating the influence of both risk and pessimism. Lines 9 and 10 respectively derive
the estimated optimal policy π̂h and the value function V̂h at step h. The optimal initial budget b1
in Algorithm 4 is estimated in Line 12. With the budget b, which is updated starting from the initial
value b̂1 by b̂h+1 = b̂h − rh, we obtain the history-dependent policy π̂(·|·, b). Notably, Algorithm 4
leverages the parameter b to avoid computing the OCE at every step. Similar to the tabular setting,
this simplification comes at the expense of enlarging the state space.

Theoretical Result. Next, we present the suboptimality bound for Algorithm 4.
Theorem 5.2 For the offline static-OCE RL with linear function approximation, with probability at
least 1− δ, for δ ∈ (0, 1), the learned policy π̂ via Algorithm 4 admits the suboptimality bound

SubOptS(π̂) ≤ Õ
(
d
∑H

h=1 u(H − h)Eπ∗

[√
ϕ(sh, ah)⊤Λ

−1
h ϕ(sh, ah)

∣∣∣s1, b∗1]),
where b∗1 = argmaxb1∈[0,H]

{
b1 + V ∗

1 (s1, b1)
}

. And let Λh =
∑K

k=1 ϕ(s
k
h, a

k
h)ϕ(s

k
h, a

k
h)

⊤ + λI,
λ = 1, and β = cd · u(H − h)

√
log(2dHKδ−1), where c is a constant satisfying c > 0 and

8 log(64c2) + 34 ≤ c2

4 . Õ hides logarithmic dependence on H, d,K, and 1/δ.

The result explicitly depends on the utility function u and the optimal initial budget b∗1, reflecting the
global consideration of risk in the problem. Theorem 5.2 indicates that Algorithm 4 achieves a sub-

optimality upper bound of Õ(d)u(H)
∑H

h=1 Eπ∗ [
√
ϕ(sh, ah)⊤Λ

−1
h ϕ(sh, ah)|s1, b∗1] with appropri-

ately chosen parameters. This result properly aligns with the findings of prior offline risk-sensitive
RL work (Zhang et al., 2024) when the OCE reduces to the entropic risk measure. Furthermore,

by setting u(t) = t, the bound simplifies to Õ(dH)
∑H

h=1 Eπ∗ [
√
ϕ(sh, ah)⊤Λ

−1
h ϕ(sh, ah)|s1, b∗1],

which matches the result of offline risk-neutral RL (Jin et al., 2021).

Moreover, compared with Algorithm 2, Algorithm 4 provides a more general version that can
handle complex high-dimensional state and action spaces. When choosing ϕ(s, a) = e(s,a) and
d = |S| · |A|, the matrix Λh takes the form Λh = diag({Nh(s, a)+λ}(s,a)∈S×A). Accordingly, we

obtain Eπ∗ [
√
ϕ(sh, ah)⊤Λ

−1
h ϕ(sh, ah) | s1, b∗1] = (Nh(sh, ah)+λ)

−1/2. If we insert this result into
the suboptimality bound of Theorem 5.2, and then follow the proof in Appendix B.4, we would ob-
tain the upper bound Õ(SA)u(H)

∑H
h=1

√
2C∗SK−1 log(SAHKδ−1). Thus, in applied settings

where the feature dimension d is not excessively large, the result in Theorem 3.2 can be viewed as a
specific instance of the more general bound in Theorem 5.2.

Following the idea of Theorem 2, we try to prove the result extended to stochastic reward cases.
However, it becomes even more challenging since the joint distribution of the transition and stochas-
tic reward is required. Therefore, we propose an innovative way of function approximation, which
simplifies the problem so that we still have E[Vh+1(s

′, b − r)] := ϕ(s, a)⊤w(b). Additionally, due
to our novel construction, we analyse the new covering number in-depth in the proof. The detailed
proof of Theorem 5.2 is provided in Appendix D.4.

6 CONCLUSION

Since the majority of existing research on risk-sensitive RL primarily focuses on online settings or
specific risk measures, we address the offline risk-sensitive RL based on OCE. We develop provably
efficient offline RL algorithms for both dynamic-OCE and static-OCE, supported by rigorous theo-
retical analysis of suboptimality bounds. Additionally, we obtain the first minimax lower bound on
the sample complexity of offline risk-sensitive RL. Finally, we propose the first provably efficient
risk-sensitive RL with linear function approximation for both dynamic and static OCE and provide
rigorous suboptimality bounds.
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A DISCUSSIONS OF OCE RL

A.1 PROPERTIES OF OCE

In this section, we demonstrate that the OCE can be reduced to various other risk measures, and
summarize some of its key properties. This highlights the flexibility, tractability, and expressive
power of the OCE framework.

Name OCEu(X) Utility functionu
—rule Mean E[X] u(t) = t
Entropic risk 1

α logE[eαX ] u(t) = 1
αe

αt − 1
α

Mean-Variance E[X]− cV ar(X) u(t) = (t− ct2)I{t ≤ 1
2c}+

1
4c I{t >

1
2c}

CVaR E[x|X ≤ min{x|FX(x) ≥ α}] u(t) = − 1
α [−t]+

Table 1: Special cases of OCE risk measure with corresponding u.

Furthermore, for any utility function u satisfying the above properties, a constant c ∈ R, and a
bounded random variable X , the OCE satisfies the following desirable properties:

1. OCEu(X + c) = OCEu(X) + c;
2. OCEu(c) = c;
3. If X1(ω) ≤ X2(ω) (ω ∈ Ω), OCEu(X1) ≤ OCEu(X2);
4. For any µ ∈ (0, 1), OCEu(µX1 + (1− µ)X2) ≥ µOCEu(X1) + (1− µ)OCEu(X2).

Moreover, for the optimization step in the OCE, when X is positive and bounded, it is sufficient to
optimize over a finite set of b values rather than the entire space of b, as shown in Lemma A.1.
Lemma A.1 For any bounded positive random variable X , where X ∈ [0,M ] for some M > 0,
we have,

OCEu(X) = sup
b∈R

{
b+ E

[
u(X − b)

]}
= sup

b∈[0,M ]

{
b+ E

[
u(X − b)

]}
.

Proof First, we define a function F (b) as follows:

F (b) = b+ E
[
u(X − b)

]
.

Then, we have
∂

∂b
F (b) = 1− E

[
u′(X − b)

]
.

Since 1 ∈ ∂u(0) and u(·) is concave, for any t < 0 we have u′(t) > 1. Therefore, if b > M , it
follows that u′(X − b) > 1, which implies ∂

∂bF (b) < 0. This shows that F (b) is decreasing for
b > M , and hence its supremum is attained at b ≤M . Similarly, if b < 0, we have u′(X − b) < 1,
which implies ∂

∂bF (b) > 0. This means that F (b) is increasing for b < 0, and thus its supremum is
attained at b ≥ 0. Then, we conclude that

OCEu(X) = sup
b∈R

{
F (b)

}
= sup

b∈[0,M ]

{
b+ E

[
u(X − b)

]}
.

Then we finish the proof.

A.2 DISCUSSION OF STATIC-OCE AND AUGMDP

For the static-OCE setting, our objective is to maximize OCE{
∑H

i=1 ri}. With the definition of
OCE in Equation 1, we have

OCE∗
{ H∑

i=1

ri

}
=max

π∈Π2

max
b∈[0,H]

{
b+ E

[
u
( H∑

i=1

ri − b
)]}

= max
b∈[0,H]

{
b+max

π∈Π2

E
[
u
( H∑

i=1

ri − b
)]}

.
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There have been lots of methods proposed to solve the optimization problem of b. Thus, the rest of
our task is to solve maxπ∈Π2

E[u(
∑H

i=1 ri − b)]. Following the idea of RL, we define V π
1 (s1, b) =

E[u(
∑H

i=1 ri − b)]. Then we can use dynamic programming to obtain V ∗
1 (s1, b). Following the

Augmented-MDP proposed by Bäuerle & Ott (2011); Bäuerle & Glauner (2021), we have

OCE∗
{ H∑

i=1

ri

}
= max

b∈[0,H]

{
b+ V π∗

1 (s1, b)
}

= max
b∈[0,H]

{
b+ V ∗

1 (s1, b)
}

Under the setting of AugMDP, we have a history-independent policy π(·|s, b), regarding b as an
augmented state. However, from the aspect of the original MDP, π(·|s, b) is actually a history-
dependent policy. Since we have shown that the optimal policy π∗(·|s, b) is history-dependent, we
can conclude that no history-independent policy could exceed the history-dependent policy on the
original MDP. To explain this, considering the CVaR risk measure, we use the following MDP as an
example:

𝑠𝑠1

𝑠3

𝑠2

𝑠4

𝑠7

𝑠5

𝑠6 𝑠𝑠1

Figure 1: An MDP with the history-dependent optimal CVaR policy.

In this MDP, there are seven states (s1, s2, . . . , s7) in the state space S and two actions (a1, a2) in
the action space A, we have

P(s1|s5, a) = P(s1|s6, a) = P(s1|s7, a) = 1, ∀a ∈ A
P(s2|s1, a) = P(s3|s1, a) = 0.5, ∀a ∈ A
P(s4|s2, a) = P(s4|s3, a) = 1, ∀a ∈ A
P(s5|s4, a1) = 0.75, P(s7|s4, a1) = 0.25, P(s6|s4, a2) = 1

and
r(s1, a) = r(s3, a) = r(s4, a) = r(s7, a) = 0, ∀a ∈ A
r(s2, a) = 1, r(s5, a) = 1.5, r(s6, a) = 0.5, ∀a ∈ A.

And we set H = 4. Based on this MDP, we can find that only the action at step h = 3 will influence
CVaR(

∑H
h=1 rh). Therefore, through computation, we can easily find that CVaR(

∑H
h=1 rh) = 0.5

for all possible history-independent policies π3(·|sh=3) at step h = 3. Then we study the history-
dependent policy defined as π3(·|sh=2, sh=3). We define

π3(a1|sh=2 = s3, sh=3 = s4) = 1

π3(a2|sh=2 = s2, sh=3 = s4) = 1.

By taking this history-dependent policy, we have the accumulated reward of the total 4 steps:
H∑

h=1

rh =

{
0, w.r.p. 18
1.5, w.r.p. 78 .
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Then we have CVaR(
∑H

h=1 rh) = 0.75. Therefore, we successfully constructed an MDP, where
there is at least one history-dependent policy that surpasses all the history-independent policies.
This shows that the optimal policy of static-OCE is history-dependent.

A.3 COMPARISON BETWEEN DYNAMIC-OCE RL AND STATIC-OCE RL

The dynamic-OCE formulation corresponds to the risk-sensitive RL objective commonly referred to
as ”dynamic risk” (also known as iterated risk). In this setting, the optimization objective is

JR =OCEu

{
r1(s1, a1) + OCEu

s2∼P1(·|s1,a1)

{
r2(s2, a2) + OCEu

s3∼P2(·|s2,a2)

{
r3(s3, a3)+

{
· · ·OCEu

sH∼PH−1(·|sH−1,aH−1){rH(sH , aH)}
}}}}

.

A key advantage of the dynamic (iterated) risk is the existence of Bellman equations and opti-
mal Markovian policies, which allow direct adaptations of standard RL algorithms. To illustrate,
consider the widely used mean-variance risk measure. By choosing u(t) = (t − ct2) I{t ≤
1
2c}+

1
4c I{t >

1
2c}, the dynamic-OCE objective reduces to

JR =

H∑
i=1

E[ri]−
H∑
i=1

Var[ri].

In contrast, under the static-OCE setting, when reduced to the mean-variance measure, the objective
becomes

JG = E
[ H∑

i=1

ri

]
−Var

[ H∑
i=1

ri

]
.

In practice, decision-making often involves balancing the expected cumulative reward against its
overall variance. Due to the properties of variance, the dynamic-OCE formulation effectively be-
haves as a step-wise greedy strategy: it separately accounts for the variance of each stage reward.
Therefore, unlike the static-OCE formulation, the dynamic-OCE formulation also implicitly incor-
porates covariance terms across different time steps. This makes dynamic-OCE potentially less
stable, being overly aggressive in some cases and overly conservative in others, compared to the
static-OCE formulation. Moreover, when OCE reduces to CVaR, the dynamic-OCE formulation
becomes particularly difficult to interpret, as CVaR lacks favorable linearity properties. This further
highlights that dynamic-OCE risk, while algorithmically convenient, is generally less interpretable
than its static-OCE counterpart.

B PROOFS FOR SECTION 3

B.1 LEMMAS FOR THEOREM 3.1

Typically, the suboptimal relates to the model evaluation error. Here, we define ιh as the error raised
by the estimated Bellman equation at step h as

ιh(s, a) = rh(s, a) + OCEu
s′∼P(·|s,a)

{
V̂ π
h+1(s

′)
}
− Q̂h(s, a), (7)

Based on the dynamic-OCE RL setting, we first define the Bellman operator,

Bhf(s, a) = rh(s, a) + OCEu
s′∼Ph(·|s,a)

{
f(s′)

}
B̂hf(s, a) = r̂h(s, a) + OCEu

s′∼P̂h(·|s,a)

{
f(s′)

}
.

Then, we define the event Eh.
Definition B.1 Under the dynamic-OCE setting, define the event Eh,

Eh =
{∣∣∣BhV̂h+1(s, a)− B̂hV̂h+1(s, a)

∣∣∣ ≤ Γh(s, a)
}
,

where {Γh}Hh=1 is the bonus, satisfies P(
⋂H

h=1 Eh) ≥ 1− δ.
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With event Eh, we can find that the upper bound of suboptimality is related to the Bellman estimation
error.
Lemma B.1 Under the dynamic-OCE setting, we have

BhV
π∗

h+1(sh, ah)− BhV̂h+1(sh, ah) ≤ Es′∼Ph(·|s,a)

[
V π∗

h+1(sh+1)− V̂h+1(sh+1)
]
.

Proof For the left side of the inequality, we have

BhV
π∗

h+1(sh, ah)− BhV̂h+1(sh, ah)

=
(
rh(sh, ah) + OCEu

s′∼Ph(·|s,a)
{
V π∗

h+1(sh+1)
})

−
(
rh(sh, ah) + OCEu

s′∼Ph(·|s,a)
{
V̂h+1(sh+1)

})
= sup

b∈[0,H]

{
b+ Es′∼Ph(·|s,a)

[
u(V π∗

h+1(sh+1)− b)
]}

− sup
b∈[0,H]

{
b+ Es′∼Ph(·|s,a)

[
u(V̂h+1(sh+1)− b)

]}
.

Then by setting b† = argmaxb∈[0,H]{b+ Es′∼Ph(·|s,a)[u(V
π∗

h+1(sh+1)− b)]}, we have

BhV
π∗

h+1(sh, ah)− BhV̂h+1(sh, ah)

≤Es′∼Ph(·|s,a)

[
u
(
V π∗

h+1(sh+1)− b†
)
− u
(
V̂h+1(sh+1)− b†

)]
≤Es′∼Ph(·|s,a)

[
V π∗

h+1(sh+1)− V̂h+1(sh+1)
]
.

The last inequality holds due to 1 ∈ ∂u(0), 0 ≤ V̂h(sh) ≤ V π∗

h (sh) ≤ H , as well as the concavity
and non-decreasing property of the utility function u. Here we finish the proof.

Lemma B.2 Under the dynamic-OCE setting, there is

V π∗

h (sh)− V̂h(sh)
≤
〈
Es′∼Ph(·|s,a)

[
V π∗

h+1(sh+1)− V̂h+1(sh+1)
]
+ ιh(sh, ·), π∗(·|sh)

〉
A

−
〈
Q̂h(sh, ·), π∗(·|sh)− π̂(·|sh)

〉
A.

Proof By the Bellman equation, there is

V π∗

h (sh)− V̂h(sh)
=
〈
Qπ∗

h (sh, ·), π∗(·|sh)
〉
A −

〈
Q̂h(sh, ·), π̂(·|sh)

〉
A

=
〈
Qπ∗

h (sh, ·), π∗(·|sh)
〉
A −

〈
Q̂h(sh, ·), π∗(·|sh)

〉
A

+
〈
Q̂h(sh, ·), π∗(·|sh)

〉
A −

〈
Q̂h(sh, ·), π̂(·|sh)

〉
A.

Then by rearranging the terms, we have

V π∗

h (sh)− V̂h(sh)
=
〈
Qπ∗

h (sh, ·)− Q̂h(sh, ·), π∗(·|sh)
〉
A −

〈
Q̂h(sh, ·), π∗(·|sh)− π̂(·|sh)

〉
A

=
〈
BhV

π∗

h (sh, ·)− BhV̂h(sh, ·) + ιh(sh, ·), π∗(·|sh)
〉
A −

〈
Q̂h(sh, ·), π∗(·|sh)− π̂(·|sh)

〉
A

≤
〈
Es′∼Ph(·|s,a)

[
V π∗

h+1(sh+1)− V̂h+1(sh+1)
]
+ ιh(sh, ·), π∗(·|sh)

〉
A

−
〈
Q̂h(sh, ·), π∗(·|sh)− π̂(·|sh)

〉
A,

where the last inequality holds due to Lemma B.1. This completes the proof.

Lemma B.3 Under the dynamic-OCE setting, we have

V ∗
1 (s1)− V̂1(s1) ≤

H∑
h=1

Eπ∗
[
ι(ah, ah)|s1

]
.
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Proof In order to prove this lemma, we first define(
Jhf

)
(s) =

〈
f(s, ·), π∗(·|s)

〉
A(

Phf
)
(s, a) = Es′∼Ph(·|s,a)

[
f(s)

]
.

By recursively using Lemma B.2 and the previous definitions, there is

V ∗
1 (s1)− V̂1(s1)

≤
( H∏

h=1

JhPh

)(
V ∗
H+1(sH+1)− V̂H+1(sH+1)

)
+

H∑
h=1

( h−1∏
i=1

JhPh

)(
Jhιh(sh, ah)

)
+

H∑
h=1

( h−1∏
i=1

JhPh

)〈
Q̂h(sh, ·), π∗(·|sh)− π̂(·|sh)

〉
A

=

H∑
h=1

( h−1∏
i=1

JhPh

)(
Jhιh(sh, ah)

)
+

H∑
h=1

( h−1∏
i=1

JhPh

)〈
Q̂h(sh, ·), π∗(·|sh)− π̂(·|sh)

〉
A

=

H∑
h=1

Eπ∗
[
ι(ah, ah)

∣∣s1]+ H∑
h=1

Eπ∗

[〈
Q̂h(sh, ·), π∗(·|sh)− π̂(·|sh)

〉
A

∣∣∣s1]
≤

H∑
h=1

Eπ∗
[
ι(ah, ah)

∣∣s1],
where the first equation holds since V ∗

H+1(sH+1) = V̂H+1(sH+1) = 0 for any sH+1 ∈ S; and the
last inequality holds since π̂(·|sh) = argmaxπ̂⟨Q̂h(sh, ·), π̂(·|sh)⟩A implies ⟨Q̂h(sh, ·), π∗(·|sh)−
π̂(·|sh)⟩A ≤ 0. This completes the proof.

Definition B.2 With the dynamic-OCE setting, we define a new probability measure,

Ch(s
′|s, a) = Ph(s

′|s, a)Bh+1(s
′),

where Bh+1(s
′) ∈ ∂u(V π̂

h+1(s
′) − bh+1), such that Es′∼Ph(s′|s,a)[Bh+1(s

′)] = 1. Due to the
nondecreasing property of the utility function u, for any s′ ∈ S, Bh+1(s

′) ≥ 0. This implies∑
s′∈S Ch(s

′|s, a) = 1.

Lemma B.4 Under the dynamic-OCE setting, it always holds that

OCEu
s′∼Ph(·|s,a)

{
V̂h+1(sh+1)

}
−OCEu

s′∼Ph(·|s,a)

{
V π̂
h+1(sh+1)

}
≤Es′∼Ch(·|s,a)

[
V̂h+1(sh+1)− V π̂

h+1(sh+1)
]
,

where Ch(·|s, a) is a probability measure defined in Definition B.2.

Proof Setting b̂h+1 = argmaxb∈[0,H−h]{b + Es′∼Ph(·|s,a)[V̂h+1(sh+1) − b]} and bπ̂h+1 =

argmaxb∈[0,H−h]{b+ Es′∼Ph(·|s,a)[V
π̂
h+1(sh+1)− b]}, we have

OCEu
s′∼Ph(·|s,a)

{
V̂h+1(sh+1)

}
−OCEu

s′∼Ph(·|s,a)

{
V π̂
h+1(sh+1)

}
= max

b∈[0,H−h]

{
b+ Es′∼Ph(·|s,a)

[
u
(
V̂h+1(sh+1)− b

)]}
− max

b∈[0,H−h]

{
b+ Es′∼Ph(·|s,a)

[
u
(
V π̂
h+1(sh+1)− b

)]}
=
{
b̂h+1 + Es′∼Ph(·|s,a)

[
u
(
V̂h+1(sh+1)− b̂h+1

)]}
−
{
bπ̂h+1 + Es′∼Ph(·|s,a)

[
u
(
V π̂
h+1(sh+1)− bπ̂h+1

)]}
≤
(
b̂h+1 − bπ̂h+1

)
+ Es′∼Ph(·|s,a)

[
Bh+1(sh+1)

(
V̂h+1(sh+1)− V π̂

h+1(sh+1)−
(
b̂h+1 − bπ̂h+1

))]
.
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Then, since the last inequality holds due to the concavity of u(·), which leads to the inequality
u(y) ≤ u(x) + z(y − x), z ∈ ∂u(x), we have

OCEu
s′∼Ph(·|s,a)

{
V̂h+1(sh+1)

}
−OCEu

s′∼Ph(·|s,a)

{
V π̂
h+1(sh+1)

}
=
(
1− Es′∼Ph(·|s,a)

[
Bh+1(sh+1)

])(
b̂h+1 − bπ̂h+1

)
+ Es′∼Ph(·|s,a)

[
Bh+1(sh+1)

(
V̂h+1(sh+1)− V π̂

h+1(sh+1)
)]

=Es′∼Ch(·|s,a)

[
V̂h+1(sh+1)− V π̂

h+1(sh+1)
]
.

The last equation holds because of Definition B.2 and the fact that 1−Es′∼Ph(·|s,a)
[
Bh+1(sh+1)

]
=

0. This completes the proof.

Definition B.3 Under the definition of dynamic-OCE and Definition B.2. We define a new state-
action distribution,

ωh(sh, ah) =


1, h = 1

C1(s2|s1, a1), h = 2∑
s2∈S

∑
s3∈S
· · ·

∑
sh−1∈S

C1(s2|s1, a1)C2(s3|s2, a2) . . .Ch−1(sh|sh−1, ah−1), h ≥ 3,

where Ch(·|s, a) is a probability measure defined in Definition B.2

Lemma B.5 Under the dynamic-OCE setting, we have

V̂1(s1)− V π̂
1 (s1) ≤

H∑
h=1

Eωh

[
− ιh(sh, ah)

∣∣s1],
where we slightly abuse the notation E(sh,ah)∼ωh(·,·) by Eωh

.

Proof By the definition of V̂1(s1) and Q̂1(s1, a1), we have

V̂1(s1)− V π̂
1 (s1)

≤Q̂1(s1, a1)−Qπ̂
1 (s1, a1)

=
(
B̂1V̂2

)
(s1, a1)− Γ1(s1, a1)−

(
B1V

π̂
2

)
(s1, a1)

=
(
B̂1V̂2

)
(s1, a1)−

(
B1V̂2

)
(s1, a1) +

(
B1V̂2

)
(s1, a1)−

(
B1V

π̂
2

)
(s1, a1)− Γ1(s1, a1)

=
(
B̂1V̂2

)
(s1, a1)−

(
B1V̂2

)
(s1, a1) + B1

(
V̂2 − V π̂

2

)
(s1, a1)− Γ1(s1, a1),

where the first inequality holds because of a1 = argmaxa∈A Q̂1(s1, a) such that V π̂
1 (s1) =

maxa∈AQ
π̂
1 (s1, a) ≥ Qπ̂

1 (s1, a1). Then by plugging in the definition of Bh,

V̂1(s1)− V π̂
1 (s1)

≤
(
B̂1V̂2

)
(s1, a1)−

(
B1V̂2

)
(s1, a1)

+ OCEu
s′∼P1(·|s,a)

{
V̂2(s2)

}
−OCEu

s′∼P1(·|s,a)

{
V π̂
2 (s2)

}
− Γ1(s1, a1)

≤
(
B̂1V̂2

)
(s1, a1)−

(
B1V̂2

)
(s1, a1) + Es′∼Ch(·|s,a)

[
V̂2(s2)− V π̂

2 (s2)
]
− Γ1(s1, a1).

The last inequality holds based on Lemma B.4. By recursively using Equation B.5, based on Defini-
tion B.3, Equation 7 and the fact that V̂H+1(s) = V π̂

H+1(s) = 0 for any s ∈ S, we finish the proof
of Lemma B.5. This completes the proof.

Lemma B.6 Under event Eh, for all s ∈ S, a ∈ A, and h ∈ [H], we have

ιh(s, b, a) ≥ 0.
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Proof If Qh(s, a) < 0, by the definition of Q̂h(s, a) in Algorithm 3, we have

Q̂(s, a) = max
{
min

{
Qh(·, ·), H − h+ 1

}
, 0
}
= 0.

This leads to
ιh(s, a) = BhV̂h+1(s) ≥ 0.

If Qh(s, a) ≥ 0, we have

Q̂(s, a) = max
{
min

{
Qh(·, b, ·), H − h+ 1

}
, 0
}
≤ Qh(s, a).

Then, we have

ιh(s, b, a) ≥ BhV̂h+1(s)−
(
B̂hV̂h+1(s)− Γh(s, a)

)
≥ 0,

where the second inequality holds following the definition of Eh. Therefore, we complete the proof
of Lemma B.6.

By Lemma B.7, the upper bound of suboptimality depends on bonus Γh and BhV̂h+1(s, a) −
B̂hV̂h+1(s, a).
Lemma B.7 With probability at least 1− δ and the dynamic-OCE setting, there is∣∣∣BhV̂h+1(s, a)− B̂hV̂h+1(s, a)

∣∣∣ ≤ Γh(s, a),∀h ∈ [H],

where {Γh}Hh=1 is the bonus. Then we have the suboptimal of Algorithm 1 and Algorithm 3 bounded
by

SubOptD(π̂) ≤
H∑

h=1

Eπ∗

[
ιh(sh, ah)

∣∣s1],
where Eπ∗ is based on trajectory generated by π∗.

Notice that Lemma B.7 holds for both tabular and linear function approximation settings.
Proof Based on the definition of suboptimality, we can prove this lemma by

SubOptD(π̂) =V
∗
1 (s1)− V π̂

1 (s1)

=V ∗
1 (s1)− V̂1(s1) + V̂1(s1)− V π̂

1 (s1)

≤
H∑

h=1

Eπ∗
[
ι(ah, ah)

∣∣s1]+ H∑
h=1

Eωh

[
− ιh(sh, ah)

∣∣s1]
≤

H∑
h=1

Eπ∗
[
ι(ah, ah)

∣∣s1],
where the first inequality holds due to Lemma B.3 and Lemma B.5, and the last inequality holds due
to Lemma B.6 guarantees

∑H
h=1 Eωh

[
− ιh(sh, ah)

∣∣s1] ≤ 0. Here we finish the proof of Lemma B.7.

Lemma B.8 For any δ ∈ (0, 1), any (s, a) ∈ S ×A, h ∈ [H], and b∗ ∈ [0, H−h], with probability
at least 1− δ, the following inequality holds that

Es′∼Ph(·|s,a)

[
u(V̂h+1(sh+1)− b∗)

]
− Es′∼P̂h(·|s,a)

[
u(V̂h+1(sh+1)− b∗)

]
≤u(H − h)

√
2 log |S||A|HK

δ

max{1, Nh(s, a)}
.

Proof When Nh(s, a) = 0, we have

Es′∼Ph(·|s,a)

[
u
(
V̂h+1(sh+1)− b∗

)]
− Es′∼P̂h(·|s,a)

[
u
(
V̂h+1(sh+1)− b∗

)]
≤u(H − h− b∗)− u(−b∗)

≤
[
u(H − h− b∗)− u(−b∗)

]√ 2 log |S||A|HK
δ

max{1, Nh(s, a)}
,
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where the first inequality holds since the utility function u is nondecreasing and V̂h+1(s) ∈ [0, H −
h]. The last inequality holds due to the fact that log |S||A|HK

δ > 1. When Nh(s, a) ≥ 1, we have

Es′∼P̂h(·|s,a)

[
u
(
V̂h+1(sh+1)− b∗

)]
=

1

Nh(s, a)

K∑
k=1

I
(
(skh, a

k
h) = (s, a)

)
u
(
V̂h+1(s

k
h+1)− b∗

)
.

Then by setting

Xi =E
[
I
(
(skh, a

k
h) = (s, a)

)
u
(
V̂h+1(s

k
h+1)− b∗

)]
− I
(
(skh, a

k
h) = (s, a)

)
u
(
V̂h+1(s

k
h+1)− b∗

)
,

we have
|Xi| ≤ u(H − h− b∗)− u(−b∗),

since V̂h+1(s) ∈ [0, H − h]. And it is evident that for any i ̸= j, Xi and Xj are independent.
Therefore, with Hoeffding’s inequality, with probability at least 1− δ

|S||A|HK , we have

K∑
i=1

Xi

=Nh(s, a)Es′∼Ph(·|s,a)

[
u
(
V̂h+1(sh+1)− b∗

)]
−

K∑
k=1

I
(
(skh, a

k
h) = (s, a)

)
u
(
V̂h+1(s

k
h+1)− b∗

)
=Nh(s, a)Es′∼Ph(·|s,a)

[
u
(
V̂h+1(sh+1)− b∗

)]
−Nh(s, a)Es′∼P̂h(·|s,a)

[
u
(
V̂h+1(sh+1)− b∗

)]
≤
[
u(H − h− b∗)− u(−b∗)

]√
2Nh(s, a) log

|S||A|HK
δ

.

Therefore, we can conclude the following result with probability at least 1− δ
|S||A|HK ,

Es′∼Ph(·|s,a)

[
u
(
V̂h+1(sh+1)− b∗

)]
− Es′∼P̂h(·|s,a)

[
u
(
V̂h+1(sh+1)− b∗

)]
≤
[
u(H − h− b∗)− u(−b∗)

]√ 2 log |S||A|HK
δ

max{1, Nh(s, a)}
.

This completes the proof of Lemma B.8.
Lemma B.9 For any δ ∈ (0, 1), any (s, a) ∈ S × A, and h ∈ [H], with probability at least 1 − δ,
the following inequality holds that

rh(s, a)− r̂h(s, a) ≤

√
1

max{1, Nh(s, a)}
.

Proof When Nh(s, a) = 0, r̂h(s, a) = 0, we have

rh(s, a)− r̂h(s, a)
=rh(s, a)

≤1

=

√
1

max{1, Nh(s, a)}
,

where the first inequality holds since rh(s, a) ∈ [0, 1]. The last inequality holds due to the fact that
log |S||A|HK

δ > 1. When Nh(s, a) ≥ 1, we have

rh(s, a)− r̂h(s, a) = 0 ≤

√
1

max{1, Nh(s, a)}
.

Then we complete the proof of Lemma B.9.
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B.2 PROOF OF THEOREM 3.1

With Lemma B.7, we need to bound BhV̂h+1(s, a)− B̂hV̂h+1(s, a), considering the definition of ιh.
Based on the setting of dynamic-OCE, we have,

BhV̂h+1(s, a)− B̂hV̂h+1(s, a)

=rh(s, a)− r̂h(s, a) + OCEu
s′∼Ph(·|s,a)

{
V̂h+1(sh+1)

}
−OCEu

s′∼P̂h(·|s,a)

{
V̂h+1(sh+1)

}
=rh(s, a)− r̂h(s, a) + max

b∈[0,H−h]

{
b+ Es′∼Ph(·|s,a)

[
u
(
V̂h+1(sh+1)− b

)]}
− max

b∈[0,H−h]

{
b+ Es′∼P̂h(·|s,a)

[
u
(
V̂h+1(sh+1)− b

)]}
≤rh(s, a)− r̂h(s, a) + Es′∼Ph(·|s,a)

[
u
(
V̂h+1(sh+1)− b∗

)]
− Es′∼P̂h(·|s,a)

[
u
(
V̂h+1(sh+1)− b∗

)]
,

where the first inequality holds when b∗ = argmaxb∈[0,H−h]{b+Es′∼Ph(·|s,a)[u(V̂h+1(sh+1)−b)]}.
Then based on Lemma B.8 and Lemma B.9, with probability at least 1− δ, we have

BhV̂h+1(s, a)− B̂hV̂h+1(s, a)

≤

√
1

max{1, Nh(s, a)}
+
[
u(H − h− b∗)− u(−b∗)

]√ 2 log |S||A|HK
δ

max{1, Nh(s, a)}

≤

√
1

max{1, Nh(s, a)}
+
[
u(H − h)− u(h−H)

]√ 2 log |S||A|HK
δ

max{1, Nh(s, a)}
.

Therefore we succeed to upper bound BhV̂h+1(s, a)− B̂hV̂h+1(s, a). Then we can obtain
SubOptD(π̂)

≤2
H∑

h=1

[
u(H − h)− u(h−H)

]
Eπ∗

[√
1

max{1, Nh(s, a)}
+

√
2 log |S||A|HK

δ

max{1, Nh(s, a)}

∣∣∣∣∣s1, b∗1
]

≤2
H∑

h=1

[
u(H − h)− u(h−H)

]∑
s,a

dπ
∗

h (s, a)

(√
1

max{1, Nh(s, a)}
+

√
2 log |S||A|HK

δ

max{1, Nh(s, a)}

)

=2

H∑
h=1

[
u(H − h)− u(h−H)

]∑
s,a

√
dπ

∗

h (s, a)

(√
dπ

∗

h (s, a)

Kdµh(s, a)
+

√
2dπ

∗

h (s, a) log |S||A|HK
δ

Kdµh(s, a)

)
.

Due to the fact that dπ∗

h
(s,a)

dµ

h(s,a)
≤ C∗, we have

SubOptD(π̂)

≤2
H∑

h=1

∑
s,a

√
dπ

∗

h (s, a)

(√
C∗

K
+
[
u(H − h)− u(h−H)

]√2C∗ log |S||A|HK
δ

K

)

=2

H∑
h=1

∑
s,a

√
dπ

∗

h (s, a) · I
(
a = a∗s

)(√C∗

K
+
[
u(H − h)− u(h−H)

]√2C∗ log |S||A|HK
δ

K

)

≤2
H∑

h=1

√∑
s,a

dπ
∗

h (s, a) ·
∑
s,a

I
(
a = a∗s

)(√C∗

K
+
[
u(H − h)− u(h−H)

]√2C∗ log |S||A|HK
δ

K

)

=2

H∑
h=1

(√
C∗S

K
+
[
u(H − h)− u(h−H)

]√2C∗S log |S||A|HK
δ

K

)
,

where a∗s is sampled by a∗s ∼ π∗(·|s). Here we finish the proof.
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B.3 LEMMAS FOR THEOREM 3.2

For the dynamic-OCE formulation, an additional advantage is its natural compatibility with stochas-
tic rewards in risk-sensitive RL, which makes it both more practical and more general. Motivated by
this, we extend the setting to stochastic reward functions where rh ∼ R(·|s, a) in the proof. When
R(rh|s, a) = 1, the problem degenerates to the deterministic reward case introduced in the paper.
Therefore, in this section we provide a more general proof, which is an extension of Theorem 3.2.
We first define the estimated error of the Bellman equation with stochastic reward at step h for any
s, a, and b,

ιh(s, b, a) = Es′∼Ph(·|s,a),r∼Rh(·|s,a)

[
V̂h+1(s

′, b− r)
]
− Q̂h(s, b, a). (8)

In order to simplify the notations, we slightly abuse Ês′,r := Es′∼P̂h(·|s,a),r∼R̂h(·|s,a)[V̂h+1(s
′, b−r)].

Then, we define an event in order to upper-bound the suboptimality.
Definition B.4 Define an event E ′h,

E ′h =
{∣∣∣Esh+1,rh

V̂h+1(s, b, a)− Êsh+1,rh
V̂h+1(s, b, a)

∣∣∣ ≤ Γh(s, b, a)
}
,

where {Γh}Hh=1 is the bonus, satisfies P(
⋂H

h=1 E ′h) ≥ 1− δ.

Then we can start the proof.

Lemma B.10 By the definition of V̂h(s, b) and the static-OCE setting, we have

V π
1 (s1, b

∗
1)− V̂1(s1, b∗1)

=

H∑
h=1

Eπ

[
ιh(sh, bh, ah)

∣∣∣s1, b∗1]+ H∑
h=1

Eπ

[〈
Q̂h(sh, b

∗
h, ·), π(·|sh, b∗h)− π̂(·|sh, b∗h)

〉∣∣∣s1, b∗1].
Proof Letting ∆h(s, b) = ⟨Q̂h(sh, b

∗
h, ·), π(·|sh, b∗h)− π̂(·|sh, b∗h)⟩, we have

V π
h (sh, b

∗
h)− V̂h(sh, b∗h)

=
〈
Qπ

h(sh, b
∗
h, ·), π(·|sh, b∗h)

〉
−
〈
Q̂h(sh, b

∗
h, ·), π̂(·|sh, b∗h)

〉
=
〈
Qπ

h(sh, b
∗
h, ·), π(·|sh, b∗h)

〉
−
〈
Q̂h(sh, b

∗
h, ·), π(·|sh, b∗h)

〉
+
〈
Q̂h(sh, b

∗
h, ·), π(·|sh, b∗h)

〉
−
〈
Q̂h(sh, b

∗
h, ·), π̂(·|sh, b∗h)

〉
=
〈
Qπ

h(sh, b
∗
h, ·)− Q̂h(sh, b

∗
h, ·), π(·|sh, b∗h)

〉
+
〈
Q̂h(sh, b

∗
h, ·), π(·|sh, b∗h)− π̂(·|sh, b∗h)

〉
=
〈
Es′,r

[
V π
h (sh, b

∗
h)− V̂h(sh, b∗h)

]
+ ιh(s, b, ·), π(·|sh, b∗h)

〉
+∆h(s, b).

Therefore, we have

V π
h (sh, b

∗
h)− V̂h(sh, b∗h)

=
〈
Es′,r

[
V π
h (sh, b

∗
h)− V̂h(sh, b∗h)

]
+ ιh(s, b, ·), π(·|sh, b∗h)

〉
+∆h(s, b).

Since V π
H+1(sh, b

∗
h)− V̂H+1(sh, b

∗
h) = u(−b∗H+1)−u(−b∗H+1) = 0, by recursively applying Equa-

tion B.10, we can get

V π
1 (s1, b

∗
1)− V̂1(s1, b∗1)

=

H∑
h=1

Eπ

[
ιh(sh, bh, ah)

∣∣s1, b∗1]+ H∑
h=1

Eπ

[〈
Q̂h(sh, b

∗
h, ·), π(·|sh, b∗h)− π̂(·|sh, b∗h)

〉∣∣∣s1, b∗1].
This completes the proof of Lemma B.10.

Lemma B.11 Under the definitions of V ∗
1 (s1, b

∗
1) and V̂1(s1, b∗1), it is always true that

V ∗
1 (s1, b

∗
1)− V̂1(s1, b∗1) ≤

H∑
h=1

Eπ∗

[
ιh(sh, bh, ah)

∣∣∣s1, b∗1].
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Proof Using Lemma B.10 and the static-OCE setting, letting π = π∗, we have

V ∗
1 (s1, b

∗
1)− V̂1(s1, b∗1)

=

H∑
h=1

Eπ∗

[
ιh(sh, bh, ah)

∣∣s1, b∗1]
+

H∑
h=1

Eπ∗

[〈
Q̂h(sh, b

∗
h, ·), π∗(·|sh, b∗h)− π̂(·|sh, b∗h)

〉∣∣∣s1, b∗1]
≤

H∑
h=1

Eπ∗

[
ιh(sh, bh, ah)

∣∣s1, b∗1].
The last inequality holds because of the definition of π̂ = argmaxπ{⟨Q̂h(sh, b

∗
h, ·), π(·|sh, b∗h)⟩}

results in ⟨Q̂h(sh, b
∗
h, ·), π∗(·|sh, b∗h)− π̂(·|sh, b∗h)⟩ ≤ 0. This completes the proof.

Lemma B.12 Under event E ′h, for all s ∈ S, a ∈ A, b ∈ [0, 1], and h ∈ [H], we have
0 ≤ ιh(s, b, a) ≤ 2Γh(s, b, a).

Proof If Qh(s, b, a) < 0, by the definition of Q̂h(s, b, a) in Algorithm 4, we obtain

Q̂(s, b, a) = max
{
min

{
Qh(·, b, ·), u(H − h− b)

}
, u(−b)

}
= u(−b).

Furthermore, this leads to

ιh(s, b, a) = Esh+1,rh

[
V̂h+1(s

k
h+1, b− rh)

]
− u(−b) ≥ 0,

where the last inequality holds due to the fact that V̂h+1(s
k
h+1, b− rh) ≥ u(−b). If Qh(s, b, a) ≥ 0,

we have

Q̂(s, b, a) = max
{
min

{
Qh(·, b, ·), u(H − h− b)

}
, u(−b)

}
≤ Qh(s, b, a).

Then, we have

ιh(s, b, a) ≥Esh+1,rh

[
V̂h+1(s

k
h+1, b− rh)

]
−
(
Êsh+1,rh

[
V̂h+1(s

k
h+1, b− rh)

]
− Γh(s, b, a)

)
≥0,

where the second inequality holds, following the definition of E ′h.Therefore, we complete the proof
of ιh(s, b, a) ≥ 0. Then we will prove the other half of the inequality. On event E ′, by triangle
inequality we have

Êsh+1,rh
V̂h+1(s, b, a)− Γh(s, b, a) ≤ Esh+1,rh

V̂h+1(s, b, a).

This leads to
Qh(s, b, a) = Êsh+1,rh

V̂h+1(s, b, a)− Γh(s, b, a)

≤ Esh+1,rh
V̂h+1(s, b, a)

≤ u(H − h− b),

where the last inequality holds because of the definition of V̂h. Therefore, we have

Q̂ = max
{
min

{
Qh(·, b, ·), u(H − h− b)

}
, u(−b)

}
= max

{
Qh(·, b, ·), u(−b)

}
≥ Qh(s, b, a).

Applying the definition of ιh(s, b, a) in Equation 8, we have

ιh(s, b, a) = Esh+1,rh
V̂h+1(s

k
h+1, b− rkh)− Q̂h(s, b, a)

≤ Esh+1,rh
V̂h+1(s

k
h+1, b− rkh)−Qh(s, b, a)

= Esh+1,rh
V̂h+1(s

k
h+1, b− rkh)− Êsh+1,rh

V̂h+1(s
k
h+1, b− rkh) + Γ(s, b, a)

≤ 2Γh(s, b, a).

Therefore, on the event E ′h, we finish to prove 0 ≤ ιh(s, b, a) ≤ 2Γ(s, b, a).
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By the definition of suboptimality for static-OCE RL and event E ′h, we conclude the following
lemma.
Lemma B.13 Under the static-OCE setting, with probability at least 1− δ, there is∣∣∣Esh+1,rh

V̂h+1(s, b, a)− Êsh+1,rh
V̂h+1(s, b, a)

∣∣∣ ≤ Γh(s, b, a),∀h ∈ [H],

where {Γh}Hh=1 is the bonus, Then the suboptimality of Algorithm 2 and Algorithm 4 can be bounded
by

SubOptS(π̂) ≤
H∑

h=1

Eπ∗

[
ιh(sh, bh, ah)

∣∣∣s1, b∗1],
where Eπ∗ is with respect to the trajectory generated by π∗.

Lemma B.13 shows that the suboptimality is highly related to the estimated error of the Bellman
equation, which includes Esh+1,rh

V̂h+1(s, b, a) − Êsh+1,rh
V̂h+1(s, b, a) and the bonus Γh. Again, the

Lemma B.13 holds for both tabular and linear function approximation settings.
Proof SubOptS(π̂) can be split into two terms. By setting b∗1 = argmax{b+ V ∗

1 (s1, b)}, we have

SubOptS(π̂) = OCEu
{
R(π∗)

}
−OCEu

{
R(π̂)

}
= sup

b∈[0,H]

{
b+ V ∗

1 (s1, b)
}
− sup

b∈[0,H]

{
b+ V π̂

1 (s1, b)
}

≤
{
b∗1 + V ∗

1 (s1, b
∗
1)
}
−
{
b∗1 + V π̂

1 (s1, b
∗
1)
}

= V ∗
1 (s1, b

∗
1)− V π̂

1 (s1, b
∗
1)

= V ∗
1 (s1, b

∗
1)− V̂1(s1, b∗1) + V̂1(s1, b

∗
1)− V π̂

1 (s1, b
∗
1),

where R(π) =
∑H

h=1 rh with policy π. By applying Lemma B.10 with π = π̂, we have

V̂1(s1, b
∗
1)− V π̂

1 (s1, b
∗
1) = −

H∑
h=1

Eπ̂

[
ιh(sh, bh, ah)

∣∣∣s1, b∗1].
Then by using Lemma B.11 and Lemma B.12, on E ′h at every step,

SubOptS(π̂) ≤ V ∗
1 (s1)− V π̂

1 (s1)

= V ∗
1 (s1)− V̂1(s1) + V̂1(s1)− V π̂

1 (s1)

≤
H∑

h=1

Eπ∗

[
ιh(sh, bh, ah)

∣∣∣s1, b∗1]− H∑
h=1

Eπ̂

[
ιh(sh, bh, ah)

∣∣∣s1, b∗1]
≤

H∑
h=1

Eπ∗

[
ιh(sh, bh, ah)

∣∣∣s1, b∗1].
Here we finish the proof of Lemma B.13.

Lemma B.14 For any δ ∈ (0, 1), any (s, b, a) ∈ S ×A×Nb, and h ∈ [H], with the probability at
least 1− δ, we have

EhV̂h+1(s, b, a)− ÊhV̂h+1(s, b, a) ≤ u(H − h− b)

√
2 log |S||A|HK

δ

max{1, Nh(s, a)}
.

Proof When Nh(s, a) = 0, P̂h(·|s, a) = 0, we have

EhV̂h+1(s, b, a)− ÊhV̂h+1(s, b, a)

=EhV̂h+1(s, b, a)

≤u(H − h− b)

≤u(H − h− b)

√
2 log |S||A|HK

δ

max{1, Nh(s, a)}
,
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where the first inequality holds since at each step V̂h(s, b) is upper bounded. And the last inequality
above holds due to the fact that log |S||A|HK

δ > 1. When Nh(s, a) ≥ 1, we have

ÊhV̂h+1(s, b, a) =
1

Nh(s, a)

K∑
k=1

I
(
(skh, a

k
h) = (s, a)

)
V̂h+1(s

k
h+1, b).

Setting Yi = E[I
(
(skh, a

k
h) = (s, a)

)
V̂h+1(s

k
h+1, b)]− I

(
(skh, a

k
h) = (s, a)

)
V̂h+1(s

k
h+1, b), we have

|Yi| ≤ u(H − h− b),

which is due to the fact that V̂h+1(s) ∈ [0, H − h− b]. And it is obvious that for any i ̸= j, Yi and
Yj are independent. Therefore, with Hoeffding’s inequality, with probability at least 1 − δ

|S||A|HK ,
there is

K∑
i=1

Yi =Nh(s, a)EhV̂h+1(s, b, a)−
K∑

k=1

I
(
(skh, a

k
h) = (s, a)

)
u
(
V̂h+1(s

k
h+1)− b∗

)
=Nh(s, a)EhV̂h+1(s, b, a)−Nh(s, a)ÊhV̂h+1(s, b, a)

≤u(H − h− b)
√
2Nh(s, a) log

|S||A|HK
δ

.

Therefore, we have

EhV̂h+1(s, b, a)− ÊhV̂h+1(s, b, a) ≤ u(H − h− b)

√
2 log |S||A|HK

δ

max{1, Nh(s, a)}
.

This completes the proof of Lemma B.14.

B.4 PROOF OF THEOREM 3.2

We extend the the setting from deterministic reward to stochastic reward, in order to give a more
general result. Therefore the expectation of value function at step h is not only related to Ph but
also related to Rh. Note that when Rh(rh|s, a) = 1 for all h, the proof reduce to the stochastic
reward setting, r = rh(s, a), as we introduce in the paper. Based on Lemma B.13, we can bound the
suboptimality gap of the policy π̂ by bounding Es′∼Ph,r∼Rh

[V̂h+1(s, b)]− Es′∼P̂h,r∼R̂h

[V̂h+1(s, b)],
which is equal to ιh(sh, bh, ah)− Γh(sh, bh, ah). In the following proof, we will slightly abuse the
notation by using EhV̂h+1(s, b, a) to denote Es′∼Ph,r∼Rh

[V̂h+1(s, b)], and ÊhV̂h+1(s, b, a) to denote
Es′∼P̂h,r∼R̂h

[V̂h+1(s, b)]. By Lemma B.14, we can conclude that with probability at least 1− δ, we
have

EhV̂h+1(s, b, a)− ÊhV̂h+1(s, b, a) ≤ u(H − h− b)

√
2 log |S||A|HK

δ

max{1, Nh(s, a)}
.

Here, we find the upper bound of EhV̂h+1(s, b, a)−ÊhV̂h+1(s, b, a) successfully. Then, with Lemma
B.13, we have

SubOptS(π̂) ≤2
H∑

h=1

u(H − h− bh)Eπ∗

[√ 2 log |S||A|HK
δ

max{1, Nh(s, a)}

∣∣∣s1, b∗1]

≤2
H∑

h=1

u(H − h− bh)
∑
s,a

dπ
∗

h (s, a)

√
2 log |S||A|HK

δ

max{1, Nh(s, a)}

=2

H∑
h=1

u(H − h− bh)
∑
s,a

√
dπ

∗

h (s, a)

√
2dπ

∗

h (s, a) log |S||A|HK
δ

Kdµh(s, a)
.
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Because of the fact that dπ∗

h
(s,a)

dµ

h(s,a)
≤ C∗, we have

SubOptS(π̂) ≤2
H∑

h=1

u(H − h− bh)
∑
s,a

√
dπ

∗

h (s, a)

√
2C∗ log |S||A|HK

δ

K

=2

H∑
h=1

u(H − h− bh)
∑
s,a

√
dπ

∗

h (s, a) · I(a = a∗s)

√
2C∗ log |S||A|HK

δ

K

≤2
H∑

h=1

u(H − h− bh)
√∑

s,a

dπ
∗

h (s, a) ·
∑
s,a

I(a = a∗s)

√
2C∗ log |S||A|HK

δ

K

≤2
H∑

h=1

u(H − h)

√
2C∗S log |S||A|HK

δ

K
,

where a∗s is sampled by a∗s ∼ π∗(·|s). This concludes the proof of Theorem 3.2.

C PROOFS FOR SECTION 4

In this section, we give the proof structure of Theorem 4.1. We first need to construct a hard case
linear MDP M†. Define an integer C = min{⌊C∗⌋, |A|}. Therefore, under this assumption, we
have C∗ ≥ 2 and 2 < C < |A|, and C,H,K, |S| satisfies K > 1

4CH|S|. Then we can construct
the MDP M† with |S| + 2 possible states, A possible actions, and H steps. We define the MDP
Ma∗ to be the MDPM† with a certian existing optimal action a∗h,i ∈ A at step h and state si ∈ S.
Set there are S so-called ”bandit states” s1, s2, . . . , sS and two absorbing states ”good state” sg
and ”bad state” sb. Then the state space is S = {s1, s2, . . . , sS , sg, sb} and we define the action
space A = {a1, a2, . . . , a|A|}. Moreover, we sample the dataset uniformly, which indicates that
µh(a

∗
h,i|si) = 1

C . We set the i-th bandit state si to have the following transition dynamics. The
transition of the MDPMa∗ is defined as follows,

Ph(si|si, a) = 1− 2p, for all a ∈ A
Ph(sg|si, a) = Ph(sb|si, a) = p, for all a ̸= a∗h,i
Ph(sg|si, a∗h,i) = p+ τ for for all h ∈ [1, H]

Ph(sb|si, a∗h,i) = p− τ for for all h ∈ [1, H],

(9)

where p ∈ (0, 12 ) and τ ∈ (0, p) are the parameters yet to be determined. h ≤ H , all the states are
absorbing states. The transition of the absorbing states is defined as follows,

Ph(sg|sg, a) = 1, for all a ∈ A
Ph(sb|sb, a) = 1, for all a ∈ A
Ph(si|sg, a) = 0, for all i ∈ S, a ∈ A
Ph(si|sb, a) = 0, for all i ∈ S, a ∈ A.

(10)

For any H ≤ h ≤ H , where H ∈ [1, H] is an integer, and a ∈ A, the reward function is defined as
follows, 

rh(si, ah,i) = 0, For any si
rh(sg, ah,i) = 0, For any 1 ≤ h ≤ H
rh(sg, ah,i) = 1, For any H ≤ h ≤ H
rh(sb, ah,i) = 0, For any 1 ≤ h ≤ H,

(11)

Therefore, for any bandit state si, we can have the illustration of the transition dynamics in Figure
2.
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Figure 2: Transition of MDPMa∗ .

In order to take as many as hard case into account, we need the MDPM† to be more general. Under
this requirement, the construction consisting of bandit states and absorbing states is a wise choice.
Since it is simple and can be extend to many other constructions. For example, if we take only one
bandit state, we get the construction of Jin et al. (2021), and if we take add a tree structure before
the bandit states, we can get the construction of Xu et al. (2023); if we set the total steps to be 2H
and H = H we get the hard case of Xie et al. (2021). In another word, our construction of hard
case MDP M† is probably general enough to cover many hard cases. Furthermore, we find that
both kinds of OCE-PVI algorithms, the dynamic-OCE-PVI and the static-OCE-PVI, have the same
information-theoretic lower bound under the hard case MDPMa∗ . Intuitively, the first property of
OCE, shown in Section A.1, makes the dynamic-OCE algorithm perform ”true” OCE only once at
a deterministic step, as long as we introduce the absorbing state setting. The theoretical proof can
be found in the proof of Lemma C.1. Besides, we define the ”null” MDPM0, that have the sane
structure asMa∗ , but with the transition dynamics defined as follows,

Ph(sg|si, a) = Ph(sb|si, a) = p, for all a ∈ A.

C.1 LEMMAS FOR THEOREM 4.1

Under the constructed MDPM†, we conclude Lemma C.1.

Lemma C.1 Under a constructed hard case MDPM† = (S,A, H,P, r), where S = {s1, sg, sb},
A = {x1, x2, . . . , x|A|}, H ∈ R, P is defined in Equation 9, Equation 10 and Equation 11, and
r ∼ R(·|s, a) where R is defined in Equation 11. The suboptimality of Algorithm 3 and Algorithm
4 share the same form.

Proof By the hard case MDP defined in Lemma C.1, we discuss both the dynamic-OCE setting and
the static-OCE setting.

For the dynamic-OCE setting, notice that for any constant policy π and state s, we have V π
H+1(s) =

0. Let the state transfer to sg or sb at a deterministic step h ≤ H , h∗ = max{h,H}. Then, based
on the property of the OCE, we have

V π
h∗+1(s) =

{
H − h∗, wrp p+ τ

0, wrp 1− p− τ.

Then we have

V π
1 (si) = V π

h∗(s)

= OCEu
s∼Ph∗ (·|sh∗ ,ah∗ )(V

π
h∗+1(s))

= sup
b∈[0,H−h∗]

{
b+ pu(H − h∗ − b) + (1− p)u(−b)

}
.
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Therefore, we obtain

SubOptD(Ma∗ , Algo(D))
= sup

b∈[0,H−h∗]

{
b+ (p+ τ)u(H − h∗ − b) + (1− p− τ)u(−b)

}
− sup

b∈[0,H−h∗]

{
b+ pu(H − h∗ − b) + (1− p)u(−b)

}
≥ sup

b∈[0,H−h∗]

{
b+ (p+ τ)u(H − h∗ − b) + (1− p− τ)u(−b)

}
− sup

b∈[0,H−h∗]

{
b+ pu(H −H − b) + (1− p)u(−b)

}
≥

H∑
h=1

S∑
i=1

dh(si)τ
[
u(H −H − b∗1)− u(−b∗1)

]
· I
{
âh,i ̸= a∗h,i

}
,

where âh,i ∼ π̂h(·|si) denotes the action sampled from the stochastic policy obtained by the algo-
rithm. For the static-OCE setting, if sh∗+1 = sg , we have

V π
H+1(sg, b) = u(−b), for any s, b

V π
H(sg, bH) = u(1− b)
. . .

V π
h∗+1(sg, bh∗+1) = u(H − h∗ − b).

And if sh∗+1 ̸= sg , there is,
V π
h∗+1(sb, bh∗+1) = u(−b).

Then we have

V π
1 (si, b1) = V π

h∗(s, bh∗)

= E[V π
h∗+1(s, bh∗+1)]

= pu(H − h∗ − b) + (1− p)u(−b).

Therefore, we can get

OCEπ
u = sup

b∈[0,H]

{
b+ V π

1 (si, b)
}

= sup
b∈[0,H]

{
b+ pu(H − h∗ − b) + (1− p)u(−b)

}
.

Here we can find that with the hard case MDP we designed, V π
1 (si) under the dynamic-OCE setting

and OCEπ
u under the static-OCE setting have the same form, which will lead to the same form of

suboptimality. Similar to V π
1 (si), we can find the form of V ∗

1 (si) for the two settings,

V ∗
1 (si) = sup

b∈[0,H−h∗]

{
b+ (p+ τ)u(H − h∗ − b) + (1− p− τ)u(−b)

}
.

Therefore, with âh,i ∼ π̂h(·|si)we can obtain

SubOptS(Ma∗ , Algo(D))
= sup

b∈[0,H−h∗]

{
b+ (p+ τ)u(H − h∗ − b) + (1− p− τ)u(−b)

}
− sup

b∈[0,H−h∗]

{
b+ pu(H − h∗ − b) + (1− p)u(−b)

}
≥ sup

b∈[0,H−h∗]

{
b+ (p+ τ)u(H − h∗ − b) + (1− p− τ)u(−b)

}
− sup

b∈[0,H−h∗]

{
b+ pu(H −H − b) + (1− p)u(−b)

}
≥

H∑
h=1

S∑
i=1

dh(si)τ
[
u(H −H − b∗1)− u(−b∗1)

]
· I
{
âh,i ̸= a∗h,i

}
,
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where the first inequality holds due to the fact that u(·) is non-decreasing and h∗ ≥ H , and last
inequality holds when setting b∗1 = argmaxb∈[0,H−H]

{
b + pu(H − H − b) + (1 − p)u(−b)

}
.

Therefore, we define
SubOpt(Ma∗ , Algo(D)) = SubOptD(Ma∗ , Algo(D)) = SubOptS(Ma∗ , Algo(D))

to be the shared form of suboptimality of Algorithm 1 and Algorithm 2 under the MDPMa∗ . This
concludes the proof.
Lemma C.2 For any [ai,h] ∈ {1, 2, . . . ,K}H|S|, in MDPMa∗ , we have

sup
h,s,a

dπ
∗

h (s, a)

dµh(s, a)
< C ≤ C∗,

where π∗ is the optimal policy for the MDPMa∗ .
Proof Based on the definition of dπ

∗

h (si) and dµh(si), we have

dπ
∗

h (si) = dµh(si) = (1− 2p)h−1.

Also, we know that π∗
h(a

∗
h,i|si) = 1, and we sample the dataset uniformly where µh(a

∗
h,i|si) = 1

C .
Then we have

dπ
∗

h (si, a
∗
h,i)

dµh(si, a
∗
h,i)

=
dπ

∗

h (si)π
∗
h(a

∗
h,i|si)

dµh(si)µh(a∗h,i|si)
= C.

Then we consider the good state sg and the bad state sb. There is

dπ
∗

h (sg) =

i∑
S

h−1∑
j

1

S
(1− 2p)j−1(p+ τ)

=

h−1∑
j

(1− 2p)j−1(p+ τ).

The underlying policy µ takes the action a∗h,i with probability 1
C , then we have

dµh(sg) =

h−1∑
j

(1− 2p)j−1
[ 1
C
(p+ τ) + (1− 1

C
)p
]

=

h−1∑
j

(1− 2p)j−1
[
p+

τ

C

]
.

Therefore, we can conclude that
dπ

∗

h (sg)

dµh(sg)
=

p+ τ

p+ τ
C

= C
p+ τ

Cp+ τ
< C,

where the last inequality holds since p+τ
Cp+τ ≤ 1. Therefore for all the states including si, sg and sb,

we have

sup
h,s,a

dπ
∗

h (s, a)

dµh(s, a)
< C ≤ C∗.

Here we finish the proof of Lemma C.2.

C.2 PROOF OF THEOREM 4.1

For the certain MDP M defined in Theorem 4.1, we have the suboptimality of Algorithm 3 and
Algorithm 4 as follows,

SubOpt
(
Ma∗ , Alog(D)

)
≥

H∑
h=1

|S|∑
i=1

dh(si)τ
[
u(H −H − b∗1)− u(−b∗1)

]
· I
{
âh,i ̸= a∗h,i

}
=

H∑
h=1

|S|∑
i=1

1

|S|
(
1− 2p

)h−1
τ
[
u(H −H − b∗1)− u(−b∗1)

]
· I
{
âh,i ̸= a∗h,i

}
,
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where âh,i ∼ π̂h(·|si) and the last equation holds based on the definition of dh(si). Then we have

max
M

SubOpt
(
M, Algo(D)

)
≥EMSubOpt

(
M, Algo(D)

)
≥ 1

C

C∑
a∗

h,i
=1

EMa∗

[
SubOpt

(
Ma∗ , Algo(D)

)]

=
1

C

C∑
a∗

h,i
=1

EMa∗

[ H∑
h=1

|S|∑
i=1

1

|S|
(
1− 2p

)h−1
τ
[
u(H −H − b∗1)− u(−b∗1)

]
· I
{
âh,i ̸= a∗h,i

}]

=
(
1− 2p

)H−1
τ
[
u(H −H − b∗1)− u(−b∗1)

]
·
(
H − 1

CK|S|

H∑
h=1

|S|∑
i=1

C∑
a∗

h,i
=1

EMa∗

[
Nh(si, a

∗
h,i)
])
.

Then we need to bound the term
∑H

h=1

∑|S|
i=1

∑C
a∗

h,i
=1

1
KEMa∗

[
Nh(si, a

∗
h,i)
]
, where Nh(si, a

∗
h,i)

is the number of times that the action a∗h,i is selected at step h and state si. Comparing
EMa∗

[
Nh(si, a

∗
h,i)
]

and EM0

[
Nh(si, a

∗
h,i)
]
, we have

1

K
EMa∗

[
Nh(si, a

∗
h,i)
]
− 1

K
EM0

[
Nh(si, a

∗
h,i)
]

≤TV
(
PMa∗ ,PM0

)
≤
√

1

2
KL

(
PM0

,PMa∗

)
=

√
1

2
p log

p2

p2 − τ2
EM0

[
Nh(si, a∗h,i)

]
,

where the second inequality follows Pinsker’s inequality. Then we have

1

K

H∑
h=1

|S|∑
i=1

C∑
a∗

h,i
=1

EMa∗

[
Nh(si, a

∗
h,i)
]

≤
H∑

h=1

|S|∑
i=1

C∑
a∗

h,i
=1

{
1

K
EM0

[
Nh(si, a

∗
h,i)
]
+

√
1

2
p log

p2

p2 − τ2
EM0

[
Nh(si, a∗h,i)

]}

=H +

H∑
h=1

|S|∑
i=1

C∑
a∗

h,i
=1

√
1

2
p log

p2

p2 − τ2
EM0

[
Nh(si, a∗h,i)

]
≤H +H

√
1

2
p log

p2

p2 − τ2
CK|S|,

where the first equation holds since
∑H

h=1

∑|S|
i=1

∑C
a∗

h,i
=1 EM0

[
Nh(si, a

∗
h,i)
]
≤ HK and the last

inequality holds because of Cauchy-Schwarz inequality. Therefore, we have

max
M

SubOpt
(
M, Algo(D)

)
≥H

(
1− 2p

)H−1
τ
[
u(H −H − b∗1)− u(−b∗1)

]
·

(
1− 1

C|S|
− 1

C|S|

√
1

2
p log

p2

p2 − τ2
CK|S|

)

≥H
(
1− 2p

)H−1
τ
[
u(H −H − b∗1)− u(−b∗1)

]
·

(
1

2
− 1

C|S|

√
τ2

2p
CK|S|

)
,

where the last inequality holds since 1
C|S| ≤

1
2 and log p2

p2−τ 2 ≤ τ 2

p2 . Then, by setting p = 1
2H (It is

reasonable to set p = 1
2H , since H ≥ 1 guarantees p ∈ (0, 12 )), H = ⌈(1− ρ)H⌉, where ρ ∈ (0, 1).
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Then we have

max
M

SubOpt
(
M, Algo(D)

)
≥H

(
1− 1

H

)H−1

τ
[
u
(
ρH − b∗1

)
− u(−b∗1)

]
·
(1
2
− 1

C|S|
√
τ2CHK|S|

)
≥1

3
Hτ
[
u
(
ρH − b∗1

)
− u(−b∗1)

]
·
(1
2
−

√
τ2HK

C|S|

)
,

where the last inequality holds since (1 − 1
H )H−1 ≥ e−1 ≥ 1

3 . Let τ =
√

C|S|
16HK < p = 1

2H , we
have

max
M

SubOpt(M, Algo(D))

≥ 1

48

√
CH|S|
K

[
u
(
ρH − b∗1

)
− u(−b∗1)

]
≥ 1

48

[
u(ρH − b∗1)− u(−b∗1)

]√C∗H|S|
K

,

where the last inequality holds based on Lemma C.2 and b∗1 = argmaxb∈(0,ρH){b + 1
2H u(ρH −

b) + (1− 1
2H )u(−b)}. Let a function Fb(b) = b+ 1

2H u(ρH − b) + (1− 1
2H )u(−b), we have

F ′
b(b) = 1− 1

2H
u′(ρH − b)− (1− 1

2H
)u′(−b).

Based on the properties of the utility function u(·), we have F ′
b(0) > 0 and F ′

b(ρH) < 0. Therefore,
there exists a b∗1 ∈ (0, ρH) such that F ′

b(b
∗
1) = 0. This concludes the proof of Theorem 4.1.

D PROOFS FOR SECTION 5

D.1 LEMMAS FOR THEOREM 5.1

Lemma D.1 Based on the dynamic-OCE RL setting, we have∥∥∥θh + wh(b)
∥∥∥ ≤ [1 + u(H − h)]

√
d.

Proof Based on the definition of wh(b) and the dynamic-OCE RL setting, we have∥∥∥θh + wh(b)
∥∥∥ ≤∥∥∥θh∥∥∥+ ∥∥∥∫

S
u(V (s′)− b)µh(s

′)ds′
∥∥∥

≤
√
d+

∫
S

∥∥∥u(V (s′)− b)µh(s
′)
∥∥∥ds′

≤[1 + u(H − h)]
√
d.

The third inequality holds since V (s) ∈ [0, H − h] and b ∈ [0, H − h]. This completes the proof.

Definition D.1 Define a function class V mapping from S × [0, H] to R with parametric form,

V (·) =max
a

{
max

{
min

{
ϕ(·, a)⊤θ + sup

b∈[0,H−h]

{
b+ ϕ(·, a)⊤w(b)

}
− β

√
ϕ(·, a)⊤Λ−1ϕ(·, a), H − h+ 1

}
, 0
}}
,

where b ∈ [0, 1] is a parameter, ∥θ∥ ≤ T , ∥w(b)∥ ≤ L, β ∈ [0, B] and Λ ⪰ λI .

Lemma D.2 Under the dynamic-OCE RL setting, we have∥∥∥ŵh(b)
∥∥∥ ≤ u(H − h)√dK

λ∥∥∥θ̂h∥∥∥ ≤√dK

λ
.
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Proof Based on the definition of ŵh(b), we have∥∥∥ŵh(b)
∥∥∥ =

∥∥∥Λ−1
h

{ K∑
k=1

ϕ(skh, a
k
h)u
(
V̂h+1(s

k
h+1)− b

)}∥∥∥
≤

K∑
k=1

∥∥∥Λ−1
h ϕ(skh, a

k
h)u
(
V̂h+1(s

k
h+1)− b

)∥∥∥
≤ u(H − h)

K∑
k=1

∥∥∥Λ−1
h ϕ(skh, a

k
h)
∥∥∥

= u(H − h)
K∑

k=1

√
ϕ(skh, a

k
h)

⊤Λ
− 1

2

h Λ−1
h Λ

− 1

2

h ϕ(skh, a
k
h).

Then, based on the Cauchy-Schwarz inequality and the property of the trajectory, we have∥∥∥ŵh(b)
∥∥∥ ≤ u(H − h)√K

λ

√√√√Tr
(
Λ−1
h

K∑
k=1

ϕ(skh, a
k
h)

⊤ϕ(skh, a
k
h)
)

= u(H − h)
√
K

λ

√
Tr
(
Λ−1
h (Λh − λI)

)
≤ u(H − h)

√
K

λ

√
Tr
(
Λ−1
h Λh

)
= u(H − h)

√
dK

λ
.

Following the same method, we can prove
∥∥θ̂h∥∥ ≤ √dK

λ with |rh| ≤ 1. Then we complete the
proof.
Lemma D.3 Based on the dynamic-OCE setting, for a fixed function fh : S → [0, 1+u(H−h)] at
step h ∈ [H], under the assumption thatD is obtained by an underlying policy µ, for any ∆ ∈ (0, 1),
we have

PD

(∥∥∥ K∑
K=1

ϕ(skh, a
k
h)ϵ

k
h(Vh)

∥∥∥2
Λ−1

h

> [1 + u(H − h)]2
(
2 log

1

∆
+ d log

(
1 +

K

λ

)))
≤ ∆.

Proof For any fixed h ∈ [H] and k ∈ {0, 1, . . . ,K}, we have the σ-algebra

Fk
h = σ

({
(sjh, a

j
h)
}min{k+1,K}
j=1

∪
{
(rjh, s

j
h+1)

}k
j=1

)
.

Then for any k ∈ [K], we have ϕ(skh, a
k
h) ∈ Fk

h , since (skh, a
k
h) is measurable with respect to

Fk−1
h . Then, with the fact that (rjh, s

j
h+1) is measurable with respect to Fk

h , for a fixed function
fh : S → [0, 1 + u(H − h)] at step h, and k ∈ [K], we have

ϵkh(f
h)

=rkh + u(fh(skh+1)− bh)− Bhf
h(skh, a

k
h)

∈Fk
h .

Therefore, {ϵkh(fh)}Kk=1 is a stochastic process with respect to the filtration {Fk
h}Kk=0. Then with

Assumption 2.1, we have

ED

[
ϵkh(f

h)|Fk−1
h

]
=ED

[
rkh + u(fh(skh+1)− bh)|{(s

j
h, a

j
h)}

k
j=1, (r

j
h, s

j
h+1)

k
j=1

]
− Bhf

h(skh, a
k
h)

=0.
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Based on the definition of ϵkh(f
h), we have |ϵkh(fh)| ≤ 1 + u(H − h). Thus, for the fixed h and all

k ∈ [K], ϵkh(f
h) is a zero-mean and [1 + u(H − h)]-sub-Gaussian random variable conditioning

on Fk−1
h . Based on Lemma E.1 with M0 = λI and Mk = λI + 1

K

∑K
j=1 ϕ(s

j
h, a

j
h)ϕ(s

j
h, a

j
h)

⊤, for
all ∆ ∈ (0, 1), we have

PD

(∥∥∥ K∑
k=1

ϕ(skh, a
k
h)ϵ

k
h(f

h)
∥∥∥2
Λ−1

h

> 2[1 + u(H − h)]2 log
( det(Λh)

1

2

∆ · det(λI) 1

2

))
≤ ∆,

where the equation holds based on the fact that MK = Λh. By applying the definition of Λh, we
have ∥Λh∥2 ≤ λ+K which implies det(Λh) ≤ (λ+K)d. Therefore, we can get

PD

(∥∥∥ K∑
K=1

ϕ(skh, a
k
h)ϵ

k
h(f

h)
∥∥∥2
Λ−1

h

> [1 + u(H − h)]2
(
2 log

1

∆
+ d log

(
1 +

K

λ

)))

≤PD

(∥∥∥ K∑
k=1

ϕ(skh, a
k
h)ϵ

k
h(Vh)

∥∥∥2
Λ−1

h

> 2[1 + u(H − h)]2 log
( det(Λh)

1

2

∆ · det(λI) 1

2

))
≤∆

Here we finish the proof.

Lemma D.4 Based on Definition D.1, for all h ∈ [H] and ε > 0, we have

logNh(ε) ≤ d log
(
1 +

4T

ε

)
+ d log

(
1 +

4L

ε

)
+ d2 log

(
1 +

8
√
dB2

λε2

)
.

Proof For the function class V , we set A = β2Λ−1. Therefore, by the definition of function class V ,
we have ∥θ| ≤ T , |w(b)∥ ≤ L and ∥A∥ ≤ B2

λ . Letting any two functions V1, V2 ∈ V , it holds that

dist(V1, V2)

≤ sup
s,a

∣∣∣∣∣[ϕ(·, a)⊤θ1 + sup
b∈[0,H−h]

{
b+ ϕ(·, a)⊤w1(b)

}
−
√
ϕ(·, a)⊤A1ϕ(·, a)

]
−
[
ϕ(·, a)⊤θ2 + sup

b∈[0,H−h]

{
b+ ϕ(·, a)⊤w2(b)

}
−
√
ϕ(·, a)⊤A2ϕ(·, a)

]∣∣∣∣∣
≤ sup

s,a

∣∣∣∣∣[ϕ(·, a)⊤θ1 + {b† + ϕ(·, a)⊤w1(b)
}
−
√
ϕ(·, a)⊤A1ϕ(·, a)

]
−
[
ϕ(·, a)⊤θ2 +

{
b† + ϕ(·, a)⊤w2(b)

}
−
√
ϕ(·, a)⊤A2ϕ(·, a)

]∣∣∣∣∣
≤ sup

ϕ:∥ϕ∥≤1,θ:∥θ∥≤T,w:∥w∥≤L

∣∣∣∣∣[(θ1 + w1)ϕ−
√
ϕ⊤A1ϕ

]
−
[
(θ2 + w2)ϕ−

√
ϕ⊤A2ϕ

]∣∣∣∣∣,
where the second inequality holds by setting b† = argmaxb∈[0,H−h]{b + ϕ(·, a)⊤w1(b)}. Since
|
√
x−√y| ≤

√
|x− y|, for x > 0, y > 0, we have

dist(V1, V2)

≤ sup
ϕ:∥ϕ∥≤1,θ:∥θ∥≤T,w:∥w∥≤L

∣∣(θ1 − θ2 + w1 − w2)ϕ
∣∣− ∣∣∣√ϕ⊤(A1 −A2)ϕ

∣∣∣
=
∥∥∥θ1 − θ2∥∥∥+ ∥∥∥w1 − w2

∥∥∥+√∥∥∥A1 −A2

∥∥∥
2

≤
∥∥∥θ1 − θ2∥∥∥+ ∥∥∥w1 − w2

∥∥∥+√∥∥∥A1 −A2

∥∥∥
F
.

Let Cθ be an ε
2 − cover of {θ ∈ Rd | ∥w∥ ≤ T} with respect to the 2-norm, Cw be an ε

2 −
cover of {w ∈ Rd | ∥w∥ ≤ L} with respect to the 2-norm, and CA be an ε2

4 − cover of {A ∈
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Rd×d | ∥A∥F ≤
√
dB2λ−1} with respect to the Frobenius norm. By Lemma E.2, we have

|Cθ| ≤
(
1 +

4T

ε

)d
,

|Cw| ≤
(
1 +

4L

ε

)d
,

|CA| ≤
(
1 +

8
√
dB2

λε2

)d2

.

By Equation D.4, for any V1 ∈ V , there are θ2 ∈ Cθ, w2 ∈ Cw and A2 ∈ CA such that V2
parametrized by (θ2, w2, A2) satisfies dist(V1, V2) ≤ ε. Therefore, we haveN (ε) ≤ |Cθ|·|Cw|·|CA|.
Then, we can conclude that

logNh(ε) ≤ log |Cθ|+ log |Cw|+ log |CA|

≤d log
(
1 +

4T

ε

)
+ d log

(
1 +

4L

ε

)
+ d2 log

(
1 +

8
√
dB2

λε2

)
.

This completes the proof of Lemma D.4.

D.2 PROOF OF THEOREM 5.1

Based on Lemma B.7, we begin to bound the difference between BhV̂h+1(s, a) and B̂hV̂h+1(s, a).
We first rewrite the difference as follows,

BhV̂h+1(s, a)− B̂hV̂h+1(s, a)

=rh(s, a)− r̂h(s, a) + OCEu
s′∼Ph(·|s,a)

{
V̂h+1(sh+1)

}
−OCEu

s′∼P̂h(·|s,a)

{
V̂h+1(sh+1)

}
=rh(s, a)− r̂h(s, a) + max

b∈[0,H−h]

{
b+ Es′∼Ph(·|s,a)

[
u
(
V̂h+1(sh+1)− b

)]}
− max

b∈[0,H−h]

{
b+ Es′∼P̂h(·|s,a)

[
u
(
V̂h+1(sh+1)− b

)]}
=ϕ(s, a)⊤θh − ϕ(·, ·)⊤θ̂h

+ max
b∈[0,H−h]

{
b+ ϕ(s, a)⊤wh(b)

}
− max

b∈[0,H−h]

{
b+ ϕ(s, a)⊤ŵh(b)

}
.

Letting bh = argmaxb∈[0,H−h]{b+ ϕ(s, a)⊤ŵh(b)}, there is

BhV̂h+1(s, a)− B̂hV̂h+1(s, a)

≤ϕ(s, a)⊤θh − ϕ(s, a)⊤θ̂h + ϕ(s, a)⊤wh(bh)− ϕ(s, a)⊤ŵh(bh)

=ϕ(s, a)⊤
(
θh + wh(bh)

)
− ϕ(s, a)⊤

[
Λ−1
h

K∑
k=1

ϕ(skh, a
k
h)

(
rkh + u

(
V̂h+1(s

k
h+1)− bh

))]
=ϕ(s, a)⊤

(
θh + wh(bh)

)
− ϕ(s, a)⊤

[
Λ−1
h

K∑
k=1

ϕ(skh, a
k
h)

(
rkh(s

k
h, a

k
h) + Es′∼Ph(s,a)

[
u
(
V̂h+1(s

k
h+1)− bh

)])]

− ϕ(s, a)⊤
[
Λ−1
h

K∑
k=1

ϕ(skh, a
k
h)

({
rkh(s

k
h, a

k
h) + u

(
V̂h+1(s

k
h+1)− bh

)}
−
{
rkh(s

k
h, a

k
h) + Es′∼Ph(s,a)

[
u
(
V̂h+1(s

k
h+1)− bh

)]})]
=(i) + (ii), (12)
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where we let

(i) :=ϕ(s, a)⊤
(
θh + wh(bh)

)
− ϕ(s, a)⊤

[
Λ−1
h

K∑
k=1

ϕ(skh, a
k
h)

(
rkh(s

k
h, a

k
h) + Es′∼Ph(s,a)

[
u
(
V̂h+1(s

k
h+1)− bh

)])]
,

(ii) :=− ϕ(s, a)⊤
[
Λ−1
h

K∑
k=1

ϕ(skh, a
k
h)

({
rkh(s

k
h, a

k
h) + u

(
V̂h+1(s

k
h+1)− bh

)}
−
{
rkh(s

k
h, a

k
h) + Es′∼Ph(s,a)

[
u
(
V̂h+1(s

k
h+1)− bh

)]})]
.

For term (i), we have

∣∣(i)∣∣ =∣∣∣ϕ(s, a)⊤(θh + wh(bh)
)
− ϕ(s, a)⊤Λ−1

h

K∑
k=1

[
ϕ(skh, a

k
h)
(
rh(s

k
h, a

k
h)

+ Es′∼Ph(s,a)

[
u
(
V̂h+1(s

k
h+1)− bh

)])]∣∣∣
=
∣∣∣ϕ(s, a)⊤(θh + wh(bh)

)
− ϕ(s, a)⊤Λ−1

h

K∑
k=1

ϕ(skh, a
k
h)ϕ(s

k
h, a

k
h)

⊤(θh + wh(bh)
)∣∣∣

=
∣∣∣ϕ(s, a)⊤(θh + wh(bh)

)
− ϕ(s, a)⊤Λ−1

h

(
Λh − λI

)(
θh + wh(bh)

)∣∣∣
=λ
∣∣∣ϕ(s, a)⊤Λ−1

h (θh + wh(bh))
∣∣∣.

Due to the Cauchy-Schwarz inequality, we can further bound the term as follows,

|(i)| ≤λ ·
∥∥∥Λ−1

h

∥∥∥ 1

2

2
·
∥∥∥θh + wh(bh)

∥∥∥ · ∥∥∥ϕ(s, a)∥∥∥
Λ−1

h

≤
(
1 + u(H − h)

)√
dλ
√
ϕ(s, a)⊤Λ−1

h ϕ(s, a),

(13)

where the last inequality holds due to Lemma D.1. Next, we need to bound the term (ii). We first
define

ϵkh(f) =
{
rkh + u(f(skh+1)− bh)

}
−
{
rkh(s

k
h, a

k
h) + Es′∼Ph(·|s,a)

[
u(f(skh+1)− bh)

]}
,

where f : S → [0, fmax] is an arbitrary function. Then we have

|(ii)| =

∣∣∣∣∣ϕ(s, a)⊤
[
Λ−1
h

K∑
k=1

ϕ(skh, a
k
h)

({
rkh(s

k
h, a

k
h) + u

(
V̂h+1(s

k
h+1)− bh

)}
−
{
rkh(s

k
h, a

k
h) + Es′∼Ph(s,a)

[
u
(
V̂h+1(s

k
h+1)− bh

)]})]∣∣∣∣∣
=
∣∣∣ϕ(s, a)Λ−1

h

( K∑
k=1

ϕ(skh, a
k
h)ϵ

k
h

(
V̂h+1

))∣∣∣
≤
∥∥∥ K∑

k=1

ϕ(skh, a
k
h)ϵ

k
h(V̂h+1)

∥∥∥
Λ−1

h

·
√
ϕ(s, a)⊤Λ−1

h ϕ(s, a).

Therefore, we need to bound
∥∥∑K

k=1 ϕ(s
k
h, a

k
h)ϵ

k
h(V̂h+1)

∥∥
Λ−1

h

. Based on Definition D.1, we have

V̂h+1 ∈ V . Let Nh+1(ε) be the ε-cover of V (·), we can find a function V ′
h+1 ∈ Nh+1(ε) such that

sup
s∈S

∣∣V̂h+1(s)− V ′
h+1(s)

∣∣ ≤ ε.
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Therefore, we have ∣∣u(V̂h+1(s)− bh)− u(V ′
h+1(s)− bh)

∣∣
≤
∣∣V̂h+1(s)− V ′

h+1(s)
∣∣

≤ε.

The first inequality holds based on the property of the utility function u that u is concave, nonde-
creasing, and 1 ∈ ∂u(0). Then, we can get∣∣Es′∼Ph(·|s,a)

[
u(V̂h+1(s)− bh)

]
− Es′∼Ph(·|s,a)

[
u(V ′

h+1(s)− bh)
]∣∣

≤
∣∣Es′∼Ph(·|s,a)

[
u(V̂h+1(s)− bh)− u(V ′

h+1(s)− bh)
]∣∣

≤ε.

Therefore, by the triangle inequality, we have

2ε ≥
∣∣(u(V̂h+1(s)− bh)− Es′∼Ph(·|s,a)

[
u(V̂h+1(s)− bh)

])
−
(
u(V ′

h+1(s)− bh)− Es′∼Ph(·|s,a)
[
u(V ′

h+1(s)− bh)
])∣∣.

This can further guarantee that ∣∣ϵkh(V̂ )− ϵkh(V ′)
∣∣ ≤ 2ε.

Then based on the fact that ∥a+ b∥2Λ−1

h

≤ 2∥a∥2Λ−1

h

+ 2∥b∥2Λ−1

h

, we can then get

∥∥∥ K∑
k=1

ϕ(skh, a
k
h)ϵ

k
h(V̂h+1)

∥∥∥2
Λ−1

h

≤2
∥∥∥ K∑

k=1

ϕ(skh, a
k
h)ϵ

k
h(V

′
h+1)

∥∥∥2
Λ−1

h

+ 2
∥∥∥ K∑

k=1

ϕ(skh, a
k
h)
[
ϵkh(V̂h+1)− ϵkh(V ′

h+1)
]∥∥∥2

Λ−1

h

≤2 sup
V ∈Nh+1(ε)

∥∥∥ K∑
k=1

ϕ(skh, a
k
h)ϵ

k
h(V )

∥∥∥2
Λ−1

h

+
8ε2K2

λ
.

(14)

Here we can get an upper bound without the influence of the dataset D. Combining Lemma D.3 and
the union bound, we have

PD

[
sup

V ∈Nh+1(ε)

∥∥∥ K∑
K=1

ϕ(skh, a
k
h)ϵ

k
h(V )

∥∥∥2
Λ−1

h

> [1 + u(H − h)]2
(
2 log

1

∆
+ d log

(
1 +

K

λ

))]
≤∆|Nh+1(ε)|.

Letting ∆ = δ

H
∣∣Nh+1(ε)

∣∣ , for δ ∈ (0, 1). Then at any step h, with probability 1− δ
H , we have

sup
V ∈Nh+1(ε)

∥∥∥ K∑
K=1

ϕ(skh, a
k
h)ϵ

k
h(V )

∥∥∥2
Λ−1

h

≤ [1 + u(H − h)]2
(
2 log

H
∣∣Nh+1(ε)

∣∣
δ

+ d log
(
1 +

K

λ

))
.

Then, with Equation 14, with probability at 1− δ, for all ∀h ∈ [H], there is∥∥∥ K∑
K=1

ϕ(skh, a
k
h)ϵ

k
h(V̂h+1)

∥∥∥2
Λ−1

h

≤2[1 + u(H − h)]2
(
2 log

H|Nh+1(ε)|
δ

+ d log(1 +
K

λ
)
)
+

8ε2K2

λ
,∀h ∈ [H].
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Then we need to bound to bound log(Nh+1(ε)). With Lemma D.2, we set T =
√

dK
λ and L =

u(H − h)
√

dK
λ . Let ε = dH

K , B = 2β, β = cd[1 + u(H − h)]
√
ζ, and ζ = log(2dHKδ−1), where

c > 0 is a constant. Notice that u(H − h) ≤ u(H) ≤ H , due to the concavity of the utility function
u along with 1 ∈ ∂u(0). Then by using Lemma D.4, we have

logNh(ε) ≤d log
(
1 +

4T

ε

)
+ d log

(
1 +

4L

ε

)
+ d2 log

(
1 +

8
√
dB2

ε2

)
≤d log

(
1 + 4d−

1

2K
3

2H−1
)
+ d log

(
1 + 4u(H − h)d− 1

2K
3

2H−1
)

+ d2 log
(
1 + 8B2d−

3

2K2H−2
)

≤2d log
(
1 + 4d−

1

2K
3

2

)
+ d2 log

(
1 + 32c2d

1

2K2ζ
)

≤3d2 log
(
1 + 32c2d

1

2K2ζ
)

≤3d2 log
(
64c2d

1

2K2ζ
)
.

(15)

Then with the fact that log ζ ≤ ζ, log(1 +K) ≤ log(2K) ≤ ζ, and Equation 15, we can get∥∥∥ K∑
K=1

ϕ(skh, a
k
h)ϵ

k
h

(
V̂h+1

)∥∥∥2
Λ−1

h

≤2[1 + u(H − h)]2
(
2 log(Hδ−1) + 4d2 log(64c2d

1

2K2ζ) + d log(1 +K) + 4d2
)

≤2[1 + u(H − h)]2
(
2 log(Hδ−1) + 6d2 log(64c2) + 6d2ζ + 3d2 log(dK4) + dζ + 4d2

)
≤2[1 + u(H − h)]2

(
3d2 log(dHK4δ−1) + 6d2 log(64c2) + 11d2ζ

)
=2[1 + u(H − h)]2

(
3d2 log(dHKδ−1) + 9d2 logK + 6d2 log(64c2) + 11d2ζ

)
≤d2[1 + u(H − h)]2ζ

(
12 log(64c2) + 46

)
.

By setting 12 log(64c2) + 46 ≤ c2

4 , the following inequality holds,∥∥∥ K∑
K=1

ϕ(skh, a
k
h)ϵ

k
h

(
V̂h+1

)∥∥∥
Λ−1

h

≤ 1

2
cd[1 + u(H − h)]

√
ζ =

β

2
. (16)

Therefore, based on Equation 12, Equation 13, Equation 16, we have∣∣∣Es′,r

[
V̂h+1(s, b− r)

]
− Ês′,r

[
V̂h+1(s

′, b− r)
]∣∣∣

≤
([

1 + u(H − h)
]√
d+

1

2
cd[1 + u(H − h)]

√
ζ
)√

ϕ(s, a)⊤Λ−1
h ϕ(s, a)

≤β
√
ϕ(s, a)⊤Λ−1

h ϕ(s, a).

Then we finish proving Theorem 5.1.

D.3 LEMMAS FOR THEOREM 5.2

Similar to the dynamic-OCE formulation with tabular setting, we extend the setting to stochastic
reward functions where rh ∼ R(·|s, a) in the proof. When R(rh|s, a) = 1, it reduce to the deter-
ministic reward case used in the paper. Therefore, in this section we actually provide a more general
proof, which extends Theorem 5.2. Under the stochastic reward setting with linear MDP, we slight
change the setting to

Ph(·|s, a) =
〈
µh(·), φ(s, a)

〉
Rh(·|s, a) =

〈
νh(·), ψ(s, a)

〉
.

Therefore we set a matrix Φ(s, a) ∈ Rd×d, a vector ξh(s′, r) ∈ Rd2×1 and a a vector ϕ(s′, r) ∈
Rd2×1 satisfying

Φ(s, a) = ψ(s, a)φ(s, a)⊤

ξh(s
′, r)i×d+j =

(
νh(r)µh(s

′)⊤
)
i,j

ϕ(s, a)i×d+j = Φ(s, a)i,j .
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Then we have

Es′∼Ph(·|s,a),r∼Rh(·|s,a)
[
V (s′, b− r)

]
=

∫
r

Rh(·|s, a)
∫
s′

Ph(s, a)V (s′, b− r)ds′dr

=νh(r)
⊤ψ(s, a)φ(s, a)⊤µh(s

′)V (s′, b− r)
=νh(r)

⊤Φ(s, a)µh(s
′)V (s′, b− r)

=ϕ(s, a)⊤ξh(s
′, r)V (s′, b− r)

=ϕ(s, a)⊤ŵh(b),

where the last equality holds when wh(b) = ξh(s
′, r)V (s′, b − r). Here we success-

fully extend the setting from Es′∼Ph(·|s,a),r=rh(s,a)

[
V (s′, b − r)

]
with deterministic reward to

Es′∼Ph(·|s,a),r∼Rh(·|s,a)
[
V (s′, b − r)

]
with stochastic reward. Therefore, in the stochastic reward

setting, we can still use ϕ(s, a)⊤ŵh(b) to estimate the transition.

Lemma D.5 Based on the definition of ŵh(b) and V̂h+1(s
′, b− r), we have


∥∥∥wh(b)

∥∥∥ ≤ u(H − h− b)√d∥∥∥ŵh(b)
∥∥∥ ≤ u(H − h− b)√dK

λ .

Proof The wh(b) is defined as follows,

wh(b) =

∫
r

∫
s′

ξh(s
′, r)V̂h+1(s

′, b− r)ds′dr.

Then we can get

∥∥∥wh(b)
∥∥∥ =

∥∥∥∫
r

∫
s′

ξh(s
′, r)V̂h+1(s

′, b− r)ds′dr
∥∥∥

≤ u(H − h− b)
√
d.

For ŵh(b), we have

∥∥∥ŵh(b)
∥∥∥ =

∥∥∥Λ−1
h

{ K∑
k=1

ϕ(skh, a
k
h)V̂h+1(s

k
h+1, b− rkh)

}∥∥∥
≤

K∑
k=1

∥∥∥Λ−1
h ϕ(skh, a

k
h)V̂h+1(s

k
h+1, b− rkh)

∥∥∥
≤ u(H − h− b)

K∑
k=1

∥∥∥Λ−1
h ϕ(skh, a

k
h)
∥∥∥

= u(H − h− b)
K∑

k=1

√
ϕ(skh, a

k
h)

⊤Λ
− 1

2

h Λ−1
h Λ

− 1

2

h ϕ(skh, a
k
h).
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Based on the Cauchy-Schwarz inequality, we have∥∥∥ŵh(b)
∥∥∥ =

∥∥∥Λ−1
h

{ K∑
k=1

ϕ(skh, a
k
h)V̂h+1(s

k
h+1, b− rkh)

}∥∥∥
≤ u(H − h− b)

√
K

λ

√√√√ K∑
k=1

ϕ(skh, a
k
h)

⊤Λ−1
h ϕ(skh, a

k
h)

= u(H − h− b)
√
K

λ

√√√√Tr
(
Λ−1
h

K∑
k=1

ϕ(skh, a
k
h)

⊤ϕ(skh, a
k
h)
)

= u(H − h− b)
√
K

λ

√
Tr
(
Λ−1
h (Λh − λI)

)
≤ u(H − h− b)

√
K

λ

√
Tr
(
Λ−1
h Λh

)
= u(H − h− b)

√
dK

λ
.

Therefore, we finish the proof.

Lemma D.6 For a fixed function Vh : S → [0, u(H−h−bh)] at step h ∈ [H], under the assumption
that D is obtained by an underlying policy µ, for any ∆ ∈ (0, 1), we have

PD

(∥∥∥ K∑
K=1

ϕ(skh, a
k
h)ϵ

k
h(Vh)

∥∥∥2
Λ−1

h

> [u(H − h− bh)]2
(
2 log

1

∆
+ d log

(
1 +

K

λ

)))
≤ ∆.

Proof For any fixed h ∈ [H] and k ∈ {0, 1, . . . ,K}, we have the σ-algebra

Fk
h = σ

({
(sjh, a

j
h)
}min{k+1,K}
j=1

)
.

Then for any k ∈ [K], we have ϕ(skh, a
k
h) ∈ Fk

h , since (skh, a
k
h) is measurable with respect to Fk−1

h .
Then for a fixed function Vh : S → [0, u(H − h− bh)] at step h, and k ∈ [K], we have

ϵkh(Vh)

=Vh(s
k
h+1, bh − rkh)− Esk

h+1
∼Ph(·|sk

h
,ak

h
),r∼Rh(·|sk

h
,ak

h
)

[
Vh(s

k
h+1, bh − rkh)

]
∈Fk

h .

Therefore, {ϵkh(Vh)}Kk=1 is a stochastic process with respect to the filtration {Fk
h}Kk=0. Then with

Assumption 2.1, we have

ED

[
ϵkh(Vh)|Fk−1

h

]
=ED

[
Vh(s

k
h+1, bh − rkh)|{(s

j
h, a

j
h)}

k
j=1

]
− Es′,r

[
Vh(s

k
h+1, bh − rkh)

]
=0.

Based on the definition of ϵkh(Vh), we have |ϵkh(Vh)| ≤ u(H − h− bh). Thus, for the fixed h and all
k ∈ [K], ϵkh(Vh) is a zero-mean and u(H −h− bh)-sub-Gaussian random variable conditioning on
Fk−1

h . Based on Lemma E.1 with M0 = λI and Mk = λI + 1
K

∑K
j=1 ϕ(s

j
h, a

j
h)ϕ(s

j
h, a

j
h)

⊤, for all
∆ ∈ (0, 1), we have

PD

(∥∥∥ K∑
k=1

ϕ(skh, a
k
h)ϵ

k
h(Vh)

∥∥∥2
Λ−1

h

> 2[u(H − h− bh)]2 log
( det(Λh)

1

2

∆ · det(λI) 1

2

))
≤ ∆,
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where the equation holds based on the fact that MK = Λh. By applying the definition of Λh, we
have ∥Λh∥2 ≤ λ+K which implies det(Λh) ≤ (λ+K)d. Therefore, we can get

PD

(∥∥∥ K∑
K=1

ϕ(skh, a
k
h)ϵ

k
h(Vh)

∥∥∥2
Λ−1

h

> [u(H − h− bh)]2
(
2 log

1

∆
+ d log

(
1 +

K

λ

)))

≤PD

(∥∥∥ K∑
k=1

ϕ(skh, a
k
h)ϵ

k
h(Vh)

∥∥∥2
Λ−1

h

> 2[u(H − h− bh)]2 log
( det(Λh)

1

2

∆ · det(λI) 1

2

))
≤∆

Here we finish the proof.

Definition D.2 Define the function class V mapping from S × [0, H] to R has the following para-
metric form,

V (·, b) = max
a

{
max

{
min

{
ϕ(·, a)⊤w(b)− β

√
ϕ(·, a)⊤Λ−1ϕ(·, a), u(H − h− b)

}
, 0
}}

,

where b ∈ [0, 1] is a parameter, ∥w(b)∥ ≤ L, β ∈ [0, B] and Λ ⪰ λI .

Lemma D.7 Based on Definition D.2, for all h ∈ [H] and ε > 0, we have

logNh(ε) ≤ d log
(
1 +

4L

ε

)
+ d2 log

(
1 +

8
√
dB2

λε2

)
.

Proof For the function class V , we set A = β2Λ−1. Therefore, by the definition of function class V ,
we have ∥w(b)∥ ≤ L and ∥A∥ ≤ B2

λ . Letting any two functions V1, V2 ∈ V , we have

dist(V1, V2)

≤ sup
s,a,b

∣∣∣[w1(b)ϕ(s, a)−
√
ϕ(s, a)⊤A1ϕ(s, a)

]
−
[
w2(b)ϕ(s, a)−

√
ϕ(s, a)⊤A2ϕ(s, a)

]∣∣∣
≤ sup

ϕ:∥ϕ∥≤1,w:∥w∥≤L

∣∣∣[w1ϕ−
√
ϕ⊤A1ϕ

]
−
[
w2ϕ−

√
ϕ⊤A2ϕ

]∣∣∣
≤ sup

ϕ:∥ϕ∥≤1,w:∥w∥≤L

∣∣(w1 − w2)ϕ
∣∣− ∣∣∣√ϕ⊤(A1 −A2)ϕ

∣∣∣
=
∥∥∥w1 − w2

∥∥∥+√∥∥∥A1 −A2

∥∥∥
2
≤
∥∥∥w1 − w2

∥∥∥+√∥∥∥A1 −A2

∥∥∥
F
,

where the third inequality holds due to |
√
x − √y| ≤

√
|x− y|, for x > 0, y > 0. Let Cw be

an ε
2 − cover of {w ∈ Rd

∣∣ ∥w∥ ≤ L} with respect to the 2-norm, and CA be an ε2

4 − cover of
{A ∈ Rd×d

∣∣ ∥A∥F ≤ √dB2λ−1} with respect to the Frobenius norm. By Lemma E.2, we have

|Cw| ≤
(
1 +

4L

ε

)d
,

|CA| ≤
(
1 +

8
√
dB2

λε2

)d2

.

By Equation D.7, for any V1 ∈ V , there are w2 ∈ Cw and A2 ∈ CA such that V2 parametrized by
(w2, A2) satisfies dist(V1, V2) ≤ ε. Therefore, we have N (ε) ≤ |Cw| · |CA|. Then, we can obtain

logNh(ε) ≤ log |Cw|+ log |CA| ≤ d log
(
1 +

4L

ε

)
+ d2 log

(
1 +

8
√
dB2

λε2

)
.

This completes the proof of Lemma D.7.

D.4 PROOF OF THEOREM 5.2

In this section, we extend the proof to stochastic reward, where rh ∼ R(·|s, a), to get a more general
result. When R(·|s, a) = 1, we get exactly the proof of Theorem 5.2 with deterministic reward.
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With Lemma B.13, we need to bound Es′,r[V̂h+1(s, b− r)]− Ês′,r[V̂h+1(s
′, b− r)], considering the

definition of ιh. We have

Es′,r

[
V̂h+1(s, b− r)

]
− Ês′,r

[
V̂h+1(s

′, b− r)
]

=ϕ(s, a)⊤wh(b)− ϕ(s, a)⊤Λ−1
h

( K∑
k=1

ϕ(skh, a
k
h)V̂h+1(s

k
h+1, b− rkh)

)
=ϕ(s, a)⊤wh(b)− ϕ(s, a)⊤Λ−1

h

( K∑
k=1

ϕ(skh, a
k
h)Es′,r[V̂h+1(s

k
h+1, b− rkh)]

)
− ϕ(s, a)⊤Λ−1

h

[ K∑
k=1

ϕ(skh, a
k
h)
(
V̂h+1(s

k
h+1, b− rkh)

− Es′,r

[
V̂h+1(s

k
h+1, b− rkh)

])]
.

Then, we can get the following inequality,

Es′,r

[
V̂h+1(s, b− r)

]
− Ês′,r

[
V̂h+1(s

′, b− r)
]

≤
∣∣∣ϕ(s, a)⊤wh(b)− ϕ(s, a)⊤Λ−1

h

[ K∑
k=1

ϕ(skh, a
k
h)Es′,r

[
V̂h+1(s

k
h+1, b− rkh)

]]∣∣∣
+
∣∣∣ϕ(s, a)⊤Λ−1

h

[ K∑
k=1

ϕ(skh, a
k
h)
(
V̂h+1(s

k
h+1, b− rkh)

− Es′,r

[
V̂h+1(s

k
h+1, b− rkh)

])]∣∣∣.
(17)

For the first term, |ϕ(s, a)⊤wh(b) − ϕ(s, a)⊤Λ−1
h [
∑K

k=1 ϕ(s
k
h, a

k
h)Es′,r[V̂h+1(s

k
h+1, b − rkh)]]|, we

have ∣∣∣ϕ(s, a)⊤wh(b)− ϕ(s, a)⊤Λ−1
h

[ K∑
k=1

ϕ(skh, a
k
h)Es′,r

[
V̂h+1(s

k
h+1, b− rkh)

]]∣∣∣
=
∣∣∣ϕ(s, a)⊤wh(b)− ϕ(s, a)⊤Λ−1

h

[ K∑
k=1

ϕ(skh, a
k
h)ϕ(s

k
h, a

k
h)

⊤wh(b)
]∣∣∣

=
∣∣∣ϕ(s, a)⊤wh(b)− ϕ(s, a)⊤Λ−1

h

(
Λh − λI

)
wh(b)

∣∣∣
=λ
∣∣∣ϕ(s, a)⊤Λ−1

h wh(b)
∣∣∣.

Due to the Cauchy-Schwarz inequality, there is∣∣∣ϕ(s, a)⊤wh(b)− ϕ(s, a)⊤Λ−1
h

[ K∑
k=1

ϕ(skh, a
k
h)Es′,r

[
V̂h+1(s

k
h+1, b− rkh)

]]∣∣∣
≤λ
∥∥∥ϕ(s, a)⊤∥∥∥

Λ−1

h

∥∥wh(b)
∥∥
Λ−1

h

=λ
√
wh(b)⊤Λ

−1
h wh(b)

√
ϕ(s, a)⊤Λ−1

h ϕ(s, a)

≤λ
∥∥∥Λ−1

h

∥∥∥ 1

2

2

∥∥wh

∥∥√ϕ(s, a)⊤Λ−1
h ϕ(s, a)

≤λ · λ− 1

2u(H − h− b)
√
d
√
ϕ(s, a)⊤Λ−1

h ϕ(s, a)

=u(H − h− b)
√
dλ
√
ϕ(s, a)⊤Λ−1

h ϕ(s, a),

where the last inequality is based on Lemma D.5. Then for any function V : S× [0, H]→ [0, Vmax],
we set

ϵkh(V ) = V (skh+1, b− rkh)− Es′,r

[
V (skh+1, b− rkh)

]
.
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Therefore, for the second term,
∣∣ϕ(s, a)⊤Λ−1

h

(∑K
k=1 ϕ(s

k
h, a

k
h)(V̂h+1(s

k
h+1, b − rkh) −

Es′,r[V̂h+1(s
k
h+1, b− rkh)])

)∣∣, by the Cauchy-Schwarz inequality, we have∣∣∣ϕ(s, a)⊤Λ−1
h

[ K∑
k=1

ϕ(skh, a
k
h)
(
V̂h+1(s

k
h+1, b− rkh)

− Es′,r

[
V̂h+1(s

k
h+1, b− rkh)

])]∣∣∣
=
∣∣∣ϕ(s, a)⊤Λ−1

h

[ K∑
k=1

ϕ(skh, a
k
h)ϵ

k
h(V̂h+1)

]∣∣∣
≤
∥∥∥ K∑

k=1

ϕ(skh, a
k
h)ϵ

k
h(V̂h+1)

∥∥∥
Λ−1

h

·
√
ϕ(s, a)⊤Λ−1

h ϕ(s, a).

(18)

The rest of the problem is to upper bound
∥∥∑K

k=1 ϕ(s
k
h, a

k
h)ϵ

k
h(V̂h+1)

∥∥
Λ−1

h

. Obviously, by Definition

D.2, it holds that V̂h+1 ∈ V . Set Nh+1(ε) is an ε − cover of V (·, b), there is a function V ′
h+1 ∈

Nh+1(ε) such that
sup
s∈S

∣∣V̂h+1(s, b)− V ′
h+1(s, b)

∣∣ ≤ ε.
Hence, we can obtain ∣∣∣Es′,r

[
V̂h+1(s, b)

∣∣sh, ah]− Es′,r

[
V ′
h+1(s, b)

∣∣sh, ah]∣∣∣
=
∣∣∣Es′,r

[
V̂h+1(s, b)− V ′

h+1(s, b)
∣∣sh, ah]∣∣∣

≤ε.

Then, by the triangle inequality, we have∣∣∣(V̂h+1(s
′, b)− Es′,r

[
V̂h+1(s

′, b)
])
−
(
V ′
h+1(s

′, b)− Es′,r

[
V ′
h+1(s

′, b)
])∣∣∣ ≤ 2ε.

Thus, we get ∣∣∣ϵkh(V̂ )− ϵkh(V ′)∣∣∣ ≤ 2ε.

Due to ∥a+ b∥2Λ ≤ 2∥a∥2Λ + 2∥b∥2Λ, we have∥∥∥ K∑
k=1

ϕ(skh, a
k
h)ϵ

k
h(V̂h+1)

∥∥∥2
Λ−1

h

≤2
∥∥∥ K∑

k=1

ϕ(skh, a
k
h)ϵ

k
h

(
V ′
h+1

)∥∥∥2
Λ−1

h

+ 2
∥∥∥ K∑

k=1

ϕ(skh, a
k
h)
[
ϵkh
(
V̂h+1

)
− ϵkh

(
V ′
h+1

)]∥∥∥2
Λ−1

h

≤2 sup
V ∈Nh+1(ε)

∥∥∥ K∑
k=1

ϕ(skh, a
k
h)ϵ

k
h(V )

∥∥∥2
Λ−1

h

+
8ε2K2

λ
.

(19)

Here we have an upper bound that is not related to the dataset D. Then applying Lemma D.6 and
the union bound, we have

PD

(
sup

V ∈Nh+1(ε)

∥∥∥ K∑
K=1

ϕ(skh, a
k
h)ϵ

k
h(V )

∥∥∥2
Λ−1

h

> [u(H − h− bh)]2
[
2 log

1

∆
+ d log

(
1 +

K

λ

)])
≤∆

∣∣Nh+1(ε)
∣∣.
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Set ∆ = δ
H|Nh+1(ε)| , where δ ∈ (0, 1). For any h, with probability 1− δ

H , there is

sup
V ∈Nh+1(ε)

∥∥∥ K∑
K=1

ϕ(skh, a
k
h)ϵ

k
h(V )

∥∥∥2
Λ−1

h

≤[u(H − h− bh)]2
(
2 log

H|Nh+1(ε)|
δ

+ d log
(
1 +

K

λ

))
Then, with Equation 19, with probability at least 1− δ, the following inequality holds∥∥∥ K∑

K=1

ϕ(skh, a
k
h)ϵ

k
h(V̂h+1)

∥∥∥2
Λ−1

h

≤2[u(H − h− bh)]2
(
2 log

H|Nh+1(ε)|
δ

+ d log
(
1 +

K

λ

))
+

8ε2K2

λ
,∀h ∈ [H].

Setting ε = dH
K and λ = 1, L = u(H − h− bh)

√
dK
λ , by Lemma D.7, we have

logNh(ε) ≤d log
(
1 +

4L

ε

)
+ d2 log

(
1 +

8
√
dB2

ε2

)
≤d log

(
1 + 4u(H − h− bh)d−

1

2K
3

2H−1
)
+ d2 log

(
1 + 8B2d−

3

2K2H−2
)
.

Then we set B = 2β, β = cd · u(H − h − bh)
√
ζ, and ζ = log(2dHKδ−1), where c > 0 is a

constant. Notice that u(H − h− bh) ≤ u(H) ≤ H , due to the concavity of utility function u along
with 1 ∈ ∂u(0). Therefore, we have

logNh(ε) ≤d log
(
1 + 4d−

1

2K
3

2

)
+ d2 log

(
1 + 32c2d

1

2K2ζ
)

≤2d2 log
(
1 + 32c2d

1

2K2ζ
)

≤2d2 log
(
64c2d

1

2K2ζ
)
.

(20)

Then with the fact that log ζ ≤ ζ, log(1 +K) ≤ log(2K) ≤ ζ, and Equation 20, we have∥∥∥ K∑
K=1

ϕ(skh, a
k
h)ϵ

k
h(V̂h+1)

∥∥∥2
Λ−1

h

≤2[u(H − h− bh)]2
(
2 log(Hδ−1) + 4d2 log(64c2d

1

2K2ζ) + d log(1 +K) + 4d2
)

≤2[u(H − h− bh)]2
(
2 log(Hδ−1) + 4d2 log(64c2) + 4d2ζ + 2d2 log(dK4) + dζ + 4d2

)
≤2[u(H − h− bh)]2

(
2d2 log(dHK4δ−1) + 4d2 log(64c2) + 9d2ζ

)
=2[u(H − h− bh)]2

(
2d2 log(dHKδ−1) + 6d2 logK + 4d2 log(64c2) + 9d2ζ

)
≤d2[u(H − h− bh)]2ζ

(
8 log(64c2) + 34

)
.

By setting 8 log(64c2) + 34 ≤ c2

4 , it holds that∥∥∥ K∑
K=1

ϕ(skh, a
k
h)ϵ

k
h

(
V̂h+1

)∥∥∥
Λ−1

h

≤ 1

2
cd · u(H − h− bh)

√
ζ =

β

2
. (21)

Therefore, based on Equation 17, Equation 18, Equation 21, we have∣∣∣Es′,r

[
V̂h+1(s, b− r)

]
− Ês′,r

[
V̂h+1(s

′, b− r)
]∣∣∣

≤
(
u(H − h− bh)

√
d+

1

2
cd · u(H − h− bh)

√
ζ
)√

ϕ(s, a)⊤Λ−1
h ϕ(s, a)

≤β
√
ϕ(s, a)⊤Λ−1

h ϕ(s, a).
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Then, with Lemma B.7, we have

SubOptS(π̂)

≤
H∑

h=1

{
2cd · u(H − h− bh)

√
log

2dHK

δ
· Eπ∗

[√
ϕ(sh, ah)⊤Λ

−1
h ϕ(sh, ah)

∣∣∣s1, b∗1]}
≤

H∑
h=1

{
2cd · u(H − h)

√
log

2dHK

δ
· Eπ∗

[√
ϕ(sh, ah)⊤Λ

−1
h ϕ(sh, ah)

∣∣∣s1, b∗1]},
where the last inequality holds because bh > 0. Here we finish the proof of Theorem 5.2.

E OTHER IMPORTANT LEMMAS

Lemma E.1 (Concentration of Self-Normalized Processes (Abbasi-Yadkori et al., 2011)) .

Let {Ft}∞t=1 be a filtration and {ϵt}∞t=1 be an R-valued stochastic process such that ϵt is Ft-
measurable for all t ≥ 1. Moreover, suppose that conditioning on Ft−1, ϵt is a zero-mean and
σ-sub-Gaussian random variable for all t ≥ 1, that is,

E[ϵt|Ft−1] = 0, E[exp(λϵt)|Ft−1] ≤ exp(λ2σ2/2), ∀λ ∈ R.

Meanwhile, let {ϕt}∞t=1 be an Rd-valued stochastic process such that ϕt is Ft−1-measurable for all
t ≥ 1. Also, let M0 ∈ Rd×d be a deterministic positive-definite matrix and

Mt =M0 +

t∑
s=1

ϕsϕ
⊤
s

for all t ≥ 1. For all ∆ > 0, it holds that∥∥∥∥∥
t∑

s=1

ϕsϵs

∥∥∥∥∥
2

M−1

t

≤ 2σ2 · log
(
det(Mt)

1/2 · det(M0)
−1/2

∆

)
for all t ≥ 1 with probability at least 1−∆.

Lemma E.2 (Covering Number of Euclidean Ball (Jin et al., 2020)) For any ε ≥ 0, the ε −
covering number of the Euclidean ball in R with radius R ≥ 0 can be upper bounded by (1+ 2R

ε )d.

F NUMERICAL SIMULATION

To verify the algorithms and theoretical results we proposed, we operate the numerical simulation
under a specially designed MDP with S = {s1, s2, s3} and A = {a1, a2}. s1 is set to be the initial
state of every episode. The structure of the MDP is shown in Figure 3.

𝑠1 𝑠2 𝑠𝑠3

Figure 3: MDP for numerical simulation.

Starting from s1, the agent can transfer to s2 and s3, consequently. At s3, the agent can return to
either s1 or s2 with different probabilities according to the action the agent takes. Besides, to add
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randomness to the process, at any state the agent have a chance to ”stay”. The detailed transition
and reward function is

P(s1|s1, a1) = 0.1, P(s2|s1, a1) = 0.9, P(s1|s1, a2) = 0.9, P(s2|s1, a2) = 0.1

P(s2|s2, a1) = 0.1, P(s3|s2, a1) = 0.9, P(s2|s2, a2) = 0.9, P(s3|s2, a2) = 0.1

P(s1|s3, a1) = 0.1, P(s2|s3, a1) = 0.1, P(s3|s3, a1) = 0.8

P(s1|s3, a2) = 0.4, P(s2|s3, a2) = 0.4, P(s3|s3, a2) = 0.2

and

r(s1, a) = 0, ∀a ∈ A
r(s2, a1) = 0, r(s2, a1) = 0.5

r(s3, a1) = 0, r(s3, a1) = 1.

The idea of constructing this MDP basically follows the idea of making a ”dilemma”, where the
good action with a larger reward has a larger probability of leading the agent to a bad state. By this
construction, considering the risk is important. We evaluate the CVar scenario with α = 0.5. The
result is shown in Figure 4.
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Figure 4: The suboptimality of the learned policy from Algorithm 1 and Algorithm 2. The mean
results are plotted as solid lines. The error bar area corresponds to the 90% confidence interval.

By operating the simulation with H = 20, 15, 10, 5, we can conclude that the history-dependent
policy learned by Algorithm 2 have lower suboptimality with the same H and K.

G STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

In the paper writing stage, large language models (LLMs), specifically OpenAI’s ChatGPT, were
employed to assist with tasks such as language polishing and grammar checking. GitHub Copilot
was occasionally used for code completion and checking when writing test code. The models were
not used to generate scientific content, proofs, research ideas, or code frameworks. All technical
contributions, theoretical derivations, algorithmic developments, and algorithm implementations are
the sole work of the authors. We have carefully reviewed and verified all text suggested by the LLMs
to ensure accuracy and compliance with academic standards.
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