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Abstract
In offline reinforcement learning-based recommender systems (RLRS),

learning effective state representations is crucial for capturing user

preferences that directly impact long-term rewards. However, raw

state representations often contain high-dimensional, noisy infor-

mation and components that are not causally relevant to the reward.

Additionally, missing transitions in offline data make it challenging

to accurately identify features that are most relevant to user sat-

isfaction. To address these challenges, we propose Policy-Guided

Causal Representation (PGCR), a novel two-stage framework for

causal feature selection and state representation learning in of-

fline RLRS. In the first stage, we learn a causal feature selection

policy that generates modified states by isolating and retaining

only the causally relevant components (CRCs) while altering ir-

relevant components. This policy is guided by a reward function

based on theWasserstein distance, which measures the causal effect

of state components on the reward and encourages the preserva-

tion of CRCs that directly influence user interests. In the second

stage, we train an encoder to learn compact state representations by

minimizing the mean squared error (MSE) loss between the latent

representations of the original and modified states, ensuring that

the representations focus on CRCs and filter out irrelevant varia-

tions. We provide a theoretical analysis proving the identifiability

of causal effects from interventions, validating the ability of PGCR

to isolate critical state components for decision-making. Extensive

experiments demonstrate that PGCR significantly improves rec-

ommendation performance, confirming its effectiveness for offline

RL-based recommender systems.

Keywords
Offline Reinforcement Learning, Recommendation, Causal State

Representation

1 Introduction
Reinforcement Learning (RL) has emerged as a powerful approach

for developing recommender systems (RS), where the objective is

to sequentially learn a policy that maximizes long-term rewards,

typically measured by user satisfaction or engagement. Unlike tra-

ditional recommendation methods that primarily aim to optimize

immediate rewards, RLRS focuses on learning a recommendation

strategy that adapts to user preferences over time [5]. This allows

RLRS to dynamically update recommendations based on user feed-

back, aiming to improve long-term outcomes and enhance user

experiences.

However, deploying RL in recommender systems poses signifi-

cant challenges. Traditional RLRS rely on continuous user interac-

tion to learn and adapt their policies, which may be impractical in

many real-world applications due to concerns such as exploration

risks, privacy issues, and computational costs [2]. To address these

challenges, offline RL-based recommender systems have been pro-

posed, where the goal is to learn optimal recommendation policies

from a fixed dataset of historical user interactions without further

online data collection. This offline setting leverages existing data to

refine and optimize recommendations, but it also introduces some

challenges.

A critical aspect in offline RLRS is learning efficient state repre-

sentations [1, 2]. In the offline setting, the agent must learn solely

from historical data without additional interactions, making the

challenges of high-dimensional and noisy state representations

more pronounced. The state space, which includes information

about user interactions, context, and preferences, is fundamental

for deciding actions (i.e., recommendations). However, raw state

representations are often complex and may contain components

that are not causally relevant to the reward.

Recent advances in representation learning in RL have focused

on extracting abstract features from high-dimensional data to en-

hance the efficiency and performance of RL algorithms [14, 15].

However, these challenges are compounded in the context of of-

fline RLRS due to the static nature of the data and the inability

to interact with the environment. Techniques such as those devel-

oped by Zhang et al. [31], which use the bisimulation metric to

learn representations that ignore task-irrelevant information, may

encounter challenges when applied directly to offline settings. In

particular, missing transitions in the offline dataset can particularly

impair the effectiveness of the bisimulation principle, resulting in

inaccurate state representation and poor estimation [30]. Moreover,

the complexity and high-dimensional nature of user data in offline

RLRS require isolating the components that are causally relevant to

the reward, rather than merely compressing the state space. Thus,

there is a need for targeted techniques that emphasize causally

critical state components within the constraints of offline learning.

To address these challenges, we propose a policy-guided ap-

proach for causal feature selection and state representation learning.

Our approach is designed to use a policy to generate intervened

states that isolate and retain only the causally relevant components

(CRCs). By focusing on the features that directly impact user satis-

faction, this method enables the state representation to concentrate

on the most informative components, reducing noise and irrelevant

variations. Additionally, by creating targeted interventions, this

approach augments offline datasets, enhancing the learning of state

representations even with finite datasets.

We introduce a method called PGCR (Policy-Guided Causal Rep-

resentation), which operates in two stages. In the first stage, we

learn a causal feature selection policy that generates modified states,

retaining the CRCs and modifying the causally irrelevant compo-

nents (CIRCs). We quantify the causal effect of the state compo-

nents on the reward, which reflects user feedback, by using the

Wasserstein distance between the original and modified reward

distributions. This metric effectively measures the distributional
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change caused by the interventions, and we use it to design a re-

ward function that encourages the retention of CRCs while altering

CIRCs. Furthermore, we provide theoretical analysis on the identi-

fiability of the causal effects resulting from these interventions. In

the second stage, we leverage the learned causal feature selection

policy to guide the training of a state representation encoder. Given

a pair consisting of an original state and its modified counterpart

generated by the causal feature selection policy, the encoder is

trained to produce latent representations that preserve only the

CRCs. Specifically, we minimize the mean squared error (MSE) loss

between the latent representations of the original and modified

states, encouraging the encoder to ignore irrelevant variations and

focus on causally meaningful features. This process allows the en-

coder to map states into a latent space where only the information

necessary for optimal decision-making is preserved.

Our contributions are as follows:

• We propose PGCR, a novel two-stage framework for offline

RL-based recommender systems. In the first stage, we learn

a causal feature selection policy to generate modified states

that retain causally relevant components. In the second

stage, we train an encoder to learn state representations

concentrating on these components.

• We design a reward function based on the Wasserstein

distance to guide the causal feature selection policy in iden-

tifying and retaining the state components that directly

influence user interests.

• We provide a theoretical analysis proving the identifiabil-

ity of causal effects from interventions, ensuring that our

method isolates the components of the state critical for

decision-making.

• Extensive experiments demonstrate the effectiveness of

PGCR in improving recommendation performance in offline

RL-based recommender systems.

2 Preliminaries
2.1 Offline RL-Based Recommender Systems
Offline Reinforcement Learning (RL) in Recommender Systems (RS)

aims to optimize decision-making by learning solely from historical

user interaction data within the framework of a Markov Decision

Process (MDP). TheMDP is represented by the tuple ⟨S,A,R,P, 𝛾⟩,
where:

• S represents the state space, encompassing user data, his-

torical interactions, item characteristics, and contextual

factors.

• A denotes the action space, which includes all candidate

items available for recommendation.

• R : S ×A → R defines the reward function, based on user

feedback such as clicks, ratings, or engagement metrics.

• P describes the transition probabilities, governing the dy-

namics of state transitions.

• 𝛾 is the discount factor, used to balance immediate and

future rewards.

Unlike online RL, the agent does not interact with the environ-

ment in real-time but must infer the optimal policy solely from

historical data. In this MDP setup, the agent (RS) learns from a

fixed dataset D of interactions collected by a behavior policy. Each

entry in this dataset consists of a state 𝑠𝑡 , an action 𝑎𝑡 taken by

the behavior policy, the resulting reward 𝑟𝑡 , and the next state 𝑠𝑡+1.
The primary goal of the RS agent is to learn a policy 𝜋 : S → A
that maximizes the cumulative discounted return, thereby ensuring

the long-term effectiveness of the recommendations provided to

the user.

2.2 Causal Models
Causal models provide a structured way to represent and analyze

the causal relationships among a set of variables. Consider a finite

set of random variables denoted by X = {𝑋1, 𝑋2, . . . , 𝑋𝑛}, each
associated with an index in V = {1, 2, . . . , 𝑛}. These variables have
a joint distribution 𝑃X and a joint density function 𝑝 (x). A causal

graphical model is represented by a Directed Acyclic Graph (DAG)

G = (V, E), where V is the set of nodes, each corresponding to one

of the variables in X and E is the set of directed edges between the

nodes, indicating direct causal influences.

Definition 2.1 (Structural Causal Model). A Structural Causal

Model (SCM)M = (S, 𝑃U) associated with a DAG G consists of a

set S of structural equations:

𝑋𝑖 = 𝑓𝑖 (PA𝑖 ,𝑈𝑖 ), 𝑖 = 1, 2, . . . , 𝑛,

where PA𝑖 ⊆ X \ {𝑋𝑖 } denotes the set of parent variables (direct
causes) of 𝑋𝑖 in the graph G.𝑈𝑖 represents the exogenous (noise)

variables, accounting for unobserved factors, and U = {𝑈1, . . . ,𝑈𝑛}
is the set of all such variables. A joint distribution 𝑃U over the noise

variables U, assumed to be jointly independent.

Each structural function 𝑓𝑖 specifies how𝑋𝑖 is generated from its

parents PA𝑖 and the noise term𝑈𝑖 . The combination of the structural

equations S and the distribution 𝑃U induces a joint distribution 𝑃X
over the endogenous variables X.

Definition 2.2 (Intervention). An intervention in an SCMM is

an operation that modifies one or more of the structural equations

in S. Specifically, suppose we replace the structural equation for

variable 𝑋 𝑗 with a new equation:

𝑋 𝑗 = ˆ𝑓𝑗 (P̂A𝑗 ,𝑈 𝑗 ) .

This results in a new SCM
ˆM, reflecting the intervention on

𝑋 𝑗 . The corresponding distribution changes from the observational

distribution 𝑃MX to the interventional distribution 𝑃
ˆM

X , expressed

as:

𝑃
ˆM

X = 𝑃
M;𝑑𝑜 (𝑋 𝑗= ˆ𝑓𝑗 (P̂A𝑗 ,�̂� 𝑗 ) )
X ,

where the 𝑑𝑜-operator 𝑑𝑜 (𝑋 𝑗 = ˆ𝑓𝑗 (P̂A𝑗 ,𝑈 𝑗 )) denotes the inter-
vention that replaces the structural equation for 𝑋 𝑗 .

3 Methodology
3.1 Problem Formulation
To learn a policy that identifies the causally relevant components

in the state, we first represent the MDP from a causal modeling

perspective. Assuming there are no unobserved confounders, the

SCMs for the MDP can be formulated using deterministic equations

augmented with exogenous noise variables to capture stochasticity,

as shown in Figure 1 (a):

2
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(a) Causal Diagram for MDP

(b) Causal Diagram with State Representation

Figure 1: (a) A graphical representation showing the causal relationships between state 𝑠𝑡 , action 𝑎𝑡 , and reward 𝑟𝑡 over time,
with green lines indicating where the causal agent makes interventions. (b) An extended diagram incorporating the latent state
𝑧𝑡 (blue lines), illustrating that actions 𝑎𝑡 depend on 𝑧𝑡−1 rather than 𝑠𝑡−1 (green, dashed lines) as described in Proposition 2.
(c) The causal agent intervenes on actions to generate modified states 𝑠I𝑡 , while the expert agent collects rewards from both
original and modified states to train the causal policy. (d) The causal agent uses the offline dataset to generate modified states,
which the encoder processes to learn latent representations for training the recommendation agent.

𝑠𝑡+1 = 𝑓𝑃 (𝑠𝑡 , 𝑎𝑡 , 𝜖𝑡+1), 𝑎𝑡 = 𝜋𝑡 (𝑠𝑡 , 𝜂𝑡 ), 𝑟𝑡 = 𝑓𝑅 (𝑠𝑡 , 𝑎𝑡 ). (1)

In this formulation, the state transition function 𝑓𝑃 determines

the next state 𝑠𝑡+1 based on the current state 𝑠𝑡 , action 𝑎𝑡 , and

exogenous noise 𝜖𝑡+1. The policy function 𝜋𝑡 selects the action

𝑎𝑡 given the current state 𝑠𝑡 and exogenous noise 𝜂𝑡 . The reward

function 𝑓𝑅 assigns a reward 𝑟𝑡 based on the current state 𝑠𝑡 and

action 𝑎𝑡 .

By modeling the MDP in this way, we can explicitly analyze how

different components of the state causally affect rewards, allowing

us to focus on the elements of 𝑠𝑡 that have a direct causal impact on

𝑟𝑡 . To differentiate their levels of influence on learning user interest

representations, we decompose the state 𝑠𝑡 ∈ S into two disjoint

components: Causally Relevant Components (CRCs) and Causally

Irrelevant Components (CIRCs).

Since the rewards in a recommender system reflect users’ inter-

ests, we measure the causal effect on user preferences through the

rewards. Formally, the CRCs are identified as parts of the state that

contain critical information about the user’s interest. Modifications

to the CRCs lead to significant changes in rewards and the items

recommended. In contrast, CIRCs are state components that have

minimal influence on representing user interests, so altering them

has a weak causal effect on rewards in the SCMs. Given the dis-

tinction between these components, the core of our approach is to

learn a policy that can accurately identify and retain the causally

relevant components of a state.

3.2 Causal Feature Selection Policy
Given a tuple {𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡 }, the causal feature selection policy

identifies the CRCs bymaking the atomic intervention on the action

𝑎𝑡 , which is forced to take on some value 𝑎I𝑡 . Formally, this atomic

intervention, which we denote by 𝑑𝑜 (𝑎𝑡 := 𝑎I𝑡 ), or 𝑑𝑜 (𝑎𝑡 ) for short,
amounts to removing the equation 𝑎𝑡 = 𝜋𝑡 (𝑠𝑡 , 𝜂𝑡 ) from the model

and substituting 𝑎𝑡 := 𝑎I𝑡 in the remaining equations. The new

model thus created represents the system’s behavior under the

intervention 𝑑𝑜 (𝑎𝑡 := 𝑎I𝑡 ) and, when solved for the distribution

of 𝑠𝑡+1, yields the causal effect of 𝑎𝑡 on 𝑠𝑡+1, which is denoted

𝑃𝑑𝑜 (𝑎𝑡 :=𝑎
I
𝑡 ) (𝑠𝑡+1).

Your proposition looks logically sound, and the structure is clear.

To improve consistency, here’s a refined version of the proposition

with a small clarification at the end:

Proposition 1 (Identifiability). Suppose the state 𝑠𝑡 and action 𝑎𝑡
are observable and form an MDP, as described in Equation (7). The

variable 𝑠𝑡 satisfies the back-door criterion (see Appendix A) relative

to the pair of variables (𝑎𝑡 , 𝑠𝑡+1) because it meets the following

criteria: There is no descendant of 𝑎𝑡 in 𝑠𝑡 , and all paths between 𝑎𝑡
and 𝑠𝑡+1 that contain an arrow into 𝑎𝑡 are blocked by 𝑠𝑡 . Therefore,

the causal effect of 𝑎𝑡 on 𝑠𝑡+1 is identifiable.

The proof of Proposition 1 is given in Appendix B. Consequently,

the probability distribution for the state 𝑠𝑡+1 induced after inter-

vention is given by the formula:

𝑃M;𝑑𝑜 (𝑎𝑡 :=𝑎I𝑡 ) (𝑠𝑡+1)

=
∑︁
𝑠𝑡

∫
𝜖𝑡+1

𝑃 (𝑠𝑡+1 | 𝑑𝑜 (𝑎𝑡 ), 𝑠𝑡 , 𝜖𝑡+1) 𝑃 (𝜖𝑡+1) 𝑃 (𝑠𝑡 | 𝑑𝑜 (𝑎𝑡 )) 𝑑𝜖𝑡+1

=
∑︁
𝑠𝑡

∫
𝜖𝑡+1

𝑃 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎I𝑡 , 𝜖𝑡+1) 𝑃 (𝜖𝑡+1) 𝑃 (𝑠𝑡 ) 𝑑𝜖𝑡+1

= E𝑠𝑡 ,𝜖𝑡+1
[
𝑃 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎I𝑡 , 𝜖𝑡+1)

]
.

(2)

3
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After the causal feature selection policy intervenes on the action

𝑎𝑡 , setting it to a specific value 𝑎
I
𝑡 , the environment transitions to a

new state 𝑠I . This intervened state 𝑠I is expected to preserve only

the causally relevant components of the original state 𝑠𝑡 , while any

causally irrelevant CIRCs are modified or filtered out.

Since the CRCs are the parts of 𝑠𝑡 that have a significant causal

impact on rewards, we regard the new state 𝑠I , induced by the

intervention on 𝑎𝑡 , as an effective intervention on 𝑠𝑡 in the original

tuple {𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡 }. By comparing the rewards obtained before

and after the intervention, we can evaluate the causal effect of

the original state 𝑠𝑡 on the reward 𝑟𝑡 , isolating the impact of the

causally relevant components.

Formally, following Pearl’s rules of 𝑑𝑜-calculus [21], as outlined

in Appendix A, the causal effect of 𝑠𝑡 on 𝑟𝑡 is given by the formula:

𝑃M;𝑑𝑜 (𝑠𝑡 :=𝑠I ) (𝑟𝑡 )

=
∑︁
𝑎𝑡

∫
𝜂𝑡

𝑃 (𝑟𝑡 | 𝑑𝑜 (𝑠𝑡 := 𝑠I ), 𝑎𝑡 , 𝜂𝑡 ) 𝑃 (𝜂𝑡 ) 𝑃 (𝑎𝑡 | 𝑑𝑜 (𝑠𝑡 := 𝑠I )) 𝑑𝜂𝑡

=
∑︁
𝑎𝑡

∫
𝜂𝑡

𝑃 (𝑟𝑡 | 𝑠𝑡 := 𝑠I , 𝑎𝑡 , 𝜂𝑡 ) 𝑃 (𝜂𝑡 ) 𝑃 (𝑎𝑡 | 𝑠𝑡 := 𝑠I ) 𝑑𝜂𝑡

= E𝑎𝑡 ,𝜂𝑡
[
𝑃 (𝑟𝑡 | 𝑠𝑡 := 𝑠I , 𝑎𝑡 , 𝜂𝑡 )

]
.

(3)

If the intervened probability distribution of the reward is similar

to the original distribution, substituting 𝑠𝑡 with 𝑠I has a minor

causal effect on the reward. This indicates that the causally CRCs of

𝑠𝑡 that significantly influence learning the user’s interest have been

retained. To quantify this effect, we measure the distance between

the two probability distributions of the reward before and after the

intervention. Inspired by bisimulation for state abstraction [7], we

adopt the first-order Wasserstein distance to measure how the in-

tervened reward probability distribution 𝑃M;𝑑𝑜 (𝑠𝑡 :=𝑠I ) (𝑟𝑡 ) differs
from the original distribution 𝑃M (𝑟𝑡 ):

𝑊1

(
𝑃M;𝑑𝑜 (𝑠𝑡 :=𝑠I ) (𝑟𝑡 ), 𝑃M (𝑟𝑡 )

)
= inf

𝛾 ∈Γ(𝑃I ,𝑃M)

∫
R×R

|𝑟−𝑟 ′ | 𝑑𝛾 (𝑟, 𝑟 ′),

(4)

where Γ
(
𝑃I , 𝑃M

)
is the set of all joint distributions 𝛾 (𝑟, 𝑟 ′) with

marginals 𝑃M;𝑑𝑜 (𝑠𝑡 :=𝑠I ) (𝑟𝑡 ) and 𝑃M (𝑟𝑡 ). A small Wasserstein dis-

tance indicates that the intervention on the state 𝑠𝑡 has a negligible

effect on the reward distribution, suggesting that the components

altered by the intervention are causally irrelevant to the reward.

Conversely, a large Wasserstein distance implies that the interven-

tion significantly changes the reward distribution, highlighting the

causal relevance of the components modified in the state.

By evaluating the Wasserstein distance between the original

and intervened reward distributions, we can quantify the causal

effect of the state components on the reward. This measurement

not only guides the causal feature selection policy in identifying

and retaining the causally relevant components in the state but

also serves as a crucial guide for the agent’s learning process. To

operationalize this measurement within the agent’s learning, we

introduce an effective reward function defined as:

𝑟𝑡 = exp

(
−𝜆𝑊1

(
𝑃M;𝑑𝑜 (𝑠𝑡 :=𝑠I ) (𝑟𝑡 ), 𝑃M (𝑟𝑡 )

))
, (5)

where 𝜆 ∈ (0, 1] is a scaling parameter that controls the sensitiv-

ity of the reward to changes in the Wasserstein distance.

By maximizing this reward, the agent is incentivized to select

actions that minimize the Wasserstein distance between the inter-

vened and original reward distributions. This encourages the agent

to choose actions that retain the causally relevant components of

the state, effectively filtering out causally irrelevant features. Conse-

quently, the agent adjusts its policy to focus on the essential causal

elements.

3.3 Policy-Guided State Representation
Having identified the CRCs of the state through our causal feature

selection policy, we proceed to learn a state representation that

effectively captures these essential components. The objective is

to encode the current state 𝑠𝑡 and its intervened counterpart 𝑠I𝑡
into a latent space where only the CRCs are preserved, and the

CIRCs are minimized or disregarded. To achieve this, we employ

an encoder trained using mean squared error (MSE) loss, which

focuses on aligning the representations of 𝑠𝑡 and 𝑠
I
𝑡 by minimizing

the differences in their latent representations.

By using the causal feature selection policy to generate modified

states 𝑠I𝑡 , which share the same CRCs but differ in CIRCs compared

to the original state 𝑠𝑡 , we provide the encoder with pairs of states

that should be mapped to similar latent representations. The MSE

loss between the latent representations of 𝑠𝑡 and 𝑠I𝑡 encourages

the encoder to focus on the CRCs and ignore the CIRCs. Moreover,

generating modified states 𝑠I𝑡 through interventions allows us to

augment the dataset, addressing the issue of missing transitions

commonly encountered in offline recommender systems.

Practically, we design an encoder network 𝜙 that processes the

input states and outputs their latent representations:

𝑧𝑡 = 𝜙 (𝑠𝑡 ), 𝑧I𝑡 = 𝜙 (𝑠I𝑡 ).

We train the encoder by minimizing the mean squared error (MSE)

loss between the latent representations of 𝑠𝑡 and 𝑠
I
𝑡 :

𝐽 = ∥𝜙 (𝑠𝑡 ) − 𝜙 (𝑠I𝑡 )∥22 . (6)

This loss function encourages the encoder to focus on the CRCs

by reducing the differences in the latent representations of 𝑠𝑡 and

𝑠I𝑡 , which differ only in their CIRCs.

Proposition 2 (Optimal Policy Based on Latent State Representa-

tion). Let 𝑠𝑡 ∈ S be the full state at time 𝑡 , and let𝐺 =
∑∞
𝑘=0

𝛾𝑘𝑟𝑡+𝑘
be the expected discounted return. Let 𝜙 : S → Z be an encoder

that maps 𝑠𝑡 to a latent state representation 𝑧𝑡 = 𝜙 (𝑠𝑡 ) ∈ Z, cap-

turing the causally relevant components. Suppose for 𝑧𝑡 , we have:

• 𝑟𝑡 ⊥⊥ 𝑠𝑡 | 𝑧𝑡 , 𝑎𝑡 .
• For all 𝑠𝑡−1, 𝑠◦𝑡−1 ∈ S with 𝜙 (𝑠𝑡−1) = 𝜙 (𝑠◦

𝑡−1),
𝑝 (𝜙 (𝑠𝑡 ) | 𝑠𝑡−1) = 𝑝 (𝜙 (𝑠𝑡 ) | 𝑠◦𝑡−1) .

Then the optimal policy 𝜋opt depends only on the latent state rep-

resentation 𝑧𝑡 , and not on the full state 𝑠𝑡 . That is, there exists

𝜋opt ∈ argmax

𝜋
E[𝐺],
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such that

𝜋opt (𝑎𝑡 | 𝑠𝑡−1) = 𝜋opt (𝑎𝑡 | 𝑠◦𝑡−1) ∀𝑠𝑡−1, 𝑠
◦
𝑡−1 : 𝜙 (𝑠𝑡−1) = 𝜙 (𝑠◦𝑡−1) .

The proof of Proposition 2 is given in Appendix C. This proposi-

tion shows that using the encoder 𝜙 (𝑠𝑡 ) as a means of simplifying

the state is theoretically justified. The encoder learns to isolate the

CRCs from the full state, ensuring that the resulting latent repre-

sentation 𝑧𝑡 contains all information needed for decision-making.

This supports the approach of training an encoder to map states

into a latent space that focuses on the essential causal features.

Algorithm 1: Training Procedure for Causal Feature Selec-
tion Policy

Input: Initial parameters 𝜃𝜇𝑐 , 𝜃𝜙𝑐 ; replay buffer 𝐷𝑐 ; reward

buffers 𝑅, 𝑅

for episode = 1 to 𝐸 do
for 𝑡 = 1 to 𝑇 do

Expert observes state 𝑠𝑡 , executes action 𝑎𝑡 , and

stores reward 𝑟𝑡 in 𝑅;

Causal agent intervenes with action 𝑎I𝑡 and obtains

modified state 𝑠I𝑡 ;

Expert observes 𝑠I𝑡 , executes action 𝑎𝑡 , and stores

reward 𝑟𝑡 in 𝑅;

Calculate reward 𝑟 based on the reward function ;

// See Eq. (5)

Store transition (𝑠𝑡 , 𝑎I𝑡 , 𝑠I𝑡 , 𝑟 ) in replay buffer 𝐷𝑐 ;

Sample minibatch from 𝐷𝑐 and update parameters

𝜃𝜇𝑐 , 𝜃𝜙𝑐 ;

3.3.1 Learning of Causal Feature Selection Policy. The causal fea-
ture selection policy is trained by leveraging the reward function

in Equation (5). The objective is to design interventions that retain

the CRCs while minimizing changes to the reward distribution,

thereby preserving the essential components influencing user sat-

isfaction. The algorithm for learning the causal feature selection

policy is provided in Algorithm 1.

A one-step illustration of the training process is depicted in Fig-

ure 1 (c). The causal feature selection policy is trained with the assis-

tance of a pre-trained expert policy, which uses external knowledge

to obtain both the observational and intervened reward distribu-

tions. The expert policy can be learned using any RL-based algo-

rithm, and the causal feature selection policy can follow a similar

approach.

During training, the expert policy interacts with the environment

to collect tuples of the form (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), where 𝑟𝑡 contributes to
the observational reward distribution. Simultaneously, the causal

feature selection policy observes the state 𝑠𝑡 and intervenes on the

action to generate a modified state 𝑠I𝑡 . This modified state 𝑠I𝑡 is

treated as an intervention on the original tuple’s state. The expert

policy then observes 𝑠I𝑡 and executes the original action 𝑎𝑡 , thereby

obtaining an intervened reward, which is used to construct the

intervened reward distribution.

By maximizing the reward in Equation (5), the causal feature

selection policy is incentivized to produce modified states 𝑠I𝑡 that

yield reward distributions similar to the original. This similarity

indicates that the CRCs are effectively retained while the CIRCs are

altered, ensuring that the modified states preserve the key causal

components.

3.3.2 Integrated Learning Process. In the offline RL setting, we

integrate the causal feature selection policy with the training of

both the state representation encoder and the recommendation

policy, as depicted in Figure 1 (d). Given a current state 𝑠𝑡 from

the offline dataset, the causal feature selection policy generates a

modified state 𝑠I𝑡 that retains only the CRCs. The state pair (𝑠𝑡 , 𝑠I𝑡 )
is then used to train the encoder network 𝜙 , which processes the

input states and outputs their latent representations.

The encoder is trained by minimizing the loss defined in Equa-

tion (6), which encourages it to focus on the CRCs by reducing the

differences in the latent representations of the state pairs, which

differ only in their CIRCs. Consequently, the encoder learns to map

states into a latent space where only the causally relevant features

are preserved, effectively filtering out irrelevant variations.

The recommendation policy 𝜋Re is subsequently trained using

the latent representations 𝑧𝑡 as inputs. Because the encoder prior-

itizes the CRCs, the recommendation policy is equipped to make

decisions based on the most pertinent information influencing user

satisfaction. The full algorithm for the integrated learning process

is presented in Algorithm 2.

Algorithm 2: Integrated Learning Process

Input: Offline dataset D; causal policy 𝜋𝐶 ; encoder 𝜙 with

parameters initial 𝜃 ; recommendation policy 𝜋Re
with initial parameters 𝜙 ; learning rate 𝛼

foreach training epoch do
foreach batch B from D do

// Generate Modified State Using Causal

Feature Selection

foreach (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) ∈ B do
Generate modified state 𝑠I𝑡 = 𝜋𝐶 (𝑠𝑡 );

// Train Encoder Using MSE Loss

Encode states: 𝑧𝑡 = 𝜙 (𝑠𝑡 ), 𝑧I𝑡 = 𝜙 (𝑠I𝑡 );
Compute MSE loss: L

encoder
= ∥𝑧𝑡 − 𝑧I𝑡 ∥22;

Update encoder parameters: 𝜃 = 𝜃 − 𝛼 ∇𝜃Lencoder
;

// Train Recommendation Policy Using

Latent Representations
Update policy parameters 𝜙 with offline RL

algorithm;

4 Experiments
In this section, we begin by performing experiments on an online

simulator and recommendation datasets to highlight the remarkable

performance of our methods. We then conduct an ablation study

to demonstrate the effectiveness of the causal-indispensable state

representation.
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4.1 Experimental Setup
We introduce the experimental settings with regard to environ-

ments and state-of-the-art RL methods.

4.1.1 Recommendation Environments. For offline evaluation, we

use the following benchmark datasets:

• MovieLens-1M1
: These datasets, derived from the Movie-

Lens website, feature user ratings of movies. The ratings

are on a 5-star scale, with each user providing at least 20

ratings. Movies and users are characterized by 23 and 5

features, respectively.

• Coat [23]: is a widely used dataset that is proposed for

product recommendation.

• YahooR3: a music recommendation dataset that proposed

by [20].

• KuaiRec: a video recommendation dataset that proposed

by [10] which is fully-observable.

• KuaiRand: a video recommendation dataset similar to

KuaiRec but with a randomly exposed mechanism [11].

When converting them into the RL environments, we use the GRU

as the state encoder for those offline datasets. In addition to those of-

fline datasets, we also conduct experiments on an online simulation

platform - VirtualTB [24],

4.1.2 Baseline. Since limited work focuses on causal state repre-

sentation learning for offline RLRS, we selected the traditional RL

algorithm as the baseline. In concurrent work, CIDS [27] proposes

using conditional mutual information to isolate crucial state vari-

ables. The key difference between our work and CIDS is that CIDS

is tailored for online RLRS, focusing primarily on the causal rela-

tionship between action and state. In contrast, our work addresses

offline RLRS, incorporating the reward into the framework to train

a policy that guides the learning of state representations. In our

experiments, we employ the following algorithms as the baseline:

• Deep Deterministic Policy Gradient (DDPG) [18]: An
off-policy method suitable for environments with continu-

ous action spaces, employing a target policy network for

action computation.

• Soft Actor-Critic (SAC) [12] : An off-policy maximum

entropy Deep RL approach, optimizing a stochastic policy

with clipped double-Q method and entropy regularization.

• Twin Delayed DDPG (TD3) [8]: An enhancement over

DDPG, incorporating dual Q-functions, less frequent policy

updates, and noise addition to target actions.

To evaluate the performance of the proposed PGCR,we have plugged

the PGCR into those mentioned baselines to evaluate the perfor-

mance.

4.1.3 Evaluation Measures. Following the previous work [29], we

will use the cumulative reward, average reward and interaction

length as the main evaluation metric for those mentioned offline

datasets. For VritualTB, we use the embedded CTR as the main

evaluation metric.

1
https://grouplens.org/datasets/movielens/

4.2 Implementation Details
In our experiments, we first need to train the causal agent to con-

duct the intervention and thus generate the intervened state. The

offline demonstration is required to train the causal agent. We use a

DDPG algorithm to conduct the process to obtain the offline demon-

strations for various datasets. The algorithm is trained for 100,000

timesteps, and we save the policy with the best performance during

the evaluation stage. The saved policy will be used to generate the

offline demonstrations. For the training of our proposed method,

we set the learning rate to 10
−4

for the actor-network and 10
−3

for

the critic network. The discount factor 𝛾 is set to 0.95, and we use

a soft target update rate 𝜏 of 0.001. The hidden size of the network

is set to 128, and the replay buffer size is set to 10
6
.

For those baselines, we are using the standard hyper-parameters

settings from the Tianshou
2
.

Figure 2: The 1-step CTR performance in the VirtualTaobao
simulation is presented as the mean with error bars.

4.3 Overall Results
The results in Table 1 show that PGCR, a causal state representa-

tion learning method, significantly enhances state representation

in reinforcement learning algorithms. Across different datasets,

the PGCR-enhanced versions of standard algorithms (DDPG, SAC,

TD3) demonstrate consistent improvements in cumulative and av-

erage rewards. This suggests that PGCR effectively strengthens the

algorithms’ ability to learn better state representations, leading to

more informed decision-making and improved policy performance.

Moreover, the enhanced state representation provided by PGCR

does not adversely affect the interaction length, which remains

stable or slightly increases, indicating efficient learning processes.

Additionally, the relatively low variance in the results for PGCR-

enhanced methods further emphasizes their stability and reliability

across different environments. These findings highlight the effec-

tiveness of PGCR in boosting the overall learning and performance

of reinforcement learning models by focusing on improved causal

state representations.

4.4 Ablation Study
In this section, we aim to investigate the impact of the proposed

causal agent on the final performance. To do this, we replaced the

2
https://github.com/thu-ml/tianshou
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Table 1: Performance comparisons of our method with baselines on the MovieLens, Coat, KuaiRec and KuaiRand. The best
results are highlighted in bold. The variance is also reported.

MovieLens-1M Coat

Cumulative Reward Average Reward Interaction Length Cumulative Reward Average Reward Interaction Length

DDPG 9.3706 ± 4.49 3.0329 ± 1.44 3.11 ± 0.02 16.3348 ± 7.23 2.3277 ± 1.03 7.02 ± 0.03
PGCR-DDPG 13.0722 ± 3.55 4.0587 ± 1.10 3.22 ± 0.03 19.4281 ± 4.01 2.7675 ± 0.57 7.02 ± 0.05

SAC 10.2424 ± 3.66 2.8852 ± 1.03 3.55 ± 0.03 17.5432 ± 7.22 2.4231 ± 1.00 7.24 ± 0.02
PGCR-SAC 13.4522 ± 3.77 4.4544 ± 1.25 3.02 ± 0.05 20.4272 ± 4.70 2.7164 ± 0.63 7.52 ± 0.10

TD3 10.1620 ± 4.90 2.9410 ± 1.42 3.45 ± 0.02 16.3232 ± 7.02 2.3542 ± 1.01 6.93 ± 0.03
PGCR-TD3 14.1281 ± 5.21 3.4375 ± 1.27 4.11 ± 0.02 19.1192 ± 3.81 2.5323 ± 0.50 7.55 ± 0.11

KuaiRec KuaiRand

Cumulative Reward Average Reward Interaction Length Cumulative Reward Average Reward Interaction Length

DDPG 9.2155 ± 4.05 1.0192 ± 0.45 9.04 ± 0.04 1.4232 ± 0.51 0.3287 ± 0.12 4.33 ± 0.03
PGCR-DDPG 14.2254 ± 4.87 1.5948 ± 0.55 8.92 ± 0.04 2.0334 ± 0.65 0.3657 ± 0.10 5.56 ± 0.03

SAC 10.5235 ± 3.92 1.1693 ± 0.44 9.00 ± 0.10 1.8272 ± 0.55 0.3500 ± 0.11 5.22 ± 0.04
PGCR-SAC 15.3726 ± 4.02 1.8588 ± 0.49 8.27 ± 0.04 2.4421 ± 0.23 0.4531 ± 0.05 5.39 ± 0.04

TD3 7.8179 ± 3.25 0.8610 ± 0.36 9.09 ± 0.04 1.5083 ± 0.40 0.3010 ± 0.08 5.01 ± 0.05
PGCR-TD3 14.0021 ± 4.90 1.5203 ± 0.53 9.21 ± 0.03 2.0001 ± 0.34 0.3992 ± 0.07 5.01 ± 0.02

(a) (b) (c)

Figure 3: Performance comparisons in VirtualTB: (a) DDPG as the backbone, (b) SAC as the backbone, and (c) TD3 as the
backbone. Ablation versions with random states are also included in each backbone.

causal agent with a randomly sampled state. We denote the model

without the causal agent as “-C.”

Table 2 presents a comparison between the performance of

PGCR, the proposed causal state representation learning method,

and its variant, PGCR-C, which excludes the causal agent. Across all

datasets and reinforcement learning algorithms (DDPG, SAC, TD3),

PGCR consistently outperforms PGCR-C in terms of cumulative

and average rewards. This highlights the importance and effective-

ness of incorporating the causal agent within the PGCR framework,

suggesting that the causal state representation significantly en-

hances the learning process, leading to better policy decisions and

improved overall performance.

Regarding interaction length, the differences between PGCR and

PGCR-C are generally minor, indicating that the causal agent does

not significantly change the duration of interactions but rather

improves the quality of decisions during those interactions. The

consistent improvements in both cumulative and average rewards

across various settings demonstrate that the causal aspect of PGCR

is crucial for achieving optimal performance in reinforcement learn-

ing tasks. These results underscore the value of the causal state

representation in capturing the underlying structure of the en-

vironment, enhancing the algorithm’s ability to learn and adapt

effectively.

4.5 Hyper-parameter Study
In this section, we investigate how the reward balance parameter

𝜆 in Equation (5) influences the final performance. To account

for computational costs, this study is conducted using an online

simulation platform, with the results presented in Figure 4. We

observe that all threemodels—PGCR-DDPG, PGCR-SAC, and PGCR-

TD3—are highly sensitive to the value of 𝜆. Each model achieves

peak performance in terms of CTR around a 𝜆 range of 0.1 to

0.2, suggesting that this range is optimal for maximizing the CTR

across the models. However, as 𝜆 increases beyond 0.2, there is a

noticeable decline in performance for all models, with PGCR-DDPG

experiencing the most significant drop.
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Table 2: Ablation Study

MovieLens-1M Coat

Cumulative Reward Average Reward Interaction Length Cumulative Reward Average Reward Interaction Length

PGCR-DDPG 13.0722 ± 3.55 4.0587 ± 1.10 3.22 ± 0.03 19.4281 ± 4.01 2.7675 ± 0.57 7.02 ± 0.05
PGCR-C-DDPG 9.9271 ± 4.02 3.1022 ± 1.26 3.20 ± 0.03 17.0237 ± 6.55 2.3611 ± 0.91 7.21 ± 0.04
PGCR-SAC 13.4522 ± 3.77 4.4544 ± 1.25 3.02 ± 0.05 20.4272 ± 4.70 2.7164 ± 0.63 7.52 ± 0.10
PGCR-C-SAC 11.0238 ± 3.44 2.7491 ± 0.86 4.01 ± 0.05 18.1253 ± 7.02 2.5209 ± 0.98 7.19 ± 0.03
PGCR-TD3 14.1281 ± 5.21 3.4375 ± 1.27 4.11 ± 0.02 19.1192 ± 3.81 2.5323 ± 0.50 7.55 ± 0.11
PGCR-C-TD3 11.0261 ± 4.45 3.4349 ± 1.39 3.21 ± 0.03 17.0221 ± 6.42 2.3907 ± 0.91 7.12 ± 0.04

KuaiRec KuaiRand

Cumulative Reward Average Reward Interaction Length Cumulative Reward Average Reward Interaction Length

PGCR-DDPG 14.2254 ± 4.87 1.5948 ± 0.55 8.92 ± 0.04 2.0334 ± 0.65 0.3657 ± 0.10 5.56 ± 0.03
PGCR-C-DDPG 10.4222 ± 4.19 1.1087 ± 0.45 9.40 ± 0.07 1.6410 ± 0.62 0.3447 ± 0.13 4.76 ± 0.04
PGCR-SAC 15.3726 ± 4.02 1.8588 ± 0.49 8.27 ± 0.04 2.4421 ± 0.23 0.4531 ± 0.05 5.39 ± 0.04
PGCR-C-SAC 11.2890 ± 4.11 1.2858 ± 0.47 8.78 ± 0.11 2.0316 ± 0.41 0.3999 ± 0.08 5.08 ± 0.05
PGCR-TD3 14.0021 ± 4.90 1.5203 ± 0.53 9.21 ± 0.03 2.0001 ± 0.34 0.3992 ± 0.07 5.01 ± 0.02
PGCR-C-TD3 8.1247 ± 3.01 0.8793 ± 0.33 9.24 ± 0.08 1.6218 ± 0.36 0.2998 ± 0.07 5.41 ± 0.03

Figure 4: Hyper Parameter Study in VirtualTB

5 Related Work
RL-based Recommender Systems model the recommendation

process as a Markov Decision Process (MDP), leveraging deep learn-

ing to estimate value functions and handle the high dimensionality

of MDPs [19]. Chen et al. [6] proposed InvRec, which uses inverse

reinforcement learning to infer rewards directly from user behavior,

enhancing policy learning accuracy. Recent efforts have focused

on offline RLRS. Wang et al. [25] introduced CDT4Rec, which in-

corporates a causal mechanism for reward estimation and uses

transformer architectures to improve offline RL-based recommen-

dations. Additionally, Chen et al. [4] enhanced this line of research

by developing a max-entropy exploration strategy to improve the

decision transformer’s ability to "stitch" together diverse sequences

of user actions, addressing a key limitation in offline RLRS. Gao

et al. [9] developed a counterfactual exploration strategy designed

to mitigate the Matthew effect, which refers to the disparity in

learning from uneven distributions of user data.

Causal Recommendation. The recommendation domain has re-

cently seen significant advancements through the integration of

causal inference techniques, which help address biases in training

data. For example, Zhang et al. [32] tackled the prevalent issue of

popularity bias by introducing a causal inference paradigm that ad-

justs recommendation scores through targeted interventions. Simi-

larly, Li et al. [16] proposed a unified multi-task learning approach

to eliminate hidden confounding effects, incorporating a small num-

ber of unbiased ratings from a causal perspective. Counterfactual

reasoning has also gained traction in recommender systems. Chen

et al. [3] developed a causal augmentation technique to enhance

exploration in RL-based recommender systems (RLRS) by focusing

on causally relevant aspects of user interactions. Wang et al. [26]

introduced a method to generate counterfactual user interactions

based on a causal view of MDP for data augmentation. In a related

vein, Li et al. [17] explored personalized incentive policy learning

through an individualized counterfactual perspective. Further stud-

ies have focused on the use of causal interventions. Wang et al. [28]

proposed CausalInt, a method inspired by causal interventions to

address challenges in multi-scenario recommendation. Additionally,

He et al. [13] tackled the confounding feature issue in recommen-

dation by leveraging causal intervention techniques. These efforts

collectively demonstrate the growing importance of causal infer-

ence and intervention in improving recommendation performance

and addressing biases.

6 Conclusion
In this work, we introduced Policy-Guided Causal Representation

(PGCR), a framework designed to enhance state representation

learning in offline RL-based recommender systems. By using a

causal feature selection policy to isolate the causally relevant com-

ponents (CRCs) and training an encoder to focus on these compo-

nents, PGCR effectively improves recommendation performance

while mitigating noise and irrelevant features in the state space.

Extensive experiments demonstrate the benefits of our approach,

confirming its effectiveness in offline RL settings.

For future work, we plan to explore the extension of PGCR to

more complex, multi-agent environments where user preferences

may dynamically change over time.
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Appendix
A Definitions in Causality
Here, we briefly introduce some fundamental definitions [21, 22]

that are used throughout this paper to present and prove our

methodology.

Definition A.1 (d-Separation [22]). In a Directed Acyclic Graph

(DAG) G, a path between two nodes, denoted as 𝑖𝑛 and 𝑖𝑚 , is con-

sidered blocked by a set S if:
(i) Neither 𝑖𝑛 nor 𝑖𝑚 are included in S, and
(ii) There exists a node 𝑖𝑘 on the path such that either:

(a) 𝑖𝑘 ∈ S and the connections around 𝑖𝑘 follow one of the

forms: 𝑖𝑘−1 → 𝑖𝑘 → 𝑖𝑘+1, 𝑖𝑘−1 ← 𝑖𝑘 ← 𝑖𝑘+1, or 𝑖𝑘−1 ←
𝑖𝑘 → 𝑖𝑘+1, or

(b) 𝑖𝑘 is a collider (i.e., 𝑖𝑘−1 → 𝑖𝑘 ← 𝑖𝑘+1), none of its de-

scendants are included in S, and 𝑖𝑘 itself is not part of

S.

Definition A.2 (Valid adjustment set [21]). Consider an SCMM
over nodesV and let𝑌 ∉ PA𝑋 (otherwisewe have𝑝M;𝑑𝑜 (𝑋 :=𝑥 ) (𝑦) =
𝑝M (𝑦)). We call a set Z ⊆ V \ {𝑋,𝑌 } a valid adjustment set for the

ordered pair (𝑋,𝑌 ) if

𝑝M;𝑑𝑜 (𝑋 :=𝑥 ) (𝑦) =
∑︁
z
𝑝M (𝑦 | 𝑥, z)𝑝M (z).

Here, the sum (which could also be an integral) is over the range of

Z, that is, over all values z that Z can take.

Definition A.3 (Back-Door Criterion [21]). A set of variables

Z satisfies the back-door criterion relative to an ordered pair of

variables (𝑋𝑖 , 𝑋 𝑗 ) in a Directed Acyclic Graph (DAG) G if:

(i) No node in Z is a descendant of 𝑋𝑖 ; and

(ii) Z blocks every path between𝑋𝑖 and𝑋 𝑗 that contains an arrow

into 𝑋𝑖 .

Similarly, if X and Y are two disjoint subsets of nodes in G, then
Z is said to satisfy the back-door criterion relative to (X,Y) if it
satisfies the criterion relative to any pair (𝑋𝑖 , 𝑋 𝑗 ) such that 𝑋𝑖 ∈ X
and 𝑋 𝑗 ∈ Y.

The name "back-door" refers to condition (ii), which requires

that only paths with arrows pointing at 𝑋𝑖 be blocked; these paths

can be viewed as entering 𝑋𝑖 through the "back door."

Definition A.4 (Back-Door Adjustment [21]). If a set of variables

Z satisfies the back-door criterion relative to (X,Y), then the causal

effect of X on Y is identifiable and is given by the formula:

𝑃M;𝑑𝑜 (𝑋 :=𝑥 ) (𝑦) =
∑︁
z
𝑃 (𝑦 | 𝑥, z)𝑃 (z).

Definition A.5 (Do-Calculus [21]). Again, consider an SCM over

variables V. Let us call an intervention distribution 𝑝M;𝑑𝑜 (𝑋 :=𝑥 ) (𝑦)
identifiable if it can be computed from the observational distribution

and the graph structure. Given a graph G and disjoint subsets

X,Y,Z,W, we have the following:

(1) Insertion/deletion of observations:

𝑃M;𝑑𝑜 (𝑋 :=𝑥 ) (𝑦 | z,w) = 𝑃M;𝑑𝑜 (𝑋 :=𝑥 ) (𝑦 | w)
if Y and Z are d-separated by X,W in a graph where incom-

ing edges into X have been removed.

(2) Action/observation exchange:

𝑃M;𝑑𝑜 (𝑋 :=𝑥,𝑍=𝑧 ) (𝑦 | w) = 𝑃M;𝑑𝑜 (𝑋 :=𝑥 ) (𝑦 | z,w)
if Y and Z are d-separated by X,W in a graph where in-

coming edges into X and outgoing edges from Z have been

removed.

(3) Insertion/deletion of actions:

𝑃M;𝑑𝑜 (𝑋 :=𝑥,𝑍=𝑧 ) (𝑦 | w) = 𝑃M;𝑑𝑜 (𝑋 :=𝑥 ) (𝑦 | w)
if Y and Z are d-separated by X,W in a graph where incom-

ing edges into X and Z (or W) have been removed. Here,

Z(W) is the subset of nodes in Z that are not ancestors of

any node in W in a graph obtained from G after removing

all edges into X.

B Proof of Proposition 1
Proof. We are given a Structural Causal Model (SCM) that fol-

lows the relationships in Equation (7):

𝑠𝑡+1 = 𝑓𝑃 (𝑠𝑡 , 𝑎𝑡 , 𝜖𝑡+1), 𝑎𝑡 = 𝜋𝑡 (𝑠𝑡 , 𝜂𝑡 ), 𝑟𝑡 = 𝑓𝑅 (𝑠𝑡 , 𝑎𝑡 ), (7)

where the state transition function 𝑓𝑃 determines the next state

𝑠𝑡+1 based on the current state 𝑠𝑡 , action 𝑎𝑡 , and exogenous noise

𝜖𝑡+1. The policy function 𝜋𝑡 selects the action 𝑎𝑡 given the current

state 𝑠𝑡 and exogenous noise 𝜂𝑡 . The reward function 𝑓𝑅 assigns a

reward 𝑟𝑡 based on the current state 𝑠𝑡 and action 𝑎𝑡 .

We aim to show that 𝑠𝑡 satisfies the back-door criterion relative

to the pair (𝑎𝑡 , 𝑠𝑡+1), allowing us to identify the causal effect of 𝑎𝑡
on 𝑠𝑡+1.

Step 1: Verify the Back-Door Criterion Conditions. According
to Pearl’s back-door criterion, for the causal effect of 𝑎𝑡 on 𝑠𝑡+1 to
be identifiable, the following conditions must be met:

• No Descendants of 𝑎𝑡 in 𝑠𝑡 : From the given SCM, there

are no directed edges from 𝑎𝑡 to 𝑠𝑡 . This means 𝑠𝑡 is not a

descendant of 𝑎𝑡 , satisfying the first condition of the back-

door criterion.

• Blocking Paths with Arrows into 𝑎𝑡 : Any back-door path

between 𝑎𝑡 and 𝑠𝑡+1 that contains an arrow into 𝑎𝑡 must be

blocked by 𝑠𝑡 . In the given SCM, all paths that contain an

arrow into 𝑎𝑡 are blocked by 𝑠𝑡 . Specifically, since 𝑠𝑡 → 𝑎𝑡 ,

the node 𝑠𝑡 acts as a “blocker” for any indirect influence

from 𝑎𝑡 to 𝑠𝑡+1 via other variables.

Thus, 𝑠𝑡 satisfies the back-door criterion relative to (𝑎𝑡 , 𝑠𝑡+1).
Step 2: Identifiability of the Causal Effect. Since 𝑠𝑡 satisfies the
back-door criterion, the causal effect of 𝑎𝑡 on 𝑠𝑡+1 is identifiable,
meaning we can compute the effect of intervening on 𝑎𝑡 on 𝑠𝑡+1
using observational data.

Step 3: Derivation of the Intervention Formula. Using the back-
door adjustment, the probability distribution of the state 𝑠𝑡+1 after
an intervention 𝑑𝑜 (𝑎𝑡 := 𝑎I𝑡 ) can be computed as:

𝑃M;𝑑𝑜 (𝑎𝑡 :=𝑎I𝑡 ) (𝑠𝑡+1)

=
∑︁
𝑠𝑡

∫
𝜖𝑡+1

𝑃 (𝑠𝑡+1 | 𝑑𝑜 (𝑎𝑡 ), 𝑠𝑡 , 𝜖𝑡+1) 𝑃 (𝜖𝑡+1) 𝑃 (𝑠𝑡 | 𝑑𝑜 (𝑎𝑡 )) 𝑑𝜖𝑡+1 .

Since 𝑃 (𝑠𝑡 | 𝑑𝑜 (𝑎𝑡 )) = 𝑃 (𝑠𝑡 ), we simplify the expression:
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𝑃M;𝑑𝑜 (𝑎𝑡 :=𝑎I𝑡 ) (𝑠𝑡+1) =
∑︁
𝑠𝑡

∫
𝜖𝑡+1

𝑃 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎I𝑡 , 𝜖𝑡+1) 𝑃 (𝜖𝑡+1) 𝑃 (𝑠𝑡 ) 𝑑𝜖𝑡+1 .

Finally, the expression simplifies to:

𝑃M;𝑑𝑜 (𝑎𝑡 :=𝑎I𝑡 ) (𝑠𝑡+1) = E𝑠𝑡 ,𝜖𝑡+1
[
𝑃 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎I𝑡 , 𝜖𝑡+1)

]
.

This equation shows that the causal effect of 𝑎𝑡 on 𝑠𝑡+1 is iden-
tifiable through the expected value of the conditional probability

distribution, considering the distribution of 𝑠𝑡 and the exogenous

noise 𝜖𝑡+1. □

C Proof of Proposition 2
Proof. We want to show that for any 𝑠, 𝑠◦ ∈ S such that 𝜙 (𝑠) =

𝜙 (𝑠◦), the optimal action-value function satisfies:

𝑄∗ (𝑠, 𝑎) = 𝑄∗ (𝑠◦, 𝑎) .

Step 1: Bellman Equation for the Action-Value Function. The
Bellman equation for the optimal action-value function 𝑄∗ (𝑠, 𝑎) is:

𝑄∗ (𝑠, 𝑎) = E
[
𝑟 (𝑠, 𝑎) + 𝛾 max

𝑎′
𝑄∗ (𝑠′, 𝑎′) | 𝑠, 𝑎

]
.

Since we are given that 𝑟 (𝑠, 𝑎) ⊥⊥ 𝑠 | 𝑧 = 𝜙 (𝑠), 𝑎, the reward

𝑟 (𝑠, 𝑎) depends only on the latent state 𝑧 = 𝜙 (𝑠), and not on the full

state 𝑠 . Therefore, the reward term in the Bellman equation can be

rewritten as:

𝑄∗ (𝑠, 𝑎) = E
[
𝑟 (𝑧, 𝑎) + 𝛾 max

𝑎′
𝑄∗ (𝑠′, 𝑎′) | 𝑧 = 𝜙 (𝑠), 𝑎

]
.

Step 2: Rewards Depend on Latent State. Because the reward
𝑟 (𝑠, 𝑎) depends only on the latent state 𝑧 = 𝜙 (𝑠), we have:

E [𝑟 (𝑠, 𝑎) | 𝑧] = E
[
𝑟 (𝑠◦, 𝑎) | 𝑧

]
whenever 𝜙 (𝑠) = 𝜙 (𝑠◦).

Thus, the expected reward for the states 𝑠 and 𝑠◦ is identical if
the latent state representations are the same.

Step 3: Transition Dynamics Depend on Latent State.We are

given that for all 𝑠, 𝑠◦ ∈ S such that 𝜙 (𝑠) = 𝜙 (𝑠◦), the probability
distribution of the next latent state satisfies:

𝑝 (𝜙 (𝑠′) | 𝑠) = 𝑝 (𝜙 (𝑠′) | 𝑠◦).
This means that the transition dynamics between latent states

are identical for the states 𝑠 and 𝑠◦. Since the transition dynamics

depend only on the latent state, the distribution of future latent

states 𝑧′ = 𝜙 (𝑠′) is the same whether we start from 𝑠 or 𝑠◦.

Step 4: Expectation Over Next State. The next state 𝑠′ depends
on the current state 𝑠 and action 𝑎, but the latent state dynamics

depend only on the latent representation 𝑧 = 𝜙 (𝑠). Therefore, the
expectation over the future action-value function 𝑄∗ (𝑠′, 𝑎′) in the

Bellman equation depends only on the latent state 𝑧 = 𝜙 (𝑠). Thus,
we have:

E
[
max

𝑎′
𝑄∗ (𝑠′, 𝑎′) | 𝑧 = 𝜙 (𝑠), 𝑎

]
= E

[
max

𝑎′
𝑄∗ (𝑠′, 𝑎′) | 𝑧 = 𝜙 (𝑠◦), 𝑎

]
.

Since both the reward term and the expected value of the next

action-value function depend only on the latent state 𝑧 = 𝜙 (𝑠), we
conclude that:

𝑄∗ (𝑠, 𝑎) = 𝑄∗ (𝑠◦, 𝑎) whenever 𝜙 (𝑠) = 𝜙 (𝑠◦) .
Thus, the optimal action-value function depends only on the

latent state 𝑧 = 𝜙 (𝑠), and not on the full state 𝑠 , which completes

the proof. □
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