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Abstract

Active learning has emerged as a standard001
paradigm in areas with scarcity of labeled002
training data, such as in the medical domain.003
Language models have emerged as the preva-004
lent choice of several natural language tasks005
due to the performance boost offered by these006
models. However, in several domains, such007
as medicine, the scarcity of labeled training008
data is a common issue. Also, these mod-009
els may not work well in cases where class010
imbalance is prevalent. Active learning may011
prove helpful in these cases to boost the perfor-012
mance with a limited label budget. To this end,013
we propose a novel method using sampling014
techniques based on submodular optimization015
and optimal transport for active Learning in016
language models, dubbed ALLWAS. We con-017
struct a sampling strategy based on submod-018
ular optimization of the designed objective019
in the gradient domain. Furthermore, to en-020
able learning from few samples, we propose a021
novel strategy for sampling from the Wasser-022
stein barycenters. Our empirical evaluations023
on standard benchmark datasets for text clas-024
sification show that our methods perform sig-025
nificantly better (> 20% relative increase in026
some cases) than existing approaches for ac-027
tive learning on language models.028

1 Introduction029

Active learning is a technique for improving030

model performance over a fixed annotation budget031

(Cohn et al., 1996). Generally, the data is obtained032

for labeling iteratively after alternating training033

phases until the desired performance is achieved.034

This contrasts with passive learning, where one as-035

sumes access to labels for the entire pool of data.036

There are three scenarios for active learning (Set-037

tles, 2009): (1) pool-based, where a set of unla-038

beled data points are available (2) stream-based,039

in which the data points are received in an on-040

line fashion, and (3) membership query synthesis,041

where the data points are generated for labeling.042

In this work, our focus will be on the pool-based 043

setting for active learning. 044

Active learning has benefited a wide gamut 045

of applications such as text classification (Tong 046

and Koller, 2002; Hoi et al., 2006), named en- 047

tity recognition (Tomanek and Hahn, 2009; Shen 048

et al., 2004), and machine translation (Haffari and 049

Sarkar, 2009), to name a few. Transformer-based 050

language models (Devlin et al., 2019) have shown 051

improved performance on NLP tasks. These mod- 052

els with a large number of parameters require com- 053

parable amounts of data to produce good results 054

(Margatina et al., 2021) and thus pose a chal- 055

lenge in the active learning setting. There has 056

been a recent surge in the study of language mod- 057

els in the active learning setup (Ein-Dor et al., 058

2020; Margatina et al., 2021). However, many of 059

these approaches are based on uncertainty sam- 060

pling, which may not work well for uncalibrated 061

deep models (Guo et al., 2017). Other approaches 062

look at the embedding space (Sener and Savarese, 063

2018) or the gradient space (Huang et al., 2016). 064

However, these methods generally assume a Eu- 065

clidean metric between the data points in the re- 066

spective spaces, which fails to judiciously capture 067

the complex interactions. In this paper, we hy- 068

pothesize that finding a core set of points using 069

the Wasserstein metric would result in better per- 070

formance than simply selecting a set of points that 071

minimizes or maximizes a measure. 072

Such large language models require consider- 073

able amounts of representative data, which makes 074

it infeasible for fine-tuning in the active learning 075

scenario that work with a limited annotation bud- 076

get. This drawback is effectively alleviated by 077

data augmentation in the image domain (Ratner 078

et al., 2017). However, data augmentation is not 079

a straightforward exercise for textual data. There 080

have been numerous attempts to augment data by 081

generating samples to label in the token space (Liu 082

et al., 2020; Quteineh et al., 2020) and the feature 083
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space (Kumar et al., 2019b; Feng et al., 2021).084

Generating tokens could render the labels erro-085

neous because of the nature of the hard assign-086

ment. To this end, we propose an over-sampling087

strategy based on Wasserstein barycenters (Cu-088

turi and Doucet, 2014) in the embedding space.089

Our rationale here is that augmenting data by such090

a sampling technique benefits active learning be-091

cause it operates well in both the low data regime092

as well as the class imbalance scenarios.093

To the best of our knowledge we are the first to094

propose such an augmentation method for active095

learning with language models. Our key contribu-096

tions are:097

1. We propose a novel sampling strategy based098

on the Wasserstein distance in the gradient099

space. We prove its submodularity and pro-100

pose a 1− 1
e optimal greedy algorithm.101

2. We design an over-sampling technique based102

on the Wasserstein barycenter of the embed-103

dings of the data points for better perfor-104

mance in the cases with few labeled samples.105

3. We demonstrate the effectiveness of our106

method by running extensive experiments on107

real world scenarios of few labeled samples108

and class imbalance. We also conduct exper-109

iments on the multi-class settings which have110

not been considered in previous works.111

2 Related Work112

Prior works on active learning have focused on un-113

certainty based sampling such as entropy (Lewis114

and Gale, 1994), least model confidence (Settles115

et al., 2008) and diversity based methods (Settles116

et al., 2008; Xu et al., 2007; Wei et al., 2015). (Set-117

tles et al., 2008; Hsu and Lin, 2015) have tried to118

use a combination of the diversity and uncertainty119

based approaches. Active learning has been effec-120

tively used in previous works for CNN based mod-121

els (Sener and Savarese, 2018; Gal and Ghahra-122

mani, 2016; Gissin and Shalev-Shwartz, 2019).123

Coresets have been used for importance sampling124

(Cohen et al., 2017), k-means and medians clus-125

tering (Har-Peled and Mazumdar, 2004) and for126

Gaussian mixture models (GMMs) (Lucic et al.,127

2018). Work in (Mirzasoleiman et al., 2020) used128

coresets in the gradient domain for subsampling129

data points for accelerated training. (Wei et al.,130

2015) combines the uncertainty sampling methods131

with a submodular optimization method for subset132

selection. (Ramalingam et al., 2021) uses a combi-133

nation of submodular functions for balancing con- 134

straints of class labels and decision boundaries us- 135

ing matroids. A study of the theoretical perfor- 136

mance of batch mode active learning with sub- 137

modularity is given in (Chen and Krause, 2013). 138

Submodular functions have also been used in NLP 139

for text summarization (Lin and Bilmes, 2011), 140

machine translation (Kirchhoff and Bilmes) and 141

goal oriented chatbots (Dimovski et al., 2018). In 142

contrast to previous works we propose a novel sub- 143

modular function for query sampling that operates 144

in the gradient space. We argue that this would 145

help select samples that are most representative of 146

the gradients. 147

Data Augmentation techniques using Wasser- 148

stein barycenters and optimal transport have been 149

adopted in the literature (Zhu et al., 2020; Be- 150

spalov et al., 2021; Nadeem et al., 2020; Yan et al., 151

2019) for the image domain. In contrast, NLP 152

researchers have primarily focused on generating 153

data in the token space (Liu et al., 2020; Quteineh 154

et al., 2020) for data augmentation (Wang and 155

Yang, 2015; Kobayashi, 2018), paraphrase gener- 156

ation (Kumar et al., 2019a) etc. There exist meth- 157

ods that use mixups in the feature space (Kumar 158

et al., 2019b; Feng et al., 2021) for data augmen- 159

tation. However, to the best of our knowledge this 160

is the first work to explore data augmentation us- 161

ing Wasserstein barycenters for active learning us- 162

ing language models. We argue that our method 163

is advantageous in the low sample and imbalanced 164

class settings. 165

3 Problem Statement and Approach 166

3.1 Problem Formulation 167

Typical pool based active learning methods have 168

the following components: a pool of unlabelled 169

data Upool, a model M on which to train the data 170

for the downstream task, and an annotation bud- 171

get b, which is a limit on the amount of labeled 172

data that can be obtained. The last component is 173

an acquisition or query function q(.) that would be 174

used for querying over Upool to obtain the data to 175

be labeled. This is an iterative process in which, 176

at every iteration, the query function q(.) acquires 177

a query set of size k(< b). Finally, the model M 178

is trained over the samples provided by the query 179

function and is evaluated on a validation set Dval. 180

The aim is to maximize the performance on Dval 181

with a minimum labeled sample set (Siddhant and 182

Lipton, 2018). The process is repeated until the 183
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annotation budget b is exceeded or the desired per-184

formance on the validation set is achieved.185

3.2 Approach186

Figure 1: ALLWAS Process Flow. It uses Wasserstein
Barycenters for data augmentation. The submodular
query function is used for unlabeled data acquisition.
These two steps aims to enhance performance of un-
derlying ML model (BERT in our case).

Figure 1 outlines the flow of our proposed ap-187

proach. First, the initial labeled seed of data is188

given to the barycentric sampling module for up-189

sampling. Next, a model, in this case, a language190

model, is trained on this initial seed. The query191

function then uses the model to sample data points192

labeled by an oracle and a human annotator. The193

newly labeled data points are fed to the upsam-194

pling module, and the process repeats until the195

labeling budget is reached or the desired perfor-196

mance is achieved. The details of the individual197

components, along with some preliminaries, are198

explained in the following sections.199

3.2.1 Optimal Transport and Wasserstein200

Barycenters201

Let Ω be any space, D be a distance metric in Ω,202

and P (Ω) be the set of probability measures in that203

space. Let x, y ∈ Ω be the dirac masses with prob-204

ability measures µ and ν respectively. The Opti-205

mal transport (Monge, 1781) problem is to mini-206

mize the cost in transporting x to y . The Wasser-207

stein distance defines the optimal transport plan to208

move an amount of matter from one location to209

another.210

Definition 3.1. Let p ∈ [1,∞) and D: Ω × Ω −→211

[0,∞) be the cost of transporting the measure µ212

to ν, then the pth Wasserstein distance (Villani)213

between the measures is given by 214

Wp(µ, ν) = inf
γ∈Π(µ,ν)

(∫
Ω×Ω

D(x, y)p∂γ

) 1
p

(1) 215

where Π is the set of all the possible transport 216

plans with the marginals µ and ν. 217

Definition 3.2 (Wasserstein Barycenter, (Agueh 218

and Carlier, 2011)). A Wasserstein barycenter of n 219

measures {v1, v2, ..., vn} in P ⊂ P (Ω) is a mea- 220

sure that minimizes the weighted sum of the pth 221

Wasserstein distance over P i.e. it is a minimiser 222

of f defined as below 223

f(µ) =

N∑
i=1

λiW
p
p (µ, νi) (2) 224

Here we consider a convex combination ofW p
p i.e. 225

λi ≤ 1 and
∑

i λi = 1. IfD is the L2 distance and 226

p = 2 that is when P (Ω, D) is the euclidean dis- 227

tance metric, minimizing f results in the k means 228

solution (Kaufman and Rousseeuw, 1987). 229

Sampling using Wasserstein Barycenters: The 230

definition of the Wasserstein barycenter in 3.2 al- 231

lows us to sample from a set of data points as 232

illustrated in this section. The intuition for us-

Figure 2: Example of a 1D Distribution (in orange and
blue) showing the Wasserstein and `2 barycenters

233

ing Wasserstein barycenters instead of euclidean 234

barycenters is outlined in Figure 2. The figure 235

shows a distribution of 1-dimensional word vec- 236

tors, with the words ”good” and ”bad” at the ex- 237

tremes and the word ”mixed” in between them. 238

We see from the distribution that the data contains 239

the words ”good” and ”bad”. Sampling using the 240

Wasserstein barycenter with equal weights gives 241

us the word ”mixed.” In contrast, the `2 barycen- 242

ter would sample either of the words ”good” or 243

”bad” with equal probability. This implies that in 244

a sentiment classification task, a pair of sentences 245

”The movie was good” and ”The movie was bad” 246

would enable us to sample a neutral sentence ”The 247

movie was mixed” using the Wasserstein barycen- 248

ter. We argue that in contrast to sampling from 249

the `2 barycenter (see subsection 5.4) or no over- 250
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sampling (augmentation), sampling technique in-251

corporating Wasserstein barycenters would result252

in superior performance for the few sample and253

imbalanced case.254

Consider an machine learning (language) model255

such as Bert (Devlin et al., 2019) with the256

output d dimensional contextual embeddings as257

e1, e2, · · · en from a layer l for the input tokens258

w1, w2, · · ·wn respectively. Now let us consider259

s sentences each with number of tokens given by260

n1, n2, · · ·ns respectively. The contextual embed-261

dings of a sentence si would be represented as262

Ei = [e1, e2, · · · , eni ], where Ei ∈ Rd×ni . The263

Wasserstein barycenter of these samples would264

then be given by,265

Ec = argmin
Ec∈Rd×ni

N∑
i=1

λiW
p
p (Ec, Ei) (3)266

Thus, we obtain the barycenter in the embedding267

space. We also modify the labels by taking a268

weighted average as follows:269

Lc =

N∑
i=1

λiLi (4)270

Where Li is the true class probabilities of the sen-271

tence si. Varying the values of the λs could en-272

able picking multiple data points, enabling over-273

sampling from the pool of labeled data.274

3.2.2 Submodular Acquisition function275

Let V be the set of all points in the space Ω under276

consideration. Let A, B be two subsets of V such277

that A ⊆ B. Let F be a set function (acting on a278

set S) Ω|S| −→ R, then F is said to be submodular279

if, on adding an element e ∈ V \B to A and B, it280

satisfies the below condition281

F{A ∪ e} − F{A} ≥ F{B ∪ e} − F{B}282

Previous works have used gradient spaces for sub-283

set selection in active learning (Huang et al., 2016)284

and to speed up training (Mirzasoleiman et al.,285

2020). Selecting a subset of points with gradients286

that are representative of the gradients of the en-287

tire set of points would intuitively result in steer-288

ing the model parameters in the right direction of289

the optimum value. This motivates our approach290

of using the gradient space to perform the acqui-291

sition of the data points. One issue that remains292

is that unlike in (Mirzasoleiman et al., 2020) we293

do not have the true labels beforehand. (Huang294

et al., 2016) proposes to use the expected gradi-295

ent length with the expectation over the predicted296

logits. However, the predicted probabilities do not297

always correlate with the model confidence (Guo 298

et al., 2017) and calibration of the model may be 299

required. We differ in our approach where we use 300

the Wasserstein distances between the points in the 301

gradient space to find the most representative sam- 302

ple set. Specifically, we select the subset that min- 303

imizes the below function. 304

L{S} =
∑
i∈V

min
j∈S

(W p
p (i, j)) (5) 305

whereW p
p (i, j) is the pth Wasserstein distance be- 306

tween the ith and the jth sample in the gradient 307

space. Minimizing L is equivalent to finding the 308

k medoids (Kaufman and Rousseeuw, 1987) and 309

in general, finding an exact solution is an NP- 310

Hard problem. However, optimizing a submod- 311

ular function enables us to obtain a 1− 1
e optimal 312

(Nemhauser et al.) solution in a greedy manner. 313

We define a submodular function using L as be- 314

low: 315

F{S} = L{s0} − L{s0 ∪ S} (6) 316

Here s0 is an auxillary set element and L{s0} can 317

be considered a constant. We prove the submodu- 318

larity of equation 6 below. 319

Lemma 3.1. The function L{S} is monotone de- 320

creasing. 321

Proof. From the definition of L we have, 322

L =
∑
i∈V

min
j∈S

(W p
p (i, j)) 323

where W p
p (i, j) is the pth Wasserstein distance 324

in the gradient space. On adding an element 325

e ∈ V \ S to S, we get the new set S
′

= 326

S ∪ e. The metric for the new set then becomes 327

L
′

=
∑

i∈V min
j∈S′

(W p
p (i, j)). Now let’s assume 328

that L
′
> L. This means that for some point 329

i ∈ V , the newly added point e was selected 330

and the distanceW p
p (i, e) is greater than the previ- 331

ous minimum W p
p (i, j), which is a contradiction. 332

Thus, we have that L
′ ≤ L. 333

Corollary 3.1. The function F = L{s0}−L{S ∪ 334

s0} is monotone increasing. 335

Proof. If we fix L{s0} to a constant and since 336

L{S} is monotone decreasing from lemma 3.1 , 337

we have F is monotone increasing. 338

Proposition 3.1. The rate of increase of F at A ∈ 339

V is greater than or equal to that atB(∈ V ) ⊇ A. 340

To understand proposition 3.1 we note that 341

adding e ∈ V \ B to A causes an increase in F 342
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or maintains the value as it is monotone increas-343

ing from corollary 3.1 and since A ⊆ B adding e344

to B will only cause the same or lesser increase in345

F{B} by definition of F .346

Theorem 3.1. F is a submodular function.347

Proof. Assume set of points in the gradient space,348

B ∈ V and a set A ⊆ B. We assume a continuous349

space of the elements such that adding a fraction350

of it would cause a fractional change in the out-351

put. Note that an interpolation does not change352

the function definition for the discrete case where353

the direct mass is concentrated. Consider adding354

an element(s) e ∈ V \ B to the sets A and B. By355

the gradient theorem for path integral we get,356

F (A ∪ e)− F (A) =

∫ 1

0

∂F (A+ α(A ∪ e−A))
∂α

dα357

=

∫ 1

0

∂F (A+ α(A ∪ e−A))
∂x

∂x

∂α
dα358

(using chain rule)359

= (A ∪ e−A)
∫ 1

0

∂F (A+ α(A ∪ e−A))
∂x

dα360

(as
∂x

∂α
= A ∪ e−A = constant K)361

= K

∫ 1

0

∂F (A+ α(A ∪ e−A))
∂x

dα362

Similarly,363

F (B ∪ e)− F (B) = K

∫ 1

0

∂F (B + α(B ∪ e−B))

∂x
dα364

From proposition 3.1 we have ∂F (A)
∂x |x=A

≥365

∂F (B)
∂x |x=B

for addition of the same element e and366

this will be true in the entire interval α ∈ [0, 1].367

Thus we get,368

F (A ∪ e)− F (A) ≥ F (B ∪ e)− F (B)369

Thus we can conclude that F is submodular.370

Since we have a submodular function in F ,371

we could use a greedy algorithm to find a set372

that is (1 − 1
e ) of the optimal set S that maxi-373

mizes F (minimizes L). It further runs in poly-374

nomial time. The greedy algorithm begins with375

an empty set S = φ and at each iteration keeps376

adding an element e ∈ V \ S that maximizes377

F (e|Si−1) = F (e ∪ Si−1) − F (Si−1) i.e. Si =378

Si−1 ∪ argmax
e∈V

F (e|Si−1). The iterations con-379

tinue till a specified labeling budget is attained. In380

practice, computing the gradients with respect to381

the entire set of weights could be computationally382

expensive in language models that could have mil- 383

lions of parameters. Fortunately for deep networks 384

most of the variation in gradients with respect to 385

the loss is captured by the last layer (Katharopou- 386

los and Fleuret, 2019). Also, Mirzasoleiman et al. 387

(2020) efficiently upper bounds the norm of the 388

difference between the gradients by the norm of 389

the gradients of the loss with respect to the in- 390

puts to the last layer. Thus for computational ef- 391

ficiency we restrict to finding the gradients with 392

respect to the weights of the last layer. The outline 393

is sketched in Algorithm 1. 394

Algorithm 1: Greedy Algorithm to sample
from the pool of unlabeled data points for
Active learning
Input: Unlabeled pool U , Total Budget B,
Samples to label per iteration k, Model
M , Initial labeled set L;
while |L| ≤ |B| do
• Train model M on L
• V ←− φ

for x ∈ U do
e←− ∂M(x)

∂x
V = V ∪ e

end
S0 ←− L
• for i = 1, 2, ..., k do

e = argmax
e∈V

F (e|Si−1)

Si = Si−1 ∪ e
end
• L←− S

end

4 Experimental Setup 395

4.1 Datasets 396

We use 7 standard text classification datasets and 397

their 10 variants as used by (Ein-Dor et al., 2020). 398

Specifically, the datasets used are Wiki Attack 399

(Wulczyn et al., 2017), ISEAR (Shao et al., 2015), 400

TREC (Li and Roth, 2002), CoLA (Warstadt et al., 401

2019) , AG’s News (Zhang et al., 2015), Subjec- 402

tivity (Pang and Lee, 2004), and Polarity (Pang 403

and Lee, 2005). The experimental setup consid- 404

ers three settings: (1) Balanced, in which the prior 405

probability of a class occurrence is ≥ 15%. Here 406

the initial seed for labeling is obtained by random 407

sampling. (2) Imbalanced and (3) Imbalanced 408

practical in which the prior probability of a class 409

occurrence is ≤ 15%. The initial seed for labeling 410
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is obtained by assuming a high precision algorithm411

or a query. For more details on the datasets and ex-412

perimental setups, we refer the readers to (Ein-Dor413

et al., 2020) and the Appendix.414

4.2 Comparative Methods415

The acquisition methods are used to query and ob-416

tain samples from the unlabeled pool for labeling.417

In the implementation 25 samples are queried per418

iteration. We use the active learning acquisition419

strategies as in (Ein-Dor et al., 2020) namely Ran-420

dom, Least Confidence (LC, (Lewis and Gale,421

1994)), Monte Carlo Dropout (Dropout, (Gal422

and Ghahramani, 2016)), Perceptron Ensemble423

(PE, (Ein-Dor et al., 2020)), Expected Gradient424

Length (EGL, (Huang et al., 2016)) , Core-Set425

((Sener and Savarese, 2018)), Discriminative Ac-426

tive Learning (DAL, (Gissin and Shalev-Shwartz,427

2019)). For details refer to the Appendix.428

4.3 Implementation Details429

The BERTBASE model (110 M parameters) is used430

with a batch size of 50 and a maximum token431

length of 100 tokens. In each active learning it-432

eration, the model is trained for five epochs from433

scratch. A learning rate of 5×10−5 has been used.434

The other parameters are the same as in the Py-435

Torch implementation of BERT. We run each ac-436

tive learning method for five runs starting from the437

same initial seed (of 25 samples) for every model438

for a given run and average the result as in (Ein-439

Dor et al., 2020).440

5 Results and Discussion441

We aim to answer the below Research Questions:442

1. RQ1: Is ALLWAS beneficial in the low re-443

source and imbalanced setting?444

2. RQ2: Does the proposed Wasserstein445

barycentric over-sampling help in the few446

sample settings compared to the control of no447

over-sampling?448

3. RQ3: Does the proposed gradient-domain449

submodular query function perform better450

than existing approaches in the same space?451

4. RQ4: Is barycentric over-sampling in the452

wasserstein space significantly better than453

that in the `2 space?454

5.1 Active Learning Results on the Binary455

class settings456

The results, for the imbalanced practical binary457

setting, are shown in the graphs in figures 10. The458

results for the other settings can be found in the 459

Appendix. For brevity we show the results on the 460

same set of the active learning methods as in (Ein- 461

Dor et al., 2020). From the Figures in 10, we ob- 462

serve that in most of the datasets our method out- 463

performs all the other methods in all settings. For 464

the balanced setting, we find that our method per- 465

forms exceptionally well in the start with lesser 466

data. Then as the training data increases with it- 467

erations, the performance of the other methods 468

catches up. Thus we could say that our method 469

converges faster in scenarios where the data is bal- 470

anced. In the two imbalanced settings, we observe 471

an apparent gain in performance. Thus, we con- 472

clude that combining submodular query function 473

and barycentric sampling benefits performance in 474

class imbalance cases of active learning (answer- 475

ing RQ1). 476

5.2 Few Sample Results 477

In the few sample settings, we test the barycentric 478

sampling on a few data points sampled incremen- 479

tally. The augmentation factor is kept at 20 as a 480

default. The results are plotted in Figure 4. We ob- 481

serve a stark improvement in the results, in some 482

cases the relative increase being as high as 24%. 483

This shows that in such cases of data scarcity, the 484

task, in this case, classification, could benefit by 485

sampling from the Wasserstein barycenter of the 486

original samples as an augmentation technique in- 487

dependent of the sampling technique used in the 488

query function (answering RQ2). 489

5.3 Coreset vs Maximum Gradient 490

In this section, we study the performance of our 491

query function (ALLWAS w/o Augmentation) that 492

selects a coreset of the gradients against the ex- 493

pected gradient length method that picks sam- 494

ples with the largest expected gradient magnitudes 495

(EGL, (Huang et al., 2016)). The plots in figure 496

5 show that our query sampling technique outper- 497

forms the EGL method. Thus we conclude that 498

selecting core-sets is the better approach against 499

picking samples with extreme values in the gradi- 500

ent domain in assertion of RQ3. 501

5.4 Sampling from Wasserstein vs `2 502

barycenter 503

In order to confirm the claim made in subsec- 504

tion 3.2.1, we perform a comparison between 505

`2 barycentric and Wasserstein barycentric over- 506

sampling on the imbalanced practical setting. 507
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Figure 3: Results on the Imbalanced Practical setting. Our Model clearly outperforms the baselines.

Figure 4: Few sample setting. Our setting (BERT+barycentric sampling) illustrates superior performance.

Figure 5: Comparison between selection based on maximum and coreset in the gradient domain

Figure 6: Statistical significance. Our model is statistically significant compared to baseline, illustrating the ro-
bustness of our proposed approach.

Figure 7: Results on the Multiclass setting. Our model performs significantly better than baselines.
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Sampling from `2 is done by performing a ker-508

nel density estimation in the embedding space509

and then sampling from the resulting distribution.510

We report the Wilcoxon signed-rank test statis-511

tics in table 1 with Bonferroni correction to take512

into account the runs from all the datasets, set-513

tings, and iterations. Statistically significant (bet-514

ter) results are reported of the two sampling tech-515

niques against each other and a control of no over-516

sampling (augmentation). The results indicate that517

while both the over-sampling methods perform518

better than no sampling, reaffirming RQ2, sam-519

pling from the Wasserstein barycenter performs520

better than sampling from the `2 barycenter con-521

firming the claim in 3.2.1 and asserting RQ4.

Significance
wrt

`2 Wasserstein

No over-
sampling

< 10−20 < 10−26

`2 – < 10−12

Wasserstein – –

Table 1: Comparison of over-sampling (for augmenta-
tion) from the `2 vs Wasserstein barycenters, indicating
p-values if the method of the column is significantly
better than that of the row. – indicates statistically in-
significant or worse performance

522

5.5 Statistical Significance523

We study if the performance of our methods is sta-524

tistically significant concerning the baselines for525

each dataset. We perform the Wilcoxon signed-526

rank test for significance with Bonferroni correc-527

tion. We select the Wilcoxon test due to its non-528

parametric nature. The significant results in the529

form of heatmaps of the logarithms of the p-values530

are shown in figure 6. The insignificant results531

have their values at 0. From the heatmaps, our532

method outperforms the baselines in all datasets,533

indicating the increase is indeed statistically sig-534

nificant. The results echo the observation made535

by (Ein-Dor et al., 2020) that no single sampling536

strategy is better than all others. However, in the537

low data regime that we operate in, many of the538

methods are not significantly better than the ran-539

dom sampling baseline.540

5.6 Multi class Active Learning Results541

Similar to the binary settings, we also study the542

performance of our method in the multi-class set-543

ting. We find that in the multi-class setting, too,544

our method works better than the baselines, as can 545

be seen in figure 11. This shows that our method 546

is not restricted to the binary classification setting 547

but also to the more generic multi-class cases. 548

5.7 Effect of augmentation factor 549

We study the effect of the multiplicative factor 550

while augmenting the samples using barycentric 551

sampling technique. Here the number of samples 552

of which to compute the barycenter is kept at two. 553

The results are given in the appendix. It is ob- 554

served that as the augmentation factor is increased, 555

the performance increases initially when the data 556

is low. However, as more data is acquired from 557

the unlabeled pool, the gap reduces. This indicates 558

that we may benefit more by keeping the augmen- 559

tation factor high in the low data regime. 560

5.8 Effect of number of samples to find the 561

barycenter 562

Similar to subsection 5.7, we study the effect of 563

the number of data points used to find the barycen- 564

ter. Keeping the augmentation factor fixed at 565

20, we vary the number of samples to find the 566

barycenter. Results are in the Appendix. It is 567

observed that as the data points to the sample in- 568

creases, the performance marginally drops. This 569

becomes intuitive if we think of computing the 570

barycenter as averaging over the samples. If we 571

average out many samples, we effectively get the 572

representative sample which would be similar in 573

most iterations. 574

6 Conclusion 575

This paper presents and studies novel approaches 576

of data sampling using concepts from submodu- 577

lar optimization and optimal transport theory for 578

active learning in language models. We find that 579

augmenting data using the Wasserstein barycen- 580

ter helps to learn in the few sample setting. Fur- 581

ther, we conclude that using a submodular func- 582

tion based on the Wasserstein distance for sam- 583

pling in the gradient domain helps in active learn- 584

ing. Future works could explore data subset dis- 585

tances using optimal transport to find the subset of 586

data that would benefit the model. It also remains 587

to be explored if using core-sets obtained in this 588

manner would help speed up the training of lan- 589

guage models without affecting its accuracy by a 590

large margin. We point readers to the open ques- 591

tions in this domain as next viable steps. 592
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A Appendix 873

A.1 Details of Dataset 874

We use seven standard text classification datasets 875

and their ten variants as used by (Ein-Dor 876

et al., 2020). Specifically, the datasets used are 877

Wiki Attack (Wulczyn et al., 2017) which anno- 878

tates wikipedia discussions for offensive content, 879

ISEAR (Shao et al., 2015) which reports for per- 880

sonal accounts of emotions, TREC (Shao et al., 881

2015) which classifies question categories, CoLA 882

(Warstadt et al., 2019) which identifies the content 883

for linguistic acceptability, AG’s News (Zhang 884

et al., 2015) which categorises news articles, Sub- 885

jectivity (Pang and Lee, 2004) which classifies 886

movie snippets into subjective and objective and 887

Polarity (Pang and Lee, 2005) which provides sen- 888

timent categories of movie reviews. The datasets 889

which contain labels with a prior of greater than 890

15% are taken into the balanced setting and those 891

with less than a 15% prior are considered in the 892

imbalanced setting as in (Ein-Dor et al., 2020). 893

The experimental setup considers 3 settings: (1) 894

Balanced, in which the prior probability of a class 895

occurrence is ≥ 15%. Here the initial seed for la- 896

beling is obtained by random sampling. (2) Im- 897

balanced and (3) Imbalanced practical in which 898

the prior probability of a class occurrence is ≤ 899

15%. In the case of the Imbalanced setting the ini- 900

tial seed is taken by randomly sampling from the 901

class with the low prior. Here the assumption is 902

that there exists a heuristic to obtain an unbiased 903

sample set with high precision of the low prior 904

class. As this may not always hold true the Imbal- 905

anced practical setting samples using a simple and 906

empirical heuristic such as a query based search 907

for the samples belonging to the low prior class. 908

This gives a (biased) set of samples of the class 909

which are then used for labeling . For the class 910

with a high prior probability random samples are 911

drawn from the dataset and are labeled as such for 912

both the imbalanced settings. 913
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No. Dataset Size Class Prior

1 Subjectivity-imb 5,556 subjective 10%
2 Polarity-imb 5,923 positive 10%
3 AG’s News-imb 17,538 world 10%
4 Wiki attack 21,000 general 12%
5 ISEAR 7,666 fear 14%
6 TREC 5,952 location 15%
7 AG’s News 21,000 world 25%
8 CoLA 9,594 unacceptable 30%
9 Subjectivity 10,000 subjective 50%
10 Polarity 10,662 positive 50%

Table 2: Dataset Statistics

A.2 Details of Comparative Methods914

The acquisition methods are used to query and ob-915

tain samples from the unlabeled pool for labeling.916

In the implementation 25 samples are queried per917

iteration. We use the active learning acquisition918

strategies as in (Ein-Dor et al., 2020) as below:919

1. Random: The data for labeling are randomly920

sampled from the unlabeled pool.921

2. Least Confidence (LC, (Lewis and Gale,922

1994)): This method picks the top k samples923

for which the model uncertainty is the high-924

est.925

3. Monte Carlo Dropout (Dropout, (Gal and926

Ghahramani, 2016)): This uses Monte Carlo927

dropout during inference for multiple runs928

and averages the probabilities followed by929

sampling the least certain instances.930

4. Perceptron Ensemble (PE, (Ein-Dor et al.,931

2020)): Here the output of an ensemble of932

models is used to pick the instances with933

highest uncertainty. To avoid the computa-934

tional cost associated with training an ensem-935

ble of BERT models, this method uses the936

perceptron models trained on the CLS output937

of the finetuned BERT.938

5. Expected Gradient Length (EGL, (Huang939

et al., 2016)): The samples are selected based940

on the largest expected gradient norm as in941

(Huang et al., 2016). The expectation is over942

the model predicted probabilities.943

6. Core-Set ((Sener and Savarese, 2018)): This944

method picks samples that best cover the945

dataset in the embedding space (CLS) us-946

ing the greedy method desribed in (Sener and947

Savarese, 2018).948

7. Discriminative Active Learning (DAL,949

(Gissin and Shalev-Shwartz, 2019)): This950

technique selects samples that make the L951

most representative instances of the entire952

pool as per (Gissin and Shalev-Shwartz,953

2019). 954

A.3 Additional Results 955

A.3.1 Active Learning Results on the Binary 956

class settings 957

The results for the three binary settings are shown 958

in the graphs in figures 8, 9 and 10. From the fig- 959

ures we observe that in most of the datasets our 960

method outperforms all the other methods in all 961

settings. We report the f1 scores for all settings, 962

since in the balanced case also there may be a 963

slight class imbalance (upto 60%). For the bal- 964

anced setting we find that our method performs 965

exceptionally well in the start with lesser data 966

and then as the training data increases with iter- 967

ations the performance of the other methods catch 968

up. Thus we could say that our method con- 969

verges faster in scenarios where the data is bal- 970

anced. There was one exception with the Cola 971

dataset in which the metric drops as compared to 972

others. Upon further investigating we find that the 973

upsampling causes a drop in performance in this 974

case. Thus, while sampling in this manner may 975

cause an increase in performance in most of the 976

cases it may require the practitioner to fine tune 977

the factor by which to augment the data. In the 978

other 2 settings, namely the imbalanced settings, 979

we observe a clear gain in performance. Thus we 980

conclude that the combination of our submodu- 981

lar query function and barycentric sampling bene- 982

fits performance in active learning scenarios where 983

there is prevalence of class imbalance. 984

A.3.2 Multi class Active Learning Results 985

In addition to the results in the main paper, here 986

we report the results on all methods for the multi- 987

class setting in figure 11. 988

A.3.3 Effect of augmentation factor 989

We would like to study the effect of the multiplica- 990

tive factor while augmenting the samples using 991

barycentric sampling technique. Here the number 992

of samples of which to compute the barycenter are 993

kept at 2. The results are shown in figure 12. It can 994

be seen that as the augmentation factor is increased 995

the performance increases initially, when the data 996

is low, but as more data is acquired from the unla- 997

beled pool the gap reduces and also reverses. This 998

indicates that we may benefit more by keeping the 999

augmentation factor high in the low data regime. 1000
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Figure 8: Results on the Balanced setting

Figure 9: Results on the Imbalanced setting

Figure 10: Results on the Imbalanced Practical setting
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Figure 11: Results in the Multi-class setting

Figure 12: Ablation study on the augmentation factor

Figure 13: Ablation study on the number of samples to compute the barycenter
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Figure 14: Diversity and Representativeness

A.3.4 Effect of number of samples to find the1001

barycenter1002

Similar to section A.3.3, we would like to study1003

the effect of the number of data points used to find1004

the barycenter. Keeping the augmentation factor1005

fixed at 20, we vary the number of samples to find1006

the barycenter. As can be seen in figure 13, it can1007

be understood that as the data points to sample1008

from increases the performance marginally drops.1009

This becomes intuitive if we think of computing1010

the barycenter as averaging over the samples and1011

if we average out many samples we effectively get1012

the representative sample which would similar in1013

most iterations especially in the labels space.1014

A.3.5 Diversity and Representativeness1015

We compute the diversity and representativeness1016

of the selected samples as outlined in (Ein-Dor1017

et al., 2020). From figure 14 we see that our1018

method gives comparable values of these metrics.1019

DAL performs well on both the metrics as it was1020

designed for maximising them. This shows there1021

is some room for improvement in the proposed1022

method with regards to the diversity and represen-1023

tativeness metrics. We leave this for future works.1024
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