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Abstract

Scientific progress is driven by the deliberate articulation of what remains
unknown. This study investigates the ability of large language models
(LLMs) to identify research knowledge gaps in the biomedical literature. We
define two categories of knowledge gaps: explicit gaps, clear declarations of
missing knowledge; and implicit gaps, context-inferred missing knowledge.
While prior work has focused mainly on explicit gap detection, we extend
this line of research by addressing the novel task of inferring implicit gaps.
We conducted two experiments on almost 1500 documents across four
datasets, including a manually annotated corpus of biomedical articles. We
benchmarked both closed-weight models (from OpenAI) and open-weight
models (Llama and Gemma 2) under paragraph-level and full-paper settings.
To address the reasoning of implicit gaps inference, we introduce TABI, a
Toulmin-Abductive Bucketed Inference scheme that structures reasoning and
buckets inferred conclusion candidates for validation. Our results highlight
the robust capability of LLMs in identifying both explicit and implicit
knowledge gaps. This is true for both open- and closed-weight models,
with larger variants often performing better. This suggests a strong ability
of LLMs for systematically identifying candidate knowledge gaps, which
can support early-stage research formulation, policymakers, and funding
decisions. We also report observed failure modes and outline directions
for robust deployment, including domain adaptation, human-in-the-loop
verification, and benchmarking across open- and closed-weight models.

1 Introduction

The rapid growth of scientific publications has made it difficult for researchers to stay aware
of unanswered questions and knowledge gaps (known unknowns) in their fields [1]. Identifying
such gaps is critical for prioritizing new studies and directing funding toward consequential
open problems [1, 2]. Traditionally, researchers surface gaps via exhaustive literature reviews
and expert judgment, a process that is time-consuming and hard to scale to the current
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Table 1: Examples of knowledge-gap statements in biomedical literature. Cues are highlighted:
explicit lexical cues in red, implicit premises in blue, and the inferred gap in amber.
Type Example with highlighted cues Cue(s)

Explicit “ X remains unknown .” “remains unknown”
“To date, no randomized controlled trial has
evaluated therapy Y in condition Z.”

“No RCT”

Implicit Grounds:
Compound E improves biomarker F in mice.

Outcome mismatch; trans-
lational gap

Biomarker F correlates poorly with clinical
outcomes in humans.

⇒ Inferred gap (Claim):
It is unknown whether E improves patient outcomes.

Notes. Examples are illustrative. Explicit gaps use lexical markers; implicit gaps arise when jointly
considering premises that imply a missing piece of evidence.

volume of literature. This motivates automated methods that extract knowledge gaps directly
from scientific text to accelerate discovery.
Knowledge gaps exist in different forms and span various types in the literature. We build on
prior work that organizes author-signaled gap statements into taxonomies of gap types (e.g.,
Levels of Evidence, Barriers, Future Opportunities, Anomalous findings, and Research Aims)
[1]. On top of this, we introduce another layer that distinguishes explicit from implicit
instances within the same semantic categories. An instance is explicit when the gap is directly
signaled by high uncertainty lexical cues (e.g., “unknown,” “further research is needed”), or
low uncertainty hedging words (e.g., "May lead to," "could cause") or negation in some cases,
typically recoverable at the sentence or short-paragraph level (e.g., “It remains unknown
whether long-term GLP-1 agonist therapy improves renal outcomes in non-diabetic CKD”).
An instance is implicit when the gap is not stated directly by the authors of the research
papers, but can be inferred from section-level context, such gaps include: (i) a chain of
claims containing a missing link; (ii) a generalization gap where claims are developed under
a limited scope but out-of-scope applicability is questionable; or (iii) conflicting findings
presented without reconciliation or an experiment to resolve them. This explicit–implicit
overlay preserves the meaning of existing gap categories while extending coverage to unstated,
context-dependent gaps. Table 1 provides examples of explicit and implicit knowledge gaps.

Our main contributions are as follows:

• Benchmarking open- and closed-weight LLMs. We introduce a context-aware
evaluation approach, which spans two experimental designs and four public datasets
(two per gap type), and report reproducible baseline results, along with their insights.

• Implicit knowledge gap inference. To our knowledge, this is the first systematic
evaluation of LLMs on inferring unstated knowledge gaps at the section/document
scale, requiring discourse-level reasoning beyond lexical cues.

• TABI: Toulmin-Abductive Bucketed Inference.
We cast implicit-gap detection as abductive Natural Language Inference (NLI)
with generation. The model follow Toulmin Argument Model [3] to generate a
Claim justified by Grounds→Warrant. Claims are bucketed into more vs. least
probable conclusions. This approach enables overlap-based scoring against gold
conclusions and premises and potentially tracking the sources of errors in making
these conclusions.
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2 Related Work

Prior literature started with related tasks, such as labeling uncertainty/hedging, negation
and speculation in clinical NLP. One of the first significant advancements was introduced by
Hyland [4], who studied hedging linguistic forms in relation to their pragmatic use in cell
and molecular biology articles. Hyland highlighted how researchers hedge their language
to qualify levels of uncertainty in their findings. Similarly, Goujon [5] explored the use of
linguistic cues to classify uncertainty levels in sentences, using predefined linguistic patterns
to identify expressions of uncertainty (e.g., "doubtful," "Could be"). While these approaches
can be highly effective for well-defined and structured phrases, their reliance on predefined
linguistic patterns limits their scope.
In another early study, Chapman, et al [6] developed the rule-based algorithm “NegEx” to
detect uncertainty by identifying negated findings in medical discharge summaries. This
method was effective in its clinical setting, though it struggled with more complex text
analyses due to its lack of semantic understanding.
Building on this, Chen, et al [7] expanded [4]’s work by adding 61 cue words to the original
seed list and using the Word2Vec technique to identify semantically related words. Although
Word2Vec captured semantic similarity, it did not fully address the contextual levels of
uncertainty that can arise in scientific text.
Recent efforts have shifted from purely linguistic patterns to machine learning models for
ignorance extraction, as these models can capture not just the explicit uncertainty cues,
but also subtleties like implications, or patterns of omission which might reflect knowledge
gaps around certain ideas. Boguslav, et al [1, 8] developed a methodology to categorize
and identify explicit unknowns in scientific literature by tuning Conditional Random Fields
(CRF) [9] and BERT models [10]. They applied these models to classify parsed statements
from prenatal nutrition articles as either ignorance statements or not, followed by multi-
class classification to categorize these knowledge gap statements by type. This approach
demonstrated strong performance with BERT and its variants (e.g., BioBERT), though
generalizability and scalability remain challenges due to the size of the BERT models.
More recently, Bibal et al [11] launched "RecSOI," a system recommending research knowledge
gaps by based on researchers interests. Their work touched on the use of large language models
(LLMs), specifically GPT-3.5 and GPT-4, to recognize ignorance in text as a recommender
system. However, they did not provide a quantitative analysis of their experiments with
LLMs. Our project builds on these efforts by using large language models to extract the
explicit knowledge gap statements and infer the implicit ones, with the goal of advancing
the understanding of scientific knowledge gaps.

3 Datasets and Models
We used four datasets to study explicit and implicit knowledge gaps across scientific literature,
with varying levels of structure and scale. As this is current ongoing project, one of our
ultimate goals is to test and enrich these benchmarking datasets, specially the implicit gap
ones.

3.1 Explicit Knowledge Gaps
IPBES [12] A structured collection of 286 short paragraphs from biodiversity assessments,
containing 657 labeled knowledge gap statements. Designed to guide policy-relevant research
in biodiversity and ecosystems saving.
Scientific Challenges & Directions [13] Contains ∼2,900 annotated sentences from
1,786 COVID-19 research papers, each labeled binary as carrying scientific challenges and/or
research directions or not. Sentences are embedded within full sections, which in some cases
exceed 8K tokens size, posing challenges for certain LLMs with smaller attention windows.

3.2 Implicit Knowledge Gaps
Paragraph-Level Manual Implicit-Gap Dataset A small benchmark of 212 biomedical
paragraphs from 137 PubMed articles, manually annotated by our lab for implicit future-
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Table 2: Datasets used in this study for explicit and implicit knowledge gaps.
Category Source Unit Scope / Domain Size

Explicit IPBES Paragraph-Level Biodiversity & Ecosystem 657 statements
from 286 para-
graphs

Scientific
Challenges
& Directions

Section-Level COVID-19 2,894 statements
from 1,786 Stud-
ies

Implicit Full-Text Pi-
lot Dataset

Full-Paper-Level STEM Field 23 Studies

Manual
implicit-gap
corpus

Paragraph-Level Biomedical Field 212 Paragraphs
from 137 articles

direction gap statements. Each paragraph consists of a set of premises and masked conclusion
statements that must inferred by the LLM. Dataset and code available on GitHub.1

Full-Text Comprehension Pilot Dataset Aimed at evaluating the feasibility of using
LLMs to analyze full research manuscripts for knowledge gaps and future directions. The
dataset for this pilot experiment includes 24 full-text articles from 19 scientific domains (e.g.,
Immunology, Astrophysics, Materials Science), processed using GPT-4o interface.

3.3 Models

We used a group of LLMs from different families to test their capacity, modality, and
efficiency. From Meta, we selected Llama-3.3-70B-Instruct [15]; Llama-3.1-8B-Instruct as an
efficient text-only baseline [16]; Llama-4 Scout 17B, a Mixture-of-Experts model (17B active
parameters, 16 experts) [17]; gemma-2-9b-it from Google [18]; and for the closed models, we
tested OpenAI’s GPT-5, GPT-4o, and GPT-4o mini [19–21]. This combination allow us to
probe method performance across scales (8B–70B+), modalities (text and multimodal), and
deployment constraints (latency/cost), strengthening the generality of our findings.

4 Experimental Setup

4.1 Explicit Knowledge Gaps

Here, we evaluate the ability of large language models (LLMs) to identify explicit scien-
tific knowledge gaps within scientific literature, as statements of uncertainty, limitations,
contradictions, or missing evidence from structured scientific text inputs.
Let C denote a corpus composed of scientific sections, where each section Si ∈ C consists of a
sequence of paragraphs:

Si = {p1, p2, . . . , pn}
Each paragraph pj is in turn composed of a sequence of sentences:

pj = {sj1, sj2, . . . , sjm}

Given the IPBES dataset, the LLMs were fed with a sequence of pj , which has average
word count of 257, yet some of the paragraphs exceeded the 2500 words. This was tolerable
with the set of models we’re testing, however, when working with the COVID-19 dataset,
Sections from the PubMed articles often exceeded the 8K token limit, which led us to using
the chunking strategy, with attention to small models. We also had to filter out the non-gap
statements and exclude the ones that reflect general non research knowledge gaps (e.g.,
"SARS-CoV-2 has been declared a pandemic that causes COVID-19".)

1https://github.com/UCDenver-ccp/GAPMAP
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4.2 Chunking Strategy

Each section Si is segmented into chunks Tk using Stanza parser [22] for all chunking
experiments to maintain the same input size across models, such that:

|Tk| ≤ 1000 words

Chunk boundaries are aligned at sentence boundaries to preserve semantic coherence. If a
sentence skl would cause the chunk to exceed 1000 words, it is deferred to the next chunk
Tk+1.

4.3 Implicit Knowledge Gap Identification

4.3.1 Experiment 1: Paragraph-Level Inference with Manual Annotations

Implicit gap statements are defeasible. They arise as the best explanation of observed
premises rather than as explicit claims. In our task, we believe the representation must (i)
capture defeasible inference, (ii) remain lightweight for short models inferences, (iii) follow the
a certain pattern to help validating them, and (iv) transfer across domains and granularity
(paragraph and document level). A minimal Toulmin scheme,Claim–Grounds–Warrant
(CGW), meets these constraints, where the Warrant records the general justification that
signals the gap from the cited Grounds, yielding interpretable outputs and enabling automatic
consistency checks.
Here, Dmanual = {p1, . . . , pN } is N expert-annotated paragraphs list, each with one gold
implicit gap γi, refering to a required future direction. We provide pi to the model, masking
the statements of future directions claims that are at the end of these pi and ask the model
to identify the following:

• Claim : the implied gap.

• Grounds: the evidence span(s) that support the Claim.

• Warrant: A single sentence that reasons the Grounds to Claim. This is used as
coherence and entailment sanity check (e.g., simple NLI or rule-based patterns),
which aids human validation by exposing the inferential leap.

• Bucket: A binary classification of the model confidence in its inference. This is used
as a calibration check: Does the more_probable bucket contain a higher fraction of
correct matches?

A paragraph is counted as a success if any predicted claim matches the gold gap. We also
report where a match occurs (more_probable vs. least_probable) and the distribution of
predicted categories to compare between what the LLM suggests as relevant and the ground
truth actually indicates.

4.3.2 Experiment 2: Document-Level Inference from Full Manuscripts

As this is a pilot experiment aimed at examining the potential use of current LLMs on full
articles, we only assessed GPT-4o interface, a multi-modal LLM, to parse different input
articles formats and handle long context inputs. In this experiment, the model is exposed
to each paper Pi as a full-document. Unlike selective input in the previous strategies, this
experiment evaluates the model’s ability to reason holistically over the complete text.
Each full paper is passed to GPT-4o to generate structured outputs of pairs identifying (1)
Implied knowledge gaps supported by textual evidence and (2) Suggested future direction.
In separate surveys, 18 corresponding authors of each paper reviewed the model’s inferred
gaps and proposed directions, and indicated whether they agreed or disagreed with each. In
cases of disagreement, authors were asked to briefly justify their assessment (e.g., irrelevance,
misinterpretation, outdated issue). This feedback was used to assess the quality and feasibility
of full-document inference as a method for automated gap discovery.
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Table 3: IPBES results under two context settings. Best F1 per block in bold, second best
underlined.

No context window limit 1000-word chunks
Model P R F1 P R F1

GPT-5 0.7483 0.8476 0.7949 0.7376 0.8613 0.7947
gpt-4o 0.8445 0.4223 0.5630 0.8653 0.6463 0.7400
GPT-4o mini 0.8013 0.7805 0.7907 0.7971 0.8323 0.8143
Gemma-2-9B 0.8091 0.5945 0.6854 0.7850 0.7000 0.7401
Llama-3.3-70B 0.8063 0.8567 0.8307 0.7839 0.8460 0.8138
Llama-4-17B 0.7953 0.7568 0.7756 0.7583 0.7698 0.7640
Llama-3.1-8B 0.7711 0.5290 0.6275 0.7825 0.5595 0.6524

5 Evaluation

We evaluate the IPBES explicit gap extractions against its ground truth using one-to-one
matching based on ROUGE-L F1 similarity (with stemming). Predictions are counted as
true positives if the score exceeds a threshold of 0.55. Unmatched predictions are false
positives, and unmatched gold sentences are false negatives. Exact string matches are also
recorded for reference, but are not required for correctness. Aggregate precision, recall, and
F1 are then reported across documents in Table 3.
For subsequent evaluations (explicit extractions from the COVID-19 dataset and implicit
gap inference), the LLMs either extracted extra valid unannotated explicit statements, and
concluded more potentially valid claims than found in the gold standard dataset. For the
COVID-19 experiment, we avoided penalizing plausible inferences. We validated these
predictions against the domain-specific ignorance-cues dictionary of Boguslav, et al. [1] to
confirm that each prediction at least carries one knowledge gap cue. Then, we adopt accuracy
as the primary metric, reflecting the proportion of correctly identified gap statements.
For the implicit-gap experiments, we computed accuracy by validating the Pairs: (Claim
and gold) & (Warrant and Premises). Specifically, a prediction was marked correct if the
bi-directional entailment probability using RoBERTa large model [23] exceeded a threshold
of 0.4 to one of the claims. This techniques directly captures whether a claim is logically
supported by its context rather than relying solely on the gold.

6 Results and Discussion

Explicit Gap Extraction with IPBES The LLMs perform strongly in both full and
chunked paragraph inputs, but with clear differences. Without a context limit, Llama-3.3-
70B showed the best F1 driven by the highest recall, while GPT-5 and GPT-4o Mini are
close behind. GPT-4o is the most conservative model, indicating a high-precision/low-recall
operating point. When chunking the input into 1K-word chunks, GPT-4o Mini leads F1,
narrowly ahead of Llama-3.3-70B, with GPT-5 remaining competitive. The top systems
shift by ≈0.02 absolute F1 relative to the no-limit setting, showing that chunking preserves
performance and can even raise recall for some models (notably GPT-4o Mini).
We conclude that open-weight models are competitive with closed-weight ones on lexically
signaled gaps. Practically, Llama-3.3-70B and GPT-5 are preferable for broad coverage.
Chunking is a safe preprocessing choice for explicit gaps and can improve recall without
materially harming the overall F1 of smaller models such as Llama-3.1-8B.

Explicit Gap Extraction with COVID-19 The COVID-19 dataset presents a more
challenging setting for explicit knowledge-gap detection compared to IPBES. Unlike the
IPBES annotations, which often align with clear lexical cues of uncertainty, the COVID
corpus identifies only one gap statement per section, despite many sections containing
multiple latent gaps. Furthermore, authors frequently relied on numeric contrasts, anomalies,
or novel findings, rather than explicit uncertainty markers to convey gaps. As a result, LLMs
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Table 4: Accuracy on two setups (n = 973 each). Highest accuracy per setup is in bold,
second best underlined.

1000-word chunks No context limit

Model Correct Acc. (%) Correct Acc. (%)

All Models 782 80.37 730 75.03
GPT-5 618 63.51 590 60.64
Llama-3.3-70B 406 41.73 385 39.57
Llama-4-17B 362 37.20 378 38.85
GPT-4o Mini 301 30.94 419 43.06
GPT-4o 271 27.85 252 25.90
Gemma 2-9B 167 17.16 169 17.37
Llama-3.1-8B 140 14.39 169 17.37

often produced more candidate gap statements than the ground truth provided, yet, they
are focused on the presence of uncertainty cues.
Performance in Table 4 reflects these annotation and style differences. GPT-5 achieved the
highest accuracy, though absolute values declined compared to IPBES. Mid-sized open-weight
models (Llama-70B, Llama-17B) showed moderate alignment with annotated cues, while
smaller models struggled beyond lexical markers. These results underscore the robustness of
large-scale LLMs in contexts with fewer explicit signals and the limitations of benchmarks
in capturing author-implied gaps. They also suggest that evaluation must consider not
only lexical cues, but also numeric and contrastive reasoning patterns that signal gaps in
biomedical discourse.
The three plots in Figure 1 and 2 summarize the additional explicit gap statements extracted
from the COVID-19 dataset, and passed post-hoc validation via the ignorance-cues dictionary
of Boguslav et al. [1]. The Venn diagram in Figure 1 is showing how the four top models’
predictions overlap. About 1.14k items are shared by all four, but each model, especially
GPT-5, also has many unique items, suggesting complement when using a mixture of these
LLMs for certain tasks.
The left side diagram on Figures 1 breaks down each models extracts, showing that GPT-5
is leading both in total volume and in unique coverage. Llama-4-17B and GPT-4o Mini also
provide sizable unique segments, whereas Llama-3.3-70B and especially GPT-4o are more
overlapping. Looking at the same stats for the IPBES dataset extractions, we found that
almost 50% of the extracted statements (913) are shared across the LLMs. and 843 uniquely
identified.
Figure 2 compares normalized performance across five knowledge gap categories [1] and
shows near concentric contours, where GPT-5 traces the outermost polygon on every axis,
followed by Llama-models, with GPT-4o Mini innermost. This consistent ordering across
axes indicates shared ability in retrieving certain types of gaps.

Implicit Gap Conclusion from Paragraphs Table 5 reports accuracy on the paragraph-
level. GPT-5 achieved the strongest performance, followed closely by GPT-4o and GPT-4o
Mini, while mid-sized open-weight models such as Llama-3.3-70B showed competitive but
lower alignment. Smaller models (e.g., Llama-3.1-8B, Gemma-2-9B) struggled to generalize.
These results highlight that large LLMs can reliably conclude implicit claims when provided
with sufficient guidance.
A crucial factor in enabling this performance was the use of in-context 3-shot prompting,
rather than zero-shot extraction as we used to do with explicit extractions. When testing the
LLMs with 0-shot learning similar to the explicit gaps extractions, even GPT-5’s outputs
degenerated into vague restatements or unsupported speculations, resulting in sharp drops
in accuracy. Thus, the design of the prompting strategy was essential: it provided not just
examples (3-shot) but also a template that translated raw generative ability into precise,
valuable future-direction predictions.
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Figure 1: Model agreement and complementarity. Left: For each model, predictions
unique to that model (orange) vs. those shared with ≥1 other model. Right: Overlap among
the top four models. Numbers denote instance counts per region.

Figure 2: Model performance across knowledge-gap categories (Research Aim, Levels of
Evidence, Anomaly/Curious Findings, Barriers, and Future Opportunities). The chart shows
relative strengths of GPT-5, GPT-4o Mini, Llama-3.3-70B, and Llama-4-17B normalized.

We also found that the LLMs bucketed 10% to 24% of the correct future direction claims
as less probable. While this is still a small fraction of bucketed predictions, it raises the
question of what other factors can contribute to considering certain open questions more
important than others such as relevance to laboratory and technical limitations.

GPT-5 GPT-4o GPT-4o mini Gemma-2-9B llama-3.3-70 llama-4-17B llama-3.1-8b

FD Count 179 171 171 48 163 135 65
Accu. (%) 84.43 80.66 80.66 22.64 77.89 63.68 30.67
Table 5: LLMs accuracy in concluding future direction claims from paragraph dataset.

Implicit Gap Conclusion from Full Articles Results indicate strong effectiveness:
83.3% of participants agreed the model’s identified knowledge gaps were factually true,
demonstrating GPT-4o’s accuracy. Regarding whether these questions remain open, 56%
fully agreed and 25.9% partially agreed. Among the latter, 67% believed that addressing
the gaps might still significantly advance the field, underscoring their potential impact.
Implementation was harder: only 65% of proposed future directions were deemed valid, while
35% were judged invalid mainly for feasibility reasons (technological limits, budget constraints,
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or relevance to other research groups). These findings highlight practical constraints on
applying LLM-generated solutions and suggest that, although GPT-4o can effectively identify
gaps, turning suggestions into actionable research requires attention to context and resources.

7 Conclusion
Our results prove that LLMs can be systematically identify explicit and implicit knowledge
gaps in biomedical literature with high accuracies. We believe that using a mixture of LLMs
instead of relying only on the top performing ones can provide a robust gap recommender
systems. Such system cab identify high-impact open questions and align them with feasible
next steps, thereby, focusing human effort and funding to accelerate scientific discovery.
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