
Conformal Embedding Flows: Tractable Density Estimation
on Learned Manifolds

Brendan Leigh Ross 1 Jesse C. Cresswell 1

Abstract
Normalizing flows are generative models that pro-
vide tractable density estimation by transform-
ing a simple distribution into a complex one.
However, flows cannot directly model data sup-
ported on an unknown low-dimensional manifold.
We propose Conformal Embedding Flows, which
learn low-dimensional manifolds with tractable
densities. We argue that composing a standard
flow with a trainable conformal embedding is the
most natural way to model manifold-supported
data. To this end, we present a series of conformal
building blocks and demonstrate experimentally
that flows can model manifold-supported distribu-
tions without sacrificing tractable likelihoods.

1. Introduction
Deep generative modelling is a rapidly evolving area of
research in which the goal is to model a complex proba-
bility distribution p∗x(x) from a set of samples. Normaliz-
ing flows (NFs) in particular model an approximate den-
sity px(x) over the space X using a change-of-variables
to a known base density pz(z) over the space Z . This
change-of-variables, which is induced by a diffeomorphism
f : Z → X , is given by

px(x) = pz
(
f−1(x)

) ∣∣detJf

(
f−1(x)

)∣∣−1 . (1)
In this expression, Jf (z) is the Jacobian matrix of f at the
point z. By parameterizing and composing classes of dif-
feomorphisms fθ, a flexible change-of-variables map can be
learned via maximum likelihood. Compared to other gener-
ative frameworks, NFs provide the unique combination of
efficient inference, efficient sampling, and exact likelihood
estimation.

One limiting aspect of NFs is that, since f must be a diffeo-
morphism, they can only describe a probability model with

1Layer 6 AI, Toronto, Ontario, Canada. Correspondence to:
Brendan Leigh Ross <brendan@layer6.ai>, Jesse C. Cresswell
<jesse@layer6.ai>.

Third workshop on Invertible Neural Networks, Normalizing
Flows, and Explicit Likelihood Models (ICML 2021). Copyright
2021 by the author(s).

Figure 1. A normalized base density in the Z space is mapped by a
bijective flow h to a more complicated density in U . The injective
component g maps this density onto a manifoldM in X .

full support. Conversely, many real-world datasets are as-
sumed to exist on a low-dimensional submanifoldM⊂ X
(Fefferman et al., 2016). In the context of VAEs, Dai & Wipf
(2019) observe that this situation encourages likelihood-
based models to converge to infinity onM while ignoring
the probability distribution of the data entirely. Behrmann
et al. (2021) point out that invertible neural networks can
become numerically non-invertible when the effective di-
mensionality of data and latents are mismatched. Correctly
learning the data manifoldM along with its density may
circumvent these pathologies.

There is growing research interest in injective flows, which
account for unknown manifold structure by incorporating
a change in dimensionality between the base density and
data space (Brehmer & Cranmer, 2020; Cunningham et al.,
2020; Kumar et al., 2020; Kothari et al., 2021; Cunningham
& Fiterau, 2021). However, leading injective flow models
still suffer from drawbacks including intractable density
estimation (Brehmer & Cranmer, 2020) and reliance on
stochastic inverses (Cunningham et al., 2020).

In this paper we propose Conformal Embedding Flows
(CEFs), a class of flows that use conformal embeddings
to transform from low to high dimensions while maintain-
ing invertibility and an efficiently computable density. We
show how conformal embeddings can be used to learn a
lower dimensional data manifold, and we combine them
with powerful NF architectures for learning densities. The
overall CEF paradigm preserves the advantages of standard
NFs: efficient density estimation, sampling, and inference.
We propose several types of conformal embedding that can
be implemented as composable layers of a flow, including a
new invertible layer, the orthogonal k × k convolution.

Conformal Embedding Flows

2. Background
Injective flows seek to learn an explicitly low-dimensional
support by reducing the dimensionality of the latent space.
The flow is modelled as a smooth embedding: an injective
function which is diffeomorphic to its image. This case can
be accommodated with a generalized change of variables
formula for densities as follows (Gemici et al., 2016).

Let g : U → X be a smooth embedding from a latent space
U onto the data manifoldM ⊂ X . That is,M = g(U) is
the range of g. Accordingly, g has a left-inverse1 g† : X →
U which is smooth onM and satisfies g†(g(u)) = u for
all u ∈ U . Using the shorthand u = g†(x), the generalized
change of variables formula defined for x ∈ M can be
written (Lee, 2018)

px(x) = pu (u)
∣∣det [JTg (u)Jg(u)

]∣∣− 1
2 , (2)

for a base density pu(u). As before, it is helpful to intro-
duce a latent space Z of dimension m along with a dif-
feomorphism h : Z → U representing a bijective NF
between Z and U . Taking the composed injective trans-
formation g ◦ h and applying the chain rule Jg◦h = JgJh

simplifies the determinant in Eq. (2) since Jh is square:
det
[
JThJ

T
gJgJh

]
= (detJh)

2 det
[
JTgJg

]
. Writing z =

h−1(u), the data density is modelled by

px(x) = pz (z) |detJh (z)|−1
∣∣det [JTg (u)Jg(u)

]∣∣− 1
2 ,
(3)

with the entire process depicted in Fig. 1.

If the manifold is unknown, or if g(u) cannot perfectly fit
the data, points outside of g(U) will arise during training. In
this case the model’s log-likelihood will be −∞. Cunning-
ham et al. (2020) remedy this by adding an off-manifold
noise term to the model, but inference requires a stochastic
inverse, and the model must be optimized using an ELBO-
like objective. Other work (Brehmer & Cranmer, 2020;
Kothari et al., 2021) has projected data to the manifold via
g ◦ g† prior to computing log-likelihoods, and optimized g
using the reconstruction loss Ex∼p∗x ||x− g(g†(x))||2.

When computing likelihoods, the determinant term
det
[
JTgJg

]
presents a computational challenge. Kumar

et al. (2020) maximize it using an approximate lower bound,
while Brehmer & Cranmer (2020) and Kothari et al. (2021)
circumvent its computation altogether by only maximizing
the other factors in the likelihood. In contrast to past injec-
tive flow models, our approach allows for straightforward
evaluation and optimization of det

[
JTgJg

]
in the same way

standard NFs do for detJf . As far as we can find, ours is
the first approach to make this task tractable at scale.

For more related work, see App. A.

1† denotes a left-inverse function, not necessarily the matrix
pseudoinverse.

3. Conformal Embedding Flows
In this section, we propose Conformal Embedding Flows
(CEFs) as a method for learning both the low-dimensional
manifoldM⊂ X and the probability density of the data on
the manifold.

Modern bijective flow work has produced tractable detJf

terms by designing layers with triangular Jacobians (Dinh
et al., 2014; 2017). For injective flows, the combination
JTgJg is symmetric, so it is triangular if and only if it is
diagonal, meaning Jg has orthogonal columns. While this
restriction is feasible for a single layer g, it is not com-
posable. If g1 and g2 are embeddings whose Jacobians
have orthogonal columns, it need not follow that Jg2◦g1 has
orthogonal columns. Additionally, since the Jacobians are
not square, det

[
JTg1

JTg2
Jg2

Jg1

]
, the determinant in Eq. (2),

cannot be factored into a product of individually computable
terms. To ensure composability, we propose enforcing the
slightly stricter criterion that each JTgJg be a scalar multiple
of the identity matrix. This is precisely the condition that g
is a conformal embedding.

Formally, a smooth embedding g : U → X is a conformal
embedding if its Jacobian satisfies

JTg (u)Jg(u) = λ2(u)Im , (4)

where m is the dimensionality of U and λ : U → R is a
smooth non-zero scalar function, the conformal factor (Lee,
2018). In other words, Jg has orthonormal columns up
to a non-zero multiplicative constant. If h : Z → U is a
standard flow model, the injective flow g ◦ h : Z → X
satisfies

px(x) = pz (z) |detJh (z)|−1 λ−m(u) . (5)

We call g ◦ h a Conformal Embedding Flow.

There are multiple options for training a CEF. End-to-end
maximum likelihood training could be used for g ◦ h as a
whole, but when projecting to the manifold, it is possible to
maximize density without learning the manifold correctly
(Brehmer & Cranmer, 2020). We find it effective to first
train the manifold learner g alone for several epochs by
minimizing the reconstruction loss Ex∼p∗x‖x− g(g†(x))‖2.
After this manifold warmup phase, our model density can
be optimized in two ways. The first is the sequential train-
ing approach, in which we optimize h with g fixed as in
Brehmer & Cranmer (2020). The alternative, which we refer
to as the joint training approach, is to optimize the following
loss:

L = Ex∼p∗x
[
− log px(x) + α‖x− g(g†(x))‖2

]
. (6)

This mixed loss is unique to our model because it is the first
model for which log px(x) is tractable in its entirety.

Conformal Embedding Flows

3.1. Designing Conformal Embedding Flows

To build a parameterizable and scalable model g, it helps
to work with conformal building blocks gi : Ui−1 → Ui
(where U0 = U and Uk = X), which we compose to pro-
duce the full conformal embedding g = gk ◦ · · · ◦ g1. In
turn, g is conformal because

JTgJg =
(
JTg1
· · ·JTgk

)
(Jgk

· · ·Jg) = λ21 · · ·λ2kIm . (7)

Our goal in the remainder of this section is to design classes
of conformal building blocks which can be parameterized
and learned in a CEF.

3.1.1. CONFORMAL EMBEDDINGS FROM CONFORMAL
MAPPINGS

Consider the special case where the conformal embedding
maps between Euclidean spaces U ⊆ Rd and V ⊆ Rd of
the same dimension. Liouville’s theorem (Hartman, 1958)
states that any such conformal mapping can be expressed as
a composition of translations, orthogonal transformations,
scalings, and inversions, all of which are defined in Table
1. We created conformal embeddings primarily by compos-
ing these layers. Zero-padding (which is trivially confor-
mal) was interspersed to provide changes in dimensionality
(Brehmer & Cranmer, 2020).

Table 1. Conformal Mappings

Type Functional Form Inverse λ(u)

Translation u 7→ u+ a v 7→ v − a 1

Orthogonal u 7→ Qu, Q ∈ O(d) v 7→ QTv 1

Scaling u 7→ λu v 7→ λ−1v λ

Inversion u 7→ u/‖u‖2 v 7→ v/‖v‖2 ‖u‖−2

We parameterized orthogonal transformations in two differ-
ent ways: as Householder matrices (Tomczak & Welling,
2016) and as the matrix exponential of a skew-symmetric
matrix using (Lezcano-Casado, 2019).

To scale orthogonal transformations to image data, we pro-
pose a new invertible layer: the orthogonal k×k convolution.
In the spirit of the invertible 1× 1 convolutions of Kingma
& Dhariwal (2018), we note that a k × k convolution with
stride k has a block diagonal Jacobian. It suffices then to
constrain the filters such that these blocks are orthogonal.
These layers can be inverted efficiently by applying a trans-
posed convolution with the same filters, while a standard
invertible 1×1 convolution requires a matrix inversion. This
facilitates quick forward and inverse passes when perform-
ing reconstructions during training.

3.1.2. PIECEWISE CONFORMAL EMBEDDINGS

To increase expressivity of the embeddings, the conformal-
ity condition on g can be relaxed to the point of being

Figure 2. (Top) A density p∗x(x) with support on the sphere, and
103 samples comprising the training dataset {xi}. (Bottom) The
density learned by a CEF, and 103 generated samples.

conformal almost everywhere. This is similar to how the
diffeomorphism property of standard flows is relaxed when
rectifier nonlinearities are used in coupling layers (Dinh
et al., 2017). We considered the following two piecewise
conformal embeddings. Conformal ReLU, based on the
injective ReLU proposed by Kothari et al. (2021), is de-
fined by the following forward (U → V) and left-inverse
(V → U) functions with Q ∈ O(d):

u 7→ ReLU
[
Qu
−Qu

]
,

[
v1

v2

]
7→ QT (v1 − v2) , (8)

and λ(u) = 1. We believe it to be of general interest as
a conformal nonlinearity, but it provided no performance
improvements in our experiments. More useful was the
Conditional Orthogonal transformation,

u 7→

{
Q1u if ‖u‖ < 1,

Q2u if ‖u‖ ≥ 1,
v 7→

{
QT

1 u if ‖v‖ < 1,

QT
2 u if ‖v‖ ≥ 1,

(9)
with Q1,Q2 ∈ O(d), and λ(u) = 1, which takes advan-
tage of the norm-preservation of orthogonal transformations
to create an invertible layer. Despite the conditional or-
thogonal layer being discontinuous, it provided a boost in
reconstruction ability on image data.

4. Experiments
4.1. Synthetic Spherical Data

To demonstrate how a CEF can jointly learn a manifold
and density, we generated a synthetic dataset from a known
distribution with support on a spherical surface embedded
in R3. This ground truth density is visualized in Fig. 2.
We constructed the conformal embedding g from a padding

Conformal Embedding Flows

Table 2. CelebA Performance

MODEL FID RECON g + h PARAMETERS

S-MF 110.9 ± 0.1 0.40× 10−3 36346752 + 36429778
S-CEF 111.8 ± 0.1 1.05× 10−3 83036 + 36429778
J-CEF 126.0 ± 0.2 1.04× 10−3 83036 + 36429778

layer and the conformal mappings in Table 1, and the bi-
jective component h consisted of three Glow-style steps
acting on the two latent dimensions. We trained the two
components of the CEF jointly with the mixed loss function
in Eq. (6). The resulting model density is plotted in Fig. 2
along with generated samples, and it shows good fidelity to
the known manifold and density. See App. C.1 for complete
details.

4.2. Image Modelling

We scale CEFs to larger data by training on the CelebA
dataset, for which a low-dimensional manifold structure is
postulated but not known (Liu et al., 2015). Our aim is
to show that, although their functional form is restricted,
CEFs are competitive with mainstream injective flow train-
ing approaches. In doing so, we are the first to perform end-
to-end maximum likelihood training with an injective flow
on image data. Three approaches were evaluated: a base-
line sequentially trained manifold-flow (S-MF) (Brehmer &
Cranmer, 2020), a sequentially trained CEF (S-CEF), and a
jointly trained CEF (J-CEF). We fixed a small Glow-style
stump with 3 levels and 3 steps per level as the backbone h
for all models. See App. C.2 for further details.

Injective models cannot be compared on the basis of log-
likelihood, since each model may have a different manifold
support. Instead, we compare generated images on the
basis of FID score, a measure of distance between image
features that correlates well with human perception of image
quality (Heusel et al., 2017). Lower FID scores are better.
As expected, since the baseline embedding is much larger
and more flexible, it achieves smaller reconstruction losses
than the conformal models. However, the CEFs produce
competitive FID scores, possibly due to the better global
consistency of facial features from the two CEF models.

5. Conclusion
In this paper, we introduced Conformal Embedding Flows
as a new framework for modelling probability distributions
on low-dimensional manifolds while maintaining tractable
densities. We showed that conformal embeddings improve
upon past injective flow models by providing the unique
combination of fast sampling, invertibility for inference,
and a simple Jacobian determinant factor for efficient like-
lihood estimation, all while being composable for scaling

(a) (b) (c)

Figure 3. (Top) Generated samples and (Bottom) reconstructions
for (a) J-CEF, (b) S-CEF, and (c) S-MF. Original images are on the
left, and reconstructions are on the right.

to deep models. Furthermore, the restrictions on conformal
embeddings are minimal, in that any looser condition will
sacrifice one or more of these properties.

Strictly manifold-supported probability models such as ours
introduce a bi-objective optimization problem. How to bal-
ance these objectives is unclear and, thus far, empirical
(Brehmer & Cranmer, 2020). The difference in supports be-
tween two manifold models also makes their likelihoods in-
comparable. Cunningham et al. (2020) have made progress
in this direction by adding noise to data generated on the
manifold, but this makes inversion stochastic and introduces
density estimation challenges. We suspect that using confor-
mal manifold-learners may make density estimation more
tractable in this setting, but further research is needed in this
direction.

Just as standard flows trade some expressibility for tractable
likelihoods, so must injective flows. Our conformal net-
works in particular are less expressive than state-of-the-
art flow models. We mostly compose padding layers and
dimension-preserving conformal mappings, which is a nat-
urally restrictive class by Liouville’s theorem (Hartman,
1958). Just as early work on NFs (Rezende & Mohamed,
2015; Dinh et al., 2014) introduced limited classes of param-
eterizable bijections, which were later improved in many
directions, our work introduces several classes of param-
eterizable conformal embeddings. We expect that future
work will uncover more expressive dimension-increasing
conformal embeddings.

Acknowledgements
We thank Gabriel Loaiza-Ganem and Anthony Caterini for
their valuable discussions and advice. We also thank Parsa
Torabian for sharing his experience with orthogonal weights
and Maksims Volkovs for his helpful feedback.

Conformal Embedding Flows

References
Bansal, N., Chen, X., and Wang, Z. Can We Gain More

from Orthogonality Regularizations in Training Deep Net-
works? In Advances in Neural Information Processing
Systems, volume 31, 2018.

Behrmann, J., Vicol, P., Wang, K.-C., Grosse, R., and Ja-
cobsen, J.-H. Understanding and mitigating exploding
inverses in invertible neural networks. In Proceedings
of The 24th International Conference on Artificial Intelli-
gence and Statistics, volume 130, pp. 1792–1800. PMLR,
13–15 Apr 2021.

Brehmer, J. and Cranmer, K. Flows for simultaneous mani-
fold learning and density estimation. In Advances in Neu-
ral Information Processing Systems, volume 33, 2020.

Cunningham, E. and Fiterau, M. A change of variables
method for rectangular matrix-vector products. In Pro-
ceedings of The 24th International Conference on Ar-
tificial Intelligence and Statistics, volume 130. PMLR,
2021.

Cunningham, E., Zabounidis, R., Agrawal, A., Fiterau, I.,
and Sheldon, D. Normalizing Flows Across Dimensions.
arXiv:2006.13070, 2020.

Dai, B. and Wipf, D. Diagnosing and Enhancing VAE
Models. In International Conference on Learning Repre-
sentations, ICLR 2019, 2019.

Di Francesco, P., Mathieu, P., and Sénéchal, D. Conformal
field theory. Springer Science & Business Media, 2012.

Dinh, L., Krueger, D., and Bengio, Y. Nice: Non-linear
independent components estimation. arXiv:1410.8516,
2014.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density esti-
mation using Real NVP. In International Conference on
Learning Representations, ICLR 2017, 2017.

Fefferman, C., Mitter, S., and Narayanan, H. Testing the
manifold hypothesis. Journal of the American Mathemat-
ical Society, 29(4):983–1049, 2016.

Gemici, M. C., Rezende, D., and Mohamed, S. Normalizing
Flows on Riemannian Manifolds, 2016.

Harandi, M. and Fernando, B. Generalized BackPropaga-
tion, Étude De Cas: Orthogonality. arXiv:1611.05927,
2016.

Hartman, P. On isometries and on a theorem of Liouville.
Mathematische Zeitschrift, 69:202–210, 1958.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. GANs Trained by a Two Time-Scale Up-
date Rule Converge to a Local Nash Equilibrium. In
Advances in Neural Information Processing Systems, vol-
ume 30, 2017.

Huang, L., Liu, X., Lang, B., Yu, A. W., and Li, B. Or-
thogonal weight normalization: Solution to optimization
over multiple dependent stiefel manifolds in deep neural
networks. In AAAI, 2018.

Jia, K., Tao, D., Gao, S., and Xu, X. Improving training
of deep neural networks via singular value bounding. In
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3994–4002, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR (Poster), 2015. URL http://
arxiv.org/abs/1412.6980.

Kingma, D. P. and Dhariwal, P. Glow: Generative Flow
with Invertible 1x1 Convolutions. In Advances in Neural
Information Processing Systems, volume 31, 2018.

Kothari, K., Khorashadizadeh, A., de Hoop, M., and Dok-
manić, I. Trumpets: Injective Flows for Inference and
Inverse Problems. arvix:2102.10461, 2021.

Kumar, A., Poole, B., and Murphy, K. Regularized Au-
toencoders via Relaxed Injective Probability Flow. In
Proceedings of the Twenty Third International Confer-
ence on Artificial Intelligence and Statistics, volume 108,
pp. 4292–4301, 2020.

Lee, J. M. Introduction to Riemannian manifolds. Springer,
2018.

Lezcano-Casado, M. Trivializations for gradient-based opti-
mization on manifolds. In Advances in Neural Informa-
tion Processing Systems, NeurIPS, pp. 9154–9164, 2019.

Lezcano-Casado, M. and Martínez-Rubio, D. Cheap Or-
thogonal Constraints in Neural Networks: A Simple
Parametrization of the Orthogonal and Unitary Group.
In Proceedings of the 36th International Conference on
Machine Learning, volume 97, pp. 3794–3803, 2019.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face
attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV), December 2015.

Mathieu, E. and Nickel, M. Riemannian Continuous Nor-
malizing Flows. In Advances in Neural Information Pro-
cessing Systems, volume 33, pp. 2503–2515, 2020.

Ozay, M. and Okatani, T. Optimization on Submanifolds of
Convolution Kernels in CNNs. arXiv: 1610.07008, 2016.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Conformal Embedding Flows

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed,
S., and Lakshminarayanan, B. Normalizing Flows for
Probabilistic Modeling and Inference. Journal of Ma-
chine Learning Research, 22(57):1–64, 2021.

Peterfreund, E., Lindenbaum, O., Dietrich, F., Bertalan, T.,
Gavish, M., Kevrekidis, I. G., and Coifman, R. R. Local
conformal autoencoder for standardized data coordinates.
Proceedings of the National Academy of Sciences, 117
(49):30918–30927, 2020.

Qi, H., You, C., Wang, X., Ma, Y., and Malik, J. Deep iso-
metric learning for visual recognition. In Proceedings of
the 37th International Conference on Machine Learning,
volume 119, pp. 7824–7835, 2020.

Rezende, D. and Mohamed, S. Variational Inference with
Normalizing Flows. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, volume 37, pp.
1530–1538, 2015.

Rezende, D. J., Papamakarios, G., Racaniere, S., Albergo,
M., Kanwar, G., Shanahan, P., and Cranmer, K. Nor-
malizing Flows on Tori and Spheres. In Proceedings of
the 37th International Conference on Machine Learning,
volume 119, pp. 8083–8092, 2020.

Tomczak, J. M. and Welling, M. Improving Varia-
tional Auto-Encoders using Householder Flow. arXiv:
1611.09630, 2016.

Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S., and
Pennington, J. Dynamical isometry and a mean field
theory of CNNs: How to train 10,000-layer vanilla con-
volutional neural networks. In Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80,
pp. 5393–5402, 2018.

A. Related Work
Flows on prescribed manifolds Flows have been devel-
oped for Riemannian manifoldsM⊆ X which are known
in advance and can be defined as the image of some fixed
φ : U → X , where U ⊆ Rm (Gemici et al., 2016; Mathieu
& Nickel, 2020; Papamakarios et al., 2021). In particu-
lar, Rezende et al. (2020) model densities on spheres and
tori with convex combinations of Möbius transformations,
which are cognate to conformal mappings. For known man-
ifolds φ is fixed, and the density’s log Jacobian determinant
term may be computable in closed form. Our work replaces
φ with a trainable network g, but the log Jacobian determi-
nant still has a simple closed form.

Flows on learnable manifolds Extending flows to learn-
able manifolds brings about two main challenges: handling

off-manifold points, and training the density on the mani-
fold.

If the manifold is the density’s support, all off-manifold
points during training will have a likelihood of 0. This
has been addressed by adding an off-manifold noise term
(Cunningham et al., 2020; Cunningham & Fiterau, 2021)
or by training the manifold with a reconstruction loss and
projecting the data onto the manifold (Kumar et al., 2020;
Brehmer & Cranmer, 2020; Kothari et al., 2021). We opt
for the latter approach.

Training the density on the manifold is challenging because
the log-determinant term is typically intractable. Kumar
et al. (2020) use an approximate lower bound to train the
log-determinant, while Brehmer & Cranmer (2020) and
Kothari et al. (2021) separate the flow into two components,
and only train the low-dimensional part of the flow. Our
approach is the first injective model to provide a learnable
manifold with exact log-determinant computation.

Conformal, isometric, and orthogonal networks Confor-
mality has two special cases of interest: isometry and semi-
orthogonality. An isometric embedding is a conformal em-
bedding with a constant conformal factor of 1, while a semi-
orthogonal transformation is a linear isometric embedding.
Authors have typically imposed conformality (Peterfreund
et al., 2020), isometry (Qi et al., 2020; Xiao et al., 2018), or
semi-orthogonality (Bansal et al., 2018; Jia et al., 2017) as
a regularizer. These approaches have not enforced orthog-
onality strictly; the set of n× k semi-orthogonal matrices
forms the Stiefel manifold in Rn×k, so strict orthogonality
entails optimizing weights along this manifold.

Past work has trained along the Stiefel manifold in two
ways: with Riemannian gradient descent, and by directly
parametrizing the manifold. Riemannian gradient descent
algorithms typically require a singular value decomposition
or QR decomposition at each training step (Harandi & Fer-
nando, 2016; Ozay & Okatani, 2016; Huang et al., 2018).
On the other hand, Lezcano-Casado (2019) and Lezcano-
Casado & Martínez-Rubio (2019) parameterize the set of
orthogonal matrices with positive determinant as the matrix
exponential of a skew-symmetric matrix, wherein the matrix
exponential and its gradient must be approximated. Another
approach is to directly parameterize a smaller subset of or-
thogonal matrices. Tomczak & Welling (2016) construct
a linear volume-preserving flow using n× n Householder
matrices, which can be parameterized with n− 1 degrees of
freedom. We found the matrix exponential and Householder
approaches to be most efficient, so we used a mix of them.

Conformal Embedding Flows

B. Details on Conformal Embeddings and
Conformal Mappings

Let (U , ηu) and (X , ηx) be two Riemannian manifolds. We
define a diffeomorphism f : U → X to be a conformal
diffeomorphism if it pulls back the metric ηx to some non-
zero scalar multiple of ηu (Lee, 2018). That is,

f∗ηx = ληu (10)

for some smooth scalar function λ 6= 0. Many authors re-
quire λ to be positive, but we allow it to be negative as well.
Furthermore, we define a smooth embedding g : U → X
to be a conformal embedding if it is a conformal diffeomor-
phism onto its image (g(U), ηx), where ηx is inherited from
the ambient space X .

In our context, U ⊆ Rm, X = Rn, and ηu and ηx are
Euclidean metrics. This leads to an equivalent property (Eq.
(4)):

JTg (u)Jg(u) = λ2(u)Im. (11)

This also guarantees that det[JTgJg] = λ2m is tractable,
even when g = gk ◦ ... ◦ g1 is composed from several
layers, as is needed for scalable injective flows.

To demonstrate that conformal embeddings are an expres-
sive class of functions, we first turn to the most restricted
case where n = m; i.e. conformal mappings. In Apps. B.1
and B.2 we provide an intuitive investigation of the classes
of conformal mappings using infinitesimals. We then dis-
cuss in App. B.3 why conformal embeddings in general
are more challenging to analyze, but also show intuitively
why they are more expressive than dimension-preserving
conformal mappings.

B.1. Infinitesimal Conformal Mappings

Consider a mapping of Euclidean space with dimension
m ≥ 3. Liouville’s theorem for conformal mappings con-
strains the set of such maps which satisfy the conformal
condition Eq. (11). Such functions can be decomposed into
translations, orthogonal transformations, scalings, and inver-
sions. Here we provide a direct approach for the interested
reader, which also leads to some insight on the general case
of conformal embeddings (Di Francesco et al., 2012). First
we will find all infinitesimal transformations which satisfy
the conformal condition, then exponentiate them to obtain
the set of finite conformal mappings.

Consider a transformation f : Rm → Rm which is infinites-
imally close to the identity function, expressed in Cartesian
coordinates as

f(x) = x+ ε(x). (12)

That is, we only keep terms linear in the infinitesimal quan-
tity ε. The mappings produced will only encompass trans-
formations which are continuously connected to the identity,

but we restrict our attention to these for now. However,
this simple form allows us to directly study how Eq. (11)
constrains the infinitesimal ε(x):

JTf (x)Jf (x) =

[
Im +

∂ε

∂x

]T [
Im +

∂ε

∂x

]
= Im +

∂ε

∂x

T

+
∂ε

∂x
.

(13)

By Eq. (11), the symmetric sum of ∂ε/∂x must be pro-
portional to the identity matrix. Let us call the position-
dependent proportionality factor η(x). We can start to un-
derstand η(x) by taking a trace

∂ε

∂x

T

+
∂ε

∂x
= η(x)Im, (14)

2

m
tr
(
∂ε

∂x

)
= η(x). (15)

Taking another derivative of Eq. (14) proves to be useful, so
we switch to index notation to handle the tensor multiplica-
tions,

∂

∂xk

∂εj
∂xi

+
∂

∂xk

∂εi
∂xj

=
∂η

∂xk
δij , (16)

where the Kronecker delta δij is 1 if i = j, and 0 otherwise.
On the left-hand-side, derivatives can be commuted. By
taking a linear combination of the three permutations of
indices we come to

2
∂

∂xk

∂εi
∂xj

=
∂η

∂xj
δik +

∂η

∂xk
δij −

∂η

∂xi
δjk. (17)

Summing over elements where j = k gives the Laplacian
of εi, while picking up only the derivatives of η with respect
to xi, so we can switch back to vector notation where

2∇2ε = (2−m)
∂η

∂x
. (18)

Now we have two equations (14) and (18)2 involving deriva-
tives of ε and η. To eliminate ε, we can apply ∇2 to (14),
while applying ∂/∂x to (18)

∇2 ∂ε

∂x

T

+∇2 ∂ε

∂x
= ∇2ηId (19)

2∇2 ∂ε

∂x
= (2−m)

∂2η

∂x∂x
. (20)

Since Eq. (20) is manifestly symmetric, the left-hand-sides
are actually equal. Equating the right-hand-sides, we can
again sum the diagonal terms, giving the much simpler form

(m− 1)∇2η = 0. (21)

2We note that the steps following Eq. (18) are only justified for
m ≥ 3 which we have assumed. In two dimensions the conformal
group is much larger and Liouville’s theorem no longer captures
all conformal mappings.

Conformal Embedding Flows

Ultimately, revisiting Eq. (20) shows that the function η(x)
is linear in the coordinates

∂2η

∂x∂x
= 0 =⇒ η(x) = α+ β · x, (22)

for constants α,β. This allows us to relate back to the quan-
tity of interest ε. Skimming back over the results so far, the
most general equation where having the linear expression
for η(x) helps is Eq. (17) which now is

2
∂

∂xk

∂εi
∂xj

= βjδik + βkδij − βiδjk. (23)

The point is that the right-hand-side is constant, meaning
that ε(x) is at most quadratic in x. Hence, we can make an
ansatz for ε in full generality, involving sets of infinitesimal
constants

ε = a+Bx+ x
↔

Cx, (24)

where
↔

C ∈ Rm×m×m is a 3-tensor.

So far we have found that infinitesimal conformal trans-
formations can have at most quadratic dependence on the
coordinates. It remains to determine the constraints on each
set of constants a, B, and

↔

C, and interpret the corresponding
mappings. We consider each of them in turn.

All constraints on ε involve derivatives, so there is noth-
ing more to say about the constant term. It represents an
infinitesimal translation

f(x) = x+ a. (25)

On the other hand, the linear term is constrained by Eqs.
(14) and (15) which give

B+BT =
2

m
tr(B)Im. (26)

Hence, B has an unconstrained anti-symmetric part BAS =
1
2 (B−BT) representing an infinitesimal rotation

f(x) = x+BASx, (27)

while its symmetric part is diagonal as in Eq. (26),

f(x) = x+ λx, λ =
1

m
tr(B), (28)

which is an infinitesimal scaling. This leaves only the
quadratic term for interpretation which is more easily han-
dled in index notation, i.e. εi =

∑
lm Cilmxlxm. The

quadratic term is significantly restricted by Eq. (23),

2
∂2

∂xk∂xj

∑
lm

Cilmxlxm = 2Cijk

= βjδik + βkδij − βiδjk.
(29)

This allows us to isolate βk in terms of Cijk, specifically
from the trace over C’s first two indices,

2
∑
i=j

Cijk = βk + βkm− βk = βkm. (30)

Hereafter we use bk = βk/2 =
∑
i=j Cijk/m. Then with

Eq. (29) the corresponding infinitesimal transformation is

fi(x) = xi +
∑
jk

Cijkxjxk

= xi +
∑
jk

(bjδik + bkδij − biδjk)xjxk

= xi + 2xi
∑
j

bjxj − bi
∑
j

(xj)
2,

f(x) = x+ 2(b · x)x− ‖x‖2b.

(31)

We postpone the interpretation momentarily.

Thus we have found all continuously parameterizable in-
finitesimal conformal mappings connected to the identity,
and showed they come in four distinct types. By composing
infinitely many such transformations, or “exponentiating"
them, we obtain finite conformal mappings. Formally, this is
the process of exponentiating the elements of a Lie algebra
to obtain elements of a corresponding Lie group.

B.2. Finite Conformal Mappings

As an example of obtaining finite mappings from infinitesi-
mal ones we take the infinitesimal rotations from Eq. (27)
where we note that f only deviates from the identity by an
infinitesimal vector field BASx. By integrating the field
we get the finite displacement of any point under many
applications of f , i.e. the integral curves x(t) defined by

ẋ(t) = BASx(t), x(0) = x0. (32)

This differential equation has the simple solution

x(t) = exp(tBAS)x0. (33)

Finally we recognize that when a matrix A is antisymmetric,
the matrix exponential eA is orthogonal, showing that the
finite transformation given by t = 1, f(x0) = exp(BAS)x0,
is indeed a rotation. Furthermore, it is intuitive that in-
finitesimal translations and scalings also compose into finite
translations and scalings. Examples are shown in Fig. 4
(a-c)

The infinitesimal transformation in Eq. (31) is non-linear in
x, so it does not exponentiate easily as for the other three
cases. It helps to linearize with a change of coordinates
y = x/‖x‖2 which happens to be an inversion:

ẋ(t) = 2(b · x)x− ‖x‖2b, (34)

ẏ(t) =
ẋ

‖x‖2
− 2

x · ẋ
‖x‖4

x = −b. (35)

Conformal Embedding Flows

(a) (b) (c)

(d) (e)

Figure 4. Effects of conformal mappings on gridlines, and their corresponding vector fields showing local displacements. Mappings
are: (a) translation by a = [1, 1]; (b) orthogonal transformation (2D rotation) by angle θ = π/12; (c) scaling by λ = 1.5; (d) SCT by
b = [−0.1,−0.1]; (e) inversion, also showing the unit circle. The interior of the circle is mapped to the exterior, and vice versa.

We now get the incredibly simple solution y(t) = y0 − tb,
a translation, after which we can undo the inversion

x(t)

‖x‖2
=

x0

‖x0‖2
− tb. (36)

This form is equivalent to a Special Conformal Transforma-
tion (SCT) (Di Francesco et al., 2012), which we can see
by defining the finite transformation as f(x0) = x(1), and
taking the inner product of both sides with themselves

‖f(x0)‖2 =
‖x0‖2

1− 2b · x0 + ‖b‖2‖x0‖2
, (37)

and finally isolating

f(x0) =
‖f(x0)‖2

‖x0‖2
x0 − ‖f(x0)‖2b

=
x0 − ‖x0‖2b

1− 2b · x0 + ‖b‖2‖x0‖2
.

(38)

An example SCT is shown in Fig. 4 (d), demonstrating their
non-linear nature. In the process of this derivation we have
learned that SCTs can be interpreted as an inversion, fol-
lowed by a translation by−b, followed by an inversion, and
the infinitesimal Eq. (31) is recovered when the translation
is small.

By composition, the four types of finite conformal mapping
we have encountered, namely translations, rotations, scal-
ings, and SCTs, generate the conformal group - the group of
transformations of Euclidean space which locally preserve
angles and orientation. The infinitesimal transformations
we derived directly give the corresponding elements of the
Lie algebra.

Eq. (11) also admits non-orientation preserving solutions
which are not generated by the infinitesimal approach. Com-
posing the scalings in Eq. (28) only produces finite scalings

by a positive factor, i.e. f(x) = eλx. Similarly, composing
infinitesimal rotations does not generate reflections - non-
orientation preserving orthogonal transformations that are
not connected to the identity. The conformal group can be
extended by including non-orientation preserving transfor-
mations, namely inversions (Fig. 4 (e)), negative scalings,
and reflections as in Table 1. All of these elements still
satisfy Eq. (11), as do their closure under composition. By
Liouville’s theorem, these comprise all possible conformal
mappings.

The important point for our discussion is that any conformal
mapping can be built up from the simple elements in Table
1. In other words, a neural network can learn any conformal
mapping by learning a sequence of the simple elements.

B.3. Conformal Embeddings

Whereas conformal mappings have been exhaustively clas-
sified, conformal embeddings have not. While the defining
equations for a conformal embedding g : U → X , namely

JTg (u)Jg(u) = λ2(u)Im, (39)

appear similar to those of conformal mappings, we cannot
apply the techniques from Apps. B.1 and B.2 to enumer-
ate them. Conformal embeddings do not necessarily have
identical domain and codomain. As such, finite confor-
mal embeddings can not be generated by exponentiating
infinitesimals.

The lack of full characterization of all conformal embed-
dings hints that they are a much richer class of functions.
For a more concrete understanding, we can study Eq. (39)
as a system of PDEs. This system consists of m(m+ 1)/2
independent equations (noting the symmetry of JTgJg) to
be satisfied by n+ 1 functions, namely g(u) and λ(u). In

Conformal Embedding Flows

the typical case that n < m(m + 1)/2 − 1, i.e. n is not
significantly larger than m, the system is overdetermined.
Despite this, solutions do exist. We have already seen that
the most restricted case n = m of conformal mappings ad-
mits four qualitatively different classes of solutions. These
remain solutions when n > m simply by having g map to a
constant in the extra n−m dimensions.

Intuitively, adding an extra dimension for solving the PDEs
is similar to introducing a slack variable in an optimization
problem. In case it is not clear that adding additional func-
tions gi, i > m enlarges the class of solutions of Eq. (39),
we provide a concrete example. Take the case n = m = 2
for a fixed λ(u1, u2). The system of equations that g(u)
must solve is(

∂g1
∂u1

)2

+

(
∂g2
∂u1

)2

= λ2(u1, u2),(
∂g1
∂u2

)2

+

(
∂g2
∂u2

)2

= λ2(u1, u2),

∂g1
∂u1

∂g1
∂u2

+
∂g2
∂u1

∂g2
∂u2

= 0.

(40)

Suppose that for the given λ(u1, u2) no complete solution
exists, but we do have a g(u) which simultaneously solves
all but the first equation. Enlarging the codomain X with an
additional dimension (n = 3) gives an additional function
g3(u) to work with, while λ(u1, u2) is unchanged. The
system of equations becomes(

∂g1
∂u1

)2

+

(
∂g2
∂u1

)2

+

(
∂g3
∂u1

)2

= λ2(u1, u2),(
∂g1
∂u2

)2

+

(
∂g2
∂u2

)2

+

(
∂g3
∂u2

)2

= λ2(u1, u2),

∂g1
∂u1

∂g1
∂u2

+
∂g2
∂u1

∂g2
∂u2

+
∂g3
∂u1

∂g3
∂u2

= 0.

(41)

Our partial solution can be worked into an actual solution
by letting g3 satisfy(

∂g3
∂u1

)2

= λ2(u1, u2)−
(
∂g1
∂u1

)2

−
(
∂g2
∂u1

)2

,

(42)

with all other derivatives of g3 vanishing. Hence g3 is con-
stant in all directions except the u1 direction so that, geo-
metrically speaking, the u1 direction is bent and warped by
the embedding into the additional x3 dimension.

To summarize, compared to conformal mappings, with
dimension-changing conformal embeddings the number of
equations in the system remains the same but the number of
functions available to satisfy them increases. This allows
conformal embeddings to be much more expressive than
the fixed set of conformal mappings, but also prevents an
explicit classification and parameterization of all conformal
embeddings.

C. Experimental Details
C.1. Synthetic Spherical Distribution

Model The injective part of the model g was composed
of a padding layer, SCT, orthogonal transformation, and
translation (See App. B.2 for the definition of SCT). The
bijective part h stacked three sets of Glow-style blocks,
each having an ActNorm, Invertible 1× 1 Convolution, and
Affine Coupling layer.

Training We trained the reconstruction loss with a 100-
epoch manifold-warmup phase for g, then trained the mixed
loss function in Eq. (6) with the end-to-end log-likelihood
for 100 epochs, and finally 100 epochs with the manifold
model fixed to fine-tune the density. We used a batch size
of 100 and a learning rate of 0.001.

Data For illustrative purposes we generated a synthetic
dataset from a known distribution on a spherical surface
embedded in R3. The sphere is a natural manifold with
which to demonstrate learning a conformal embedding with
a CEF, since we can analytically find suitable maps g :
R2 → R3 that embed the sphere3 with Cartesian coordinates
describing both spaces. For instance consider

g =

(
2r2z1

z21 + z22 + r2
,

2r2z2
z21 + z22 + r2

, r
z21 + z22 − r2

z21 + z22 + r2

)
,

(43)
where r ∈ R is a parameter. Geometrically, this embedding
takes the domain manifold, viewed as the surface x3 = 0
in R3, and bends it into a sphere of radius r centered at the
origin. Computing the Jacobian directly gives

JTgJg =
4r4

(z21 + z22 + r2)2
I2, (44)

which shows that g is a conformal embedding (Eq. (4))
with λ(z) = 2r2

z21+z
2
2+r

2 . Of course, this g is also known as a
stereographic projection, but here we view its codomain as
all of R3, rather than the 2-sphere.

With this in mind it is not surprising that a CEF can learn
an embedding of the sphere, but we would still like to study
how a density confined to the sphere is learned. Starting
with a multivariate Normal N (µ, I3) in three dimensions
we drew samples and projected them radially onto the unit
sphere. This mimics the much more complicated distribu-
tion given by integrating out the radial coordinate from the

3Technically the “north pole" of the sphere (0, 0, 1) is not in
the range of g, which leaves a manifold S2\{north pole} that is
topologically equivalent to R2.

Conformal Embedding Flows

standard Normal distribution

pM(φ, θ) =

∫ ∞
0

1

(2π)3/2
exp

{
− 1

2

(
r2−

2r (cosφ sin θ, sinφ sin θ, cos θ) · µ+ ‖µ‖2
)}
r2dr.

(45)

With the shorthand t = (cosφ sin θ, sinφ sin θ, cos θ) for
the angular direction vector, the integration can be per-
formed

pM(φ, θ) =
1

25/2π3/2
e−‖µ‖

2/2
(
2t · µ+

√
2π
(
(t · µ)2 + 1

)
e(t·µ)2/2

(
erf
(
t · µ/

√
2
)
+ 1
))

.

(46)

This distribution is visualized in Fig. 2 for the parameter
µ = (−1,−1, 0).

C.2. CelebA

Models The baseline’s embedding g is a Glow-style net-
work of 3 levels and 2 steps per level: the output of each
scale is reshaped into 8× 8, and all scales are concatenated.
We then apply an invertible 1× 1 convolution, and project
the input down to 1536 dimensions. Since this network is
not conformal, joint training is intractable, so it must be
trained sequentially.

On the other hand, both CEFs use the same conformal ar-
chitecture for g: a series of 2 × 2 and 1 × 1 Householder
convolutions interspersed with Conditional Orthogonal con-
volutions, padding layers, shifts, and scales. The basic
architecture follows. Between every layer, trainable scaling
and shift operations were applied.

x (3× 64× 64)→ 4× 4 Householder Conv
→ 1× 1 Householder Conv
→ 1× 1 Conditional Orthogonal Conv
→ Pad Channels(48, 24)
→ 2× 2 Householder Conv
→ 1× 1 Householder Conv
→ 1× 1 Conditional Orthogonal Conv
→ Pad Channels(96, 48)
→ 2× 2 Householder Conv
→ 1× 1 Householder Conv
→ 1× 1 Conditional Orthogonal Conv
→ Pad Channels(192, 96)
→ u (96× 8× 8)

Training S-MF and S-CEF were sequentially trained, mean-
ing g was trained with a reconstruction loss in a 10-epoch

manifold-warmup phase, and then h was trained to maxi-
mize likelihood for 100-epochs. J-CEF was trained with
a 10-epoch manifold warmup phase, and then the mixed
loss function in Eq. (6) was optimized for 100 epochs with
weights of 0.001 for the likelihood and 100 for the recon-
struction loss.

All models were trained with the Adam optimizer (Kingma
& Ba, 2015) with learning rate 1× 10−5 and batch size 32.
Using a single NVIDIA TITAN V, the sequential baseline
and sequential CEF ran for 34 hours, while the joint CEF
ran for 65 hours.

