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Abstract

Recent literature has suggested the potential of001
using large language models (LLMs) to make002
predictions for tabular tasks. However, LLMs003
have been shown to exhibit harmful social bi-004
ases that reflect the stereotypes and inequalities005
present in society. To this end, as well as the006
widespread use of tabular data in many high-007
stake applications, it is imperative to explore008
the following questions: what sources of infor-009
mation do LLMs draw upon when making pre-010
dictions for tabular tasks; whether and to what011
extent are LLM predictions for tabular tasks in-012
fluenced by social biases and stereotypes; and013
what are the consequential implications for fair-014
ness? Through a series of experiments, we015
delve into these questions and show that LLMs016
tend to inherit social biases from their train-017
ing data which significantly impact their fair-018
ness in tabular prediction tasks. Furthermore,019
our investigations show that in the context of020
bias mitigation, though in-context learning and021
fine-tuning have a moderate effect, the fairness022
metric gap between different subgroups is still023
larger than that in traditional machine learning024
models, such as Random Forest and shallow025
Neural Networks. This observation emphasizes026
that the social biases are inherent within the027
LLMs themselves and inherited from their pre-028
training corpus, not only from the downstream029
task datasets. Besides, we demonstrate that030
label-flipping of in-context examples can sig-031
nificantly reduce biases, further highlighting032
the presence of inherent bias within LLMs.033

1 Introduction034

Many recent works propose to use large language035

models (LLMs) for tabular prediction (Slack and036

Singh, 2023; Hegselmann et al., 2023), where the037

tabular data is serialized as natural language and038

provided to LLMs with a short description of the039

task to solicit predictions. Despite the comprehen-040

sive examination of fairness considerations within041

conventional machine learning approaches applied042

to tabular tasks (Bellamy et al., 2018), the explo- 043

ration of fairness-related issues in the context of 044

employing LLMs for tabular predictions remains a 045

relatively underexplored domain. 046

Previous research has shown that LLMs, such as 047

GPT-3 (Brown et al., 2020), GPT-3.5, GPT-4 (Ope- 048

nAI, 2023) can exhibit harmful social biases (Abid 049

et al., 2021a; Basta et al., 2019), which may even 050

worsen as the models become larger in size (Askell 051

et al., 2021; Ganguli et al., 2022). These biases are 052

a result of the models being trained on text gen- 053

erated by humans that presumably includes many 054

examples of humans exhibiting harmful stereotypes 055

and discrimination and reflects the biases and in- 056

equalities present in society (Bolukbasi et al., 2016; 057

Zhao et al., 2017), which can lead to the perpetua- 058

tion of discrimination and stereotype (Abid et al., 059

2021a; Bender et al., 2021). 060

Considering that tabular data finds extensive use 061

in high-stakes domains (Grinsztajn et al., 2022) 062

where information is typically structured in tab- 063

ular formats as a natural byproduct of relational 064

databases (Borisov et al., 2022), it is of paramount 065

importance to thoroughly examine the fairness im- 066

plications of utilizing LLMs for predictions on tab- 067

ular data. In this paper, we conduct a series of 068

investigations centered around this critical aspect, 069

with the goal of discerning the underlying informa- 070

tion sources upon which LLMs rely when making 071

tabular predictions. Through this exploration, our 072

investigation aims to ascertain whether, and to what 073

degree, LLMs are susceptible to being influenced 074

by social biases and stereotypes in the context of 075

tabular data predictions. 076

Through experiments using GPT-3.5 to make 077

predictions for tabular data in a zero-shot setting, 078

we demonstrate that LLMs exhibit significant so- 079

cial biases (Section 4). This evidence confirms that 080

LLMs inherit social biases from their training cor- 081

pus and tend to rely on these biases when making 082

predictions for tabular data. 083
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Furthermore, we demonstrate that providing084

LLMs with few-shot examples (in-context learning)085

or fine-tuning them on the entire training dataset086

both exhibit moderate effects on bias mitigation087

(Sections 5.1 and 6.1). Nevertheless, the achieved088

fairness levels remain below what is typically at-089

tained with traditional machine learning methods,090

including Random Forests and shallow Neural Net-091

works, once again underscoring the presence of092

inherent bias in LLMs. Additionally, our investi-093

gation further reveals that flipping the labels of the094

in-context examples significantly narrows the gap095

in fairness metrics across different subgroups, but096

comes at the expected cost of a reduction in pre-097

dictive performance. This finding, in turn, further098

emphasizes and reaffirms the indication of inherent099

bias present in LLMs (Section 5.2). Additionally,100

we further show that while resampling the training101

set is a known and effective method for reducing102

biases in traditional machine learning methods like103

Random Forests and shallow Neural Networks, it104

proves to be less effective when applied to LLMs105

(Section 6.2).106

These collective findings underscore the signif-107

icant influence of social biases on LLMs’ perfor-108

mance in tabular predictions. These biases sig-109

nificantly undermine fairness and pose substantial110

potential risks for using LLMs on tabular data, es-111

pecially considering that tabular data is extensively112

used in high-stakes domains, highlighting the need113

for more advanced and tailored strategies to address114

these biases effectively. Straightforward methods115

like in-context learning and data resampling may116

not be sufficient in this context.117

2 Related work118

Fairness and Social Biases in LLMs Fairness119

is highly desirable for ensuring the credibility and120

trustworthiness of algorithms. It has been demon-121

strated that unfair algorithms can reflect societal122

biases in their decision-making processes (Ben-123

der et al., 2021; Bommasani, 2021), primarily124

stemming from the biases present in their train-125

ing data (Caliskan et al., 2017; Zhao et al.,126

2017). LLMs, pre-trained on vast natural language127

datasets, are particularly susceptible to inheriting128

these social biases and have been shown to exhibit129

biases related to gender (Lucy and Bamman, 2021),130

religion (Abid et al., 2021b) and language vari-131

ants (Ziems et al., 2023; Liu et al., 2023a). These132

social biases can lead to the perpetuation of discrim-133

ination and stereotype (Abid et al., 2021a; Bender 134

et al., 2021; Weidinger et al., 2021). While re- 135

cent literature has made strides in addressing these 136

issues, there still exists a significant gap in com- 137

prehensively assessing fairness in LLMs and its 138

mitigation strategies for tabular data. 139

Tabular Tasks and LLM for Tabular Data 140

Tabular data extensively exist in many domains 141

(Shwartz-Ziv and Armon, 2021). Previous works 142

propose to utilize self-supervised deep techniques 143

for tabular tasks (Yin et al., 2020; Arik and Pfister, 144

2021), which, however, still underperform ensem- 145

bles of gradient-boosted trees in the fully super- 146

vised setting (Grinsztajn et al., 2022). This dispar- 147

ity in performance can be attributed to the locality, 148

sparsity, and mixed data types of tabular data. In 149

recent times, LLMs have undergone intensive train- 150

ing using vast amounts of natural language data, 151

which has enabled them to exhibit impressive per- 152

formance across various downstream tasks (Brown 153

et al., 2020; OpenAI, 2023), even with little or no 154

labeled task data. Therefore, recent approaches 155

by (Hegselmann et al., 2023; Slack and Singh, 156

2023) suggest serializing the tabular data as natural 157

language, which is provided to LLM along with a 158

short task description to generate predictions for 159

tabular tasks. However, tabular data plays a crucial 160

role in numerous safety-critical and high-stakes do- 161

mains (Borisov et al., 2022; Grinsztajn et al., 2022), 162

which makes fairness particularly crucial when em- 163

ploying LLMs for making predictions on tabular 164

data, especially considering the inherent social bi- 165

ases present in LLMs. Despite the importance, this 166

still remains largely unexplored. To the best of our 167

knowledge, we regard our work as one of the most 168

comprehensive investigations into the fairness is- 169

sues arising when using LLMs for predictions on 170

tabular data. 171

In-Context Learning Significant improvements 172

for various tasks have been achieved by providing 173

in-context examples to LLMs (Brown et al., 2020; 174

Liu et al., 2022, 2023b). However, previous re- 175

search by (Min et al., 2022; Wei et al., 2023b; Lyu 176

et al., 2023) illustrate that the effective performance 177

of in-context learning largely hinges on semantic 178

priors rather than learning the input-label mapping 179

(Akyürek et al., 2022; Xie et al., 2022; Von Os- 180

wald et al., 2023) and the labels of the in-context 181

examples might not play a crucial role in in-context 182

learning, with flipped or random labels sometimes 183
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having minimal impact on performance. Despite184

these findings, the predominant focus of existing185

investigation of in-context learning remains on con-186

ventional natural language processing tasks (Zhao187

et al., 2021; Min et al., 2022; Wei et al., 2023a,b),188

largely overlooking the domain of tabular data. Fur-189

thermore, the fairness of in-context learning and190

the impact of flipped labels on this fairness is yet191

to be thoroughly investigated.192

3 Experimental Setup193

In this section, we outline the general setup of the194

experiments conducted in our work.195

3.1 Models196

In our work, we focus our experiments on GPT-197

3.5 (engine GPT-3.5-turbo) - an LLM released198

by OpenAI, trained with instruction tuning (Sanh199

et al., 2022; Wei et al., 2022) and reinforcement200

learning from human feedback (RLHF) (Ouyang201

et al., 2022), aligning LLMs with human prefer-202

ences. Furthermore, we also compare its perfor-203

mance with conventional machine learning models204

in order to gain insight into the propagation of bi-205

ases found within LLMs, which are likely mirrored206

in traditional models as well, consequently, offer-207

ing valuable additional perspectives on the biases208

inherent in the training of LLMs. For this, we209

employ two widely used models for tabular data210

i.e., Random Forests (RF) and a shallow Neural211

Network (NN) of 3 layers. We provide additional212

implementation details in Appendix B.213

3.2 Datasets and Protected Attributes214

To explore the fairness of LLMs in making pre-215

dictions for tabular data, we utilize the following216

three widely used tabular datasets for assessing217

the fairness of traditional ML models: Adult In-218

come (Adult) Dataset (Becker and Kohavi, 1996),219

German Credit Dataset (Dua and Graff, 2019),220

and Correctional Offender Management Profiling221

for Alternative Sanctions (COMPAS) Dataset (Lar-222

son et al., 2016). In this section, we introduce223

each dataset and discuss its associated protected224

attributes.225

Adult The Adult Income dataset (Adult) is ex-226

tracted from the 1994 U.S. Census Bureau database.227

The task is to predict whether a person earns more228

than $50,000 per year based on their profile data229

(greater than 50K or less than or equal to 50K).230

The original Adult Income Dataset contains 14 fea- 231

tures. Following previous work (Slack and Singh, 232

2023), we retain only 10 features: “workclass", 233

“hours per week", “sex", “age", “occupation", “cap- 234

ital loss"", “education", “capital gain", “marital 235

status", and “relationship". Our analysis on Adult 236

primarily focuses on sex as the protected attribute, 237

and female is acknowledged as a disadvantaged 238

group. 239

German Credit The German Credit dataset is 240

used to classify individuals based on their profile 241

attributes as good or bad credit risks (good or bad). 242

The raw dataset comprises 20 attributes. Consistent 243

with previous work, we only retain the following 244

features: “age", “sex", “job", “housing", “saving 245

accounts", “checking account", “credit amount", 246

“duration", and “purpose". Same with Adult, sex 247

is considered as a protected attribute in the Ger- 248

man Credit dataset and female as the marginalized 249

group. 250

COMPAS The COMPAS dataset comprises the 251

outcomes from the Correctional Offender Man- 252

agement Profiling for Alternative Sanctions com- 253

mercial algorithm, utilized to evaluate a convicted 254

criminal’s probability of reoffending. Known for 255

its widespread use by judges and parole officers, 256

COMPAS has gained notoriety for its bias against 257

African-Americans. The raw COMPAS Recidivism 258

dataset contains more than 50 attributes. Follow- 259

ing the approach of (Larson et al., 2016), we per- 260

form necessary preprocessing, group “race" into 261

African-American and Not African-American, and 262

only consider the features “sex", “race", “age", 263

“charge degree", “priors count", “risk" and “two 264

year recid" (target). We frame the task as predict- 265

ing whether an individual will recidivate in two 266

years (Did Not Reoffend or Reoffended) based on 267

their demographic and criminal history. For the 268

COMPAS dataset, we consider race as the pro- 269

tected attribute. 270

A detailed description for each feature of the 271

considered datasets is provided in Appendix A. 272

3.3 Serialization and Prompt Templates 273

To employ the LLM for making predictions on 274

these tabular datasets, each data point is first serial- 275

ized as text. Following previous works on LLM for 276

tabular predictions (Hegselmann et al., 2023; Slack 277

and Singh, 2023), we format the feature names and 278

values into strings as “f1 : x1, . . . , fd : xd", and 279
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prompt to LLM along with a task description, as280

illustrated following:281

You must predict if income exceeds $50K/yr.
Answer with one of the following: greater than
50K | less than or equal to 50K.
Example 1 -
workclass: Private
hours per week: 20
sex: Male
age: 17
occupation: Other-service
capital loss: 0
education: 10th
capital gain: 0
marital status: Never-married
relationship: Own-child
Answer: less than or equal to 50K
...

workclass: Private
hours per week: 40
sex: Female
age: 24
occupation: Sales
capital loss: 0
education: Some-college
capital gain: 0
marital status: Never-married
relationship: Own-child
Answer:

Figure 1: Prompt Template for Adult Dataset.

The example above is from the Adult dataset,282

where text in blue denotes the task description, text283

in green indicates optional few-shot examples (only284

used in in-context learning), and text in red is the285

test example. We provide the prompt templates for286

the other two datasets in Appendix C.287

3.4 Evaluation Metrics288

To assess fairness in the aforementioned datasets,289

we examine the disparity between different sub-290

groups of protected attributes using the following291

common fairness metrics: accuracy, F1 score, sta-292

tistical parity, and equality of opportunity. Here,293

we briefly explain each evaluation metric.294

Accuracy and F1 As the most basic metric, as-295

sessing accuracy among different subgroups en-296

sures that the model delivers consistent perfor-297

mance across all groups, without undue favor to any298

particular subgroups. Considering that the evalu-299

ated datasets may be imbalanced, especially among300

different subgroups, the F1 Score computes the301

harmonic mean of precision and recall, offering a302

balanced perspective between these two metrics.303

Statistical Parity Statistical parity is attained 304

when positive decision outcomes (e.g., being pre- 305

dicted as good credit risk) are independent of the 306

protected attributes. This metric assesses whether 307

different subgroups receive similar treatment from 308

the model. For each subgroup zi of each protected 309

attribute Z, we calculate 310

P (Ŷ = 1|Z = zi). 311

Then we calculate the Statistical Parity Differ- 312

ence (SPD) of this protected attribute as 313

SPD = P (Ŷ = 1|Z = z1)− P (Ŷ = 1|Z = z2), 314

where z1 is the minority group and z2 is the 315

majority. 316

Equality of Opportunity Equality of opportu- 317

nity requires that qualified individuals have an 318

equal chance of being correctly classified by the 319

model, regardless of their membership in a pro- 320

tected group. This metric ensures equal true posi- 321

tive rates between different subgroups, providing 322

equal opportunities for each subgroup. Similar to 323

statistical parity, for equality of opportunity, we 324

calculate the Equal Opportunity Difference (EOD) 325

as 326

EOD = P (Ŷ = 1|Y = 1, Z = z1) 327

− P (Ŷ = 1|Y = 1, Z = z2). 328

Each of these metrics offers a different perspec- 329

tive on fairness. For each subgroup from each 330

protected attribute, we will compute every afore- 331

mentioned metric. A model demonstrating good 332

fairness should show minimal gaps in these fairness 333

metrics between different subgroups. Considering 334

them together can provide a more comprehensive 335

evaluation of the model’s fairness across different 336

subgroups, ensuring that individuals are not un- 337

fairly disadvantaged based on their membership in 338

a protected group. 339

4 Zero-Shot Prompting for Tabular Data 340

To explore the fairness of LLMs when making pre- 341

dictions on tabular data, we first conduct experi- 342

ments in a zero-shot setting. We assess the fair- 343

ness metrics of the outcomes and examine whether 344

LLMs without any finetuning or few-shot examples 345
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would be influenced by social biases and stereo-346

types for tabular predictions. We run all the experi-347

ments 5 times and compute the mean and standard348

deviation.349

In Tables 1-3, we present the evaluation of four350

fairness metrics, namely accuracy (ACC), F1 score351

(F1), statistical parity (SP), and equality of opportu-352

nity (EoO), for GPT-3.5 (engine GPT-3.5-turbo),353

RF and NN models on the Adult, German Credit354

and COMPAS datasets, respectively. For the Adult355

and German Credit datasets, the subgroups female356

and male are assessed regarding the protected at-357

tribute sex, identifying female as a disadvantaged358

group. In the COMPAS dataset, we evaluate race359

as protected attributes, recognizing African Ameri-360

can (AA) as the disadvantaged group.361

It is notable that when utilizing LLMs to make362

predictions for tabular data directly, without any363

fine-tuning or in-context learning, a significant fair-364

ness metric gap between the protected and non-365

protected groups is observed for GPT-3.5 (high-366

lighted in red). For instance, the EoO difference be-367

tween male and female on the Adult dataset reaches368

0.483, indicating a substantial disadvantage for the369

female group. Additionally, when compared with370

traditional methods like RF and NN, the bias in371

zero-shot predictions made by GPT-3.5 is signifi-372

cantly larger for the Adult dataset. This observation373

suggests an inherent gender bias in GPT-3.5. For374

the COMPAS dataset, the racial bias in the zero-375

shot setting is comparatively lower than RF and376

NN but is still effectively high.377

Exceptionally, GPT-3.5 is extremely biased for378

German Credit dataset where it classifies almost379

everything into ‘good credit’ class in the zero-shot380

setting, thus rendering the difference in SP and381

EoO for both subgroups to be near 0. The accu-382

racy for each subgroup is near 50%, performing383

similar to random guessing. The possible reason384

might be that the German Credit dataset is too chal-385

lenging for making tabular predictions with LLMs386

(especially, since the features of German Credit387

are ambiguous and vague). This also suggests that,388

when using LLM to make predictions on tabular389

data, a potential description of table feature names390

is favorable.391

These findings demonstrate the tendency of392

LLMs to rely on social biases and stereotypes in-393

herited from their training corpus when applied394

to tabular data. This implies that using LLMs for395

predictions on tabular data may incur significant396

fairness risks, including the potential to dispropor- 397

tionately disadvantage marginalized communities 398

as well as exacerbate social biases and stereotypes 399

present in society. This is particularly concerning 400

given the widespread application of tabular data in 401

high-stake contexts, further magnifying the poten- 402

tial for harm. 403

5 Few-Shot Prompting for Tabular Data 404

As demonstrated in Section 4, employing LLMs for 405

predictions on tabular data reveals significant social 406

biases in a zero-shot setting. Instead of directly uti- 407

lizing LLMs for zero-shot tabular predictions, this 408

section explores whether including few-shot exam- 409

ples during prompting will reduce or amplify these 410

biases. To delve deeper into the influence of few- 411

shot examples during in-context learning (ICL), 412

we not only consider the regular ICL approach as 413

detailed in Section 5.1, but we also experiment 414

by flipping the labels of the few-shot examples to 415

further examine their effect on the biases, as dis- 416

cussed in Section 5.2. Again, for robustness, each 417

experiment is conducted 5 times, with the mean 418

and standard deviation reported. 419

5.1 Regular In-Context Learning 420

Previous works have demonstrated that LLMs can 421

learn the input-label mappings in context (Akyürek 422

et al., 2022; Xie et al., 2022; Von Oswald et al., 423

2023). However, the influence of in-context learn- 424

ing on fairness has not been thoroughly examined. 425

For in-context learning, the test example and task 426

description, along with a few-shot examples, are 427

provided to the LLMs for generating the final pre- 428

dictions. The few-shot examples are inserted before 429

the test example in the prompt, as outlined in Sec- 430

tion 3.3. We set the number of in-context examples 431

as 50. For each dataset, we randomly select the 432

in-context examples from the training set for each 433

test example. 434

In Tables 1-3, we demonstrate that for two of 435

the evaluated datasets (except for COMPAS), the 436

incorporation of few-shot examples brings about 437

performance improvements. Additionally, we ob- 438

serve that incorporating few-shot examples into 439

prompting reduces the fairness metric gap between 440

different subgroups. However, a significant fairness 441

issue still persists. Moreover, for the Adult and 442

COMPAS datasets, the disparity in fairness met- 443

rics of in-context learning is more notable when 444

compared to traditional models, such as RF and 445
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ACC F1 SP EoO

G
PT

-3
.5

-t
ur

bo

Z
er

o-
Sh

ot

f 0.898 0.001 0.711 0.002 0.065 0.001 0.357 0.000
m 0.742 0.002 0.727 0.002 0.464 0.003 0.840 0.004
d 0.157 0.002 -0.016 0.002 -0.399 0.003 -0.483 0.004

Fe
w

-s
ho

t Regular
f 0.899 0.002 0.735 0.003 0.082 0.002 0.429 0.000
m 0.781 0.003 0.749 0.002 0.339 0.003 0.700 0.003
d 0.118 0.004 -0.014 0.004 -0.257 0.005 ↓ -0.271 0.003 ↓

Label-flipping
f 0.682 0.004 0.590 0.003 0.396 0.006 0.800 0.013
m 0.614 0.002 0.605 0.002 0.545 0.001 0.763 0.003
d 0.068 0.004 -0.015 0.004 -0.148 0.006 ✓ 0.037 0.014 ✓

Fi
ne

tu
ni

ng

Regular
f 0.915 0.014 0.773 0.036 0.079 0.002 0.476 0.048
m 0.799 0.005 0.754 0.005 0.269 0.036 0.613 0.053
d 0.116 0.009 0.020 0.039 -0.190 0.035 ↓ -0.137 0.098 ↓

Oversampling
f 0.913 0.016 0.770 0.042 0.081 0.004 0.476 0.067
m 0.813 0.007 0.780 0.003 0.310 0.038 0.702 0.048
d 0.100 0.013 -0.010 0.041 -0.229 0.030 -0.226 0.077

Undersampling
f 0.912 0.015 0.770 0.046 0.086 0.006 0.488 0.084
m 0.794 0.006 0.751 0.001 0.285 0.031 0.631 0.044
d 0.118 0.021 0.018 0.046 -0.200 0.025 -0.143 0.040

R
F

Regular
f 0.914 0.002 0.767 0.006 0.075 0.003 0.457 0.010
m 0.822 0.005 0.783 0.005 0.269 0.004 0.652 0.004
d 0.092 0.004 -0.015 0.005 -0.195 0.003 -0.195 0.012

Oversampling
f 0.912 0.006 0.770 0.011 0.084 0.005 0.486 0.012
m 0.824 0.002 0.785 0.002 0.270 0.003 0.656 0.006
d 0.087 0.005 -0.015 0.01 -0.185 0.004 -0.170 0.011

Undersampling
f 0.917 0.004 0.776 0.011 0.075 0.001 0.471 0.018
m 0.814 0.003 0.771 0.004 0.263 0.002 0.627 0.009
d 0.103 0.005 0.005 0.011 -0.187 0.001 -0.156 0.018

N
N

Regular
f 0.917 0.003 0.778 0.019 0.081 0.016 0.490 0.068
m 0.819 0.006 0.773 0.015 0.250 0.045 0.614 0.079
d 0.098 0.005 0.006 0.009 -0.169 0.032 -0.123 0.033

Oversampling
f 0.916 0.004 0.794 0.013 0.100 0.016 0.562 0.058
m 0.813 0.012 0.774 0.008 0.286 0.044 0.663 0.056
d 0.103 0.011 0.020 0.018 -0.186 0.030 -0.102 0.038

Undersampling
f 0.904 0.005 0.748 0.014 0.084 0.007 0.452 0.030
m 0.813 0.006 0.774 0.005 0.283 0.023 0.659 0.031
d 0.090 0.006 -0.026 0.014 -0.199 0.018 -0.206 0.031

Table 1: Fairness evaluation for Adult dataset. This table depicts the evaluation of accuracy (ACC), F1 score
(F1), statistical parity (SP), and equality of opportunity (EoO) metrics for the subgroup - female (f ) and male (m)
as well as the difference (d) between them. We list the protected group first. The significant fairness disparities
are highlighted in red. Both in-context learning and finetuning can lead to bias reduction (indicated by ↓), and
label-flipped in-context learning can further minimize bias (indicated by ✓).

NN. This highlights the inherent biases embedded446

within LLMs, which are not solely derived from447

the task datasets.448

5.2 Label Flipping449

To delve deeper into the sources of biases within450

LLMs, we further examine the impact of the labels451

of in-context examples on fairness. As depicted452

in Tables 1-3, label flipping significantly reduces453

biases across all evaluated datasets. For all datasets,454

the difference in statistical parity (SP) and equal-455

ity of opportunity (EoO) is minimized with label-456

flipped ICL. For example, the absolute gap of EoO457

on the Adult dataset decreases from 0.483 in zero-458

shot prompting to 0.037, almost completely elimi-459

nating the bias. These findings further corroborate460

the existence of inherent biases in LLMs.461

However, flipped labels lead to a significant drop462

in predictive performance. Though previous re- 463

search suggests that the effectiveness of ICL pre- 464

dominantly stems from semantic priors, rather than 465

learning the input-label mappings (Min et al., 2022; 466

Wei et al., 2023b) and demonstrates that the perfor- 467

mance of ICL is barely affected even with flipped 468

or random labels for in-context examples, the focus 469

of these works lies mainly on traditional natural 470

language processing tasks. 471

In contrast, we observe that the labels of in- 472

context examples hold substantial influence over 473

predictive performance in our unique setup, where 474

LLMs are deployed for predictions on tabular data. 475

This could be attributed to the limited exposure of 476

these models to tabular data during pre-training, 477

thereby amplifying the role of input-label mapping 478

of in-context examples. 479
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ACC F1 SP EoO

G
PT

-3
.5

-t
ur

bo

Z
er

o-
Sh

ot

f 0.471 0.011 0.359 0.021 0.980 0.011 1.000 0.000
m 0.556 0.000 0.357 0.000 0.984 0.000 0.972 0.000
d -0.084 0.011 0.002 0.021 -0.004 0.011 0.028 0.000

Fe
w

-s
ho

t Regular
f 0.610 0.013 0.593 0.013 0.348 0.027 0.453 0.029
m 0.606 0.007 0.603 0.008 0.337 0.007 0.450 0.012
d 0.003 0.012 -0.010 0.011 0.011 0.027 0.003 0.026

Label-flipping
f 0.614 0.011 0.606 0.012 0.695 0.011 0.842 0.000
m 0.559 0.013 0.538 0.011 0.638 0.013 0.672 0.023
d 0.056 0.021 0.067 0.021 0.057 0.012 0.170 0.023

Fi
ne

tu
ni

ng

Regular
f 0.571 0.067 0.567 0.062 0.619 0.101 0.711 0.186
m 0.548 0.011 0.539 0.023 0.532 0.123 0.569 0.098
d 0.024 0.079 0.029 0.085 0.087 0.022 0.141 0.088

Oversampling
f 0.536 0.017 0.532 0.012 0.607 0.084 0.658 0.112
m 0.532 0.011 0.523 0.020 0.548 0.079 0.569 0.059
d 0.004 0.028 0.009 0.033 0.060 0.006 0.088 0.053

Undersampling
f 0.548 0.034 0.547 0.033 0.571 0.034 0.632 0.074
m 0.556 0.000 0.555 0.000 0.444 0.000 0.500 0.000
d -0.008 0.034 -0.008 0.033 0.127 0.034 0.132 0.074

R
F

Regular
f 0.581 0.024 0.580 0.025 0.519 0.028 0.611 0.054
m 0.600 0.019 0.588 0.020 0.597 0.022 0.672 0.021
d -0.019 0.016 -0.008 0.016 -0.078 0.044 -0.062 0.061

Oversampling
f 0.576 0.018 0.575 0.018 0.505 0.018 0.589 0.021
m 0.568 0.032 0.552 0.034 0.616 0.025 0.661 0.037
d 0.008 0.034 0.023 0.035 -0.111 0.013 -0.072 0.041

Undersampling
f 0.586 0.024 0.585 0.024 0.533 0.024 0.632 0.047
m 0.575 0.031 0.555 0.037 0.635 0.033 0.683 0.022
d 0.011 0.024 0.031 0.031 -0.102 0.041 -0.052 0.039

N
N

Regular
f 0.533 0.024 0.533 0.024 0.519 0.028 0.558 0.026
m 0.556 0.017 0.544 0.017 0.584 0.012 0.622 0.022
d -0.022 0.037 -0.012 0.036 -0.065 0.031 -0.064 0.026

Oversampling
f 0.548 0.040 0.547 0.040 0.552 0.028 0.611 0.026
m 0.562 0.026 0.547 0.024 0.603 0.048 0.644 0.057
d -0.014 0.037 0.000 0.035 -0.051 0.061 -0.034 0.065

Undersampling
f 0.529 0.049 0.524 0.047 0.467 0.051 0.495 0.042
m 0.495 0.025 0.490 0.023 0.524 0.047 0.517 0.054
d 0.033 0.063 0.035 0.059 -0.057 0.033 -0.022 0.061

Table 2: Fairness evaluation for German Credit dataset. This table depicts the evaluation of accuracy (ACC), F1
score (F1), statistical parity (SP), and equality of opportunity (EoO) metrics for the subgroup - female (f ) and male
(m) as well as the difference (d) between them.

6 Finetuning for Tabular Data480

6.1 Regular Finetuning481

Finally, we extend our investigation to assess if fine-482

tuning the models on the entire training set could483

aid in diminishing the social biases in LLMs. For484

GPT-3.5, fine-tuning is executed using the publicly485

released API from OpenAI. For RF and NN, we486

provide the training details in Appendix B. We still487

run all the experiments 5 times and compute the488

mean and standard deviation. In Tables 1-3, we489

show that finetuning effectively reduces unfairness490

in all datasets, making them comparable and some-491

times significantly better in terms of SP and EoO492

when compared to RF and NN. For example, the493

absolute difference in EoO after finetuning on the494

Adult dataset is 0.0714, which is lower than the495

0.123 difference of an NN.496

6.2 Resampling 497

We further explore the potential of resampling, a 498

method frequently employed to enhance fairness 499

in machine learning model training, particularly in 500

scenarios where there is a significant class imbal- 501

ance or bias in the data. To this end, we evaluate 502

two approaches: oversampling the minority group 503

and undersampling the majority group. As depicted 504

in Tables 1-3, resampling fails to mitigate the social 505

biases in LLMs when making tabular predictions, 506

even though we demonstrate that oversampling gen- 507

erally reduces social biases for both RF and NN, 508

except for a few instances such as oversampling in 509

NN for adult dataset worsens the fairness. 510

Our finetuning experiments show that the so- 511

cial biases inherited from LLM’s pre-training data 512

which are evident when making predictions on tab- 513

ular data, can sometimes be mitigated through fine- 514

tuning. Nevertheless, unlike the consistent out- 515
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ACC F1 SP EoO

G
PT

-3
.5

-t
ur

bo

Z
er

o-
Sh

ot

AA 0.657 0.005 0.656 0.004 0.395 0.001 0.560 0.002
nAA 0.663 0.002 0.588 0.003 0.817 0.002 0.893 0.001

d -0.006 0.005 0.068 0.006 -0.423 0.003 -0.334 0.002

Fe
w

-s
ho

t Regular
AA 0.633 0.002 0.626 0.002 0.362 0.003 0.495 0.004

nAA 0.642 0.001 0.623 0.002 0.614 0.002 0.709 0.002
d -0.008 0.003 0.003 0.003 -0.252 0.003 ↓ -0.214 0.005 ↓

Label-flipping
AA 0.482 0.004 0.482 0.004 0.499 0.003 0.481 0.004

nAA 0.412 0.003 0.408 0.003 0.471 0.002 0.404 0.003
d 0.070 0.005 0.074 0.005 0.028 0.005 ✓ 0.077 0.007 ✓

Fi
ne

tu
ni

ng

Regular
AA 0.611 0.016 0.610 0.016 0.464 0.031 0.576 0.034

nAA 0.616 0.013 0.586 0.016 0.657 0.032 0.724 0.029
d -0.005 0.017 0.024 0.024 -0.193 0.030 ↓ -0.148 0.027 ↓

Oversampling
AA 0.609 0.007 0.608 0.007 0.494 0.071 0.605 0.066

nAA 0.625 0.020 0.583 0.024 0.706 0.037 0.771 0.036
d -0.016 0.016 0.025 0.018 -0.212 0.037 -0.166 0.046

Undersampling
AA 0.591 0.010 0.591 0.012 0.513 0.053 0.605 0.047

nAA 0.641 0.008 0.612 0.009 0.663 0.035 0.749 0.037
d -0.050 0.016 -0.021 0.022 -0.150 0.033 -0.144 0.039

R
F

Regular
AA 0.662 0.004 0.662 0.004 0.496 0.006 0.660 0.007

nAA 0.671 0.004 0.617 0.002 0.767 0.008 0.859 0.009
d -0.009 0.007 0.045 0.005 -0.271 0.011 -0.199 0.014

Oversampling
AA 0.660 0.005 0.660 0.005 0.493 0.010 0.655 0.013

nAA 0.671 0.002 0.624 0.002 0.743 0.003 0.839 0.004
d -0.010 0.006 0.037 0.006 -0.250 0.012 -0.184 0.016

Undersampling
AA 0.648 0.002 0.647 0.002 0.491 0.004 0.639 0.004

nAA 0.667 0.005 0.614 0.007 0.761 0.006 0.851 0.006
d -0.020 0.007 0.033 0.008 -0.270 0.009 -0.211 0.008

N
N

Regular
AA 0.666 0.003 0.665 0.002 0.462 0.034 0.630 0.034

nAA 0.662 0.003 0.613 0.006 0.742 0.019 0.831 0.017
d 0.005 0.006 0.052 0.007 -0.280 0.019 -0.201 0.018

Oversampling
AA 0.656 0.001 0.653 0.012 0.507 0.090 0.665 0.101

nAA 0.643 0.013 0.580 0.034 0.757 0.107 0.828 0.091
d 0.013 0.014 0.073 0.043 -0.249 0.049 -0.163 0.046

Undersampling
AA 0.660 0.019 0.657 0.023 0.477 0.078 0.638 0.097

nAA 0.657 0.013 0.602 0.026 0.757 0.051 0.839 0.040
d 0.003 0.024 0.055 0.043 -0.280 0.041 -0.202 0.064

Table 3: Fairness evaluation for COMPAS dataset for the subgroup - African American (AA), and Non African
American (nAA) as well as the difference (d). The significant fairness disparities are highlighted in red. Both
in-context learning and finetuning can lead to bias reduction (indicated by ↓), and label-flipped in-context learning
can further minimize bias (indicated by ✓).

comes typically seen in traditional machine learn-516

ing models, data resampling does not consistently517

produce similar results for finetuning LLMs.518

7 Conclusion519

In this work, we thoroughly investigate the under-520

explored problem of fairness of large language521

models (LLMs) for tabular tasks. Our study unfolds522

in several phases. Initially, we assess the inherent523

fairness displayed by LLMs, comparing their per-524

formance in zero-shot learning scenarios against525

traditional machine learning models like random526

forests (RF) and shallow neural networks (NN).527

Furthermore, we investigate how LLMs learn and528

propagate social biases when subjected to few-shot529

in-context learning, label-flipped in-context learn-530

ing, fine-tuning, and data resampling techniques.531

Our discoveries shed light on several key insights.532

We find that LLMs tend to heavily rely on the so-533

cial biases inherited from their pre-training data 534

when making predictions, which is a concerning is- 535

sue. Moreover, we observe that few-shot in-context 536

learning can partially mitigate the inherent biases 537

in LLMs, yet it cannot entirely eliminate them. 538

A significant fairness metric gap between differ- 539

ent subgroups persists and exceeds that observed 540

in RF and NN. This observation underscores the 541

existence of biases within the LLMs themselves, 542

beyond just the task datasets. Additionally, label- 543

flipping applied to the few-shot examples effec- 544

tively reverses the effects of bias, again corroborat- 545

ing the existence of inherent biases in LLMs. How- 546

ever, as expected, this leads to a loss in predictive 547

performance. Besides, our work reveals that while 548

fine-tuning can sometimes improve the fairness of 549

LLMs, data resampling does not consistently yield 550

the same results, unlike what is typically observed 551

in traditional machine learning models. 552
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Limitations553

It is important to note that our study exclusively554

focuses on the GPT-3.5 model. Consequently, our555

conclusions are representative of GPT-3.5 alone556

and cannot be extrapolated to other LLMs, which557

might exhibit different behaviors or biases. This558

focus on a single model thus restricts the broader559

applicability of our findings.560

Furthermore, for each experiment, we employed561

only one type of prompt. This approach limits562

the generalizability of our conclusions, as different563

prompts might yield varying results. The use of564

a singular prompt type does not capture the full565

spectrum of possible interactions and outcomes566

that might be observed with a diverse range of567

prompting strategies.568

Looking ahead, we plan to broaden the scope of569

our research. This expansion will include experi-570

menting with additional models beyond GPT-3.5,571

thus offering a more comprehensive understand-572

ing of fairness for different LLMs. We also intend573

to explore a variety of prompting strategies, such574

as Chain of Thought (CoT) prompting, to assess575

how different methods may impact model bias and576

fairness. These future endeavors aim to provide577

a more nuanced and thorough exploration of the578

capabilities and limitations of LLMs in the context579

of fairness.580
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A Dataset Description 824

We provide a detailed description of each feature 825

from the datasets evaluated in our paper. 826

A.1 Adult 827

The original Adult Income Dataset contains 14 fea- 828

tures and the target Income, as described in Table 4. 829

Following prior work (Slack and Singh, 2023), we 830

omit Education-Num and Fnlwgt as they are not 831

crucial for income prediction, along with Race and 832

Native-Country, to center our attention on Sex as 833

the protected attribute. 834

A.2 German Credit 835

The original German Credit Dataset contains 20 836

features, as detailed in Table 5. For simplicity and 837

consistency with prior work, only the features not 838

shown in italics are retained in our work. Further- 839

more, we extract Sex as an additional protected 840

attribute from the Personal Status and Sex feature. 841

A.3 COMPAS 842

The raw COMPAS Recidivism dataset contains 843

more than 50 attributes. Following the approach 844

of (Larson et al., 2016), we carry out the neces- 845

sary preprocessing. More specifically, we group 846

the race attribute into African-American and Not 847

African-American, and consider only the features 848

sex, race, age, charge degree, priors count, risk, 849

and two-year recid (target). We frame the task 850

as predicting whether an individual will recidivate 851

within two years (Did Not Reoffend or Reoffended), 852

based on their demographic and criminal history. 853

Due to page limitations, we provide descriptions 854

for only the features used in our work in Table 6. 855

B RF and NN Hyperparameters 856

For RF, we fix the number of trees to 100 for all 857

datasets as well as models. For NN, we use a 3 858

hidden-layered network with hyperparameters de- 859

scribed in Table 7. 860

C Prompt Templates 861

Beyond the Adult dataset, we provide the serializa- 862

tion and prompt templates utilized in our work for 863

the German Credit and COMPAS datasets here. 864

C.1 German Credit 865

C.2 COMPAS 866
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Feature Type Description
Age Continuous Represents the age of an individual.

Workclass Categorical Indicates the type of employment, such as pri-
vate, self-employed, or government.

Fnlwgt Continuous Stands for “final weight" and is a numerical
value used in sampling for survey data.

Education Categorical Specifies the highest level of education attained
by the individual, such as high school, bachelor’s
degree, etc.

Education-Num Continuous Represents the numerical equivalent of the edu-
cation level.

Marital-Status Categorical Describes the marital status of the individual,
including categories like married, divorced, or
single.

Occupation Categorical Indicates the occupation of the individual, such
as managerial, technical, or clerical work.

Relationship Categorical Specifies the individual’s role in the family, such
as husband, wife, or child.

Race Categorical Represents the individual’s race or ethnic back-
ground.

Sex Categorical Indicates the gender of the individual, either
male or female.

Capital-Gain Continuous Refers to the capital gains, which are profits
from the sale of assets, of the individual.

Capital-Loss Continuous Represents the capital losses, which are losses
from the sale of assets, of the individual.

Hours-Per-Week Continuous Denotes the number of hours worked per week
by the individual.

Native-Country Categorical Specifies the native country or place of origin of
the individual.

Income (target) Binary The target variable indicating whether an indi-
vidual’s income exceeds a certain threshold, typ-
ically $50,000 per year.

Table 4: Features in the original Adult dataset. Those not used in our work are shown in italics.

Predict the credit risk of a German bank
customer based on their profile data. Answer
with one of the following: bad | good.
Example 1 -
Age: 25 - 45
Sex: female
Job: highly skilled
Housing: rent
Saving accounts: little
Checking account: little
Credit amount: 2606
Duration: 21
Purpose: radio/TV
Answer: good

Age: 25 - 45
Sex: male
Job: skilled
Housing: own
Saving accounts: little
Checking account: little
Credit amount: 1345
Duration: 18
Purpose: radio/TV
Answer:

Figure 2: Prompt Template for German Credit Dataset.

Predict whether an individual will recidivate
with in two years based on demographic and
criminal history. Answer with one of the
following: Did Not Reoffend | Reoffended.
Example 1 -
sex: Male
race: African-American
age cat: 25 - 45
c charge degree: F
priors count: 0
risk: Low
Answer: Did Not Reoffend

sex: Male
race: African-American
age cat: 25 - 45
c charge degree: M
priors count: 13
risk: High
Answer:

Figure 3: Prompt Template for COMPAS Dataset.
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Feature Type Description
Credit Amount Continuous The amount of credit requested by the applicant.

Duration Continuous The duration of the credit in months.
Installment Rate Ordinal The installment rate in percentage of disposable

income.
Residence Since Ordinal The number of years the applicant has lived at

their current residence.
Age Continuous The age of the applicant.

Number of Existing Credits Ordinal The number of existing credits at this bank.
Number of Dependents Ordinal The number of dependents of the applicant.

Checking Account Status Categorical The status of the applicant’s checking account,
such as “no checking, “<0 DM," “0-200 DM,"
or “no known checking."

Credit History Categorical The credit history of the applicant, including
categories like “critical/other existing credit,"
“existing paid," “delayed previously," etc.

Purpose Categorical The purpose of the credit, such as “radio/tv,"
“education," “new car," etc.

Savings Account Categorical The status of the applicant’s savings ac-
count/bonds, including categories like “un-
known/none," “<100 DM," “500-1000 DM," etc.

Employment Since Categorical The duration of the applicant’s current employ-
ment, such as “unemployed," “<1 year," “4-7
years," etc.

Personal Status and Sex Categorical The personal status and sex of the applicant, in-
cluding categories like “male single," “female
div/dep/mar," etc.

Other Debtors/Guarantors Categorical Indicates the presence of other debtors/guaran-
tors, such as “none," “guarantor," “co applicant."

Property Categorical Describes the type of property owned by the
applicant, such as “real estate," “life insurance,"
“car or other," etc.

Other Installment Plans Categorical The presence of other installment plans.
Housing Categorical The housing situation of the applicant, such as

“own," “for free," and “rent."
Job Categorical The type of job held by the applicant, including

categories like “skilled," “unskilled resident,"
“high qualif/self emp/mgmt," etc.

Telephone Binary Indicates whether the applicant has a telephone
(yes/no).

Foreign Worker Binary Indicates whether the applicant is a foreign
worker (yes/no).

Risk (target) Binary The target variable indicating credit risk
(good/bad).

Table 5: Features in the original German Credit dataset. Those not used in our work are shown in italics.
Additionally, from the original feature Personal Status and Sex, we extract Sex as a protected attribute.

Feature Type Description
Sex Categorical The gender of the individual.

Race Categorical The race of the individual, grouped into African-
American and Not African-American.

Age Continuous The age of the individual.
Charge Degree Categorical The degree of the charge against the individual.
Priors Count Continuous The number of prior convictions or charges.

Risk Categorical The risk assessment for recidivism.
Two-Year Recid (target) Binary The target variable indicating whether an indi-

vidual recidivated within two years.

Table 6: Features in the COMPAS Recidivism Dataset (Preprocessed).

13



h1 h2 h3 lr batch size epochs
Adult 16 64 16 0.07 128 300

German Credit 64 64 32 0.07 128 300
COMPAS 64 128 64 0.09 128 300

Table 7: Hyperparameters for all datasets for a 3-layer
neural network, where h1, h2, and h3 represent the
number of neurons in first, second, and third hidden
layers respectively, lr represents the learning rate and
is followed by the batch size and the number of epochs
the models are trained for.
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