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Abstract

Sentiment-controlled text generation aims to
generate texts according to the given sentiment.
However, most of the existing studies focus
only on document- or sentence-level sentiment
control, leaving a gap for finer-grained control
over the content of generated results. Some
previous works attempted to generate reviews
conditioned on the aspect-level sentiments, but
they usually suffer from low adaptability and
the lack of annotated dataset. To alleviate these
problems, we propose a pre-trained model ex-
tended generative model together with an aux-
iliary classifier to perform training on both an-
notated and unannotated datasets. We also pro-
pose a query-hint mechanism to further guide
the generation process towards the aspect-level
sentiments at every time step. Experimental
results from real-world datasets demonstrated
that our model has excellent adaptability in gen-
erating aspect-level sentiment controllable re-
view texts with high sentiment coverage and
stable quality.

1 Introduction

In recent years, the Transformer-based pre-trained
language models (LMs) have greatly improved
the state-of-the-art on natural language process-
ing tasks as well as natural language generation
(NLG). Large-scale autoregressive Transformer
models (Vaswani et al., 2017) that leverage large
amounts of unannotated data and a simple log-
likelihood training objective has achieved remark-
able results in many text generation tasks such as
machine translation, text summarization, text style
transfer. Meanwhile, for other real-world text gen-
eration applications such as review generation and
essay writing, users prefer the generated text to be
more controllable. However, since the LMs are
trained on unannotated data, controlling attributes
of generated text becomes difficult without modi-
fying the model architecture to allow for extra in-
put attributes or fine-tuning with attribute-specific

data (Keskar et al., 2019; Ziegler et al., 2019).
Therefore, some approaches like PPLM (Dathathri
et al., 2019), controls generated text through at-
tribute models without changing the architecture or
weights of pre-trained LMs. These models usually
regard controllable text generation as generating
tasks conditioned on the attributes such as topic
and sentiment at the sentence- or document-level,
leaving a gap for finer-grained (e.g., aspect-level)
control over the content of generated texts.

The fine-grained sentiment conditioned text gen-
eration task aims to automatically generate a highly
relevant statement when given a series of fine-
grained sentiment (e.g., aspect-opinion, aspect-
sentiment et.) as input. Zang and Wan (2017)
first introduced the aspect-sentiment information to
perform aspect-level sentiment-controllable review
generation. They conducted a conditional train-
ing by adopting a supervised method requiring a
large dataset annotated with sentence-level aspect-
sentiment labels. However, very few datasets pro-
vide such sufficient fine-grained labels, and it is
also labor-intensive and time-consuming to conduct
annotation on all data instances. Chen et al. (2021)
proposed a mutual learning framework leveraging
large unlabeled data through interactive learning be-
tween generator and classifier. Besides the aspect-
sentiment, aspect-opinion pairs also express aspect-
level sentiment information. Therefore, inspired by
them, in this work, we introduce the aspect-opinion
information into the fine-grained sentiment control-
lable text generation and proposed a conditional
generative model based on a pre-trained language
model together with an auxiliary fine-grained senti-
ment classifier.

Our aspect-opinion conditioned generating task
aims to generate a review text X that correctly
contains the sentiment information from n non-
repeated aspect-opinion pairs (a, 0)1.,. In the
generator, we incorporate a GPT-2 345M model
(Radford et al., 2019) as the “super generator,”



then by extending this state-of-the-art model with
our proposed query-hint mechanism and our senti-
ment control loss function to guide the generating
process toward the given controlling information.
Moreover, with the assistance of a classifier, we
leveraged a large unlabeled dataset to train the gen-
erator.

Our Contributions: (1) We propose our con-
ditional generative model by extending a pre-
trained state-of-the-art Transformer-based gener-
ative model with our introduced query-hint mech-
anism and sentiment control loss function to fur-
ther guide the generation at a finer-grained level.
(2) We introduce the aspect-opinion pair as the
fine-grained sentiment unit into controlling the con-
strained text generation. (3) Through employing
an auxiliary classifier, we leverage a large unanno-
tated dataset to re-train and fine-tune an end-to-end
conditioned text generative model.

2 Related Work

2.1 Controlled Text Generation

Recently, there is a bunch of works that aims to
generate text conditioned on input attributes with
neural networks. Some of the earlier efforts have
studied this controlled text generation by training a
conditional generative model (Kikuchi et al., 2016;
Ficler and Goldberg, 2017), while fine-tuning pre-
trained models with Reinforcement Learning (RL)
(Ziegler et al., 2019) and training a Generative Ad-
versarial Network (Yu et al., 2016) have also shown
inspiring results. CTRL (Keskar et al., 2019) is
a recent approach that trains a language model
conditioned on a variety of control codes, which
prepended meta-data to the text during generation.
Although it uses a GPT-2-like architecture to gen-
erate high-quality text, the result is at the cost of
fixing the control codes and training a very large
model. PPLM (Dathathri et al., 2019) composed
a pre-trained LM with attribute controllers guid-
ing text generation towards the desired attribute.
At the same time, its flexible design allows it to
control the generating process through relatively
small “pluggable” attribute models while keeping
parameters in the LM fixed. CoCon (Chan et al.,
2020) incorporated a pre-trained GPT-2 model with
a Content-Conditioner to control the generated text
under the guidance of target text content. Different
from our “fine-grained sentiment text generation”,
these works focus on sentence-based sentiment and

topic control in text generating. In the “fine-grained
sentiment text generation” task, the text generation
process is controlled by a series of fine-grained sen-
timents (e.g., aspect-opinion or aspect-sentiment
et.).

2.2 Review Generation

Review generation (Dong et al., 2017; Lipton et al.,
2015), a generation task aiming to automatically
generate review text, is a related area that gener-
ates reviews conditioned on the given information.
While most of the previous approaches (Dong et al.,
2017; Sharma et al., 2018) have framed review gen-
eration as A2T (Attribute-to-Text problem), leav-
ing a gap between attributes (e.g., user, product,
and rating) and linguistic data. To tackle this prob-
lem, Kim et al. (2020) proposed AT2T (Attribute-
matched-Text-to-Text), by augmenting inductive bi-
ases of attributes with matching reference reviews
to learn the rich representations of attributes.

2.3 Aspect-level Sentiment Control

Nevertheless, most of these works only focus on
the sentence-level sentiments and ignore the aspect-
level sentiment control and very few researchers
studied generating reviews from fine-grained senti-
ments due to the lack of announced data. Zang and
Wan (2017) gave the first attempt to generate re-
views from aspect-sentiment scores, which requires
the reviews with sentence-level aspect sentiment
score annotations. This makes it impractical in real-
world applications due to the lack of labeled data.
To tackle this problem, Chen et al. (2021) proposed
a mutual learning framework that enhanced the gen-
eration results with the assistance of a classifier.

3 Method

In this section, we introduce our fine-grained senti-
ment controllable text generation task together with
a conditional generative model named Aspect-level
Sentiment Conditioner (AlSeCond), which trained
with both labeled and unlabeled data to learn a
fine-grained sentiment review generator with the
assistance of a classifier.

Firstly, we give the formalization of our fine-
grained sentiment controllable text generation task.
Formally, giving a list of review aspect-opinion
phrase pairs s = { (a1, 01), (a2,02), ..., {(an,0n)},
the task aims to generate a review text X comprising
of m words (X = {x1, x2, ..., Tm }), which presents
each aspect phrase a; and its corresponding opinion



phrase o; (i € {1,2,...,n}) properly.

In this task, we have a labeled dataset L and an
unlabeled dataset U. In the labeled dataset L, each
labeled data ¢ € L comprises of a review text and
a list of aspect-opinion phrase pairs s, et. = (Xs),
while in the unlabeled dataset U, each u € U only
contains a review text, et. u = (X).

In the following subsections, we first introduce
our main framework about how to train a generator
on both labeled and unlabeled dataset. Then, we
explain our generator and classifier in detail.

3.1 Main Framework

To make full use of both limited labeled dataset
and large unlabeled dataset, inspired by Chen et al.
(2021), our proposed method in the basic of a
text generator G additionally employ a sentiment
classifier C. The generator G generates a review
text according to a series of given attributes in-
cluding a prompt text together with a list of pairs
each composed of one aspect phrase and one opin-
ion phrase, representing the fine-grained sentiment.
The classifier C is incorporated to extract all the
fine-grained sentiments consisting of aspect and
opinion phrases in each sentence through a se-
quence labeling schema, thus yielding pseudo la-
bels for the unlabeled dataset. We assume that
the generator can enhance itself by leveraging a
large dataset with pseudo labels predicted by the
classifier.

Specifically, following Chen et al. (2021), we
adopt three steps to make full use of the large unla-
beled dataset:

Step 1: We train both our generator and classi-
fier on a limited labeled dataset to get GO and CO,
respectively.

Step 2: The CO is then used to extract the fine-
grained sentiments in the large unlabeled dataset,
thus yielding the pseudo labels for the next step’s
training.

Step 3:  Again, the generator is trained on the un-
labeled dataset that is attached with pseudo labels.
Finally, the generator is fine-tuned with the labeled
dataset (used in Step 1) to get the final generator
Gl.

As a result, we obtain an enhanced generator G/
trained on both the limited labeled dataset and the
large unlabeled dataset.
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Figure 1: Architecture of the Generator.

3.2 Generator

Unconditional language models (LMs) are trained
on the huge amount of unlabeled text data to op-
timize the probability of p(x;|x1:x;—1) in an auto-
regressive manner(Manning and Schiitze, 1999;
Bengio et al., 2000) where x; is the next token,
x1:x—1 is the previous tokens including prompt
text and generated text. While in the controlled text
generation, the conditional distribution p(x;|a, z1 :
x;—1) is optimized, where a is the attribute for the
model to control the generation.

To make use of the LM pre-trained with large
unlabeled datasets, we need to infuse the attribute
a into the unconditional distribution p(x;|x1:2;—1).
What’s more, the pre-trained Transformer-based
language model GPT-2 (Radford et al., 2019) in
recent years has demonstrated remarkable natu-
ral text generation in the auto-regressive manner.
Thereby, to improve the generated texts’ quality,
our generative model incorporate a pre-trained
GPT-2 model as the “super-generator,” and we fur-
ther use the fine-grained sentiment infusion blocks
which are stacked in the AISeCond to extend this
pre-trained state-of-the-art language model’s de-
coder blocks.

Essentially, the GPT-2 model is stacked with
numerous Transformer-Decoder blocks, each con-
sisting of layer normalization (Ba et al., 2016),
multi-head self-attention (Vaswani et al., 2017),
and position-wise feed-forward operations. There-
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fore, our AlSeCond’s block extend this kind of
decoder block and incorporate a sentiment infusion
operation together with our proposed query-hint
mechanism to conditionally infuse the fine-grained
sentiments into the next-token prediction process.

The sentiment infusion operation is performed
inner the AlSeCond’s blocks. Specifically, the tar-
get fine-grained sentiment pairs s0 are appended
to the head of the regular sequence s1 to form the
S. This special appended sequence S is then en-
coded to h (h = [h%; hl], RY, h! is the hidden
representation of s0 and s1, respectively) through
numerous AlSeCond’s blocks, thus h% perform its
self-attention with the hidden states of regular se-
quence h! for previous ¢ time steps and further
all time steps of the fine-grained sentiment pairs
hY. Therefore, the sentiment representation h° is
infused into the intermediate representation h! to
control the next token logits (o) and hence the gen-
eration process.

Our AlSeCond’s block (detailed in the pink
block in Figure 1) is a special Transformer-Decoder
block that incorporates our proposed query-hint
mechanism to guide the controlled generation pro-
cess. Specifically, for a fine-grained sentiments
appended hidden states h = [h?; hl], its key, value,
and a special hinted query matrix (K,V,Q" €
RUs+9)xd 1t is the length of the appended senti-
ments and regular sequence, respectively) are com-
puted to perform a query-hinted self-attention. Fur-
thermore, during the computation of the hinted
query (Q') matrix, we infuse K0 € Rbs*d, the
sentiments’ part of K, into Q' € R'*¢ at their
corresponding time step as the query-hint:

Q=1Q%Q" =hxWy
K=[K% K =hsxsW}

Q=" Q" v
Q" = frim(K°, Q) « Wq:C
Mean(K,)

Mean(K,.1,)

Frint (K%, Q") = Q'+ M,

Mean(K;, ,.,)

where M;, € R ™ is an adjacency matrix, repre-
senting which sentiment pair should be hinted for
each time step in Q', and n is the number of sen-
timent pair, [, (@ € {1,2,...,n}) is the end index
of the @ — th sentiment pair in S. As a result, we
guide the text generation by infusing the sentiment

information into the generation process through the
query-hinted self-attention operation.

3.3 Loss functions

Generation loss function: Through a LM train-
ing objective, we train our conditional generative
model with the general generating loss term condi-
tioned on previous x.;—; and input sentiment infor-
mation s:

_Zlog[p<$;’s7$2t—1)}[1(xt) 2
t

where x; is the predicted token at time step ¢. I7(-)
is the index function of a vector.

Sentiment control loss function: To encourage
the generator to output texts incorporating the input
sentiment information (phrases), we train the gener-
ator additional with our proposed sentiment-control
loss function. Specifically, for every aspect phrase
a and opinion phrase o presented in the source text,
the training loss is defined as:

['Senti = E + L

ZZlog
T

&', Maska)] e (2o )

x 7Ma5k0,t)]lz(mo7t) 3)
Q(z, Mask) = Mask © ppmaz(x)
+ (1 & Mask) * ¢mean
Pmaz () = MaxPooling(p(z))

where L, and L, are the losses for aspect and opin-
ion term inclusion, respectively. Maskg s/, is a
one-hot vector with the size of )V (vocabulary size),
and only the element in the index of a;/o; is 1.
@mean 18 @ hyper-parameter controlling how much
the prediction of aspect/opinion terms should be
enhanced. Pq.(+) is a max-pooling operation with
a kernel size of [; * 1 (l; is the length of the target
text). © and & represent element-wise product and
XOR, respectively.

As a result, our final loss function comprehen-
sively consider the loss of generation quality and
the loss of sentiment control:

[’total = )\G'CG + )\Senti'CSenti (4)

where A values are hyper-parameters controlling
how much the loss terms dominate the training.
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Figure 2: Query-hint strategy

3.4 Hint-strategy

As mentioned in 3.2, we introduce a query-hint
mechanism to further guide the generation towards
sentiment inclusion. The strategy of query-hint is
slightly different between the process of generat-
ing and training. During the training process, the
corresponding time steps in the sentence are pro-
vided with query-hint according to the position of
each sentiment information presented in the sen-
tence. During the generation process, since the part
of the sentence that has not been generated is un-
known, query-hint should be allocated according
to the generated part of the sentence.

Specifically, for each casual sentiment pair, its
aspect and opinion phrases have their own corre-
sponding subsequence to provide query-hints. As
shown in Figure 2 (e.g.,1 to 1), a sentiment pair’s
member starts query-hint at the beginning of the
sentence or the end step of the previous sentiment
pair and closes before its own full-presenting. The
hinted steps form a “hint-unit” (framed in the red
dotted line in Figure 2).

In the source sentences, however, there are also
some sentiment pairs that share the same phrase ei-
ther in aspect or opinion (e.g., (food-great), (drinks-
great)). Therefore, in order to make query-hint con-
sistent in the training and generation process, given
n sentiment pairs that share the same aspect/opinion
phrase, their query-hints are merged to one “hint-
unit”. As shown in Figure 2 (e.g.,1 to n), inner the
“hint-unit”, each aspect/opinion phrase gives the
query-hint sequentially.

3.5 Classifier

In this section, we give the task definition of As-
pect Opinion Pair Extraction (AOPE) in the first
place and then we briefly introduced the model
architecture of our sentiment classifier C.

The task of AOPE aims to extract aspect terms
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and their corresponding opinion terms as pairs
(Zhao et al., 2020; Chen et al., 2020). This task
can be defined as follows: Given a sentence with
m words X = {z1,x2,...,Tp}, the goal of this
task is to extract all aspect-opinion pairs 7 =
{(a, o)n}l;r':l from X, where {(a, 0),, } is an aspect-
opinion pair presented in X and the notations a and
o denote an aspect term and an opinion term respec-
tively.

The overall architecture of our classifier: two-
dimensional interaction-based multi-task learning
framework (2D-IMLF) is shown in Figure 3. Given
an input sentence, two high-related work of the
extraction task (aspect term extraction and opinion
term extraction) are adopted to learn aspect-related
and opinion-related features respectively. Then,
to capture different interactive features of aspect
terms and opinion terms, a 2D interactive represen-



tation is obtained by tensor composition. Finally,
the classifier model regards the AOPE task as a
grid tagging problem and at the end obtains the
final results by applying a decoding algorithm (Wu
et al., 2020).

As shown in Figure 3. We first use a group of
CNN layers to encode the input sentence:

Hi = ConvlD(X)
H = [HY; Hy; . ...; H] (5)
H¢ = Convl1D3(ConvlDs(HY))

where k € {1,2,3,...} representing the kernel
size of an 1D-CNN. Then, a Bi-LSTM layer and
multi-head self-attention are incorporated to extract
the context information from the sentences:

H! = BiLSTM (H! |, Hf)

(6)
H. = MultiHeadAttention(H")

Afterwards, we concatenate the hidden state
H, with their transferring state H! to get a gird-
formed features. We then obtain the prediction
probabilities of P. and P for aspect and opinion
terms, respectively, from the final logits P:

O. = [He; HcT]
, A (7)
P = Linear(O,)

Finally, by using a grid-formed tagging schema
(Wu et al., 2020), we can easily obtain a serious of
aspect-opinion pairs.

4 Experiments

In this section, we first introduce datasets and set-
tings in our experiment and then report the evalua-
tion metrics and results.

4.1 Dataset and Settings
4.1.1 Labeled dataset

We conduct experiments of aspect-opinion and
aspect-polarity pairs conditioned controllable text
generation on English restaurant review with
ASTE-Data-V2 from Xu et al. (2020) and MAMS-
ASTA from Jiang et al. (2019), respectively.

ASTE-Data-V2: ASTE-Data-V2! from Xu et al.
(2020), is originally come from SemEval Chal-
lenges (Pontiki et al., 2014, 2015, 2016), and con-
tain both aspect and opinion labels in each review
data. Specifically, we union the 14Rest, 15Rest,

"https://github.com/xuuuluuu/SemEval-Triplet-data

and 16Rest included in the ASTE-Data-V2 as our
labeled dataset. The statistics of the dataset are
reported in Table 1.

MAMS-ASTA: From MAMS? (Multi-Aspect
Multi-Sentiment) (Jiang et al., 2019) is an aspect-
level sentiment labeled dataset. Wherein, each
data instance in MAMS-ASTA is labeled with at
least two aspects and different sentiment polari-
ties, while no opinion term is labeled. Therefore,
by using our classifier to retrieve opinion phrases
according to the original pairs of aspect-polarity,
we also conduct aspect-level sentiment controllable
text generation on MAMS-ASTA.

4.1.2 Unlabeled dataset

To ensure the training data in the related review do-
main, we use the Yelp’s review dataset’ as the un-
labeled dataset and filtered out the sentences with a
length greater than 150. Unlike the labeled datasets,
the Yelp dataset did not contain fine-grained senti-
ment labels. Therefore, we only use the sentences
in the unlabeled data and discard other items in-
cluding user information.

4.1.3 Experimental Settings

Generator: In the experiment, we train our
AlSeCond* model extended from a pre-trained
GPT-2 medium 345M model (Radford et al., 2019).
The AlSeCond’s blocks clones the GPT-2 Trans-
former blocks’ parameters and settings. To ensure
that the generator can generate any string, we apply
Byte Pair Encoding (BPE) (Sennrich et al., 2015)
for the inputs. The max generating length is set to
32. We tune the \g together with Agepy; to 1 and 8,
respectively. Adam (Kingma and Ba, 2014) is used
for optimization, the batch size is set to 16, and the
learning rate is set to Se-5. During the period of GO,
the generator is trained with the labeled and pseudo
labeled dataset for 4 and 2 epochs, respectively. In
the G1, the generator is fine-tuned with the labeled
dataset for 24 epochs. The above steps are trained
on a RTX A4000 GPU for 24 hours. We ran our
model and baselines 5 times to average the scores.

Classifier: Following GTS (Wu et al., 2020), we
combine a 300-dimension domain-general embed-
ding from pre-trained GloVe (Pennington et al.,
2014) and a 100-dimension domain-specific em-
bedding trained with fastText (Bojanowski et al.,

Zhttps://github.com/siat-nlp/MAMS-for-ABSA
3https://www.kaggle.com/yelp-dataset/yelp-dataset
*Codes available at: https://github.com/ashooha0/Alsecond



Dataset #Instance #Positive #Neutral #Negative Sentiment form

Train 2728 3490 241 1014
ASTE-Data-V2-Rest | Val 668 841 76 248 Aspect-Opinion-Polarity

Test 1140 1497 120 376
Train 4297 3380 5042 2764

MAMS-ASTA Val 500 403 604 325 Aspect-Polarity
Test 500 400 607 329

Yelp - 1160546 - - - -

Table 1: Statistics of the labeled and unlabeled datasets. Sentence in the ASTE-Data-V2-Rest is labeled with aspect,
opinion, and polarity, while in the MAMS-ASTA labeled with only aspect and polarity.

2016) to initialize double word embeddings. We
use Adam as optimizer and the learning rate is set
to Se-4. The batch size and dropout rate are set
to 32 and 0.5, respectively. The number of hidden
units in BILSTM is set to 128.

4.2 Baselines

We compare with 5 baselines. PPLM (Dathathri
et al., 2019) incorporates an attribute model BoW
(bag of words) to steer a pre-trained GPT2 model
towards increasing the generating probability of the
target words. In this baseline, the BoW is formed
with the words contained in the target sentiment
pairs. Through prepending the task description be-
fore the input text, the state-of-the-art text-to-text
model TS (Liu et al., 2019) is pre-trained with a
multitask objective. Following this schema, we
append the sentiment pairs into the prompt thus
forming: “generate a sentence with ay is oy, ...,
an is oy.”, and fine-tune the model with the tar-
get sentence. Its coverage of the input sentiment
pairs in the baselines serves as an upper bound.
Moreover, we also finetune UniLM (Dong et al.,
2019), UniLM-v2 (Piao et al., 2020) and BERT-
Gen (Piao et al., 2020) in a similar sequence-to-
sequence fashion with both the large unlabeled
dataset and the limited labeled dataset.

4.3 Generated Quality Evaluation

4.3.1 Fluency and Diversity Evaluation:

We conduct fluency evaluation on the generated
texts with automatic metrics such as BLEU (Pa-
pineni et al., 2002), ROUGE (Lin, 2004), and
METEOR (Lavie and Agarwal, 2007) which com-
pare the similarity between the generated text and
ground truth based on n-gram matching. Besides,
the diversity of generations is also an important in-
dicator. We measure diversity for the generated re-
sults with Dist-1,-2,-3 (Brockett et al., 2015) scores
and Self-Bleu (Zhu et al., 2018).

4.3.2 Sentiment Evaluation:

As to measure the quality of sentiment contain-
ment in the generated sentence, we employ two
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metrics indicating whether the input sentiments are
correctly expressed in the generated text.

Coverage (Cov): Just like in Lin et al. (2019), is
the average rate of input sentiment pairs presented
in the generated texts. This metric includes Cov-
a, Cov-o, and Cov-ao representing the presenting
rate of aspect, opinion, and aspect-opinion pairs,
respectively.

Accuracy (Acc.): We use the external sentiment
classifier (Jiang et al., 2019) trained on MAMS-
ASTA to evaluate the rate about how many senti-
ment pairs are correctly expressed in the generated
texts as the sentiment accuracy.

Table 2 shows the fluency and diversity evalua-
tion results. From the results we can observe that:
(1) Comparing with baseline models, our AlSeC-
ond model extends from the GPT-2 achieves better
performance in fluency evaluations. (2) Comparing
results in diversity metrics, it can be observed that
our AlSeCond model perform much better than
the rest of baselines in the MAMS-ASTA dataset,
which means the results generated by our model
are less like the template-generated text than that
generated by other models.

Table 3 shows the results of sentiment coverage
and accuracy for generated texts. It is worth not-



Dataset Models BLEU-3(1) BLEU-4(1) METETOR(}) ROUGE-L() Self-Bleu-4(]) Dist-1(1) Dist-2(1) Dist-3(1)
PPLM 0.196 0.032 14.078 13.827 7.939 0.0841 0.4102 0.7180
T5-base 21.246 13.216 29.007 41.092 22.580 0.1621 0.4725 0.6101
T5-large 24.747 16.462 29.986 43.614 23.045 0.1721 0.4658 0.5934
UniLM 33.093 27.486 46.808 52.582 20.334 0.1489 0.4961 0.6663
ASTE-Data-V2 | BERT-Gen 32.693 28.050 45.223 45.162 24.149 0.1450 0.4957 0.6411
UniLM-v2 32.159 27.525 45.107 44514 22.830 0.1451 0.5060 0.6553
AlSeCond 40.453 34.611 55.127 63.720 15.972 0.1610 0.5439 0.7073
| w/o sentiment loss 37.961 32.190 55.699 62911 16.195 0.1552 0.5301 0.7028
| w/o query-hint 34.305 29.080 55.391 61.237 14.442 0.1551 0.5431 0.7264
T5-base 3.653 1.479 14.400 24.181 27.671 0.1299 0.3761 0.5541
T5-large 4.212 1.767 15.180 25.828 27.626 0.1418 0.3761 0.5591
UniLM 3.178 1.251 18.833 23.872 37.890 0.1032 0.3211 0.4878
BERT-Gen 4.003 1.605 17.751 24.162 28.284 0.1284 0.4024 0.5778
MAMS-ASTA UniLM-v2 3.898 1.559 17.757 23.999 27.858 0.1255 0.3989 0.5796
AlSeCond 5.159 2.113 19.736 31.738 13.714 0.1627 0.5085 0.6811
| w/o sentiment loss 4.944 1.999 23.734 31.302 14.112 0.1477 0.4978 0.7171
| w/o query-hint 4.208 1.635 23.661 29.497 10.835 0.1604 0.5538 0.7653
Table 2: Results for the fluency and diversity evaluation.
Dataset | Models Cov-a  Cov-o Cov-ao  Acc.
PPLM 0.3597 03642 0.1094 0.1761 Aspect-level Sentiments: {wait staff - friendly, meal - great}
T5-base 0.9563 09745 0.9400 0.7812 AlSeCond: the wait staff is very friendly and will take great care of you, if
T5-large 0.9668 0.9831 0.9549  0.7948 you end up getting a great meal, they 'll even throw in some dessert.
UniLM 0.9513  0.9568 0.9182  0.7450 I'5-Large: wait staff was friendly and the meal was great.
ASTE | BERT-Gen 09390 0.9363 08932 07521 UnilLM: The wait staff is friendly and you always have a great meal and
iLM-v2 47 4 1 747 d s 4 -
UniLM-v 0.9478 09463 09100 07475 always leave feeling satisfied.
AlSeCond 0.9719 09824 09614 0.7688 - > . .
| w/o sentiment loss  0.9633  0.9649  0.9468  0.7683 BERT-Gen: the wait staff is very friendly and always has a great meal.
_hi UniLLM-v2: wait staff is friendly and we have always had a great meal!
| w/o query-hint 09412 09313 0.8966 0.7443 y y! g
T5-base 0.9619 09128 09032 0.5734 Aspect-level Sentiments: {hostess - kind, hostess - gracious}
T5-large 0.9733 09459 0.9422 0.5698 AlSeCond: It's always a delight to have greeted by a kind and gracious
UniLM 09297 0.7818 0.7624  0.5883 hostess.
MAMS BERT—Ge; 8923(]) 8'7725 87§g; ?]66(1)34;?) T5-Large: the hostess was kind and gracious.
XTSII;E/;L 02'798 6795588 0A79558 0.6267 UniLLM: The hostess was very kind and gracious.
| wlo sentiment loss 0..9318 0;8952 04.8825 0.6050 BERT-Gen: the hostess is very kind and gracious.
_hi UniLLM-v2: our hostess and all of the people helping her were kind and
| w/o query-hint 0.8338 0.6811 0.6257 0.5447 peop: ping
gracious.
Table 3: Results for the sentiment evaluation. Note that Aspect-level Sentiments: {atmosphere - cozy, service - horrible}
Acc. is automatically evaluated by a external classifier. AlSeCond: When I sat down at the bar the atmosphere was cozy but service
’ ’ was horrible.
. . L. . T5-Large: the atmosphere is cozy, but the service is horrible.
mg that for a 11ngu1st1(:ally Comphcated sentence, UniL.M: The atmosphere is very cozy but the service is horrible.
its aspect-level sentiments are more difficult to be BERT-Gen: cozy atmosphere and horrible service.
- . iLM-v2: spher ible servi
correctly predicted by the external classifier than Unil.M-v2: cozy atmosphere but horrible service

a relatively simple sentence, so its sentiment accu-
racy may be lower than the actual situation. What’s
more, T5’s original seq2seq architecture allows it
to generate texts that highly correspond to the input
sequences, hence its coverage and accuracy scores
serve as an upper bound, although its generated
results’ syntax is relatively simple and repetitive.

Comparing the above metrics results for all mod-
els on different datasets, we can observe that our
model has stable advantages on both ASTE-Data-
V2 and MAMS-ASTA, which indicates that our
AlSeCond model has stronger adaptability.

4.4 Case Study

Figure 5 presents some generated cases from
AlSeCond, T5, UniLM, BERT-Gen, and UniLM-
v2. From the cases, we found that: AlSeCond
tends to generate more linguistically complicated
sentences. While other baselines are more likely
to focus on generating review texts that correctly
express the input information, and less on the com-
plexity of the expressions and the syntaxes.

Figure 5: Generated samples from the generative mod-
els.

5 Conclusion and Future work

In this paper, we propose a fine-grained sentiment
controllable text generation method based on the
pre-trained language model and the auxiliary sen-
timent classifier which utilizes both the labeled
and unlabeled dataset to reach the aspect-level sen-
timent control in text generation. Our proposed
query-hint mechanism and fine-grained sentiment
control loss function have greatly enhanced the
generator in controlling the sentiment during the
text-generating process. Experiments on real-world
datasets have demonstrated our generator’s abil-
ity to generate aspect-level sentiment controllable
review statements with high quality and diverse
syntax.

For future works, we will explore the control-
lable text generation for implicitly expressed fine-
grained sentiments, since the query-hint mecha-
nism proposed in this paper is only effective for
explicitly expressed fine-grained sentiments.
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