
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PREFERENCE OPTIMIZATION FOR COMBINATORIAL
OPTIMIZATION PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning (RL) has emerged as a powerful tool for neural combina-
torial optimization, enabling models to learn heuristics that solve complex prob-
lems without requiring optimal solutions. Despite significant progress, existing
RL approaches face challenges such as diminishing reward signals and inefficient
exploration in vast combinatorial action spaces, leading to inefficient learning. In
this paper, we propose Preference Optimization (PO), a novel framework that
transforms quantitative reward signals into qualitative preference signals via sta-
tistical comparison modeling, emphasizing the superiority among generated so-
lutions. Methodologically, by reparameterizing the reward function in terms of
policy probabilities and utilizing preference models like Bradley-Terry and Thur-
stone, we formulate an entropy-regularized optimization objective that aligns the
policy directly with preferences while avoiding intractable computations. Further-
more, we integrate heuristic local search techniques into the fine-tuning process to
generate high-quality preference pairs, helping the policy escape local optima.
Empirical results on standard combinatorial optimization benchmarks, such as
the Traveling Salesman Problem (TSP), the Capacitated Vehicle Routing Prob-
lem (CVRP) and the Flexible Flow Shop Problem (FFSP), demonstrate that our
method outperforms traditional RL algorithms, achieving superior sample effi-
ciency and solution quality. Our work offers a simple yet efficient algorithmic
advancement in neural combinatorial optimization.

1 INTRODUCTION

Combinatorial Optimization Problems (COPs) are fundamental in numerous practical applications,
including route planning, circuit design, scheduling, and bioinformatics Papadimitriou & Steiglitz
(1998); Cook et al. (1994); Korte et al. (2011). These problems require finding an optimal solution
from a finite but exponentially large set of possibilities and have been extensively studied in the
operations research community. While computing the exact solution is impeded by their NP-hard
complexity Garey & Johnson (1979), efficiently obtaining near-optimal solutions is essential from a
practical standpoint.

Deep learning, encompassing supervised learning and reinforcement learning (RL), has shown great
potential in tackling COPs by learning heuristics directly from data Bengio et al. (2021); Vinyals
et al. (2015). However, supervised learning approaches heavily rely on high-quality solutions, and
due to the NP-hardness of COPs, such training data may not guarantee optimality, which can lead
models to fit suboptimal policies. In contrast, RL has emerged as a promising alternative, achieving
success in areas involving COPs such as mathematical reasoning Silver et al. (2018), chip design
Mirhoseini et al. (2021), and discovering efficient algorithms Fawzi et al. (2022). RL leverages neu-
ral networks to approximate policies and interactively obtains rewards from environment, allowing
models to improve without requiring high-quality solutions Bello et al. (2016); Kool et al. (2019).

Despite its potential, applying RL to COPs presents significant challenges. Diminishing reward
signals: Current methods often frame the training process at the trajectory level due to the interde-
pendence of actions at different timesteps. As the policy improves, the differences in trajectory-level
reward signals between solutions diminish, leading to negligible gradients and slow convergence
during later training phases. Unconstrained action spaces: The vast combinatorial action spaces
complicate efficient exploration, rendering traditional exploration techniques like entropy regular-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

ization of trajectory computationally infeasible. Additional inference time: While neural solvers
are efficient in inference, they often suffer from finding the near-optimal solutions. Many works
adopt techniques like local search as a post-processing step to further improve solutions, but this
incurs additional computational time during inference.

To address the issue of diminishing reward signals and inefficient exploration, we propose trans-
forming quantitative reward signals into qualitative preference signals, focusing on the superiority
among generated solutions rather than their absolute reward values. This approach stabilizes the
learning process and theoretically emphasizes optimality, as preference signals are insensitive to
the scale of rewards. By deriving our method from an entropy-regularized objective, we inherently
promote efficient exploration within the vast combinatorial action spaces of COPs, overcoming the
computational intractability associated with traditional entropy regularization techniques. Addition-
ally, to mitigate the extra inference time induced by local search, we integrate such techniques into
the fine-tuning process rather than using them as post-processing steps, which enables the policy to
learn from improved solutions without incurring additional inference time.

Furthermore, preference-based optimization has recently gained prominence through its application
in Reinforcement Learning from Human Feedback (RLHF) for large language models Christiano
et al. (2017); Rafailov et al. (2024); Meng et al. (2024). Inspired by these advancements, we in-
troduce a novel update scheme that bridges preference optimization with COPs, leading to a more
effective and consistent learning process. In this work, we propose a novel algorithm named Pref-
erence Optimization (PO), which can seamlessly substitute conventional policy gradient methods in
many contexts. In summary, our contributions are:

1. A Novel Preference-Based Framework: We introduce a new framework that transforms
quantitative reward signals into qualitative preference signals, stabilizing the learning pro-
cess and theoretically emphasizing optimality independently of reward scaling.

2. An Efficient Optimization Objective: By reparameterizing the reward function in terms
of the policy and utilizing preference models such as Bradley-Terry and Thurstone, we
formulate an entropy-regularized optimization objective that aligns the policy directly with
preferences, avoiding intractable computations of traversing whole action space.

3. Integration with Appealing Solutions: We demonstrate the compatibility of our approach
with heuristic local search methods by incorporating them into the fine-tuning process. This
integration generates high-quality preference pairs and helps the policy escape local optima
without incurring additional inference time.

2 RELATED WORK

RL-based Neural Solvers. The pioneering application of Reinforcement Learning for Combinato-
rial Optimization problems (RL4CO) by Bello et al. (2016); Nazari et al. (2018); Kool et al. (2019)
has prompted subsequent researchers to explore various frameworks and paradigms. We classify the
majority of RL4CO research from the following perspectives:

End-to-End Neural Solvers. Several works have focused on designing end-to-end neural solvers that
directly map problem instances to solutions. Techniques exploiting the inherent equivalence and
invariance properties of COPs have been proposed to ease the difficulty in approaching near-optimal
solutions Kwon et al. (2020); Kim et al. (2022); Ouyang et al. (2021); Kim et al. (2023). For exam-
ple, POMO Kwon et al. (2020) utilizes multiple diverse starting points to improve training efficiency,
while Sym-NCO Kim et al. (2022) leverages problem symmetries to enhance performance. Other
studies have incorporated entropy regularization at the step level to foster exploratory behaviors,
thereby improving solution diversity and quality Xin et al. (2021a); Sultana et al. (2020). Addition-
ally, efforts have been made to diversify the training dataset to develop more generalized solvers
capable of handling a wider range of problem instances Bi et al. (2022); Wang et al. (2024); Zhang
et al. (2022); Zhou et al. (2023); Jiang et al. (2024). While most of these works aim to boost per-
formance through architectural innovations or learning paradigms, less attention has been given to
algorithmic advancements in the optimization objectives themselves. For instance, Jin et al. (2023)
propose a normalized reward for updating the policy, but this approach still struggles to effectively
emphasize optimality in the solutions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Hybrid Solvers. Blending neural methodologies with conventional optimization techniques presents
a promising research direction. Such integration incorporates established heuristics like k-opt, Ant
Colony Optimization, Monte Carlo Tree Search, and the Lin-Kernighan algorithm, enhancing solu-
tion quality as demonstrated in d O Costa et al. (2020); Wu et al. (2021); Ye et al. (2023); Xin et al.
(2021b). For example, NeuRewriter d O Costa et al. (2020) combines neural networks with local
search heuristics for graph rewriting, while NeuroLKH Xin et al. (2021b) integrates deep learn-
ing with the LKH algorithm. While such techniques often serve as post-processing steps to refine
near-optimal solutions, as in Fu et al. (2021); Ma et al. (2021); Ouyang et al. (2021), the additional
inference time interferes with efficiency and may not be suitable for time-critical scenarios.

Preference-based Reinforcement Learning. Preference-based reinforcement learning (PbRL) is
another area related to our work, which has been widely studied in offline RL settings. PbRL in-
volves approximate the ground truth reward function from preference information rather than relying
on explicit reward signals Wirth et al. (2017). This approach is particularly useful when reward sig-
nals are sparse or difficult to specify. Recently, works such as Hejna & Sadigh (2024); Rafailov et al.
(2024); Meng et al. (2024) have proposed novel paradigms to directly improve the KL-regularized
policy without the need for learning an approximate reward function, leading to more stable and
efficient training. This has led to the development of a series of works Azar et al. (2024); Park et al.
(2024); Hong et al. (2024) in the RLHF phase within language-based models, where preference
information is leveraged to fine-tune large language models effectively.

Our work bridges the gap between these domains by introducing a preference-based optimization
framework specifically tailored for COPs. By transforming quantitative reward signals into qualita-
tive preferences, we address key challenges in RL4CO, such as diminishing reward differences and
exploration inefficiency, while avoiding the need for explicit reward function approximation as in
traditional PbRL.

3 METHODOLOGY

In this section, we first recap Reinforcement Learning, focusing particularly on for Combinatorial
Optimization problems (RL4CO), and Preference-based Reinforcement Learning (PbRL). Next, we
explain how to leverage these techniques to develop a novel optimization objective to train efficient
neural solvers that rely solely on relative superiority among generated solutions. Subsequently, we
investigate the compatibility of our approach with Local Search techniques for solver training. Our
work results in a simple and consistent algorithm.

3.1 REINFORCEMENT LEARNING FOR COMBINATORIAL OPTIMIZATION PROBLEMS

RL trains an agent to maximize cumulative rewards by interacting with an environment and receiving
reward signals. In COPs, the state transitions are typically modeled as deterministic. A commonly
used policy gradient method is REINFORCE Sutton & Barto (2018), whose update rule is given by:

∇θJ(θ) = Ex∼D,τ∼πθ(τ |x) [(r(x, τ)− b(x))∇θ log πθ(τ | x)]

≈ 1

|D|
∑
x∈D

1

|Sx|
∑
τ∈Sx

[(r(x, τ)− b(x))∇θ log πθ(τ | x)] , (1)

where D is the dataset of problem instances, x ∈ D represents an instance, Sx is the set of sampled
solutions (trajectories) for x, r(x, τ) is the reward function derived from distinct COPs and b(x)
represents the baseline used to calculate the advantage function A(x, τ) = r(x, τ) − b(x), which
helps reduce the variance of the gradient estimator. The policy πθ(τ | x) defines a distribution over
trajectories τ = (a0, a1, . . . , aT) given the instance x. Each trajectory τ is a sequence of actions
generated by the policy: πθ(τ | x) =

∏T
t=0 πθ(at | st), with s0 being the initial state determined

by x, and st representing the state at time step t, which is a function of previous states and actions
(e.g., st = f(st−1, at−1)). The action at is selected by the policy based on the current state st.

Unlike popular RL environments such as Atari Bellemare et al. (2013) and Mujoco Todorov et al.
(2012), where rewards can vary widely and provide strong learning signals, COPs present unique
challenges. As the policy improves, the differences in reward signals between solutions diminish.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Specifically, the agent often obtains solutions with minimal differences in rewards, i.e., |r(x, τ) −
b(x)| < ϵ, where ϵ is small. This leads to negligible updates to the policy objective J(θ), which
heavily relies on the advantage function A(x, τ) = r(x, τ)−b(x). Consequently, the policy struggles
to escape local optimum during later training stages.

Furthermore, models in COPs focus on optimizing the expected maximum reward during inference:

Ex∼D

[
max

τ∼πθ(τ |x)
r(x, τ)

]
︸ ︷︷ ︸

Inference objective

̸= Ex∼D
[
Eτ∼πθ(τ |x)r(x, τ)

]︸ ︷︷ ︸
Training objective

.

Inconsistency between training objectives (that optimize expected rewards) and inference objectives
(which seek the best possible solution, i.e., maximized rewards) can lead to performance degrada-
tion. During training, the improvement of the model leads to a gradual reduction in the numerical
values of advantage A(x, τ) in Eq. 1, which weakens the learning signal under the traditional RL
framework. Consequently, REINFORCE fails to effectively emphasize optimality. Therefore, it is
necessary to construct a more stable reward signal that highlights optimality.

3.2 PREFERENCE-BASED REINFORCEMENT LEARNING

In PbRL Wirth et al. (2017), the agent optimizes a learned reward function based on an offline
dataset of preferences, rather than directly receiving reward signals through interaction with the
environment. We assume access to a preference dataset Dp = {(τ1, τ2, y)}, where each triplet
consists of two trajectories τ1 and τ2, and a preference label y ∈ {0, 1}. Here, y = 1 if τ1 is
preferred over τ2 (i.e. τ1 ≻ τ2), and y = 0 otherwise.

Preferences are considered to be generated by an underlying (latent) reward function r̂(x, τ). Vari-
ous models can be used to relate reward differences to preferences, such as the Bradley-Terry (BT)
model, the Thurstone model David (1963), and the Plackett-Luce (PL) model Plackett (1975). These
models bridge the gap between the reward function and observed preferences, allowing us to derive
an optimization objective to learn the reward function.

In paired preference models like BT and Thurstone, a function f(·) is used to map the difference
between rewards into preference probabilities. The preference probability distribution will be:

p∗(τ1 ≻ τ2) = f (r̂(x, τ1)− r̂(x, τ2)) , (2)

where BT model adopt the sigmoid function (i.e., σ(x) = (1+ e−x)−1) and Thurstone model adopt
the cumulative distribution function Φ(x) of the standard normal distribution as f(·).
By establishing this relationship, learning the reward function r̂ϕ(x, τ) can be formulated as a binary
classification problem. The objective is to maximize the likelihood of the observed preferences:

min
ϕ

−E(τ1,τ2,y)∼Dp
[y log pϕ(τ1 ≻ τ2)] .

Furthermore, by utilizing the learned reward function rϕ, the policy πθ learned through the existing
RL method is expected to satisfy: τ1 ≻ τ2 =⇒ πθ(τ1) > πθ(τ2), meaning that if trajectory τ1
is preferred over trajectory τ2, then the policy assigns a higher probability to τ1 than to τ2. This
relationship arises because the policy is optimized to maximize expected rewards according to the
learned reward function rϕ.

A major challenge faced by PbRL is the collection of reliable preference data. Preference labels
y often need to be assessed based on expert knowledge, which can lead to situations of preference
conflicts. For instance, one might observe cyclic preferences such as τ1 ≻ τ2, τ2 ≻ τ3, and τ3 ≻ τ1,
violating transitivity, thus, constructing consistent and transitive preference labels is a critical issue.

3.3 PREFERENCE OPTIMIZATION FOR COMBINATORIAL OPTIMIZATION PROBLEMS

The key insight of our method is to transform the quantitative reward signals into qualitative pref-
erences. This transformation stabilize learning process by avoiding the dependency on numerical
reward signals and consistently emphasizes optimality.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

A challenge in applying RL to COPs is the exponential growth of the state and action spaces with
problem size, making efficient exploration difficult. A common approach to encourage exploration
is to include an entropy regularization termH(πθ) to balance exploitation and exploration:

max
πθ

Ex∼D,τ∼πθ(τ |x) [r(x, τ)] + αH (πθ(τ | x)) , (3)

where α > 0 controls the strength of the entropy regularization, and H (πθ(· | x)) = −
∑

τ πθ(τ |
x) log πθ(τ | x) is the entropy of the policy for instance x. However, computing the entropy term
H(πθ) is intractable in practice due to the exponential number of possible trajectories.

Following prior works Ziebart et al. (2008); Haarnoja et al. (2017), it is straightforward to show that
the optimal policy to the maximum entropy-based objective in Eq. 3 has an analytical form:

π(τ | x) = 1

Z(x)
exp

(
α−1r(x, τ)

)
, (4)

where the partition function Z(x) =
∑

τ exp
(
α−1r(x, τ)

)
normalizes the policy over all possible

trajectories τ . The detailed derivation is included in the Appendix D.1. Although the solution space
of COPs is finite and the reward function r(x, τ) is accessible, computing the partition function
Z(x) is still intractable due to the exponential number of possible trajectories. This intractability
makes it impractical to utilize the analytical optimal policy directly in practice.

The specific formulation of Eq. 4 implies that the latent reward function r̂(x, τ) can be reparam-
eterized in relation to the corresponding policy π(τ | x), analogous to the approach adopted in
Rafailov et al. (2024) for a KL-regularized objective and in Hejna & Sadigh (2024) within the in-
verse RL framework. Eq. 4 can thereby be rearranged to express the reward function in terms of its
corresponding optimal policy π for the entropy-regularized objective:

r̂(x, τ) = α log π(τ | x) + α logZ(x). (5)

From Eq. 5, the ground-truth reward function r can be explicit expressed by the optimal policy π∗

of Eq. 3. Then we can relate preferences between trajectories directly to the policy probabilities.
Specifically, the preference between two trajectories τ1 and τ2 can be modeled by projecting the
difference in their rewards into a paired preference distribution. Note that this analytic expression
naturally avoids intractable term Z(x), since Z(x) is a constant w.r.t. the trajectory τ and cancels
out when considering reward differences.

Using the BT or Thurstone models, by substituting Eq. 5 into Eq. 2, the preference probability
between two trajectories becomes:

p∗(τ1 ≻ τ2 | x) = f (α [log π(τ1 | x)− log π(τ2 | x)]) , (6)

By leveraging this relationship, we transform the quantitative reward signals into qualitative prefer-
ences in terms of policy π.

Proposition 1 Let r̂(x, τ) be a reward function consistent with the Bradley-Terry, Thurstone, or
Plackett-Luce models. For a given reward function r̂′(x, τ), if r̂(x, τ) − r̂′(x, τ) = h(x) for some
function h(x), it holds that both r̂(x, τ) and r̂′(x, τ) induce the same optimal policy in the context
of an entropy-regularized reinforcement learning problem.

Based on Proposition 1, we can conclude that shifting the reward function by any function of the
instance x does not affect the optimal policy. This ensures that canceling out Z(x) still preserves
the optimality of the policy learned, we defer the proof to Appendix D.2.

We adopt the ground truth reward function r to generate conflit-free preference labels y = 1[·] :
R → {0, 1}. As the reward function r(x, τ) in COPs can be seen as a physical measure, pairwise
comparisons generated in this manner preserve a consistent and transitive partial order of preferences
throughout the dataset. Moreover, while traditional RL methods may rely on affine transformations
to scale the reward signal, our approach benefits from the affine invariance of the preference labels.
Specifically, the indicator function is invariant under positive affine transformations:

1[k·r(x,τ1)+b>k·r(x,τ2)+b] = 1[r(x,τ1)>r(x,τ2)],

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

for any k > 0 and any real number b. This property implies that our method emphasizes optimality
independently of the scale and shift of the explicit reward function, facilitating the learning process
by focusing on the relative superiority among solutions rather than their absolute reward values.

To make the approach practical, we approximate the optimal policy π∗ with a parameterized policy
πθ. This approximation allows us to reparameterize the latent reward differences using πθ, naturally
transforming the policy optimization into a classification problem analogous to the reward func-
tion trained in PbRL. Guided by the preference information from the ground truth reward function
r(x, τ), the policy optimization objective can be formulated as:

max
θ

J(θ) = Ex∼D,(τ1,τ2)∼πθ(·|x)
[
1[(r(x,τ1)>r(x,τ2))] · log pθ(τ1 ≻ τ2 | x)

]
, (7)

while instantiating with BT model σ(·), maximizing p(τ1 ≻ τ2 | x) = σ(r̂θ(x, τ1) − r̂θ(x, τ2))
leads to the gradient:

∇θJ(θ) ≈
α

|D||Sx|2
∑
x∈D

∑
τ∈Sx

∑
τ ′∈Sx

[(gBT(τ, τ
′, x)− gBT(τ

′, τ, x))∇θ log πθ(τ | x)]

gBT(τ, τ
′, x) = 1[r(x,τ)>r(x,τ ′)] · σ(r̂θ(x, τ ′)− r̂θ(x, τ)),

(8)

where r̂θ(x, τ)) = α log πθ(τ | x) + α logZ(x). Taking a deeper look at the gradient level, com-
pared to the REINFORCE algorithm in Eq. 1, the term about g(τ, τ ′, x) − g(τ ′, τ, x) serves as a
substitute for the advantage signal. A key finding is that this reparameterized reward signal ensures
that if r(x, τ1) > r(x, τ2), then the gradient will favor increasing πθ(τ1) over πθ(τ2).

Algorithm 1 Preference Optimization for COPs under Bradley-Terry Model

1: procedure TRAINING(training set D, number of training steps T , number of finetune steps
TFT >= 0,batch size B, reward model r, number of local search iteration ILS)

2: initialize policy network parameter θ for πθ

3: for step = 1, . . . , T + TFT do
4: xi ← SAMPLEINPUT(D) ∀i ∈ {1, . . . , B}
5: τi = {τ1i , τ2i , . . . , τNi } ← SAMPLINGSOLUTIONS(πθ(xi)) ∀i ∈ {1, . . . , B}
6: // Combined with local search for fine-tuning (Optional)
7: if step > T then
8: {τ̂1i , τ̂2i , . . . , τ̂Ni } ← LOCALSEARCH(τi, r, ILS) ∀i ∈ {1, . . . , B}
9: τi ← τi ∪ {τ̂1i , τ̂2i , . . . , τ̂Ni }

10: end if
11: //Calculate conflict-free preference labels via ground truth reward function r(x, τ)
12: yij,k ← PAIRWISEPREFENCELABEL(1[r(xi,τ

j
i)>r(xi,τk

i)]) ∀j, k ∈ {1, . . . , |τi|}
13: //Approximating the gradient according to Eq. 8
14: ∇θJ(θ)← α

B|τi|2
∑B

i=1

∑|τi|
j=1,k=1

(
g(τ ji , τ

k
i , xi)− g(τki , τ

j
i , xi)

)
∇θ log πθ(τ

j
i | xi)

15: θ ← θ +∇θJ(θ)
16: end for
17: end procedure

3.4 COMPATIBILITY WITH LOCAL SEARCH (OPTIONAL)

To further enhance the quality of generated solutions, we investigate the compatibility of PO with
heuristic Local Search (LS) techniques, which are widely used to iteratively improve existing solu-
tions generated by traditional or neural solvers. Local search methods have the property of mono-
tonic improvement for fine-tuning existing solutions, which means that for any τ , the improved
solution LS(τ) satisfies r(x,LS(τ)) ≥ r(x, τ) through small adjustments to τ .

Typically, during evaluation, LS is applied as a post-processing step, which can introduce additional
inference time due to the multiple iterations required for convergence. To maintain time efficiency
during inference while still benefiting from the improvements provided by LS, we propose integrat-
ing LS into the solvers’ training process rather than serving it as post-processing techniques.

Our proposed Preference Optimization (PO) algorithm relies on the comparison of superiority be-
tween trajectories τ . By incorporating LS into fine-tuning, high-quality preference pairs close to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

optimality can be generated. Specifically, for each solution τ generated by the neural solver, we
apply a small number of LS iterations to obtain an improved solution LS(τ). In most cases, LS(τ)
is preferred over τ , i.e., r(x,LS(τ)) > r(x, τ), except when LS fails to find an improved solution.

We then form preference pairs (τ,LS(τ), y), where y = 1[r(x,LS(τ))>r(x,τ)]. Our policy optimization
objective becomes:

max
θ

J(θ) = Ex∼D,τ∼πθ(·|x) [y · log pθ(LS(τ) ≻ τ | x)] , (9)

where pθ(LS(τ) ≻ τ | x) = f (α [log πθ(LS(τ) | x)− log πθ(τ | x)]), similar to Eq. 6.

By incorporating these preference pairs into the policy optimization, higher probabilities are encour-
aged to assign to solutions that are improved by LS. This serves the purpose that incorporating LS
during training helps the neural solver escape from local optima, especially during later stages when
gradient updates may become less effective due to diminishing differences in reward signals.

It is worth noting that integrating LS introduces additional computational overhead due to the extra
LS iterations applied to each sampled trajectory. However, by controlling the number of LS itera-
tions and limiting them to a small number, the additional computational cost can be managed. This
trade-off is justified by the significant benefits in learning efficiency and solution quality obtained
through this integration. The algorithm is summarized in Algorithm 1.

Combining LS with the proposed PO method, we leverage the strengths of both neural solvers and
local search techniques. The neural solver benefits from the fine-tuning capabilities of LS, while
maintaining time efficiency during inference by avoiding the need for LS as a post-processing step.
This synergy leads to more effective learning and improved final solutions.

4 EXPERIMENTS

In this section, we present the main results of our experiments, demonstrating the superior perfor-
mance of the proposed Preference Optimization (PO) algorithm for COPs. We aim to answer the
following questions: 1. How does PO compare to prior RL algorithms on standard benchmarks
such as the Traveling Salesman Problem (TSP), the Capacitated Vehicle Routing Problem (CVRP)
and the Flexible Flow Shop Problem (FFSP)? 2. How efficiently does PO balance exploitation and
exploration by considering entropy, in comparison to traditional RL methods?

Benchmark Setup. We implement the PO algorithm across various models, emphasizing that it is
a strategy optimization method not tied to a specific model structure, but rather reliant on sampling
multiple solutions from identical instances for qualitative comparisons. The fundamental COPs,
such as TSP and CVRP, serve as our testbed. In these problems, the reward model r(x, τ) is defined
as the Euclidean length (Len.) of the trajectory τ . The TSP aims to find a Hamiltonian cycle on a
graph, minimizing the total trajectory length, while the CVRP incorporates capacity constraints for
vehicles and points, along with a depot as the starting point. Our main experiments utilize problems
with uniform distribution and 100 nodes, as prescribed in Kool et al. (2019); Kwon et al. (2020). The
experiments on the FFSP are conducted to schedule tasks across multiple stages of machines with
the objective of minimizing the makespan (MS), which refers to the total time required for complet-
ing all tasks. These experiments build upon the model structure proposed by Kwon et al. (2021).
Most settings in the model follow the original work, with the exception of the training objective
for PO. Further hyper-parameters settings can be found in the Appendix E.2. Most of experiments
are conducted on an NVIDIA 24G-RTX 3090 GPU and an Intel Xeon Gold 6133 CPU. Additional
experiments on large scale TSP with DIMES Qiu et al. (2022) are included in Appendix F.2.

Baselines. We employ well-established heuristic solvers, including LKH3 Helsgaun (2017), HGS
Vidal (2022), Concorde Applegate et al. (2006) for routing problems and CPLEX Cplex (2009) for
FFSP, to evaluate the optimality gap. The baselines also include notable end-to-end neural solvers
for TSP and CVRP: AM Kool et al. (2019), POMO Kwon et al. (2020), Sym-POMO Kim et al.
(2022), and Pointerformer Jin et al. (2023): (1) AM utilizes the encoder-decoder architecture from
transformers, where the encoder embeds each point in the graph into a vector using multi-head
attention, and the decoder generates the trajectory τ by recursively masking selected points. (2)
POMO applies a more efficient training process by imposing diverse starting points for different
trajectories and processing them in parallel. For inference, a data-augmentation technique is adopted
for exploiting the equivalence of COPs. (3) Sym-NCO considers the symmetry of instances and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Experiment results on TSP and CVRP. The result of Len. and Gap are average on 10k
instances and the Time are summed of processing 10k instances.

Method
TSP (N=100) CVRP (N=100)

Len. ↓ Gap Time Len. ↓ Gap Time

H
eu

ri
st

ic Concorde 7.759 0.0% 1.2h - - -
LKH3 7.759 0.0% 15.6m 15.603 0.55% 4h
HGS - - - 15.518 0.0% 3h

N
eu

ra
lS

ol
ve

rs

AM (RL) 8.023 3.40% 2s 16.711 7.69% 3s
AM (PO) 7.981 2.86% 2s 16.576 6.82% 3s

Pointerformer (RL) 7.770 0.15% 1m - - -
Pointerformer (PO) 7.763 0.06% 1m - - -

Sym-NCO (RL) 7.787 0.39% 10s 15.768 1.59% 16s
Sym-NCO (PO) 7.764 0.07% 10s 15.735 1.40% 16s

POMO (RL) 7.770 0.15% 1m 15.791 1.76% 3.3m
POMO (PO) 7.764 0.07% 1m 15.730 1.37% 3.3m

POMO (Fine-tuned) 7.761 0.03% 1m 15.703 1.19% 3.3m

solutions to enhance the model’s solving capability during training; we use its POMO version in
our experiments. (4) Pointerformer adopts a more efficient attention module and normalizes the
advantages to achieve stable reward signals. We adopt MatNet Kwon et al. (2021) for FFSP.

4.1 COMPARISON WITH PRIOR RL ALGORITHMS ON STANDARD BENCHMARKS

We compare the proposed Preference Optimization (PO) method with traditional REINFORCE (RL)
methods using the identical model architectures, considering sample efficiency during training, so-
lution quality during inference, and generalization ability (included in Appendix F.1).

0 20 40 60 80 100 120 140 160 180 200
Epoch

8.05
8

7.95

7.9

7.85

7.8

7.79

A
v
g.

O
b
j

Pointerformer+RL

Pointerformer+PO

Sym-NCO+RL

Sym-NCO+PO

POMO+RL

POMO+PO

(a)

0 20 40 60 80 100
Epoch

8.05
8

7.95

7.9

7.85

7.8

7.79

A
v
g.

O
b
j

BT

PL

Id

Th

(b)

Figure 1: (a) Validation of model performance over epochs for PO (using the Bradley-Terry model)
and REINFORCE on TSP100, comparing three different models: Pointerformer, Sym-NCO, and
POMO. (b) Comparison of different preference models (Bradley-Terry, Plackett-Luce, Identity, and
Thurstone) within PO on TSP100.

Sample Efficiency. The training performance of PO and REINFORCE on the POMO, Sym-NCO,
and Pointerformer models is compared in terms of sample efficiency. As depicted in Figure 1a,
despite employing identical network structures, PO achieves a convergence speed 1.5x to 3x faster
than REINFORCE on such models. Notably for POMO, training with PO for 60 epochs yields
comparable performance to training with RL for 200 epochs. Similar enhancements are observed for
Sym-NCO and Pointerformer. This demonstrates the effective acceleration of the training process
by PO, resulting in superior performance within fewer training epochs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Experiment results on FFSP. The result of MS and Gap are average on 1k instances and
Time are summed of processing 1k instances. * indicate the results are sourced from original paper.

Method FFSP20 FFSP50 FFSP100

MS. ↓ Gap Time MS. ↓ Gap Time MS. ↓ Gap Time
H

eu
ri

st
ic

CPLEX (60s)* 46.4 84.13% 17h × ×
CPLEX (600s)* 36.6 45.24% 167h × ×

Random 47.8 89.68% 1m 93.2 88.28% 2m 167.2 87.42% 3m
Shortest Job First 31.3 24.21% 40s 57.0 15.15% 1m 99.3 11.33% 2m

Genetic Algorithm 30.6 21.43% 7h 56.4 13.94% 16h 98.7 10.65% 29h
Particle Swarm Opt. 29.1 15.48% 13h 55.1 11.31% 26h 97.3 9.09% 48h

N
eu

ra
lS

ol
ve

r MatNet (RL) 27.3 8.33% 8s 51.5 4.04% 14s 91.5 2.58% 27s
MatNet (RL+Aug) 25.4 0.79% 3m 49.6 0.20% 8m 89.7 0.56% 23m

MatNet (PO) 27.0 7.14% 8s 51.3 3.64% 14s 91.1 2.13% 27s
MatNet (PO+Aug) 25.2 - 3m 49.5 - 8m 89.2 - 23m

For large-scale TSP using DIMES and FFSP using MatNet, PO achieves comparable performance at
only 60%–70% training epochs to that of REINFORCE. Unlike REINFORCE, which converges to
suboptimal policies, PO continues to refine and achieve superior solving strategies, demonstrating
faster convergence and higher solution quality.

Solution Quality. As shown in Table 1, while sharing the same inference times, models trained with
PO outperform those trained with the RL objective in terms of solution quality. We also perform
100 epochs of fine-tuning POMO with Local Search (2-opt Croes (1958) for TSP and swap* Vidal
(2022) for CVRP) as mentioned in Section 3.4. Interestingly, this approach achieves an optimality
gap of only 0.03% on TSP and 1. 19% on CVRP, demonstrating that when approaching the optimal
solution, PO can further enhance the policy by using expert knowledge to fine-tune. Moreover, we
extended our evaluation to the FFSP. As summarized in Table 2, models trained with PO consistently
achieve lower MS and gap compared to their RL counterparts and heuristic solvers. These results
confirm that PO not only improves training efficiency but also leads to higher-quality solutions.

0 20 40 60 80 100
Index of Sorted Solutions

2

1

0

1

2

S
ca

le

Advantage Assignment

RL

PO

(a)

4 3 2 1 0 1 2 3 4
Scale

0.0

0.4

0.8

1.2

1.6

D
en

si
ty

Distribution of Advantage Scale

RL

PO-Th

PO-BT

(b)

Figure 2: (a) Advantage values for 100 solutions sampled from the trained POMO model, where
sorting highlights the advantage assignment patterns. The horizontal lines at different scales indi-
cate that Kwon et al. (2020) can lead to similar cycles, resulting in similar advantage values. (b)
Distribution of advantage scales for 50,000 sampled solutions, comparing REINFORCE, PO with
the Thurstone model (PO-Th), and PO with the Bradley-Terry model (PO-BT).

4.2 HOW EFFICIENTLY DOES PO BALANCE EXPLOITATION AND EXPLORATION?

Consistency of Policy. A key advantage of the proposed PO method is its ability to consistently
emphasize better solutions, independent of the numerical values of the advantage function. Figure 2a
compares the advantage assignment between PO and the conventional REINFORCE algorithm. PO
effectively separates high-quality trajectories by assigning them positive advantage values while
allocating negative values to low-quality ones. In contrast, REINFORCE struggles to differentiate
trajectory quality, with most advantage values centered around zero. This distinction showcases

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

PO’s capability to both highlight superior solutions and suppress inferior ones, leading to more
efficient exploration and faster convergence. Additionally, Figure 2b presents the distribution of
advantage scales, where RL exhibits a narrow, peaked distribution around zero, indicating limited
differentiation. Conversely, PO-based methods display broader distributions, covering a wider range
of both positive and negative values. This indicates PO’s enhanced ability to distinguish between
high- and low-quality trajectories, further supporting its effectiveness in policy optimization.

RL PO
50%

60%

70%

80%

57%

75%

62%

78%
Consistency

Base

Fintuned

(a)

RL PO PO-LS0

3

6

9

12

15

1.6

13.9

16.4
Trajectory Entropy

(b)

Figure 3: (a) Consistency measured as p(π(τ1) > π(τ2) |
r(τ1) > r(τ2)), evaluated on the trained POMO model. PO
shows higher consistency than RL, with further improvement
after fine-tuning. (b) Trajectory entropy, calculated as the sum
of entropy at each step, compared across models. The values
are measured during early training for RL and PO, and during
the initial phase of fine-tuning for PO+LS, indicating higher
exploration in PO and PO+LS compared to RL.

Furthermore, Figure 3a evaluates
the consistency of the policies. PO
significantly improves the consis-
tency of the learned policies com-
pared to REINFORCE, and fine-
tuning with local search further
enhances this consistency.

Diversity for Exploration. One
limitation of the REINFORCE
algorithm is its incompatibility
with entropy regularization at the
trajectory level. In contrast,
the PO method is derived from
an entropy-regularized objective,
which inherently promotes explo-
ration. We compare the sum of en-
tropy at each step in the trajectory
during the early training phase be-
tween PO and REINFORCE. As
shown in Figure 3b, the model
trained using PO achieves signifi-
cantly higher entropy, indicating a
more diverse set of explored strategies. On the other hand, the RL update scheme results in lower
entropy, potentially leading to less efficient exploration. Additionally, using PO to fine-tune a trained
model with local search, which integrates external expert knowledge, further enhances strategy di-
versity. In conclusion, PO effectively balances exploration and exploitation, enabling the model to
explore the solution space more thoroughly.

Study on Preference Models. A crucial aspect of PO is the choice of the preference model, as
discussed in Section 3.3. Different preference models may lead to varying implicit reward models,
as outlined in Eq. 7 and 8. Assuming a differentiable paired preference model f(·), the generalized
form of the latent reward assigned for each τ will be: 1

|Sx|
∑

τ ′∈Sx
[gf (τ, τ

′, x)− gf (τ
′, τ, x)] ,

where gf (τ, τ
′, x) = 1[r(x,τ)>r(x,τ ′)] ·

f ′(r̂θ(x,τ)−r̂θ(x,τ
′))

f(r̂θ(x,τ)−r̂θ(x,τ ′)) for any τ ′ ∈ Sx. The results, shown
in Figure 1b, indicate that the Bradley-Terry model consistently outperforms the others in terms
of convergence on TSP. This suggests an interesting direction for further research, exploring the
relationships among these preference models and their impact on the optimization landscape.

5 CONCLUSION

In this paper, we introduced Preference Optimization, a novel framework for solving COPs. By
transforming quantitative reward signals into qualitative preference signals, PO addresses the chal-
lenges of diminishing reward differences and inefficient exploration inherent in traditional RL ap-
proaches. We enhanced PO by integrating heuristic local search techniques into the fine-tuning pro-
cess, enabling neural solvers to generate near-optimal solutions without additional inference time.
Extensive experimental results demonstrate the practical viability and effectiveness of our approach,
achieving superior sample efficiency and solution quality compared to traditional RL algorithms.

While PO shows significant promise, the stability of the reparameterized reward function across
different COPs requires further investigation. Looking ahead, applying PO to optimization problems
where reward signals are difficult to design but preference information is readily available, such as
multi-objective optimization, remains a valuable direction.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

David Applegate, Ribert Bixby, Vasek Chvatal, and William Cook. Concorde TSP solver. http:
//www.math.uwaterloo.ca/tsp/concorde/, 2006.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learn-
ing from human preferences. In International Conference on Artificial Intelligence and Statistics,
pp. 4447–4455. PMLR, 2024.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee.
Learning generalizable models for vehicle routing problems via knowledge distillation. In Ad-
vances in Neural Information Processing Systems, 2022.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

William J Cook, William H Cunningham, William R Pulleyblank, and Alexander Schrijver. Combi-
natorial optimization. Unpublished manuscript, 10:75–93, 1994.

IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business Machines Corporation,
46(53):157, 2009.

Georges A Croes. A method for solving traveling-salesman problems. Operations research, 6(6):
791–812, 1958.

Paulo R d O Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. Learning 2-opt heuristics
for the traveling salesman problem via deep reinforcement learning. In Asian conference on
machine learning, pp. 465–480. PMLR, 2020.

Herbert Aron David. The method of paired comparisons, volume 12. London, 1963.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J R Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, et al. Discovering faster matrix multiplication algorithms with reinforcement learning.
Nature, 610(7930):47–53, 2022.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 7474–7482, 2021.

Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman San
Francisco, 1979.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352–1361.
PMLR, 2017.

Joey Hejna and Dorsa Sadigh. Inverse preference learning: Preference-based rl without a reward
function. Advances in Neural Information Processing Systems, 36, 2024.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12, 2017.

11

http://www.math.uwaterloo.ca/tsp/concorde/
http://www.math.uwaterloo.ca/tsp/concorde/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model. arXiv preprint arXiv:2403.07691, 2(4):5, 2024.

Yuan Jiang, Zhiguang Cao, Yaoxin Wu, Wen Song, and Jie Zhang. Ensemble-based deep rein-
forcement learning for vehicle routing problems under distribution shift. Advances in Neural
Information Processing Systems, 36, 2024.

Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, and Jiang Bian.
Pointerformer: Deep reinforced multi-pointer transformer for the traveling salesman problem.
arXiv preprint arXiv:2304.09407, 2023.

Hyeonah Kim, Minsu Kim, Sungsoo Ahn, and Jinkyoo Park. Symmetric exploration in combinato-
rial optimization is free! arXiv preprint arXiv:2306.01276, 2023.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural com-
binatorial optimization. Advances in Neural Information Processing Systems, 35:1936–1949,
2022.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International conference on learning representations, 2019.

Bernhard H Korte, Jens Vygen, B Korte, and J Vygen. Combinatorial optimization, volume 1.
Springer, 2011.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Ma-
trix encoding networks for neural combinatorial optimization. Advances in Neural Information
Processing Systems, 34:5138–5149, 2021.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to iteratively solve routing problems with dual-aspect collaborative transformer. In
Advances in Neural Information Processing Systems, volume 34, pp. 11096–11107, 2021.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward. arXiv preprint arXiv:2405.14734, 2024.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement methodol-
ogy for fast chip design. Nature, 594(7862):207–212, 2021.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

Wenbin Ouyang, Yisen Wang, Paul Weng, and Shaochen Han. Generalization in deep rl for tsp
problems via equivariance and local search. arXiv preprint arXiv:2110.03595, 2021.

Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Dover Publications, 1998.

Ryan Park, Rafael Rafailov, Stefano Ermon, and Chelsea Finn. Disentangling length from quality
in direct preference optimization. arXiv preprint arXiv:2403.19159, 2024.

Robin L Plackett. The analysis of permutations. Journal of the Royal Statistical Society Series C:
Applied Statistics, 24(2):193–202, 1975.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combina-
torial optimization problems. Advances in Neural Information Processing Systems, 35:25531–
25546, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Nasrin Sultana, Jeffrey Chan, A Kai Qin, and Tabinda Sarwar. Learning vehicle routing problems
using policy optimisation. arXiv preprint arXiv:2012.13269, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neigh-
borhood. Computers & Operations Research, 140:105643, 2022.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in neural
information processing systems, pp. 2692–2700, 2015.

Chenguang Wang, Zhouliang Yu, Stephen McAleer, Tianshu Yu, and Yaodong Yang. Asp: Learn a
universal neural solver! IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fürnkranz. A survey of preference-
based reinforcement learning methods. Journal of Machine Learning Research, 18(136):1–46,
2017.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems. IEEE transactions on neural networks and learning systems,
33(9):5057–5069, 2021.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 12042–12049, 2021a.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Neurolkh: Combining deep learning model
with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem. Advances in
Neural Information Processing Systems, 34:7472–7483, 2021b.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: Neural-enhanced ant
systems for combinatorial optimization. In Advances in Neural Information Processing Systems,
2023.

Zeyang Zhang, Ziwei Zhang, Xin Wang, and Wenwu Zhu. Learning to solve travelling salesman
problem with hardness-adaptive curriculum. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2022.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In International Conference on Machine Learning,
2023.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ILLUSTRATION OF THE PO FRAMEWORK

Figure 4: Framework of the Preference Optimization (PO) Algorithm. This figure illustrates
the workflow of the PO algorithm. The process starts with the parameterized Encoder-Decoder
module (left), which samples solution trajectories (τ1, τ2, . . .) for a given COP, forming the Origin
Solutions. In the Preference Comparison module (center), pairwise comparisons are conducted
between solutions based on their performance (e.g., trajectory length). The arrows indicate pref-
erence relationships (e.g., when len(B) < len(A), B is preferred over A), and these preferences
are used to compute the PO Loss. The Optional Local Search step (bottom) refines selected solu-
tions (τ) by applying search techniques (e.g., 2-Opt), producing improved solutions (LS(τ)). These
refined solutions contribute additional gradient signals (Lfinetune) during the fine-tuning stage. This
framework illustrate how PO transforms quantitative rewards into qualitative preferences, ensuring
robust training with or without local search.

B COMBINATORIAL OPTIMIZATION PROBLEMS: TSP AND CVRP

We provide concise introductions to two fundamental combinatorial optimization problems: the
Traveling Salesman Problem (TSP) and the Capacitated Vehicle Routing Problem (CVRP).

B.1 TRAVELING SALESMAN PROBLEM

The Traveling Salesman Problem (TSP) seeks to determine the shortest possible route that visits each
city exactly once and returns to the origin city. Formally, given a set of cities C = {c1, c2, . . . , cn}
and a distance matrix D where Di,j represents the distance between cities ci and cj , the objective is
to find a trajectory τ = (c1, c2, . . . , cn, c1) that minimizes the total travel distance:

min
τ

n∑
k=1

Dτ(k),τ(k+1).

Subject to:
τ is a permutation of C, τ(n+ 1) = τ(1).

Here, τ(k) denotes the k-th city in the trajectory, and the constraint τ(n + 1) = τ(1) ensures that
the tour returns to the starting city.

B.2 CAPACITATED VEHICLE ROUTING PROBLEM

The Capacitated Vehicle Routing Problem (CVRP) extends the TSP by introducing multiple vehicles
with limited carrying capacities. The goal is to determine the optimal set of routes for a fleet of ve-
hicles to deliver goods to a set of customers, minimizing the total distance traveled while respecting
the capacity constraints of the vehicles.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Formally, given:

• A depot c0,

• A set of customers C = {c1, c2, . . . , cn},
• A demand di for each customer ci,

• A distance matrix D where Di,j represents the distance between locations ci and cj ,

• A fleet of m identical vehicles, each with capacity Q,

the objective is to assign trajectories {τ1, τ2, . . . , τm} to the vehicles such that each customer is
visited exactly once, the total demand on any trajectory does not exceed the vehicle capacity Q, and
the total distance traveled by all vehicles is minimized:

min
{τ1,τ2,...,τm}

m∑
k=1

|τk|−1∑
l=1

Dτk(l),τk(l+1).

Subject to:
τk(1) = τk(|τk|) = c0, ∀k ∈ {1, 2, . . . ,m},

m⋃
k=1

{τk(2), τk(3), . . . , τk(|τk| − 1)} = C,

τk(i) ̸= τk(j) ∀k ∈ {1, 2, . . . ,m},∀i ̸= j,∑
ci∈τk

di ≤ Q, ∀k ∈ {1, 2, . . . ,m}.

Here, τk(l) denotes the l-th location in the trajectory τk assigned to vehicle k. The constraints ensure
that:

• Each trajectory starts and ends at the depot c0.

• Every customer is visited exactly once across all trajectories.

• No customer is visited more than once within the same trajectory.

• The total demand served by each vehicle does not exceed its capacity Q.

B.3 TRAJECTORY REPRESENTATION

In both TSP and CVRP, a trajectory τ represents a sequence of actions or decisions made by the pol-
icy to construct a solution. For TSP, τ is a single cyclic permutation of the cities, whereas for CVRP,
τ comprises multiple routes, each assigned to a vehicle. Our Preference Optimization framework
utilizes these trajectories to model and compare solution quality through preference signals derived
from statistical comparison models.

B.4 FLEXIBLE FLOW SHOP PROBLEM

The Flexible Flow Shop Problem (FFSP) is a combinatorial optimization problem commonly en-
countered in scheduling tasks. It generalizes the classic flow shop problem by allowing multiple
parallel machines at each stage, where jobs can be processed on any machine within a stage. The
primary goal is to assign and sequence jobs across stages to minimize the makespan, which is the
total time required to complete all jobs.

The optimization objective for FFSP can be mathematically formulated as:

min
σ,x

Cmax = max
j∈J

{
Cms

j

}
,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

subject to:

Cms
j = Sms

j + pms
j , ∀j ∈ J , ∀ms ∈M,

Sms
j ≥ C

ms−1

j , ∀j ∈ J , ∀ms−1 ∈M,

Sms
j ≥ Cms

j′ , ∀(j, j′) ∈ J , if σ(j) > σ(j′),

xj,ms
= 1, if job j is assigned to machine ms,∑

ms∈M
xj,ms

= 1, ∀j ∈ J .

Here: J is the set of jobs.M is the set of machines at each stage. σ represents the sequence of jobs.
x is the assignment matrix of jobs to machines. Sms

j is the start time of job j on machine ms. Cms
j

is the completion time of job j on machine ms. pms
j is the processing time of job j on machine ms.

Cmax is the makespan to be minimized.

The constraints ensure that jobs are scheduled sequentially on machines, maintain precedence, and
adhere to the assignment rules. The FFSP is NP-hard and challenging to solve for large-scale in-
stances.

C PREFERENCE MODELS

In this section, we provide a concise overview of three widely used preference models: the Bradley-
Terry (BT) model, the Thurstone model, and the Plackett-Luce (PL) model. These models are
fundamental in statistical comparison modeling and form the basis for transforming quantitative
reward signals into qualitative preference signals in our Preference Optimization (PO) framework.

C.1 BRADLEY-TERRY MODEL

The Bradley-Terry model is a probabilistic model used for pairwise comparisons. It assigns a posi-
tive parameter to each trajectory τi, representing its preference strength. The probability that trajec-
tory τi is preferred over trajectory τj is given by:

p(τi ≻ τj) =
exp(r̂(τi))

exp(r̂(τi)) + exp(r̂(τj))

=
1

1 + exp(−(r̂(τi)− r̂(τj)))

= σ(r̂(τi)− r̂(τj)).

This model assumes that the preference between any two trajectories depends solely on their respec-
tive preference strengths, and it maintains the property of transitivity.

C.2 THURSTONE MODEL

The Thurstone model, also known as the Thurstone-Mosteller model, is based on the assumption that
each trajectory τi has an associated latent score si, which is normally distributed. The probability
that trajectory τi is preferred over trajectory τj is modeled as:

p(τi ≻ τj) = Φ

(
r̂(τi)− r̂(τj)

σ

)
,

where Φ is the cumulative distribution function of the standard normal distribution, and σ represents
the standard deviation of the underlying noise. This model accounts for uncertainty in preferences
and allows for probabilistic interpretation of comparisons. We adopt a normal distribution through-
out this work.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C.3 PLACKETT-LUCE MODEL

The Plackett-Luce model extends pairwise comparisons to handle full rankings of multiple trajec-
tories. It assigns a positive parameter λi to each trajectory τi, representing its utility. Given a set
of trajectories to be ranked, the probability of observing a particular ranking τ = (τ1, τ2, . . . , τn) is
given by:

P (τ) =

n∏
k=1

exp(r̂(τk))∑n
j=k exp(r̂(τj))

.

This model is particularly useful for modeling complete rankings and can be extended to partial
rankings. It preserves the property of independence of irrelevant alternatives and allows for flexible
representation of preferences over multiple trajectories.

D MATHEMATICAL DERIVATIONS

D.1 DERIVING THE OPTIMAL POLICY FOR ENTROPY-REGULARIZED RL OBJECTIVE

In this section, we derive the analytical solution for the optimal policy in an entropy-regularized
reinforcement learning objective.

Starting from the entropy-regularized RL objective in Eq. 3:

max
π

Ex∼D, τ∼π(τ |x) [r(x, τ)] + αH (π(τ | x)) ,

where H (π(τ | x)) = −Eτ∼π(τ |x) (log π(τ | x)) is the entropy of the policy, and α > 0 is the
regularization coefficient.

We can rewrite the objective as:

max
π

Ex∼D, τ∼π(τ |x) [r(x, τ)− α log π(τ | x)] . (10)

Our goal is to find the policy π∗(τ | x) that maximizes this objective. To facilitate the derivation,
we can express the problem as a minimization:

min
π

Ex∼D, τ∼π(τ |x)

[
log π(τ | x)− 1

α
r(x, τ)

]
. (11)

Notice that:

log π(τ | x)− 1

α
r(x, τ) = log

π(τ | x)
exp

(
1
αr(x, τ)

) . (12)

Introduce the partition function Z(x) =
∑

τ exp
(
1
αr(x, τ)

)
, and define the probability distribution:

π∗(τ | x) = 1

Z(x)
exp

(
1

α
r(x, τ)

)
. (13)

This defines a valid probability distribution over trajectories τ for each instance x, as π∗(τ | x) > 0
and

∑
τ π

∗(τ | x) = 1.

Substituting Eq. equation 13 into Eq. equation 12, we have:

log π(τ | x)− 1

α
r(x, τ) = log

π(τ | x)
π∗(τ | x)

+ logZ(x). (14)

Therefore, the minimization problem in Eq. equation 11 becomes:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

min
π

Ex∼D

[
Eτ∼π(τ |x)

[
log

π(τ | x)
π∗(τ | x)

]
+ logZ(x)

]
. (15)

Since logZ(x) does not depend on π, minimizing over π reduces to minimizing the Kullback-
Leibler (KL) divergence between π(τ | x) and π∗(τ | x):

min
π

Ex∼D [DKL (π(τ | x) ∥ π∗(τ | x))] , (16)

where the KL divergence is defined as:

DKL (π(τ | x) ∥ π∗(τ | x)) = Eτ∼π(τ |x)

[
log

π(τ | x)
π∗(τ | x)

]
.

The KL divergence is minimized when π(τ | x) = π∗(τ | x) almost everywhere. Therefore, the
optimal policy is:

π∗(τ | x) = 1

Z(x)
exp

(
1

α
r(x, τ)

)
. (17)

This shows that the optimal policy under the entropy-regularized RL objective is proportional to the
exponentiated reward function, normalized by the partition function Z(x).

Conclusion. We have derived that the optimal policy π∗(τ | x) in the entropy-regularized RL
framework is given by Eq. equation 17. This policy assigns higher probabilities to trajectories with
higher rewards, balanced by the entropy regularization parameter α, which controls the trade-off
between exploitation and exploration.

D.2 PROOF OF PROPOSITION 1

Proposition 2 Let r̂(x, τ) be a reward function consistent with the Bradley-Terry, Thurstone, or
Plackett-Luce models. For a given reward function r̂′(x, τ), if there exists a function h(x) such that
r̂′(x, τ) = r̂(x, τ) − h(x), then both r̂(x, τ) and r̂′(x, τ) induce the same optimal policy in the
context of an entropy-regularized reinforcement learning problem.

Proof: In an entropy-regularized reinforcement learning framework, the optimal policy π∗(τ | x)
for a given reward function r̂(x, τ) is given by:

π∗(τ | x) = 1

Z(x)
exp

(
1

α
r̂(x, τ)

)
,

where α > 0 is the temperature parameter (inverse of the regularization coefficient), and Z(x) is the
partition function defined as:

Z(x) =
∑
τ

exp

(
1

α
r̂(x, τ)

)
.

Similarly, for the reward function r̂′(x, τ) = r̂(x, τ)− h(x), the optimal policy π′∗(τ | x) is:

π′∗(τ | x) = 1

Z ′(x)
exp

(
1

α
r̂′(x, τ)

)
=

1

Z ′(x)
exp

(
1

α
[r̂(x, τ)− h(x)]

)
, (18)

where Z ′(x) is the partition function corresponding to r̂′(x, τ):

Z ′(x) =
∑
τ

exp

(
1

α
r̂′(x, τ)

)
=
∑
τ

exp

(
1

α
[r̂(x, τ)− h(x)]

)
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Simplifying the exponent in Equation equation 18:

exp

(
1

α
[r̂(x, τ)− h(x)]

)
= exp

(
1

α
r̂(x, τ)

)
exp

(
− 1

α
h(x)

)
.

Since h(x) depends only on x and not on τ , the term exp
(
− 1

αh(x)
)

is a constant with respect to τ .
Therefore, we can rewrite Equation equation 18 as:

π′∗(τ | x) = 1

Z ′(x)
exp

(
− 1

α
h(x)

)
exp

(
1

α
r̂(x, τ)

)
. (19)

Combining constants:

π′∗(τ | x) =

(
exp

(
− 1

αh(x)
)

Z ′(x)

)
exp

(
1

α
r̂(x, τ)

)
.

Notice that the term
exp(− 1

αh(x))
Z′(x) is a normalization constant that ensures

∑
τ π

′∗(τ | x) = 1.
Similarly, for π∗(τ | x), the normalization constant is 1

Z(x) .

Since both π∗(τ | x) and π′∗(τ | x) are proportional to exp
(
1
α r̂(x, τ)

)
, they differ only by their

respective normalization constants. Therefore, they assign the same relative probabilities to trajec-
tories τ .

To formalize this, consider any two trajectories τ1 and τ2. The ratio of their probabilities under
π∗(τ | x) is:

π∗(τ1 | x)
π∗(τ2 | x)

=
exp

(
1
α r̂(x, τ1)

)
exp

(
1
α r̂(x, τ2)

) = exp

(
1

α
[r̂(x, τ1)− r̂(x, τ2)]

)
. (20)

Similarly, under π′∗(τ | x):

π′∗(τ1 | x)
π′∗(τ2 | x)

=
exp

(
1
α r̂

′(x, τ1)
)

exp
(
1
α r̂

′(x, τ2)
) = exp

(
1

α
[r̂′(x, τ1)− r̂′(x, τ2)]

)
. (21)

Substituting r̂′(x, τ) = r̂(x, τ)− h(x):

r̂′(x, τ1)− r̂′(x, τ2) = [r̂(x, τ1)− h(x)]− [r̂(x, τ2)− h(x)] = r̂(x, τ1)− r̂(x, τ2).

Therefore, the ratios in Equations equation 20 and equation 21 are equal:

π∗(τ1 | x)
π∗(τ2 | x)

=
π′∗(τ1 | x)
π′∗(τ2 | x)

.

Since the policies assign the same relative probabilities to all trajectories, and they are both properly
normalized, it follows that:

π∗(τ | x) = π′∗(τ | x), ∀τ.

Thus, r̂(x, τ) and r̂′(x, τ) induce the same optimal policy in the context of an entropy-regularized
reinforcement learning problem.

This result holds for the Bradley-Terry, Thurstone, and Plackett-Luce models because these models
relate preferences to differences in reward values, and any constant shift h(x) in the reward function
does not affect the differences between reward values for different trajectories.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E EXPERIMENT DETAIL AND SETTING

E.1 IMPLEMENTATION DETAILS OF THE CODE

The implementation of the Preference Optimization (PO) algorithm in Python using PyTorch is as
follows:

import torch.nn.functional as F
def preference_optimazation(reward, log_prob):
"""

reward: reward for all solutions, shape(B, P)
log_prob: policy log prob, shape(B, P)

"""
preference = reward[:, :, None] > reward[:, None, :]
log_prob_pair = log_prob[:, :, None] - log_prob[:, None, :]
pf_log = torch.log(F.sigmoid(self.alpha * log_prob_pair))
loss = -torch.mean(pf_log * preference)

return loss

E.2 HYPERPARAMETER SETTING

In our experimental setup, we set the tanh clip to 50, which has been shown to facilitate the training
process Jin et al. (2023). The following table presents the parameter settings for the four training
frameworks: POMO Kwon et al. (2020), Pointerformer Jin et al. (2023), AM Kool et al. (2019), and
Sym-NCO Kim et al. (2023).

POMO framework hyperparameter settings:

Table 3: Hyperparameter setting for POMO.

TSP CVRP

Alpha 0.05 0.03
Preference Function BT BT

Epochs 2000 4000
Epochs (Finetune) 100 200
Epoch Size 100000 50000
Encoder Layer Number 6 6
Batch Size 64 64
Embedding Dimension 128 128
Attention Head Number 8 8
Feed Forward Dimension 512 512
Tanh Clip 50 50
Learning Rate 3e-4 3e-4

Pointerformer framework hyperparameter settings:

Table 4: Hyperparameter setting for Pointerformer.

TSP

Alpha 0.05
Preference Function BT

Epochs 2000
Epoch Size 100000
Batch Size 64
Embedding Dimension 128
Attention Head Number 8
Feed Forward Dimension 512
Encoder Layer Number 6
Learning Rate 1e-4

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

AM framework hyperparameter settings. Batch size of 256 contains 16 instances, each with 16
solutions, totaling 256 trajectories:

Table 5: Hyperparameter setting for AM.

TSP CVRP

Alpha 0.05 0.03
Preference Function BT BT

Epochs 100 100
Epoch Size 1280000 1280000
Encoder Layer Number 3 3
Batch Size 256 256
Embedding Dimension 128 128
Attention Head Number 8 8
Tanh Clip 50 50
Learning Rate 1e-4 1e-4

Sym-NCO framework hyperparameter settings:

Table 6: Hyperparameter setting for Sym-NCO.

TSP CVRP

Alpha 0.05 0.03
Preference Function BT BT

Epochs 2000 4000
Epoch Size 100000 50000
Batch Size 64 64
SR Size 2 2
Embedding Dimension 128 128
Attention Head Number 8 8
Feed Forward Dimension 512 512
Encoder Layer Number 6 6
Learning Rate 1e-4 1e-4

DIMES framework hyperparameter settings:

Table 7: Hyperparameter Setting for DIMES.

TSP500 TSP1000 TSP10000
Alpha 2 2 2
Preference Function Identity Identity Identity
KNN K 50 50 50
Outer Opt AdamW AdamW AdamW
Outer Opt LR 0.001 0.001 0.001
Outer Opt WD 1e-5 1e-5 1e-5
Net Units 32 32 32
Net Act SiLU SiLU SiLU
Emb Depth 12 12 12
Par Depth 3 3 3
Training Batch Size 3 3 3

MATNET framework hyperparameter settings:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 8: Hyperparameter Setting for MATNET.

FFSP20 FFSP50 FFSP100
Alpha 1.5 1.5 1
Preference Function Identity Identity Identity
Pomo Size 24 24 24
Epochs 100 150 200
Epoch Size 1000 1000 1000
Encoder Layer Number 3 3 3
Batch Size 50 50 50
Embedding Dimension 256 256 256
Attention Head Number 16 16 16
Feed Forward Dimension 512 512 512
Tanh Clip 10 10 10
Learning Rate 1e-4 1e-4 1e-4

E.3 POMO TRAINING RESULTS

Figure 5 compares the training efficiency of the PO and RL algorithms for TSP and CVRP. In the
TSP task (a), PO reaches an objective value of 7.785 at epoch 400, while RL requires up to 1600
epochs to achieve comparable performance, demonstrating the sample efficiency of PO. This differ-
ence becomes more pronounced as training progresses. In the more challenging CVRP environment
(b), PO continues to outperform RL, indicating its robustness and effectiveness in handling more
complex optimization problems.

For TSP, each training epoch takes approximately 9 minutes, while each finetuning epoch with local
search takes about 12 minutes. For CVRP, a training epoch takes about 8 minutes, and a finetuning
epoch takes around 20 minutes. Since local search is executed on the CPU, it does not introduce
additional GPU inference time. The finetuning phase constitutes 5% of the total epochs, adding a
manageable overhead to the overall training time.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Epoch

8.05
8

7.95

7.9

7.85

7.8

7.79

A
v
g.

O
b
j

RL

PO

(a)

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000
Epoch

16
15.95

15.87

15.83

A
v
g.

O
b
j

RL

PO

(b)

Figure 5: (a) Training curve for TSP (N=100) over 2000 epochs. (b) Training curve for CVRP
(N=100) over 4000 epochs.

F ADDITIONAL EXPERIMENTS.

F.1 GENERALIZATION

We conducted a zero-shot cross-distribution evaluation, where models were tested on data from
unseen distributions. Since models trained purely with RL tend to overfit to the training data dis-
tribution Zhou et al. (2023), they may struggle with different reward functions in new distributions.
However, training with PO helps mitigate this overfitting by avoiding the need for ground-truth re-
ward signals. Following the diverse distribution setup in Bi et al. (2022), the results are summarized

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

in Table 9. Our findings show that the model trained with PO outperforms the original RL-based
model across all scenarios.

Table 9: Zero-shot generalization experiment results. The Len and Gap are average on 10k instances.

Method Cluster Expansion Explosion Grid Implosion
Len.↓ Gap Len.↓ Gap Len.↓ Gap Len.↓ Gap Len.↓ Gap

T
SP

LKH 3.66 0.00% 5.38 0.00% 5.83 0.00% 7.79 0.00% 7.61 0.00%
POMO-RL 3.74 2.09% 5.41 0.60% 5.85 0.20% 7.80 0.16% 7.63 0.15%
POMO-PO 3.70 1.12% 5.40 0.34% 5.84 0.06% 7.79 0.04% 7.62 0.05%

C
V

R
P HGS 7.79 0.00% 11.38 0.00% 12.35 0.00% 15.59 0.00% 15.47 0.00%

POMO-RL 7.97 2.28% 11.51 1.29% 12.48 0.97% 15.79 0.86% 15.60 0.87%
POMO-PO 7.93 1.73% 11.49 1.12% 12.45 0.76% 15.76 0.63% 15.57 0.65%

F.2 EXPERIMENTS ON LARGE SCALE PROBLEMS

We further conduct experiments on large-scale TSP problems to validate the effectiveness of PO
using the DIMES model Qiu et al. (2022). DIMES leverages a reinforcement learning and meta-
learning framework to train a parameterized heatmap, with REINFORCE as the optimization method
in their original experiments. Solutions are generated by combining the heatmap with various heuris-
tic methods, such as greedy decoding, MCTS, 2-Opt, or fine-tuning methods like Active Search
(AS), which further train the solver for each instance.

As summarized in Table 10, our experiments demonstrate that PO improves the quality of the
heatmap representations compared to REINFORCE. Across all decoding strategies (e.g., greedy,
sampling, MCTS, AS), PO-trained models consistently outperform their REINFORCE-trained
counterparts in terms of solution quality, as evidenced by lower gap percentages across TSP500,
TSP1000, and TSP10000. This confirms that PO enhances the learned policy, making it more effec-
tive regardless of the heuristic decoding method applied.

Table 10: Experiment results on large scale TSP.

Method TSP500 TSP1000 TSP10000

Len. ↓ Gap Time Len. ↓ Gap Time Len. ↓ Gap Time

LKH-3 16.55 0.00% 46.28m 23.12 0.00% 2.57h 71.79 0.00% 8.8h

DIMES-G(RL) 19.30 16.62% 0.8m 26.58 14.96% 1.5m 86.38 20.36% 2.3m
DIMES-G(PO) 18.82 13.73% 0.8m 26.22 13.39% 1.5m 85.33 18.87% 2.3m
DIMES-S(RL) 19.11 15.47% 0.9m 26.37 14.05% 1.8m 85.79 19.50% 2.4m
DIMES-S(PO) 18.75 13.29% 0.9m 26.07 12.74% 1.8m 85.21 18.67% 2.4m
DIMES-AS(RL) 17.82 7.68% 2h 24.99 8.09% 4.3h 80.68 12.39% 2.5h
DIMES-AS(PO) 17.78 7.42% 2h 24.73 6.97% 4.3h 80.14 11.64% 2.5h
DIMES-MCTS(RL) 16.93 2.30% 3m 23.96 3.65% 6.3m 74.83 4.24% 27m
DIMES-MCTS(PO) 16.89 2.05% 3m 23.96 3.65% 6.3m 74.77 4.15% 27m

23

	Introduction
	Related Work
	Methodology
	Reinforcement Learning for Combinatorial Optimization Problems
	Preference-Based Reinforcement Learning
	Preference Optimization for Combinatorial Optimization Problems
	Compatibility with Local Search (Optional)

	Experiments
	Comparison with Prior RL Algorithms on Standard Benchmarks
	How efficiently does PO balance exploitation and exploration?

	Conclusion
	Illustration of the PO framework
	Combinatorial Optimization Problems: TSP and CVRP
	Traveling Salesman Problem
	Capacitated Vehicle Routing Problem
	Trajectory Representation
	Flexible Flow Shop Problem

	Preference Models
	Bradley-Terry Model
	Thurstone Model
	Plackett-Luce Model

	Mathematical Derivations
	Deriving the Optimal Policy for Entropy-Regularized RL Objective
	Proof of Proposition 1

	Experiment Detail and Setting
	Implementation Details of the Code
	Hyperparameter Setting
	POMO Training Results

	Additional Experiments.
	Generalization
	Experiments on Large Scale Problems

