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Abstract

Cross-sectional prediction is common in many domains such as healthcare, including fore-
casting tasks using electronic health records, where different patients form a cross-section.
We focus on the task of constructing valid prediction intervals (PIs) in time series regression
with a cross-section. A prediction interval is considered valid if it covers the true response
with (a pre-specified) high probability. We first distinguish between two notions of validity
in such a setting: cross-sectional and longitudinal. Cross-sectional validity is concerned
with validity across the cross-section of the time series data, while longitudinal validity
accounts for the temporal dimension. Coverage guarantees along both these dimensions are
ideally desirable; however, we show that distribution-free longitudinal validity is theoretically
impossible. Despite this limitation, we propose Conformal Prediction with Temporal De-
pendence (CPTD), a procedure that is able to maintain strict cross-sectional validity while
improving longitudinal coverage. CPTD is post-hoc and light-weight, and can easily be
used in conjunction with any prediction model as long as a calibration set is available. We
focus on neural networks due to their ability to model complicated data such as diagnosis
codes for time series regression, and perform extensive experimental validation to verify the
efficacy of our approach. We find that CPTD outperforms baselines on a variety of datasets
by improving longitudinal coverage and often providing more efficient (narrower) PIs. Our
code is available at https://github.com/zlin7/CPTD.

1 Introduction

Suppose we are given N independent and identically distributed (i.i.d) or exchangeable time series (TS),
denoted {Si}N

i=1. Assume that each Si is sampled from an arbitrary distribution PS , and consists of
temporally-dependent observations Si = [Zi,1 . . . , Zi,t, . . . , Zi,T ]. Each Zi,t is a pair (Xi,t, Yi,t) comprising of
covariates Xi,t ∈ Rd and the response Yi,t ∈ R. Given data {ZN+1,t′}t

t′=1 until time t for a new time series
SN+1, the time series regression problem amounts to predicting the response YN+1,t+1 at an unknown time
t + 1. An illustrative example is predicting the white blood cell count (WBCC) of a patient after she is

∗During the initiation and pursuance of this research, the author’s primary affiliation was MIT.
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Figure 1: The figure illustrates cross-sectional validity vs. longitudinal validity, which can be seen
as inter- and intra- time series coverage guarantees. The black curves are predictions by the model,
and the shaded blue bands denote the PIs. Red crosses are the ground-truth y not covered by
PIs, while blue dots are the ground-truth y which are covered. Ideally, we want a small number
of red crosses (i.e., misses) that are randomly distributed across samples (cross-sectionally valid)
and along the time dimension within each TS (longitudinally valid). The leftmost illustration (A)
features PIs that are not valid in either sense i.e. Y is never covered, neither across time series nor
across time within a single time series. (B) shows a scenario with cross-sectional validity: for any
t, the majority of TS are covered. It is however longitudinally invalid, because the PI of some TS
has zero coverage. C (right) shows both cross-sectional and longitudinal validity.

administered an antibiotic. In such a case, Xi,t could include covariates such as the weight or blood pressure
of the i-th patient t days after the antiobiotic is given, and Yi,t the WBCC of this patient.

While obtaining accurate point forecasts is often of interest, our chief concern is in quantifying the uncertainty
of each prediction by constructing valid prediction intervals (PI). More precisely, we want to obtain an interval
estimate Ĉi,t ⊆ R, that covers Yi,t with a pre-selected high probability (1− α). Such a Ĉi,t is generated by
an interval estimator Ĉ·,· utilizing available training data. We focus on scenarios with both cross-sectional
and time series aspects such as electronic health record data (such as in Stankevičiūtė et al. (2021)), where
different patients together form a cross-section. In such a setting there are two distinct notions of validity:
cross-sectional validity and longitudinal validity. These notions are illustrated in Figure 1. Cross-sectional
validity is a type of inter-time series coverage requirement, whereas longitudinal validity focuses on coverage
along the temporal dimension in an individual time series. An effective uncertainty quantification method
should ideally incorporate both notions satisfactorily.

In general, conformal prediction, owing to its distribution-free and model-agnostic nature, has gradually seen
wider adoption for complicated models such as neural networks (Fisch et al., 2021; Angelopoulos et al., 2021;
Bates et al., 2021; Lin et al., 2021; Zhang et al., 2021; Cortés-Ciriano & Bender, 2019; Angelopoulos et al.,
2022). In the time series context, recent research effort, including Gibbs & Candes (2021); Zaffran et al. (2022);
Xu & Xie (2021), has focused on obtaining PIs using variants of conformal prediction. However, these works
invariably only consider the target TS, ignoring cross-sectional information along with the attendant notion
of coverage. Moreover, such methods typically provide no longitudinal validity without strong distributional
assumptions. The work of Stankevičiūtė et al. (2021), which also uses conformal prediction, is the only
method that operates in the cross-sectional setting. However, Stankevičiūtė et al. (2021) ends up ignoring the
temporal information while constructing PIs at different steps. On a different tack, popular (approximately)
Bayesian methods such as Chen et al. (2014); Welling & Teh (2011); Neal (1992); Louizos & Welling (2017);
Kingma & Welling (2014); Gal & Ghahramani (2016); Lakshminarayanan et al. (2017); Wilson & Izmailov
(2020) could also be adapted to time series contexts (Fortunato et al., 2017; Caceres et al., 2021). However,
such methods require changing the underlying regression model and typically provide no coverage guarantees.

A method to construct valid PIs that can handle both aforementioned notions of validity simultaneously,
while preferably also being light-weight and post-hoc, is missing from the literature. In this paper, we fill this
gap by resorting to the framework of conformal prediction. Our contributions are summarized as follows:
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• We first dissect coverage guarantees in the cross-sectional time series setting to shed light on both cross-
sectional and longitudinal validity. We show that longitudinal coverage is impossible to achieve in a
distribution-free manner.

• Despite the impossibility of distribution-free longitudinal validity, we propose a general and effective
procedure (dubbed Conformal Prediction with Temporal Dependence or CPTD for short) to incorporate
temporal information in conformal prediction for time series, with a focus to improve longitudinal coverage.

• We theoretically establish the cross-sectional validity of the prediction intervals obtained by our procedure.
• Through extensive experimentation, we show that CPTD is able to maintain cross-sectional validity while

improving longitudinal coverage.

2 Related Works

Work most related to ours falls along a few closely related axes. We summarize some such work below to
contextualize our contributions.

Bayesian Uncertainty Quantification is a popular line of research in uncertainty quantification for neural
networks. While the posterior computation is almost always intractable, various approximations have been
proposed, including variants of Bayesian learning based on Markov Chain Monte Carlo Chen et al. (2014);
Welling & Teh (2011); Neal (1992), variational inference methods Louizos & Welling (2017); Kingma & Welling
(2014) and Monte-Carlo Dropout Gal & Ghahramani (2016). Another popular uncertainty quantification
method sometimes considered approximately Bayesian is Deep Ensemble Lakshminarayanan et al. (2017).
Bayesian methods have also been extended to RNNs Fortunato et al. (2017); Caceres et al. (2021). The
credible intervals provided by approximate Bayesian methods, however, do not provide frequentist coverage
guarantees. Moreover, modifications to the network structure (such as the introduction of many Dropout
layers), which could be considered additional constraints, could hurt model performance. In contrast to such
methods, CPTD comes with provable coverage guarantees. More specifically, it is cross-sectionally valid, and
improves longitudinal coverage. CPTD is also post-hoc, and does not interfere with the base neural network.

Quantile Prediction methods directly generate a prediction interval for each data point, instead of providing
a point estimate. Such methods typically predict two scalars, representing the upper and lower bound for the
PIs, with a pre-specified coverage level 1− α. The loss for point estimation (such as MSE) is thus replaced
with the “pinball”/quantile loss Steinwart & Christmann (2011); Koenker & Bassett (1978), which takes α as
a parameter. Recent works applied quantile prediction to time series forecasting settings via direct prediction
by an RNN Wen et al. (2017) or by combining RNN and linear splines to predict quantiles in a nonparametric
manner Gasthaus et al. (2019). Such methods still do not provide provable coverage guarantees, and can
suffer from the issue of quantile crossing as in the case of Wen et al. (2017).

Conformal Prediction (CP): Pioneered by Vovk et al. (2005), conformal prediction (CP) provides methods
to construct prediction intervals or regions that are guaranteed to cover the true response with a probability
≥ 1− α, under the exchangeability assumption. Recently, CP has seen wider attention and has been heavily
explored in deep learning (Lin et al. (2021); Angelopoulos et al. (2021); Stankevičiūtė et al. (2021)) due to its
distribution-free nature, which makes it suitable for constructing valid PIs for complicated models like deep
neural networks. It is worth noting that although most CP methods apply to point-estimators, methods like
conformalized quantile regression Romano et al. (2019) can also be applied to quantile estimators like Wen
et al. (2017). CPTD is a conformal prediction method, but in the cross-sectional time series setting.

Exchangeable Time Series and Cross-Sectional Validity: The work that is most relevant to ours
is Stankevičiūtė et al. (2021), which directly applies (split) conformal prediction (Vovk et al. (2005)) assuming
cross-sectional exchangeability of the time series1. It however studies only the multi-horizon prediction setting,
completely ignoring longitudinal validity. Although (cross-sectionally) valid, Stankevičiūtė et al. (2021) leads
to unbalanced coverage (i.e. some TS receives poor coverage longitudinally while others high) and inefficient
PIs. To the best of our knowledge, no other works explore the cross-sectional exchangeability in the context
of time series forecasting.

1The authors of Stankevičiūtė et al. (2021) did not the term “cross-setional”, but this is exactly what they mean.
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Long and Single Time Series and Longitudinal Validity: Longitudinal validity is the type of validity
that most works studying PI generation for time series focus on. Such works, including Gibbs & Candes
(2021); Zaffran et al. (2022); Barber et al. (2022); Xu & Xie (2021), focus on the task of creating a PI at each
step in a very long time series (often with over thousands of steps). For example, Gibbs & Candes (2021)
propose a distribution-free conformal prediction method called ACI, which uses the realized residuals as
conformal scores, and adapts the α at each time basing on the average coverage rate of recent PIs. To achieve
distribution-free marginal validity, ACI has to (often) create non-informative infinitely-wide PIs, which is
reasonable given the intrinsic difficulty stemming from the lack of exchangeability. Such methods also do not
apply to our setting, because they typically require a very long window to estimate the error distribution for
a particular time series as a burn-in period. Furthermore, they do not provide a way to leverage the rich
information from the cross-section.

We now proceed to first discuss some preliminaries that will be required to describe CPTD in detail.

3 Preliminaries

Given a target coverage level 1−α, we want to construct PIs that will cover the true response Y for a specific
time series, and at a specific time step, with probability at least 1 − α. However, we have not specified
what kind of probability (and thus validity2) we are referring to. In this section, we will formally define
cross-sectional and longitudinal validity, both important in our setting (See Figure 1 for an illustration).
However, before doing so, we will first state the basic exchangeability assumption, a staple of the conformal
prediction literature.
Definition 1. (The Exchangeability Assumption Vovk et al. (2005))A sequence of random variables,
Z1, Z2, . . . , Zn are exchangeable if the joint probability density distribution does not change under any
permutation applied to the subscript. That is, for any permutation π ∈ Sn, and every measurable set E ⊆ Zn:

P{(Z1, Z2, . . . , Zn) ∈ E} = P{(Zπ(1), Zπ(2), . . . , Zπ(n)) ∈ E} (1)

where each Zi ∈ Z (the corresponding measurable space for the random variable Zi).

Note that exchangeability is a weaker assumption than the “independent and identically distributed” (i.i.d.)
assumption. We extend the definition to a sequence of random time series:
Definition 2. (The Exchangeable Time Series Assumption) Given time series S1, S2, . . . , Sn where
Si = [Zi,1, . . . , Zi,T , . . .], we denote Zi,{tj}m

j=1
as the random variable comprised of the tuple (Zi,t1 , . . . , Zi,tm

).
Time series S1, S2, . . . , Sn are exchangeable if, for any finitely many t1 < · · · < tm, the random variables
Z1,{tj}m

j=1
, . . . , Zn,{tj}m

j=1
are exchangeable.

It should be clear that the exchangeability is “inter”-time series. Such an assumption could be reasonable in
many settings of interest. For instance, collecting electronic health data time series for different patients from
a hospital. Notice that Def. 2 reduces to Def. 1 when we have only one specific value of t. Throughout this
paper, we will assume S1, . . . , SN+1 are exchangeable time series.

3.1 Cross-sectional Validity

The first type of validity of PIs is what we refer to as the cross-sectional validity. This validity is widely
discussed in the non-time series regression settings, often referred to as just “validity” or “coverage guaranteee”
(e.g. in Barber et al. (2020)), but is rarely discussed in the context of time series regression. Cross-sectional
validity refers to the type of coverage guarantee when the probability of coverage is taken over the cross-section
i.e. across different points. The formal definition is as follows:
Definition 3. Prediction interval estimator Ĉ·,· is (1− α) cross-sectionally valid if, for any t + 1,

PSN+1∼PS
{YN+1,t+1 ∈ ĈN+1,t+1} ≥ 1− α. (2)

2Throughout the paper, “validity” and “coverage guarantee” are used interchangeably i.e. a “valid” PI is synonymous with a PI
with “coverage guarantee”.
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We will sometimes use an additional subscript α for Ĉ (i.e., Ĉα) to emphasize the target coverage level. As a
reminder, Ĉ·,·, the estimator, denotes the model used to generate a specific PI (a subset of R) for each i and t.

Symbol Meaning

Si = [Zi,1, . . . , Zi,T ] Time series
Si,:t the first t observations of Si

Zi,t = (Xi,t, Yi,t) Observation for the i-th time series at time t
PS Distribution of S
1 − α Coverage target
Ĉi,t Prediction interval for Yi,t

V (·) or Vi,t(·) Nonconformity score function
vi,t Nonconformity score associated with Yi,t

Q(β, ·) β quantile of ·

m̂ Normalizer used in CPTD nonconformity scores
g A permutation invariant function (for CPTD-R)

Table 1: Notations used in this paper

Using an example similar to one used earlier:
suppose we want to predict the WBCC of a
patient after the observation of some symp-
toms. In the first visit, there is really no time
series information that can be used. Thus, the
only type of coverage guarantee can only be
cross-sectional. In simple terms, we could con-
struct a cross-sectionally valid PI and say if we
keep sampling new patients and construct the
PI using the same procedure, about ≥ 1 − α
of the patients’ initial WBCC will fall in the
corresponding PI.

It might be worth a small digression here to note that the validity in Def. 3 is marginal. That is, the PI will
cover an “average patient” with probability ≥ 1 − α. If we only consider patients from a minority group,
the probability of coverage could be much lower, even if Ĉ is (cross-sectionally) valid. We direct interested
readers to Barber et al. (2020) for a more thoroughgoing discussion.

3.2 Longitudinal Validity

Following on the above example, in later visits of a particular patient, we would ideally like to construct valid
PIs that also consider information from previous visits. That is, we would like to use information already
revealed to us for improved coverage, regardless of the patient. As might be apparent, this already moves
beyond the purview of cross-sectional validity and leads to the notion of longitudinal validity:
Definition 4. Prediction interval Ĉ·,· is 1−α longitudinally valid if for almost every time series SN+1 ∼ PS

there exists a T0 such that:

t > T0 =⇒ PYN+1,t|SN+1,:t−1{YN+1,t ∈ ĈN+1,t} ≥ 1− α. (3)

We impose a threshold T0 because it should be clear that there is no temporal information that we can use for
small t such as YN+1,t=0. Here, the event A being true for “almost every” SN+1 means that the probability
of occurrence of A is one under PS . Note that the crucial difference between cross-sectional validity and
longitudinal validity is that the latter is similar to a “conditional validity”, indicating a coverage guarantee
conditional on a specific time series. Although highly desirable, it should be clear that this is a much stronger
type of coverage. In fact, we can show that distribution-free longitudinal validity is impossible to achieve
without using (many) infinitely-wide PIs that contain little information. We do so by adapting results on
conditional validity, such as those in Lei & Wasserman (2014); Barber et al. (2020). We formally state our
impossibility claim in the following theorem:
Theorem 3.1. (Impossibility of distribution-free finite-sample longitudinal validity) For any PS

with no atom3, suppose Ĉα is a 1−α longitudinally valid estimator as defined in Def. 4. Then, for almost all
SN+1 that we fix,

E[λ(Ĉα(XN+1,t+1, SN+1,:t))] =∞, (4)

where λ(·) denotes the Lebesgue measure. The expectation is over the randomness of the calibration set.

At a high level, we will construct a distribution very close to PS except for in a small region with low
probability mass. We will however require the distribution of Y in this new distribution to spread out on R.
Therefore, a distribution-free Ĉα is required to be (arbitrarily) wide as we take the limit. The actual proof is
deferred to the Appendix.
3A point s is an atom of PS if there exists ϵ > 0 such that PS{{s′ : d(s′, s) < δ)}} > ϵ for any δ > 0. d(·, ·) denotes the
Euclidean distance.
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Remarks: Theorem 3.1 suggests that for continuous distributions, any longitudinally valid PI estimator can
only give infinitely-wide (trivial) PIs all the time. This impossibility is due to the lack of exchangeability
on the time dimension. In the case of cross-sectional validity, we condition on one particular time-step,
but still have the room to leverage the fact that we have exchangeable patient records to construct the PI
(using conformal prediction. See Section 4). In the case of longitudinal validity, we condition on a particular
patient. However, we cannot make any exchangeability assumption along the time dimension. Indeed, such
an assumption would defeat the purpose of time series modeling; beside the fact that we cannot see the future
before making a prediction for the past.

We should also note that Theorem 3.1 does not preclude the use of temporal information in a meaningful way.
In fact, the main contribution of this paper is to incorporate temporal information to improve longitudinal
coverage while maintaining cross-sectional validity.

4 Conformal Prediction with Temporal Dependence (CPTD)

4.1 Conformal Prediction

For the task of generating valid prediction intervals, conformal prediction (CP) is a basket of powerful tools
with minimal assumptions on the underlying distribution. In this paper we will focus on the case of inductive
conformal prediction (Papadopoulos et al., 2002; Lei et al., 2015) (now often referred to as “split conformal”),
which is relatively light-weight, thus more suitable and widely used for tasks that require training deep neural
networks (Lin et al., 2021; Kivaranovic et al., 2020; Matiz & Barner, 2019). For this section only, suppose we
are only interested in PIs for Y·,t=0. We denote Zi = (Xi,0, Yi,0) and drop the t subscript in X·,t and Y·,t. In
split conformal prediction, if we want to construct a PI for a particular Yi, we would first split our training
data {Zi}N

i=1 into a proper training set and a calibration set (Papadopoulos et al., 2002). The proper training
set is used to fit a (nonconformity) score function V . We could begin with one of the simplest such scoring
functions: V (z) = |y − ŷ| where ŷ is predicted by a function µ̂(·) fitted on the proper training set.

For ease of exposition and to keep notation simpler, we will assume any estimator like µ̂ has already been
learned, and use {Zi}N

i to denote the calibration set only. The crucial assumption for conformal prediction is
that {Zi}N+1

i=1 are exchangeable. We could construct the PI for YN+1 by having

Ĉα,N+1(XN+1) = [µ̂(XN+1)− w, µ̂(XN+1) + w] (5)

where w = Q

(
⌈(1− α)(N + 1)⌉

N + 1 , {|yi − ŷi|︸ ︷︷ ︸
vi:=V (zi)

}N
i=1 ∪ {∞}

)
, (6)

where Q(β, ·) denotes the β-quantile of ·. The ⌈·⌉ operation ensures validity with a finite N with discrete
quantiles. To simplify our discussion, we will also assume that there is no tie amongst the {vi}N+1

i with
probability 1, ensuring that there is no ambiguity for Q. This is a reasonable assumption for regression tasks
(e.g. Lei et al. (2018)).

If the exchangeability assumption holds, then we have the following coverage guarantee (Vovk et al. (2005);
Barber et al. (2022)):

PZN+1{YN+1 ̸∈ Ĉα,N+1(XN+1)} ≤ α (7)

Because YN+1 is unknown, we typically replace V (ZN+1) in Eq. 6 with ∞, which can only lead to a
larger w and is thus a conservative estimate that still preserves validity. The output of V (·) is called the
nonconformity score. The absolute residual used above is one of the most popular nonconformity scores, e.g.
used in Stankevičiūtė et al. (2021); Lin et al. (2021); Xu & Xie (2021); Barber et al. (2021).

4.2 Temporally-informed Nonconformity Scores (CPTD-M)

In this section we will describe a first attempt to improve longitudinal coverage, with a focus on the
underlying intuition of the more general idea. Directly applying the split conformal method from above
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(like in Stankevičiūtė et al. (2021)) ensures cross-sectional validity, but comes with an important limitation.
In a sense, when a test point is queried on a calibration set, the nonconformity scores are supposed to be
uniform in ranking. It is implied that the point estimates cannot be improved, for instance, when we use the
absolute residual as the nonconformity score. In our task, suppose the prediction errors for a patient always
rank amongst the top 5% using the calibration set up to time t. Even if we started assuming that this is
an “average” patient, we might revise our belief and issue wider PIs going forward, or our model may suffer
consistent under-coverage for this patient. These considerations motivate the need of temporally-informed
nonconformity scores. We hope to improve the nonconformity score used at time t + 1 by incorporating
temporal information thus far, making it more uniformly distributed (in ranking), so that whether Yi,t is
covered at different t is less dependent on previous cases.

We propose to compute a normalizer m̂N+1,t+1 for each t, and use the following nonconformity score:

VN+1,t+1(ŷ, y; SN+1,:t) = |ŷ − y|
m̂N+1,t+1

, (8)

where S·,:t denotes the first t observations of S·. The idea is that if we expect the average magnitude of
prediction errors for a patient to be high, we could divide it by a large m̂ to bring the nonconformity scores
of all patients back to a similar distribution. This is heavily inspired by a popular nonconformity score in the
non-times-series settings —the “normalized” residual (Lei et al., 2018; Bellotti, 2020; Papadopoulos et al.,
2002), where V (z) = |y−ŷ

ϵ̂ | and ϵ̂ can be any function fit on the proper training set. We use a simple mean
absolute difference normalization strategy, or MAD-normalization in short, for m̂:

m̂M
i,t+1 := 1

t

t∑
t′=1
|yi,t′ − ŷi,t′ |. (9)

The superscript M stands for MAD. One could potentially replace this simple average with an exponentially
weighted moving average.

Note that one crucial difference between our m̂ and the error prediction normalizer ϵ̂ lies in the source of
information used. This source for ϵ̂ is mostly the proper training set, which means it faces the issue of
over-fitting. This is especially problematic if there is distributional shift. For example, when a hospital
deploys a model trained on a larger cohort of patients from a different database, but continues to its own
patients as a small calibration set (which is more similar to any patient it might admit in the future). In our
setting, however, conditioning on the point estimator, m̂ does not depend on the proper training set at all.
As we will see in the experiments (Section 5), m̂ is more robust than an error predictor trained on the proper
training set. We refer to this method as CPTD-M.

Once we have m̂N+1,t+1, the PI is constructed in the following way:

ĈCP T D−M
N+1,t+1 := [ŷ − v̂ · m̂N+1,t+1, ŷ + v̂ · m̂N+1,t+1] (10)

v̂ := Q

(
⌈(1− α)(N + 1)⌉

N + 1 ,

{
|yi,t+1 − ŷi,t+1|

m̂i,t+1

}N

i=1

∪

{
∞

m̂N+1,t+1

})
. (11)

4.3 Temporally-and-cross-sectionally-informed Nonconformity Scores (CPTD-R)

In the previous section, we gave an example of incorporating temporal information into the nonconformity
score. However, we still have not fully leveraged the cross-sectional data in the calibration set. In fact, even in
the non-time series setting, the nonconformity score vi is not constrained to depend only on Zi. All we need
for the conformal PI to be valid is that the nonconformity scores {Vi}N+1

i=1 themselves (as random variables)
are exchangeable when {Zi}N+1

i=1 are exchangeable. This means that the nonconformity score can be much
more complicated and take a form such as vi = V (Zi; {Zj}N+1

j=1 ), depending on the un-ordered set4 of all
{Zj}N+1

j=1 .
4While obvious, more discussion on this can be found in Guan (2021).
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It might be hard to imagine why and how one could adopt a complicated version of the nonconformity score
for the non-time series case, but it is natural when we also have the longitudinal dimension. Suppose we are to
construct a PI for YN+1,t+1 using conformal prediction, the nonconformity scores can depend on both SN+1,:t′

and the unordered data S:t′ := {S1,:t′ , . . . , SN+1,:t′} for any t′ ≤ t + 1. To be precise, the nonconformity score
VN+1,t+1 could take the following general form:

VN+1,t+1(ŷ, y) = f(ŷ, y; SN+1,:t+1, g(S1,:t+1, . . . , SN+1,:t+1)) (12)

where g satisfies the following property:

∀ permutation π, g(Sπ(1),:t+1, . . . , Sπ(N+1),:t+1) = g(S1,:t+1, . . . , SN+1,:t+1). (13)

Here, we propose Ratio-to-Median-Residual-normalization (ĈCP T D−R) as a simple example. First
off, notice that while MAD-normalization can adapt to the scale of errors, it is less robust when there is
heteroskedasticity along the longitudinal dimension; m̂ will be influenced by the noisiest step t′ < t + 1. To
cope with this issue, we could base m̂i,t+1 on the ranks, which are often more robust to outliers. Specifically,
at t + 1, we first compute the (cross-sectional) median absolute errors in the past:

∀s ≤ t, ms := mediani{|ri,s|} where ri,s = yi,s − ŷi,s. (14)

Then, for each i ∈ [N + 1], and each t, we compute the expanding mean of the median-normalized-residual:

nri,t := 1
t

t∑
s=1

|ri,s|
ms

. (15)

nri,t can be viewed as an estimate of the relative non-conformity of Si up to time t. Thus, if we have a guess
of the rank for |ri,t+1|, denoted as q̂i,t+1, we could look up the corresponding quantile as:

m̂R
i,t+1 := Q(q̂i,t+1, {nrj,t}N+1

j=1 ) (16)

Following the notation in Eq. 12, the output of g, g(S1,:t+1, . . . , SN+1,:t+1), is simply Q(·, {nrj,t}N+1
j=1 ).

To obtain q̂i,t+1, we can use the following rule (expanding mean with a prior):

q̂i,t+1 ←
0.5λ +

∑t
s=1 F̂s(|ri,s|)

t + λ
(17)

where F̂s is the empirical CDF over {|ri,s|}N+1
i=1 . For example, F̂s(maxi{|ri,s}) = 1. Here we use λ = 1, which

means our “prior” rank-percentile of 0.5 has the same weight as any actual observation. The full algorithm to
compute m̂R is presented in Alg.1.

With all these nuts and bolts in place, we can construct the PI ĈCP T D−R as usual by using Eq. 10 and
Eq. 11. The dependence on the (t + 1)-th observation is simply dropped to avoid plugging in hypothetical
values for yN+1,t+1

5. ĈCP T D−R is somewhat complicated partially because we hope to exemplify how to let
g depend on the cross-section, but it also tends to produce more efficient PIs empirically (see Section 5).

We dub our general method as CPTD (Conformal Prediction with Temporal Dependence), which includes
both CPTD-M and CPTD-R.

4.4 Theoretical Guarantees

To formally state that CPTD provides us with cross-sectional validity, we first need a basic lemma:
Lemma 4.1. If S1, . . . , SN+1 are exchangeable time series, then ∀t, [V CP T D−M

1,t+1 , . . . , V CP T D−M
N+1,t+1 ] and

[V CP T D−R
1,t+1 , . . . , V CP T D−R

N+1,t+1 ] are both exchangeable sequences of random variables.
5It could still be incorporated by performing “full” or transductive conformal prediction, which is typically much more expensive.
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Algorithm 1 Ratio-to-median-residual Normalization (CPTD-R)
Input:
{yi,s}i∈[N ],s∈[t]: Response on the calibration set and the test TS up to t.
{ŷi,s}i∈[N+1],s∈[t+1]: Predictions on the calibration set and the test TS up to t + 1.
Output:
{m̂i,t+1}: Normalization factors for the nonconformity scores at t + 1.
Procedures:
∀i ∈ [N + 1], s ∈ [t], compute ri,s ← |yi,s − ŷi,s|, and ms ← mediani{|ri,s|}.
∀i ∈ [N + 1], estimate the overall rank q̂i,t+1 using Eq. 17.
Compute the empirical distribution of the median-normalized residuals {nri,t}N+1

i using Eq. 15.
∀i ∈ [N + 1], look-up the normalizer m̂R

i,t+1 using Eq. 16.

The validity for both our variants follows as a direct consequence:
Theorem 4.2. ĈCP T D−M

N+1,t+1 and ĈCP T D−R
N+1,t+1 are both (1− α) cross-sectionally valid.

All proofs are deferred to the Appendix.

Additional Remarks: Since the methods proposed are only cross-sectionally valid, they might raise the
following natural question for some readers: What do we gain from using split-conformal, by going through
the above troubles? First, we expect that the average coverage rate for the least-covered time series will be
higher. Imagine the scenario where the absolute errors are highly temporally dependent. In such a case,
CPTD-M and CPTD-R will try to capture the average scale of the errors, so that an extreme TS will not
always fall out of the PIs (as long as such extremeness is somewhat predictable). This should be viewed
as improved longitudinal coverage (despite the lack of guarantee). Secondly, we might observe improved
efficiency - the PIs might be narrower on average.

Finally, one could replace m̂ in Section 4.2 and Section 4.3, making use of a different function6 g that could
potentially be more suitable for a target dataset. As long as the new g satisfies Eq. 13, the cross-sectional
validity will still hold. We want to emphasize that CPTD should be viewed as a general proposal to leverage
both longitudinal and cross-sectional information to adjust the nonconformity score, for improved longitudinal
coverage. Our focus is not on optimizing for m̂. However, in our experiments, we found that both CPTD-M
and CPTD-R already perform well despite the simple choice of m̂.

5 Experiments

Through a set of experiments, we will first verify the validity of both CPTD-M and CPTD-R, as well as the
efficiency (average width of the PIs). Then, more importantly, we will verify our assumption that ignoring
the temporal dependence will lead to some TS being consistently under/over-covered, and that CPTD-M
and CPTD-R improve the longitudinal coverage by appropriately adjusting the nonconformity scores with
additional information.

Baselines: We use the following state-of-the-art baselines for PI construction in time series forecasting:
Conformal forecasting RNN (CFRNN) Stankevičiūtė et al. (2021)), a direct application of split-conformal
prediction7; Quantile RNN (QRNN) Wen et al. (2017); RNN with Monte-Carlo Dropout (DP-RNN) Gal &
Ghahramani (2016); Conformalized Quantile Regression with QRNN (CQRNN) Romano et al. (2019); Locally
adaptive split conformal prediction (LASplit) Lei et al. (2018), which uses a normalized absolute error as the
nonconformity score (we follow the implementation in Romano et al. (2019)). Among the baselines, CQRNN
and LASplit are existing conformal prediction methods extended to cross-sectional time series forecasting by
us, and QRNN and DP-RNN are not conformal methods (and not valid).
6CPTD-M could also be viewed as having a constant g that ignores the input.
7The authors suggest performing Bonferroni correction to jointly cover the entire horizon (all T steps). This however means if
T (H in Stankevičiūtė et al. (2021)) is greater than α(N + 1), all PIs are infinitely wide Barber et al. (2022). The authors
performed an incorrect split-conformal experiment, which is why the COVID19 dataset still has finite width in Stankevičiūtė
et al. (2021).
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Datasets We test our methods and baselines on a variety of datasets, including:

• MIMIC: Electronic health records data for White Blood Cell Count (WBCC) prediction (Johnson et al.
(2016); Goldberger et al. (2000); Johnson et al. (2019)). The cross-section is across different patients.

• Insurance: Health insurance claim amount prediction using data from a healthcare data analytic company
in North America. The cross-section is across different patients.

• COVID19: COVID-19 case prediction in the United Kingdom (UK) (COVID). The cross-section is along
different regions in UK.

• EEG: Electroencephalography trajectory prediction after visual stimuli (UCI EEG). The cross-section
comprises of different trials and different subjects.

• Load: Utility (electricity) load forecasting (Hong et al. (2016)). The original data consists of one TS of
hourly data for 9 years. We split the data by the date, with different days treated as the cross-section.

MIMIC, COVID19 and EEG are used in Stankevičiūtė et al. (2021) and we follow the setup closely. Note that
for Load, we perform a strict temporal splitting (test data is preceded by calibration data, which is preceded
by the training data), which means the exchangeability is broken. We also include a Load-R (random) version
that preserves the exchangeability by ignoring the temporal order in data splitting. A summary of each
dataset is in Table 2.

Evaluation Metrics and Experiment Setup We follow Stankevičiūtė et al. (2021) and use LSTM Hochre-
iter & Schmidhuber (1997) as the base time series regression model (mean estimator) for all methods. We
use ADAM (Kingma & Ba (2015)) as the optimizer with learning rate of 10−3, and MSE loss. The LSTM
has one layer and a hidden size of 32, and is trained with 200, 1000, 100, 500 and 1000 epochs on MIMIC,
COVID19, EEG, Insurance and Load, respectively. For QRNN, we replace the MSE loss with quantile loss.
Except for QRNN, CQRNN and DPRNN, all methods share the same base LSTM point estimator. For the
residual predictor for LASplit, we follow Romano et al. (2019) and change the target from y to |y − ŷ|.

We repeat each experiment 20 times, and report the mean and standard deviation of:

• Average coverage rate:
∑M

i=1
1

M Ci where Ci =
∑T

t=1
1
T 1{Yi,t ∈ Ĉα,i,t}.

• Tail coverage rate:
∑

j:Cj∈L
1

|L| Cj , where L := {Ci : Cj < Q(0.1, {Cj}M
j=1)}. In other words, we look at

the average coverage rate of the least-covered time series. We wish it as high as possible.
• Average PI width: 1

MT

∑M
i=1
∑T

t=1 µ(Ĉα,i,t) where µ(·) is the width/length of ·.

In the above, M denotes the size of the test set. All metrics here consider the last 20 steps. The target
α = 0.1 (corresponding to 90% PIs). We use the same LSTM architecture as Stankevičiūtė et al. (2021)
with minor changes in the number of epochs or learning rate, except for the Insurance dataset where we
introduce additional embedding training modules to encode hundreds of discrete diagnoses and procedures
codes. In the Appendix, we include results for Linear Regression instead of LSTM.

Results We first report the mean coverage rates in Table 3. We see that in terms of average coverage rate,
all conformal methods are valid (90% coverage) for the exchangeable datasets. In the case of Load, since
we did not enforce exchangeability during the sample splitting, there is clear (minor) under-coverage for
all conformal methods. However, CPTD is still slightly better than baselines, potentially because it can
leverage information from the calibration set better. The benefits of CPTD, however, are best illustrated in
Tables 4 and 5. In terms of efficiency (width), CPTD-R generally provides the most efficient valid PIs. The
improvement is generally not large, but still significant. We note that for MIMIC, directly predicting quantiles
(QRNN and CQRNN) provides more efficient PIs, which might be due to an asymmetric distribution of the
prediction errors by the point-estimator. Designing temporally adjusted nonconformity scores for quantile
regression (potentially based on Romano et al. (2019)) will be an interesting direction for future research.
Finally, if we examine the tail coverage in Table 5, we see that both CPTD-R and CPTD-M consistently
outperform baselines (with the mean width rescaled to the same). Table 5 suggests improved longitudinal
coverage, which is the major focus of our paper. This can also be observed in Figure 2. The results suggest
CPTD significantly improves longitudinal coverage with the temporally-adjusted nonconformity scores.
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Table 2: Size of each dataset, and the length of the time series. Note that the Insurance dataset
has up to 14 diagnoses codes, up to 17 CPT codes, and 3 other features. If we use one-hot encoding
for the discrete codes, Insurance has 14*201+17*101+3 features instead. All results presented in
this paper measures the last 20 steps, while the full results are in the Appendix.

Properties MIMIC Insurance COVID19 EEG Load/Load-R

# train/cal/test 192/100/100 2393/500/500 200/100/80 300/100/200 1198/200/700
T (length) 30 30 30 63 24
# features 25 34* 1 1 26

Figure 2: We show the coverage rate for the bottom 10% of the time series for EEG (left) and Load
(right). All methods are re-scaled to the same mean PI width for a fair comparison. The Y-axis
is the average coverage rate. The X-axis denotes the percentile among all test time series, with
0.00 meaning the least-covered time series. The band is an empirical 80% confidence band. CPTD
significantly improves the longitudinal coverage rate, especially for the least-covered time series.

Table 3: Average coverage rate for each time series. Empirically valid methods are in bold (with
p-value = 0.05). We verify that conformal prediction methods are valid, while non-conformal
methods could under-cover. Note that Load does not satisfy the exchangeability assumption, which
is why conformal methods look invalid (slightly below the target of 90%).

Coverage (≥ 90%) CPTD-R CPTD-M Split (CFRNN) CQRNN LASplit QRNN DPRNN

MIMIC 90.22±1.72 90.17±1.59 90.32±1.68 89.93±1.30 90.46±1.92 86.78±1.35 46.22±4.15
Insurance 90.01±0.63 90.10±0.46 90.05±0.64 90.06±0.76 90.05±0.72 85.84±0.76 24.56±0.76
COVID19 90.13±1.55 90.27±1.07 90.09±1.75 90.08±1.61 90.15±1.51 89.18±1.52 68.37±3.98
EEG 89.90±1.75 90.08±1.48 89.90±1.79 89.96±2.26 89.56±1.14 87.94±0.94 38.84±1.35
Load 88.73±0.14 89.23±0.15 88.64±0.17 89.21±0.14 88.97±0.20 80.10±1.38 89.67±0.64
Load-R 90.05±0.56 90.17±0.73 90.03±0.60 90.23±0.62 90.11±0.53 85.35±1.06 90.97±0.70

6 Conclusions

This paper introduces CPTD, a simple algorithm for constructing prediction intervals for the task of time
series forecasting with a cross-section. CPTD is the first algorithm that can improve longitudinal coverage
while maintaining strict cross-sectional coverage guarantee. Being a conformal prediction method, the
cross-sectional validity comes from the empirical distribution of nonconformity scores on the calibration set.
To construct prediction intervals for YN+1,t+1, we propose CPTD-M, which leverages only the temporal
information for the time series of interest (SN+1), and CPTD-R, which exemplifies how to use the entire
calibration set to improve temporal coverage. Our experiments confirm that both CPTD-M and CPTD-R
significantly outperform state-of-the-art baselines by a wide margin. Moreover, CPTD could easily be applied
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Table 4: Mean of PI width. The most efficient (and valid) method is in bold, including methods
not significantly worst than the best one. For Load, we show the most efficient conformal method.
CPTD-R generally provides the most efficient PIs.

Width ↓ CPTD-R CPTD-M Split (CFRNN) CQRNN LASplit QRNN DPRNN

MIMIC 1.696±0.163 1.876±0.209 1.759±0.166 1.560±0.140 1.872±0.185 1.407±0.130 0.584±0.027
Insurance 2.594±0.051 2.723±0.054 2.690±0.057 2.613±0.050 2.694±0.067 2.314±0.034 0.585±0.044
COVID19 0.713±0.027 0.824±0.102 0.737±0.033 0.827±0.082 0.737±0.038 0.805±0.082 0.515±0.048
EEG 1.275±0.046 1.301±0.049 1.301±0.056 1.436±0.078 1.294±0.035 1.319±0.042 0.414±0.020
Load 0.200±0.004 0.230±0.005 0.209±0.004 0.216±0.005 0.213±0.005 0.168±0.005 0.569±0.008
Load-R 0.178±0.003 0.200±0.007 0.178±0.004 0.187±0.004 0.181±0.005 0.164±0.005 0.534±0.012

Table 5: The tail coverage rate (mean coverage rate for the least-covered 10% time series).
For a fair comparison, we re-scaled all methods to have the same mean PI width (as CFRNN).
Unlike average coverage rate, we want the tail coverage rate to be as high as possible. The best
method is in bold, with the second-best underscored. Generally, both CPTD methods significantly
outperform the baselines, providing better longitudinal coverage.

Tail Coverage ↑ CPTD-R CPTD-M Split (CFRNN) CQRNN LASplit QRNN DPRNN

MIMIC 69.20±4.18 69.10±3.95 64.10±5.32 73.55±3.49 62.93±6.47 73.25±3.48 65.60±5.22
Insurance 71.13±1.92 72.49±1.32 66.03±2.15 68.28±2.94 68.22±2.29 64.72±2.52 47.82±2.92
COVID19 70.22±5.05 70.47±2.47 63.78±6.74 59.75±6.30 67.34±4.41 59.81±6.61 52.56±6.60
EEG 67.30±4.34 71.09±3.73 64.35±4.23 57.02±6.01 66.88±2.03 57.07±3.41 51.06±2.92
Load 70.58±0.98 68.85±0.94 58.80±1.43 59.65±1.62 59.62±1.33 59.87±2.06 29.56±1.91
Load-R 73.03±1.46 71.36±1.36 68.69±1.96 69.61±1.33 69.83±2.03 69.42±1.85 31.92±2.19

to any model and data distribution. We hope CPTD will inspire future research in uncertainty quantification
in time series forecasting with a cross-section.
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A Proofs

A.1 Proof for Theorem 3.1

A.1.1 Lemmas

We first present an established result on the impossibility of (non-degenerate) finite-sample distribution-free
conditional coverage guarantee from Lei & Wasserman (2014):
Lemma A.1. Let P be the joint distribution of two random variables (X, Y ). Suppose ĈN is conditionally
valid, as defined by the following:

P{YN+1 ∈ CN (x)|XN+1 = x} ≥ 1− α for all P and almost all x. (18)

Then, for any P and any x0 that is not an atom of P:

P{ lim
δ→0

ess sup
∥x0−x∥≤δ

L(CN (x)) =∞} = 1. (19)

The subscript N means ĈN depends on a calibration set of size N , and L(·) is the Lebesgue measure.

A slightly stronger statement of Lemma A.1 is given by:
Lemma A.2. Let P be the joint distribution of two random variables (X, Y ). Let PU be the distribution of
an additional random variable U that Ĉ could use. Denote the joint distribution of (X, Y, U) as P+ = P×PU ,
and X+ := (X, Y ). Suppose ĈN is conditionally valid with respect to the original P, as defined by the
following:

P{YN+1 ∈ CN (X+
N+1)|XN+1 = x} ≥ 1− α for all P+ and almost all x. (20)

Then, for any P+ and any x0 that is not an atom of P:

P{ lim
δ→0

ess sup
∥x0−x∥≤δ

L(CN (x, UN+1)) =∞} = 1. (21)

Below is a proof mostly following Lei & Wasserman (2014). First, we define ϵn and TV like in proof for
lemma 1 in Lei & Wasserman (2014). For any pair of distributions P and Q, we define the total variation
distance between them as:

TV (P,Q) = sup
A
|P(A)−Q(A)| (22)

For any ϵ > 0, define ϵN = 2(1− (1− ϵ2

8 ) 1
N ), and we will have (Lei & Wasserman (2014))

TV (P,Q) ≤ ϵN =⇒ TV (PN ,QN ) ≤ ϵ. (23)

Fix ϵ > 0. Let x0 be a non-atom and choose δ such that PX{B(x0, δ)} < ϵN . Fix B > 0 and let B0 = B
2(1−α) .

Given P+, define another distribution Q+ by

Q+(A) = P+(A ∩ Sc) + U(A ∪ S) (24)

where S = {(x, y, u) : x ∈ B(x0, δ)}, and U has total mass under P+(S) and is uniform in {(x, y, u) : x ∈
B(x0, δ), |y| < B0, u ∈ B(0, C)}. (We will see that the only thing that matters is that Y is uniform in this
small region). Note that TV (P+,Q+) ≤ ϵN , which means TV (P+N ,Q+N ) ≤ ϵ.

For all x ∈ B(x0, δ) and all u ∈ B(0, C),
∫

C(x,u) q+(y|x)dy ≥ 1 − α implies leb(C(x, u) ≥ 2(1 − α)B0 = B.
Therefore, Q+N{ess supx∈B(x0,δ) leb(C(x, U)) ≥ B} = 1. Therefore,

P+N{ ess sup
x∈B(x0,δ)

leb(C(x, U)) ≥ B} ≥ Q+N{ ess sup
x∈B(x0,δ)

leb(C(x, U)) ≥ B} − ϵ = 1− ϵ (25)

Lemma A.2 follows as ϵ and B are arbitrary.
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A.1.2 Main Proofs

Proof. Now, for any t, we could view all previous observations (including Y ) as the new “X”, and Xi,t as the
“U”. That is:

Xi := [Zi,0, Zi,1, . . . , Zi,t−1] (26)
Ui := Xi,t (27)

X+
i := [Xi, Ui] ∼ P+ (28)

Then, the question is whether we could use the new X+
N+1, and {(X+

j , Yj,t}N
j=1 to create a prediction interval

Ĉ such that

PYN+1,t|XN+1{YN+1,t ∈ Ĉ} ≥ 1− α. (29)

Lemma A.2 tells us if Ĉ satisfies such coverage guarantee (note the conditioning on XN+1), we have, for all
x0,

P{ lim
δ→0

ess sup
∥x0−x∥≤δ

leb(Ĉ(x, UN+1)) =∞} = 1 (30)

=⇒ EX+
N+1

[leb(Ĉ(X+
N+1))] =∞. (31)

A.2 Proof for Lemma 4.1

Proof. We will show the general case that any nonconformity scores V1,t, . . . , VN+1,t generated Eq. 12
and Eq. 13 are exchangeable if S1, . . . , SN+1 are, because V CP T D−M and V CP T D−R are special cases of
nonconformity scores generated this way.

First of all, if we denote V:,t as a vector, it is clearly a row-permutation-equivariant function (denoted as G)
on the matrix S:,:t, where the i-th row (out of N + 1) is [Zi,1, . . . , Zi,t]. Formally, for any permutation π of
N + 1 elements, Vπ,t = G(Sπ,:t). For each measurable subset E of VN+1, define ES ⊂ ZN+1 as

ES := {s:,:t : G(s:,:t) ∈ E} (32)

Because S1, . . . , SN+1 are exchangeable, for any permutation π, we have

P{V:,t ∈ E} = P{S:,:t ∈ ES} = P{Sπ,:t ∈ ES} = P{Vπ,t ∈ E} (33)

A.3 Proof for Theorem 4.2

Proof. Follows from Lemma 4.1 immediately. We provide a brief sketch here. With Lemma 4.1, we know
that the following random variable ON+1

oN+1 := |{i ∈ [N ] : vi,t ≤ vN+1,t}|+ 1
N + 1 (34)

follows a uniform distribution on { i
N+1}

N+1
i=1 . (Again we assume the probability of having a tie is zero, which

means there is always a strict ordering.) Since

oN+1 ≤
⌈(1− α)(N + 1)⌉

N + 1 =⇒ vN+1,t+1 ≤ Q(⌈(1− α)(N + 1)⌉
N + 1 , {vi,t+1}N+1

i ) =⇒ YN+1,t+1 ∈ ĈN+1,t+1,

(35)

we have

P{YN+1,t+1 ∈ ĈN+1,t+1} ≥ P{oN+1 ≤
⌈(1− α)(N + 1)⌉

N + 1 } ≥ 1− α (36)
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B Why does normalization help?

In this section, we will consider some simple scenarios and show why CPTD-M and CPTD-R can improve
longitudinal coverage. While these scenarios are over-simplifications of the reality, we use them mainly to
illustrate the main ideas behind CPTD more rigorously.

Suppose the error is both time-dependent and heteroskedastic in the cross-section. Formally, suppose the
error Ri,t := |Yi,t − µ̂(Xi,t; Si,:t−1)| is a random variable that factors out into a product Ri,t = SiEt where
the marginal distribution of Et is PEt

. We impose a mild assumption that P{Et = 0} = 0 for simplicity of
discussion. That is, there is an intrinsic “error scale” for each time series. Note this assumption is not overly
simplistic either: While the assumption in many related works (e.g. Barber et al. (2022); Xu & Xie (2021)) is
that of mild distributional shift, we allow arbitrary distribution for PEt

.

The case for CPTD-M: Denote the percentile of |yi,T −ŷi,T |
m̂M among { |yi,T −ŷi,T |

m̂M }N+1
i=1 as q̂M

i,T . We will
examine the following probability:

P{YN+1,T ∈ ĈCP T D−M
α,N+1 |FS(SN+1) ≥ β} (37)

=P{q̂M
N+1,T ≤

⌈(1− α)(N + 1)⌉
N + 1 |FS(SN+1) ≥ β} (38)

for a large β such as 0.99. This can be thought of a worst case coverage rate. For T > 1, we define a new
random variable E′

T = ET∑T −1
t=1

Et

(which is defined with probability one). It is clear that Ri,T

m̂M
i,T

∼ PE′
T

for all i.

As a result, P{q̂CP T D−M
N+1,T ≤ ⌈(1−α)(N+1)⌉

N+1 |FS(SN+1) ≥ β} = ⌈(1−α)(N+1)⌉
N+1 for any β.

The case for CPTD-R: Now, suppose we also have heteroskedasticity along the longitudinal dimension.
For simplicity of discussion, we assume Et = Cte

N (0,1) where Ct is a non-random scalar for each t. Denote
the percentile of the nonconformity scores for CPTD-R as q̂R

i,T and that for the basic split conformal as q̂i,T .
While the previous discussion still holds, consider a slightly different quantity than the above:

P{q̂M
N+1,T ≤

⌈(1− α)(N + 1)⌉
N + 1 |q̂N+1,1 < 1− β} (39)

What would happen if, say, C1 ≫ (supi,j
Sj

Si
)
∑T

t=2 Ct? Essentially, if we use CPTD-M, m̂M is dominated
by the randomness of E1. Therefore, m̂M will be too small as long as q̂N+1,1 is very small, even if the
target normalization constant SN+1 is large. This is however not an issue for CPTD-R, because Ct is always
cancelled out.

C Additional Experimental Details

C.1 Full TS

In Table 6 we show the same metrics as in the main text, but on the entire time series (instead of the last 20
steps).

C.2 Tail coverage rate over time

We plot the average longitudinal coverage rate for the bottom 10% TS up to t, for each t <= T , in Figure 3.
For clarity, we only include CFRNN and CPTD (including CPTD-M and CPTD-R). Ideal is the ideal scenario
where the event of coverage is temporally independent for each time series. That is, each 1{YN+1,t ∈ Ĉ}
follows a Bernoulli distribution of p = 1 − α (independently). We did not perform re-scaling in this plot
because Ideal corresponds to an average coverage rate of 1 − α, which is why CPTD-M (which typically
generates wider PIs) shows better coverage than CPTD-R. We could see that there are still gaps between
CPTD and Ideal, which is a room of improvement for future works. It is also interesting that most of the
gain in coverage seems to happen at the beginning - that is, CPTD-R and CPTD-M adapt to the “extreme”
TSs in a few steps, and maintain the gain.
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Table 6: Mean coverage, mean PI width, and tail coverage (re-scaled to same mean PI width)
using the full time series. Valid mean coverage and the best of tail coverage and mean PI width are
in bold. The conclusion is the same as in the main text - CPTD greatly improves the longitudinal
coverage for the least-covered TSs, and maintains very efficient PIs (width).

Coverage CPTD-R CPTD-M Split (CFRNN) CQRNN LASplit QRNN DPRNN

MIMIC 90.23±1.06 90.12±0.96 90.23±1.28 89.93±1.18 90.24±1.42 84.79±1.28 44.96±3.99
Insurance 89.97±0.45 90.02±0.32 90.03±0.56 90.05±0.62 89.99±0.48 86.32±0.63 25.15±0.69
COVID19 89.97±1.47 90.22±0.94 90.02±1.69 90.11±1.36 90.10±1.30 89.16±1.35 65.98±2.91
EEG 89.63±0.92 90.11±0.77 89.53±1.14 89.83±1.21 89.48±0.93 86.64±0.70 35.19±1.17
Load 88.68±0.12 89.23±0.14 88.52±0.18 89.09±0.11 88.84±0.19 80.29±1.34 90.61±0.61
Load-R 90.01±0.54 90.12±0.69 89.98±0.61 90.27±0.60 90.03±0.48 85.69±1.10 91.94±0.62

Mean Width ↓

MIMIC 1.767±0.127 2.136±0.185 1.808±0.138 1.640±0.137 1.913±0.147 1.416±0.126 0.575±0.022
Insurance 2.641±0.043 3.055±0.075 2.711±0.048 2.647±0.041 2.712±0.050 2.369±0.028 0.559±0.033
COVID19 0.713±0.028 0.918±0.134 0.731±0.033 0.796±0.069 0.731±0.039 0.774±0.066 0.486±0.040
EEG 1.207±0.024 1.345±0.051 1.220±0.035 1.345±0.046 1.220±0.028 1.228±0.031 0.349±0.014
Load 0.186±0.003 0.224±0.004 0.194±0.004 0.200±0.004 0.197±0.005 0.156±0.005 0.559±0.008
Load-R 0.165±0.003 0.193±0.007 0.165±0.003 0.172±0.004 0.167±0.004 0.151±0.004 0.539±0.011

Tail Coverage Rate ↑

MIMIC 73.83±2.01 70.15±2.89 68.95±2.86 75.78±3.37 68.30±3.77 75.02±3.93 69.82±4.36
Insurance 74.31±1.19 72.99±0.83 68.97±1.92 71.22±2.15 71.30±1.58 68.35±2.07 55.99±2.11
COVID19 70.65±5.72 68.54±2.07 64.63±6.32 63.67±5.52 68.75±4.66 63.69±6.16 57.73±4.51
EEG 74.66±1.85 76.58±1.39 69.91±2.35 65.06±2.80 71.01±1.65 64.65±2.01 60.75±2.28
Load 70.74±0.74 69.42±0.79 58.53±1.27 59.67±1.56 59.68±1.31 60.26±1.71 32.98±2.08
Load-R 73.62±1.39 71.21±1.26 68.88±1.90 70.87±1.42 70.58±1.95 70.72±1.69 34.32±2.52

C.3 Cross-sectional coverage over time

In Figure 4, we plot the (cross-sectional) mean coverage rate at different t. We can see that all conformal
methods exhibit cross-sectional validity as expected, whereas the coverage rate for non-conformal methods
vary greatly through time.

C.4 Normalization Quality

In this section we compare the rank (Spearman) correlation between different quantities and the realized
residuals. The quantities to consider are m̂M for CPTD-M, ϵ̂ for LASplit, and the width of PI predicted
by QRNN (CQRNN). The correlation could be considered a measure of the normalization quality. That
is, if the correlation is high, the distribution of the rank of the normalized residual/nonconformity score
will be closer to a uniform distribution, which will mitigate the under-coverage of “outlier patients”. For
each t, corrt := SpearmanCorrelationi(qi,t, |yi,t − ŷi,t|) where qi,t should be interpreted as m̂, ϵ̂ or PI width
mentioned above. The (pooled) mean and standard deviation across all t and seed pairs are reported in
Table 7.

As we can see, both QRNN and LASplit typically have lower correlations at test time. This is simply because
training errors are typically lower than test error (not over-fitting). LASplit is especially fragile to this
because this effect is two-fold, for both the base point estimator and the error predictor. A similar argument
can be found in Romano et al. (2019) explaining why CQR is better than LASplit in terms of efficiency. On
the contrary, the correlation for CPTD-M is typically higher on the test set, benefiting from the same effect:
With a simple expanding mean as m̂, the point estimator’s error on the test set is easier to predict than on
the training set. Note also that QRNN does not actually issue a point estimate, so ŷi,t is replaced with the
middle of the PI. This means the level of correlation itself is probably not comparable, but the change from
training to testing is still informative.

C.5 Linear Regression in the place of RNN

We perform additional experiments replacing the base LSTM with a linear regression model. This model
consists of T sub-models, one for each t (using data up to t− 1 as input). The results are presented in Table 8.

20



Published in Transactions on Machine Learning Research (09/2022)

0 10 20 30
t

0.0

0.2

0.4

0.6

0.8

1.0

Ta
il 

Co
ve

ra
ge

MIMIC

CPTD-R
CPTD-M
CFRNN
Ideal

0 10 20 30
t

0.0

0.2

0.4

0.6

0.8

1.0
CLAIM

CPTD-R
CPTD-M
CFRNN
Ideal

0 10 20 30
t

0.0

0.2

0.4

0.6

0.8

1.0
COVID

CPTD-R
CPTD-M
CFRNN
Ideal

0 20 40 60
t

0.0

0.2

0.4

0.6

0.8

1.0

Ta
il 

Co
ve

ra
ge

EEG

CPTD-R
CPTD-M
CFRNN
Ideal

0 5 10 15 20
t

0.0

0.2

0.4

0.6

0.8

1.0
GEFCom

CPTD-R
CPTD-M
CFRNN
Ideal

0 5 10 15 20
t

0.0

0.2

0.4

0.6

0.8

1.0
GEFCom-R

CPTD-R
CPTD-M
CFRNN
Ideal

Figure 3: Tail Coverage Rate as a function of time. We plot the mean of 20 experiments. Ideal
refers to simulated coverage events that have no temporal dependence. The X-axis is t, and the
Y-axis is the longitudinal mean tail coverage rate up to time t. CPTD-M and CPTD-R typically
adapt to the overall nonconformity of the TS in a few steps and maintain the advantage afterwards.
There is, however, still gap between CPTD and Ideal.

Table 7: Normalization quality, as measured by the (cross-sectioanl) rank correlation between the
realized residual and m̂M for CPTD-M, PI width for QRNN, or ϵ̂ for LASplit.

Train Test
Rank Correlation CPTD-M QRNN LASplit CPTD-M QRNN LASplit

MIMIC 18.87±6.29 35.21±7.64 42.28±6.85 24.80±9.21 27.69±9.86 14.54±10.49
Insurance 28.32±3.90 30.10±4.00 40.64±3.19 25.52±5.21 20.93±4.89 14.83±4.91
COVID19 23.18±9.05 23.74±11.48 20.66±9.16 24.79±12.53 24.23±14.29 19.40±13.42
EEG 23.58±6.75 7.57±10.14 9.28±7.91 22.41±8.27 5.93±7.70 6.84±7.92
Load 9.11±5.48 26.63±7.50 24.67±9.43 19.29±8.78 26.80±10.37 13.38±9.02
Load-R 10.52±6.00 27.90±7.39 26.29±8.18 12.56±6.97 23.46±7.57 12.77±5.98

Overall 20.28±9.12 22.08±13.61 24.36±14.87 22.05±9.60 18.65±12.89 12.51±9.95
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Figure 4: Mean coverage rate at different t. Conformal methods exhibit cross-sectional validity as
expected. On the other hand, coverage rate for non-conformal methods vary greatly through time.

Table 8: Mean coverage, mean PI width, and tail coverage (re-scaled to same mean PI width)
with a linear regression point estimator. Valid mean coverage and the best of tail coverage and
mean PI width are in bold.

Coverage CPTD-R CPTD-M Split (CFRNN) CQRNN LASplit

MIMIC 89.72±1.53 89.98±0.79 89.78±1.81 89.95±1.45 89.60±1.68
COVID19 90.10±1.69 90.25±1.24 90.07±1.82 90.01±1.68 90.08±1.64
EEG 90.01±1.73 90.13±1.41 89.90±1.77 90.40±2.17 90.29±1.28
Load 89.48±0.14 89.86±0.12 89.25±0.14 88.93±0.26 89.24±0.18
Load-R 90.16±0.65 90.24±0.68 90.07±0.66 89.98±0.65 90.13±0.43

Mean Width ↓

MIMIC 2.842±0.214 3.115±0.334 2.889±0.222 2.608±0.227 2.977±0.261
COVID19 0.780±0.019 0.876±0.073 0.808±0.031 0.829±0.047 0.807±0.026
EEG 1.632±0.082 1.663±0.054 1.653±0.091 1.798±0.118 1.810±0.070
Load 0.274±0.003 0.309±0.004 0.275±0.004 0.332±0.009 0.298±0.006
Load-R 0.266±0.009 0.295±0.009 0.267±0.009 0.321±0.009 0.284±0.007

Tail Coverage Rate (Scaled) ↑

MIMIC 64.12±4.97 69.05±2.24 60.55±5.94 63.80±4.38 62.55±5.22
COVID19 70.16±5.80 71.59±2.69 64.16±6.86 66.62±4.95 69.06±5.52
EEG 63.46±4.09 66.26±2.85 61.44±4.65 52.04±7.46 62.79±2.53
Load 73.22±0.86 69.93±0.73 69.18±1.10 60.07±1.35 67.65±1.25
Load-R 74.36±1.26 71.56±1.26 70.95±1.09 63.21±1.64 70.16±1.23

Tail Coverage Rate (Unscaled) ↑

MIMIC 63.43±5.00 72.70±2.24 60.55±5.94 59.27±4.14 63.75±5.30
COVID19 68.28±5.52 75.12±2.71 64.16±6.86 67.88±5.04 69.03±5.53
EEG 63.02±4.04 66.57±2.79 61.44±4.65 55.24±7.23 67.86±2.38
Load 73.15±0.85 75.35±0.58 69.18±1.10 69.75±1.52 71.39±1.09
Load-R 74.15±1.25 76.01±1.38 70.95±1.09 72.48±1.39 73.21±1.65
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