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ABSTRACT

Methods with adaptive stepsizes, such as AdaGrad and Adam, are essential for
training modern Deep Learning models, especially Large Language Models. Typ-
ically, the noise in the stochastic gradients is heavy-tailed for the later ones.
Gradient clipping provably helps to achieve good high-probability convergence
for such noises. However, despite the similarity between AdaGrad/Adam and
Clip-SGD, the current understanding of the high-probability convergence of Ada-
Grad/Adam-type methods is limited in this case. In this work, we prove that Ada-
Grad/Adam (and their delayed version) can have provably bad high-probability
convergence if the noise is heavy-tailed. We also show that gradient clipping fixes
this issue, i.e., we derive new high-probability convergence bounds with polylog-
arithmic dependence on the confidence level for AdaGrad and Adam with clip-
ping and with/without delay for smooth convex/non-convex stochastic optimiza-
tion with heavy-tailed noise. Our empirical evaluations highlight the superiority
of clipped versions of AdaGrad/Adam in handling the heavy-tailed noise.

1 INTRODUCTION

Stochastic first-order optimization methods such as Stochastic Gradient Descent (SGD) (Robbins
& Monro, 1951) are the methods of choice in training modern Machine Learning (ML) and Deep
Learning (DL) models (Shalev-Shwartz & Ben-David, 2014; Goodfellow et al., 2016). There are
multiple reasons for that, including but not limited to their simplicity, computation cost, memory
usage, and generalization. However, standard SGD is rarely used due to its sensitivity to the choice
of stepsize. Therefore, methods such as AdaGrad (Streeter & McMahan, 2010; Duchi et al., 2011)
and Adam (Kingma & Ba, 2014), which use adaptive' stepsizes, are much more popular in the
DL community (Vaswani et al., 2017; You et al., 2019; Nikishina et al., 2022; Moskvoretskii et al.,
2024). In particular, Adam-type methods are not just easier to tune but they also typically achieve
much better results in terms of the model performance than SGD in the training of Large Language
Models (LLMs) (Devlin et al., 2019; Zhang et al., 2020).

In the attempt to explain the later phenomenon, Zhang et al. (2020) consider the noise distribution
in the stochastic gradients appearing in the pre-training of the BERT model (Devlin et al., 2019) and
show that (i) the gradient noise is heavy-tailed in this case, (ii) Adam significantly outperforms SGD
(with momentum), (iii) Clip-SGD (Pascanu et al., 2013) also converges better than SGD for such
problems, and (iv) Clip-SGD is provably convergent (in-expectation) when the noise has bounded
a-th moment for some « € (1,2] while SGD can diverge for o < 2. Moreover, gradient clipping
also plays a central role in the recent advances on the high-probability convergence of stochastic
methods under the heavy-tailed noise (Gorbunov et al., 2020; Cutkosky & Mehta, 2021; Sadiev
et al., 2023; Nguyen et al., 2023). Taking into account the similarities between Adam and Clip-
SGD (the former one can be seen as Clip-SGD with momentum and iteration-dependent clipping
level), one can conjecture that Adam enjoys good theoretical high-probability convergence when the
gradient noise is heavy-tailed. If this was true, it would be perfectly aligned with the observations
from (Zhang et al., 2020) about the connection between the noise in the gradients and Adam’s
performance. Moreover, some recent works show that AdaGrad/Adam have provable convergence

"Throughout the paper, we use the word “adaptivity” in its general meaning: stepsizes are adaptive if they
depend on the (stochastic) gradients or function values. We emphasize that, in this sense, an adaptive method
can still have parameters affecting its convergence.
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under generalized smoothness assumptions (Faw et al., 2023; Wang et al., 2023; Li et al., 2023;
Wang et al., 2024). Since Clip-SGD has similar convergence properties and since some authors
explicitly mention that in this regard Adam and Clip-SGD are similar?, it is natural to conjecture
that clipping is not needed in Adam/AdaGrad.

However, there are no theoretical results showing the high-probability convergence with polyloga-
rithmic dependence on the confidence level of Adam under the heavy-tailed noise and even in the
case of the bounded variance. Even for simpler “twin”? such as AdaGrad there exists a similar
gap in the literature. Moreover, Mosbach et al. (2020) apply gradient clipping even for Adam in
the fine-tuning of BERT and ALBERT (Lan et al., 2019) models. However, Mosbach et al. (2020)
do not report the results that can be achieved by Adam without clipping. Therefore, it remains
unclear whether and when the gradient clipping is needed for AdaGrad/Adam and whether Ada-
Grad/Adam enjoy desirable high-probability convergence under the heavy-tailed noise.

In this work, we address this gap in the literature, i.e., we consider the following questions:

Does the high-probability complexity of Adam/AdaGrad without clipping has
polylogarithmic dependence on the confidence level under the heavy-tailed noise?
Does clipping improve the convergence of AdaGrad/Adam under the heavy-tailed noise?

We provide a negative answer to the first question and a positive answer to the second one.

1.1 OUR CONTRIBUTIONS

The main contributions of this work are summarized below.

* Negative results for Adam and AdaGrad. We show that the high-probability complexities of
Adam and AdaGrad and their variants with delay by Li & Orabona (2020) do not have poly-
logarithmic dependence on the confidence level in the worst case when the noise is heavy-tailed.
In particular, we design an example of a convex stochastic optimization problem such that the
noise is heavy-tailed and the high-probability convergence complexity of Adam/AdaGrad has
the inverse-power dependence on the target accuracy and confidence level.

* Clipping fixes Adam and AdaGrad. We prove that the above issue can be addressed via gra-
dient clipping. That is, we derive high-probability complexity results for Clip-Adam and Clip-
AdaGrad (with and without momentum) in the case of smooth convex (for the methods with
delay) and non-convex (for the methods with and without delay) optimization with the heavy-
tailed noise having bounded c-th moment with v € (1, 2]. The obtained results have the desired
polylogarithmic dependence on the confidence level. Moreover, in the non-convex case, the de-
rived complexities are optimal up to logarithmic factors, and match the complexity of Clip-SGD
in the convex case up to logarithmic factors.

* Numerical experiments. We conducted numerical experiments for synthetic and real-world prob-
lems. More precisely, we illustrate the superiority of different versions of Adam/AdaGrad with
clipping to the non-clipped versions of Adam/AdaGrad on a simple quadratic problem with ad-
ditive heavy-tailed noise in the gradients. Next, we also test Adam with and without clipping on
the fine-tuning of ALBERT Base model (Lan et al., 2019) on CoLa and RTE datasets (Wang et al.,
2018) and observe that Adam with clipping significantly outperforms Adam without clipping
when the noise is heavy-tailed.

1.2 PRELIMINARIES

In this section, we formalize the setup. We focus on unconstrained minimization problems

min f(z), (D

z€ERC

2Pan & Li (2023) write in the abstract: “We conclude that the sharpness reduction effect of adaptive
coordinate-wise scaling is the reason for Adam’s success in practice.” In addition, Zhou et al. (2020) men-
tion in the discussion of the related work: “... adaptation in ADAM provides a clipping effect.”

3The existing convergence results for Adam often require the choice of parameters that make Adam very
similar to AdaGrad with momentum (Défossez et al., 2022); see more details in Section 1.3.
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where the differentiable function f(x) is accessible through the calls of stochastic first-order oracle
returning an approximation V f¢(z) of V f(z). Here ¢ is a random variable following some distri-
bution D that may be dependent on x and time. In the simplest case, f¢(z) is a loss function on the
data sample £ and f(z) = E¢op|fe(2)] is a population risk (Shalev-Shwartz & Ben-David, 2014).

Notation. The notation is quite standard in this work. We use E¢[-] to denote an expectation w.r.t.
random variable £. All norms are standard Euclidean ones: ||z|| = y/(x, «). The ball centered at =

with a radius R is defined as Br(z) := {y € R? | ||y — z|| < R}. We also use z* to denote (any)
solution of (1) and f, := inf,ca f(z). Clipping operator with clipping level A > 0 is defined as
clip(z,A) := min{1, ||z }x for x # 0 and clip(z, ) := 0 for z = 0.

Assumptions. We start with the assumption* about the noise.
Assumption 1. There exists set Q C R? and o > 0, a € (1, 2] such that the oracle satisfies

E[Vfe()]=Vf(x), E[[Vfe(z) - f@)]"] <o 2

The above assumption is used in many recent works (Zhang et al., 2020; Cutkosky & Mehta, 2021;
Sadiev et al., 2023; Nguyen et al., 2023). When o < 2, it allows the stochastic gradients to have
unbounded variance, e.g., Lévy a-stable noise. When o = 2, it reduces to the standard bounded
variance assumption (Nemirovski et al., 2009; Ghadimi & Lan, 2012; 2013; Takac et al., 2013).

Next, we make a standard assumption about the smoothness of the objective function.
Assumption 2. There exists set Q C R? and L > 0 such that for all x,y € Q

IVf(y) = Vi@ < Lly—all. V@I < 2L(f(x) - f.)- 3)

We emphasize that the second part of (3) follows from the first part if Q = R?. However, in more
general situations, this is not always the case; see (Sadiev et al., 2023, Appendix B) for further
details. Interestingly, when () is a compact set, function f can have non-Lipschitz gradients (e.g.,
polynomially growing with 2) on R?, see also (Patel et al., 2022; Patel & Berahas, 2022).

In addition, for some of our results, we assume that the objective is convex.
Assumption 3 (Optional). There exists set Q C R? such that for all z,y € Q

fy) = f(2) +(Vf(2),y — ). @)

Finally, for the methods without the delay, we assume that function f is bounded.
Assumption 4 (Optional). There exists constant M > 0 such that for all z € R?

A stronger version of the above assumption (boundedness of the empirical risk) is used in (Li & Liu,
2023), which is the only existing work analyzing AdaGrad with gradient clipping.

Why high-probability convergence? The vast majority of the existing literature on stochastic op-
timization focuses on the in-expectation convergence guarantees only. In particular, for some metric
P(z) quantifying the output’s quality, e.g., P(z) = f(z) — f(z*), [[Vf(2)|? |z — 2*|%, such
guarantees provide upper bounds on the number of iterations/oracle calls required for a method to
find « such that E[P(z)] < e. However, during recent years, high-probability convergence guar-
antees have been gaining a lot of attention as well. Such guarantees give upper bounds on the
number of iterations/oracle calls required for a method to find x such that P{P(z) < e} > 1 — 4,
where 9§ is usually called confidence level or failure probability. One can argue that using Markov’s
inequality, one can easily deduce a high-probability guarantee from an in-expectation one: if

*Similarly to (Sadiev et al., 2023), for our results, it is sufficient to make all the assumptions only on some
set ). This set is typically bounded and depends on some metric of sub-optimality of the starting point, e.g.,
the distance from the starting point to the optimum. We emphasize that our assumptions are strictly weaker
than corresponding ones for Q = R®. To achieve this kind of generality, we prove that the proposed method
does not leave some set () with high probability.
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E[P(zk(es))] < €0, where x(.5) is an output of the method after K () iterations/oracle calls,
then P{P(2k(5)) > €} < ElP(zxes)l/e < 6. Unfortunately, for many methods such as SGD
(Ghadimi & Lan, 2013) K (¢) has inverse-power dependence on ¢ implying that K () has inverse-
power dependence on €9, leading to a noticeable deterioration when ¢ is small. Therefore, deriv-
ing high-probability complexities with polylogarithmic dependence on 0 requires a separate and
thorough consideration and analysis. Moreover, such bounds more accurately reflect the methods’
behavior than in-expectation ones (Gorbunov et al., 2020).

1.3 RELATED WORK

High-probability convergence. The first results showing the high-probability convergence of
SGD and its variants are derived under the sub-Gaussian noise assumption for convex and strongly
convex problems by Nemirovski et al. (2009); Ghadimi & Lan (2012); Harvey et al. (2019) for
non-convex problems by Li & Orabona (2020). Although the distribution of the noise is near-sub-
Gaussian in some cases, like in the training of ResNet50 (He et al., 2016) on ImageNet (Russakovsky
et al., 2015) as shown by Zhang et al. (2020), this assumption does not cover even the distributions
with bounded variance. To relax the sub-Gaussian noise assumption, Nazin et al. (2019) consider
a truncated version of Stochastic Mirror Descent, which is closely related to Clip-SGD, and prove
its high-probability complexity with polylogarithmic dependence on § under bounded variance as-
sumption for convex smooth problems on the bounded domain. In the strongly convex case, Davis
et al. (2021) propose a general approach for obtaining high-probability convergence based on the
robust distance estimation and show accelerated high-probability rates in the strongly convex case.
Next, for the unconstrained problems, Gorbunov et al. (2020) prove the first high-probability con-
vergence results for Clip-SGD and the first accelerated high-probability rates in the convex case
for a version of Clip-SGD with Nesterov’s momentum (Nesterov, 1983). This result is generalized
to the problems with Holder-continuous gradients by Gorbunov et al. (2021). Cutkosky & Mehta
(2021) derive the first high-probability convergence results under Assumption 1 with o < 2 for
a version of Clip-SGD with normalization and Polyak’s momentum (Polyak, 1964) in the case of
non-convex problems with bounded gradient. Sadiev et al. (2023) remove the bounded gradient as-
sumption in the non-convex case and also prove the first high-probability convergence results under
Assumption 1 for Clip-SGD and its accelerated version in the convex and strongly convex cases.
Nguyen et al. (2023) provide improved results in the non-convex case under Assumption 1 and also
improved the dependency on the logarithmic factors in the convergence bounds. The generalization
to the composite and distributed optimization problems is developed by Gorbunov et al. (2024).
It is also worth mentioning (Jakoveti¢ et al., 2023; Puchkin et al., 2024) who consider potentially
heavier noise than in Assumption 1 through utilizing the additional structure of the noise such as
(near-)symmetry. This direction is further explored by Kornilov et al. (2024) and adjusted to the
case of the zeroth-order stochastic oracle.

AdaGrad and Adam. AdaGrad® (Streeter & McMahan, 2010; Duchi et al., 2011) has the follow-
ing update-rule

Tpy1 = Ty — bltVfgt (x¢), where b= \/bf_l + (Vfe, (x1))? (AdaGrad-CW)

where all operations (taking a square and taking a square root of a vector, division by a vector) are
performed coordinate-wise. The method is analyzed in many works, including (Streeter & McMa-
han, 2010; Duchi et al., 2011; Zou et al., 2018; Chen et al., 2018; Ward et al., 2020; Défossez et al.,
2022; Faw et al., 2022) to name a few. However, the high-probability convergence of AdaGrad
is studied under restrictive assumptions such as almost surely sub-Gaussian noise (Li & Orabona,
2020; Liu et al., 2023) or without such an assumption but with inverse-power dependence on the con-
fidence level § (Wang et al., 2023) or boundedness of the empirical risk and (non-central) a-th mo-
ment (Li & Liu, 2023), which in the worst case implies boundedness of the stochastic gradient (see
the discussion after Theorem 4). In contrast, our results for Clip-Adam(D)/Clip-M-AdaGrad(D)
hold under Assumption 1 (and under additional Assumption 4 for the methods without delay) and
have polylogarithmic dependence on the confidence level §.

>The original AdaGrad is described in formula (AdaGrad-CW). However, for the sake of simplicity, we
use the name AdaGrad to describe a “scalar” version of AdaGrad also known as AdaGrad-Norm (Ward et al.,
2020), see Algortihm 1 for the pseudocode. A similar remark holds for Adam.
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Adam (Kingma & Ba, 2014) can be seen as a modification of AdaGrad with an exponential moving
average b7 of the squared stochastic gradients and with Polyak’s momentum (Polyak, 1964):

Ti41 = Tt — bt (Adam'CW)

my = Bimy—1 + (1 — 1)V e, (z0), b= \//326%_1 + (1= B2)(Vfe,(z41))?, (6)

where all operations (taking a square and taking a square root of a vector, division by a vector) are
performed coordinate-wise. Although the original proof by Kingma & Ba (2014) has a flaw spotted
by Reddi et al. (2019), one can still show the convergence of Adam when £ goes to 1 (Défossez
etal., 2022; Zhang et al., 2022; Wang et al., 2024). Moreover, for any fixed 5, and (35 such that 5; <
/B2, e.g., for the default values 51 = 0.9 and B2 = 0.999, Adam is not guaranteed to converge
(Reddi et al., 2019, Theorem 3). Therefore, the standard choice of 35 in theory is S = 1 — V/k,
where K is the total number of steps, and that is why, as noticed by Défossez et al. (2022), AdaGrad
and Adam are “twins”. Indeed, taking ; = 0 (no momentum) and 82 = 1 — 1/k in (6) we get that

b = (1= /K102, + 3 (1= V)M (T fe (@) = © (B2, +  Sh (Ve (0))?)
since 1/4 = (1 — 1/2)2 < (1 — 1/k)*~% < 1for0 < k <t < K. Thus, up to the rescaling of y and
b2 | the effective stepsize of Adam-CW is ©(-) of the effective stepsize of AdaGrad-CW (though
the points where the gradents are calculated can be quite different for these two methods). This
aspect explains why AdaGrad and Adam have similar proofs and convergence guarantees. The

high-probability convergence of Adam is studied by Li et al. (2023) under bounded noise and sub-
Gaussian noise assumptions, while our results for Clip-Adam(D) do not require such assumptions.

2  FAILURE OF Adam/AdamD AND AdaGrad/AdaGradD wiTH MOMENTUM

Algorithm 1 Adam/AdamD and M-AdaGrad/M-AdaGradD

Input: Stepsize v > 0, starting point o € R?, initial constant b_; > 0 (for Adam and M-
AdaGrad) or by > 0 (for AdamD and M-AdaGradD), momentum parameters 1, 52 € [0, 1]
1: Setm_1 =0
2: fort=0,1,... do
3 my = Pimy—1 + (1 — 1) Ve, (z1)
4:  if no delay then

\/ﬁzb +(1 _/32)||Vf5t($t)|| for Adam

5:
VR IV e )P for M-AdaGrad
6 else
.. b \/5255 +(1 —52)||Vf5t(xt)\|2 for AdamD
: 1 =
\/ b3 + ||V fe, (z0)|* for M-AdaGradD
8: endif
9 Typ1 =Ty — gy
10: end for

In this section, we present the negative result on the convergence of Adam, AdaGrad with Momen-
tum (M-AdaGrad), and their delayed versions — AdamD/M-AdaGradD (Li & Orabona, 2020).

Theorem 1. For any o > 0 and sufficiently small £,6 € (0,1), there exist problems (1) such that
Assumptions 1, 2, 3, hold with with L. = 1, o = 2, and the iterates produced by Adam(D)/M-
AdaGrad(D) with xq such that ||xo — x*|| > L and with B2 = 1 — /T for Adam(D) satisfy:

P{f(or) = fl@") 2} <6 = T =0 (poly(c™7,67)), ™

i.e., the complexity of Adam(D)/M-AdaGrad(D) has inverse-power dependence on é.
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Sketch of the proof. To construct our example, we consider the Huber loss function (Huber, 1992)

1.2 ;
[ g7, if |z| <v,

flo) = {1/ (Jz| - %1/) , otherwise, ®)
and design two specific sequences of noises (one for Adam/M-AdaGrad and the second one for
AdamD/M-AdaGradD). For Adam/M-AdaGrad, we consider a discrete additive noise for the first
step such that Markov’s inequality holds as equality, and for the remaining steps, noise equals zero.
Then, with high probability, b; becomes large after the first step, which slowdowns the method. As
for AdamD/M-AdaGradD, similarly to Sadiev et al. (2023), we add the noise only to the last step:
since b; is constructed using the norm of the previous stochastic gradient, the noise is independent
of the stepsize and can spoil the last iterate. See the complete proofs and details in Appendix B. [

Interestingly, in the above example, it is sufficient to consider the noise with bounded variance to
show that the high-probability convergence rates of Adam(D)/M-AdaGrad(D) depend polynomi-
ally on ¢! and 8='/2. Moreover, following a similar argument to (Zhang et al., 2020, Remark 1),
one can show the non-convergence of AdamD/M-AdaGradD when « < 2. We also conjecture that
for & < 2 one can show even worse dependence on € and § for Adam/AdaGrad (or even non-
convergence) since b; will grow with high probability even faster in this case. Moreover, we also
emphasize that the negative result for Adam(D) is established only for 35 = 1—1/7, which is a stan-
dard assumption to ensure convergence of Adam-type methods. Nevertheless, the negative result
of Theorem 1 provides necessary evidence that Adam(D)/M-AdaGrad(D) do not achieve desired
high-probability convergence rates and motivates us to apply clipping to Adam(D)/M-AdaGrad(D).

3 NEW RESULTS FOR Adam AND AdaGrad wiTH CLIPPING

Algorithm 2 Clip-Adam/Clip-AdamD and Clip-M-AdaGrad/Clip-M-AdaGradD

Input: Stepsize v > 0, starting point o € RY, initial constant b_; > 0 (for Adam and M-
AdaGrad) or by > 0 (for AdamD and M-AdaGradD), momentum parameters 31, 82 € [0, 1],
level of clipping A > 0

1: Setm_1 =0

2: fort=0,1,... do

3: my = Bimy_1 + (1 - Bl)clip (Vfgt (:vt), )\)
4:  if no delay then

f/BabE oy + (1 Bo)llerip (Ve (z). M)|* for Clip-Adam

5: bt =
VBt lelip (Ve (z). ) for Clip-M-AdaGrad
6 else
L \/B2b? + (1 — Ba)llcLip (V e, (z), MI*  for Clip-AdamD
: t+1 =
VB + lelip (Vfe, (@) VI for Clip-M-AdaGradD
8: endif
9 X1 =X — %mt
10: end for

Methods. To address the issue indicated in Theorem 1, we consider Clip-Adam(D)/Clip-M-
AdaGrad(D) (see Algorithm 2). In contrast to the existing practice (Pan & Li, 2023), we use
clipping of the stochastic gradient not only in the update rule for momentum buffer m; (Line 3 in
Algorithm 2), but also in the computation of the scaling factor b; (Lines 5 and 7 in Algorithm 2).
The role of clipping in m; is similar to the role of clipping in Clip-SGD-type methods: it prevents
the method from too large steps that may occur due to the presence of the heavy-tailed noise in the
gradients. In this regard, it is important to select clipping level in such a way that bias and variance
of the estimator are balanced. However, the role of clipping in b, is different: clipping prevents by
from growing too quickly since such a growth can lead to poor high-probability guarantees (see the
proof’s sketch of Theorem 1). We note that clipping is also used in Clip-AdaGrad (without mo-
mentum) for both m; and b; computation by Li & Liu (2023) but the authors do not comment about
the role of clipping in b; and use restrictive assumptions as we explain later in this section.
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Convergence results. We derive new high-probability convergence bounds for the generalized
method formalized as Algorithm 2 in the convex and non-convex cases. The following theorem
gives the main result for Clip-AdamD/Clip-AdaGradD in the convex case.

Theorem 2 (Convex Case). Let K > 0 and § € (0,1] and Assumptions 1, 2, and 3 hold for
Q = Bag(x*) for some R > ||xg — x*||. Assume that 51 € [0,1), B2 = KLH (for Clip-AdamD)

— 6 (min LA VI=Filthy A—@(W)
Y= min s T Py s — ,
LA o(K +1)a A% vA

€))

where A = In (4K+1)/5). Then, to guarantee f(Tx ) — f(x*) < € with probability at least 1 — 0 for
T = ﬁ Zf(:o x4 Clip-AdamD/Clip-M-AdaGradD requires :

. L 2 ﬁ
O | max i 3 ,< okt 3 ) iterations/oracle calls. (10)
(1=51)%"\(1—B)ze

Moreover, with probability at least 1 — 0, all iterates {xt}tK:O stay in Q.

Next, we present our main results for Clip-AdamD/Clip-M-AdaGradD and Clip-Adam/Clip-M-
AdaGrad in the non-convex case.

Theorem 3 (Non-Convex Case: Methods with Delay). Let K > 0and ¢ € (0, 1] and Assumptions 1
and 2 hold for Q = {x € R? |3y e R?: f(y) < fu +2A and ||z — y|| < VA/20VL} for some
A > f(2°) — f.. Assume that By € [0,1), B2 = KLH (for Clip-AdamD)
_ . (1 — B1)2bo VI=BibopVA
7 =©| min FES R R (11)
L(K +1)35-24 VLo(K +1)32A"
(1 B) = Thp AT v—o [ VT BiboVA .
oRST L1 (K + )52 Azt | )] VINAK +1)%=2 )

where A = In (4(K+1)/5). Then, to guarantee ﬁ Zfio IV f(z)||? < e with probability at least
1 — ¢ Clip-AdamD/Clip-M-AdaGradD requires the following number of iterations/oracle calls:

3a-2 o 20 a1\ 3253
5 | max (LA) [ _oVELA oz T (LAY (13)
(1—Bi1)3e "\ (1-p)ie "\ (1) '

Moreover, with probability at least 1 — 0, all iterates {:L't}tK:O stay in Q.

Theorem 4 (Non-Convex Case: Methods without Delay). Let K > 0 and ¢ € (0, 1] and Assump-
tions 1, 2, 4 hold for Q = RY. Assume that $; € [0,1), B2 =1 — % (for Clip-Adam)

_ ivVM
Y= ©| min b a1 b 1\/i a—1 (14)
L(K+1)352A VLo(K +1)5—7 A%

by M7 b_1VM
24 o1 ! o 202 , A=0 - a1 , (15)
oZa—1 [, 2a—1 (K + ]_)30472 Aza—1 \/E’YA(K + ]_)30172

where A = 1n (4/5). Then, to guarantee ﬁ ZtK:O IV f(z:)||> < & with probability at least 1 — §
Clip-Adam/Clip-M-AdaGrad requires the following number of iterations/oracle calls:

3a—2 3a—2

51 J(LNET (oVIM\*T (om sy 6

————— max | — _ .
(1—p51)2 € ’ € ’ £

Discussion of the results. Theorems 2, 3, and 4 provide high-probability complexities for Clip-
Adam(D)Clip-M-AdaGrad(D) with polylogarithmic dependence on the confidence level §. Up to
the differences in logarithmic factors, these complexities coincide with the best-known ones for
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Figure 1: Performance of different versions of AdaGrad (with and without clipping/delay) with
stepsizes v = 1 (first row) and v = 1/16 (second row) on the quadratic problem.

Clip-SGD (Sadiev et al., 2023; Nguyen et al., 2023). Moreover, the leading terms in (13) and (16)
are optimal up to logarithmic factors (Zhang et al., 2020), though the first terms in (13) and (16)
can be improved (Arjevani et al., 2023). In the convex case, the first term in (10) is not optimal
(Nemirovskij & Yudin, 1983) and can be improved (Gorbunov et al., 2020; Sadiev et al., 2023). The
optimality of the second term in (10) is still an open question.

It is also worth mentioning that the existing high-probability complexities for Adam/AdaGrad-type
(without clipping) methods either have inverse power dependence on d (Wang et al., 2023) or have
polylogarithmic dependence on d but rely on the assumption that the noise is sub-Gaussian/bounded
(Li & Orabona, 2020; Liu et al., 2023; Li et al., 2023), which is stronger than bounded variance
assumption. Under the additional assumption that the emprical risk is bounded and the (non-central)
a-th moment of the stochastic gradient are bounded and the empirical risk is smooth, which are
stronger than Assumptions 4, 1 and 2 respectively, Li & Liu (2023) derive a similar bound to (16)
for Clip-AdaGrad. We emphasize that boundedness and smoothness of the empirical risk imply
the boundedness and smoothness of all f¢(z) in the worst case (e.g., when the distribution D is
discrete). Therefore, in the worst case, these assumptions imply the boundedness of V f¢(z) (in
view of the second part of (3) for function f¢), meaning that the noise is bounded and, thus, sub-
Gaussian. In this case, clipping is not needed for AdaGrad to achieve good high-probability con-
vergence guarantees as shown by Li & Orabona (2020); Liu et al. (2023). Our Theorem 4 extends
this result to the momentum version of Clip-AdaGrad under less restrictive assumptions (not im-
plying sub-Gaussianity of the noise) and gives the first high-probability convergence bounds for
Clip-Adam with polylogarithmic dependence on §. Moreover, to the best of our knowledge, The-
orems 2 and 3 are the first results showing high-probability convergence of Adam/AdaGrad-type
methods with polylogarithmic dependence on the confidence level in the case of the heavy-tailed
noise without extra assumptions such as Assumption 4. Moreover, we also show that the iterates of
Clip-AdamD/Clip-M-AdaGradD do not leave set ) with high probability, where @ = Baygr(z*) in
the convex case and Q = {z € RY | Iy e R?: f(y) < f. +2A and |z — y|| < VA/20vZ} in the
non-convex case. Further details and proofs are deferred to Appendix C.

4 NUMERICAL EXPERIMENTS

In this section, we illustrate numerically that clipping indeed helps AdaGrad and Adam to achieve
better high-probability convergence.
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Figure 2: Gradient noise evolution for Adam on CoLa (the first row) and RTE (the second row)
datasets. Histograms were evaluated after O steps, after ~ 1/3 and & 2/3 of all steps, and in the end.

Quadratic problem. In the first experiment, we test the performance of different versions of
AdaGrad with and without clipping on the 1-dimensional quadratic objective with additive heavy-
tailed noise: f(z) = #°/2, Vfe(z) = x + &, where the noise ¢ has probability density function
p(t) = W. In this case, Assumption 1 is satisfied with any o € (1, 1.5) and the a-th moment

is unbounded for o > 1.5. Moreover, the function is strongly convex and L-smooth with L = 1.
We choose xg = 2, by = 3 (for the versions of AdaGrad with delay), b_; = 3 (for other cases),
A = 1/2 for the methods with clipping, and choose 7 from {1, /16, 1/128}. Each method was run
100 times with different seeds.

The results are given in Figure 1, where for each method, we show its trajectory in terms of the
squared distance to the solution for v = 1 and v = 1/16 (the results for v = 1/128 are given in
Appendix D.1). More precisely, solid lines correspond to the median value of the squared distances,
and the error bands cover the areas from the 10-th to 90-th percentiles of (z; — x*)2. These results
show that clipped versions of AdaGrad (with and without delay) achieve better convergence with
higher probability than their non-clipped counterparts. Moreover, versions with clipping exhibit
similar behavior to each other. That is, the error bands for Clip-AdaGrad(D) are lower than for
AdaGrad(D) (note that the vertical axis is shown in the logarithmic scale making the error bands for
Clip-AdaGrad(D) look wider than for AdaGrad(D), while they are not). In general, the observed
results for AdaGrad-type methods are perfectly aligned with the theory developed in this paper. We
provide the results for Adam with and without clipping/delay in Appendix D.1.

ALBERT Base v2 fine-tuning. In the second part of our experiments, we consider fine-tuning
the pre-trained ALBERT Base v2 model (Lan et al., 2019) on CoLa and RTE datasets (Wang
et al., 2018). Since Adam-based algorithms are the methods of choice for NLP tasks, in the main
part of the paper, we focus on Adam and its clipped versions — Clip-Adam and Clip-AdamD
— and provide additional experiments with AdaGrad-based methods in Appendix D.2. We took
a pre-trained model from the Hugging Face library. Then, the model was fine-tuned following
the methodology suggested by Mosbach et al. (2020). More precisely, we used linear warmup
with warmup ratio being 0.1, and hyperparameters were 5; = 0.9, 82 = 0.999, b = €1, where
1= (1,1,...,1)T € R% We tuned batchsize and stepsize v for Adam and selected best values
from {4, 8,16, 32} for the batchsize and from {1076,3-1076,107%,3- 1075, 10~} for ~. For the
CoLa dataset, the best batchsize was 16 and v = 102, and for the RTE dataset, the best batchsize
was 8 and v = 1075, For the methods with clipping, we used the same batchsize and stepsize as for
Adam and tuned the clipping level for the two types of clipping®. We tested coordinate-wise clip-
ping with A € {0.001,0.002,0.005, 0.01,0.02,0.05,0.1,0.2,0.5,1} and layer-wise clipping with

SWe did not consider the global/norm clipping (the considered in theory), since typically coordinate-wise
or layer-wise clipping work better in training neural networks.
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Figure 3: Validation loss for ALBERT Base v2 fine-tuning task on the CoLa and RTE datasets.

A € {0.1,0.2,0.5,1,2,5,10}. For the CoLa dataset, the best results were achieved with A = 1
for layer-wise clipping and A = 0.02 for coordinate-wise clipping, and for the RTE dataset, the
best results were achieved with A = 2 for layer-wise clipping and A = 0.005 for coordinate-wise
clipping. In the main text, we show the results with layer-wise clipping and defer the results with
coordinate-wise clipping to Appendix D.2.

Before comparing the methods, we ran Adam and checked how heavy-tailed the noise in the stochas-
tic gradients is along the trajectory. In particular, for both tasks, we selected 4 iterates corresponding
to the starting point, points generated after ~ 1/3 and & 2/3 of all steps, and the last iterate. Then, for
each of these points, we sampled size-16 (for CoLa) and size-8 (for RTE) mini-batched estimator
V fe(z) of the gradient 1000 times, saved the resulting norms of the differences ||V f¢ (z) — V f(z)||,
and plotted their histogram, i.e., we plotted the histograms of the noise norm. Moreover, we also
measure the heavy-tailedness of the noise following the approach from (Gorbunov et al., 2022): we
compute two metrics p,,r = Fi.5(||V fe(x) — Vf(x)]]), which quantifies “mild” heavy tails, and
Per = F3(||V fe(z) — V f(z)||) introduced by Jordanova & Petkova (2017), which quantifies “ex-
treme” heavy tails, where Fy (|| V fe(z) — Vf(2)|]) = P{[|Vfe(x) = Vf(z)| > Q3+a(Qs—Q1)}
and Q); is the i-th quartile of ||V f¢(z) — V f(z)||. To illustrate the heavy-tailedness clearly, we di-
vide these metrics to the ones computed for the standard normal distribution (p,, gn and p.rar) and
show p,,r = me/PmRN’ and p.p = peR/pg,RN on the plots.

The histograms are provided in Figure 2, where we additionally estimate the mean and standard
deviation and plot the density of the normal distribution with these parameters (black curve). For
the CoLa dataset, the noise distribution changes significantly after the start of the training, and its
mean drifts to the right. However, the standard deviation does not change significantly, and, more
importantly, metrics p,,r and p.r remain quite large, showing that the distribution is significantly
heavy-tailed. In contrast, for the RTE dataset, the noise distribution does not drift significantly, and,
interestingly, p.r decreases towards the end of training and becomes zero, while p,,r stays in the
interval [5, 10]. Therefore, the noise distribution has much heavier tails for CoLa than for RTE.

Then, similarly to the experiments with the quadratic problem, we ran the methods 100 times, and
for each step, we computed the median value of the validation loss and its 5-th and 95-th percentiles.
The results are presented in Figure 3, where the solid lines correspond to the medians and the error
bands cover the areas between 5-th and 95-th percentiles. As expected, Adam exhibits poor high-
probability convergence on the CoLa datasets where the noise is significantly heavy-tailed, and
Clip-Adam shows much better performance: the area between 5-th and 95-th percentiles is relatively
narrow for Clip-Adam. In contrast, for the RTE dataset, Clip-Adam performs similarly to Adam.
This is also expected since the noise is much less heavy for RTE, as Figure 2 shows. Taking into
account the negative results from Section 2, and the upper bounds from Section 3, we conclude that
these numerical results are well-aligned with the theory developed in the paper.
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A TECHNICAL DETAILS AND AUXILIARY RESULTS

Additional notation. For the ease of exposition, we introduce the following notation for the
proofs:

gt = clip (Vfe (21),A),
0r = gt — V f(x1),
0 = 91 — Ee,[g4],
0! = B¢, [01] — V(o).
Ry = ||z — 2™,
Ap = flze) — fo
Auxiliary results. We also use the following standard results.
Proposition 1 (Young’s inequality.). For any x,y € R and p > 0 the following inequality holds:

2 2 1 2
o+ 9l < (14 p) el +(1+p Iyl

In particular, forp = 1
2 2 2
e +yll” < 2fzl” + 2y[”

Lemma 1 (Lemma B.2 from (Défossez et al., 2022)). Let 0 < a < b be some non-negative integers
and 0 < g < 1. Then,

b
k q
k< —1 .
,; (1—q)?

Lemma 2 (Lemma 1 from (Streeter & McMahan, 2010)). Let {a;}?_, and c be non-negative reals.
Then,

The following lemma by Sadiev et al. (2023) helps to estimate bias and variance of the clipped
stochastic gradient satisfying Assumption 1.

Lemma 3 (Lemma 5.1 from (Sadiev et al., 2023)). Let X be a random vector from R¢ and X =
clip(X,\). Then, X-E {)?} H < 2\. Moreover, if for some o > 0 and a € (1,2] we have
E(X]=2 € RLE[|X —z||*] < 0% and ||z < 3, then

240

Aa—1?

IN

= (%] -]
E [H)? - xm < 18)25,

E {H)? _E [)?} m < 18X2~ %0,

Finally, in the analysis of Clip-RAdaGradD, we face the sums of martingale-difference sequences.
One of the tools that we use to handle them is Bernstein’s inequality (Bennett, 1962; Dzhaparidze
& Van Zanten, 2001; Freedman et al., 1975).

Lemma 4 (Bernstein’s inequality). Let the sequence of random variables {X,};>1 form a martin-
gale difference sequence, i.e., B[X; | X;_1,...,X1] = 0forall i > 1. Assume that conditional
variances 01»2 =E [Xf | Xic1,... ,Xl] exist and are bounded and also assume that there exists
deterministic constant ¢ > 0 such that |X;| < ¢ almost surely for all i > 1. Then for all b > 0,

G>0andn>1
n b2
2
IP’{ > band E o’iSG}§2eXp<—2G+20b>.

i=1 3

n

>ox,

=1
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B MISSING PROOFS FROM SECTION 2

In this section, we provide further details regarding Theorem 1 giving a negative result about high-
probability convergence of Adam/M-AdaGrad and AdamD/M-AdaGradD. For all methods, we
use the 1-dimensional Huber loss function:
1,.2 ;
_ [37% if |z] <v,

/(@) {z/ (|z| = 3v), otherwise.
This function is convex and L-smooth with L = 1. However, the construction of noises and proofs
are different for Adam, M-AdaGrad, AdamD, and M-AdaGradD. Therefore, we provide the neg-
ative results for these methods separately in the following subsections.

B.1 FAILURE OF M-AdaGrad

We start with the following lemma giving a closed-form expression for the iterates of deterministic
M-AdaGrad applied to (8).
Lemma 5. Suppose that the starting point xq is such that xoy > 0. If after T iterations of determin-
istic M-AdaGrad with initial momentum m_, we have |x:| > v and x; > 0 forallt = 1,T — 1,
then

t-‘rl 4 ﬁt-i-l m_i

T—
T =To — YV E L
t=0

b2, + (t+ 1)v2

Proof. Since |x;| > v and z; is positive, the gradient at x; is equal to v. Hence, by substituting the
gradient into the algorithm, we get the final result. O

The above lemma relies on the condition that |z;| > v and 2 > 0 forall ¢ = 1,7 — 1. For any
v,b_1 and T this condition can be achieved if we choose sufficiently small v.

Next, we estimate the interval where x lies.
Lemma 6. Let the conditions of Lemma 5 hold. Then, we have

max{m_1,0}
> — _
T 2> T 7(14— » ><m+2\/ao+ 2vap + )
min{m_1,0
xT§$07(151+ﬂ1{V1 })(2 ao+T+1*2\/a0+1),

2

b2
where ag = —5.

Proof. From Lemma 5 we have:
t+1 t+1m_1
+B81 =

T =T — :
S ”/225 \/ao-% t+1)

b2 . .
where ag = —5. Next, we bound the second term in the following way'

t+1 +6t+1m mln{m 170}>
|14 17
; v\ ag + t—|—1) _< brth / V1
:(Lﬁz+mmmﬁi“m>( a0+ T+ 1—2Vap+1), (17)

v

— a+(t+1) —  VItag

= (1) (s

T_ m max{m_
11—t“+ﬁ”1V1<1+{“”+<L+mﬂwlhw>

\/;

+2\/a0+T 2\/a0+1>
(18)

17
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Combining (17) and (18), we get the final result. O]

Corollary 1. Ifxzg—v>v >0, 9=7 (1+ w) and

(o —v —3)2 +45(z0 — v — A)Vag + 1
442
then x > v for deterministic M-AdaGrad. Alternatively,

T <

+1,

xr| < v implies that

(ro — v —4)* + 43(wo — v — §)V/ao + 1
152

T> + 1.

Proof. First, let us show that

V<x0—§<1+2\/a0—|—T—2\/a0+1) (19)
is equivalent to

(o —v —A)2 +4vy(xg — v —A)Vag + 1

T <
152

+ 1.

Rewriting the (19), one can obtain

2’?)/\/(10+T<$07V*’A)/+2’A}/\/a0+1.

Squaring both parts of the inequality above and expressing 7', we get the alternative equivalent

formula. Noticing that 1 > \/ﬁ and applying Lemma 6, we get the final result. The second part

of the corollary is just a negation of the implication stated in the first part of the corollary. O

Theorem 5. For any £, € (0,1),0 > 0 such that °/ves > 4, there exists convex L-smooth
minimization problem (8) and stochastic gradient oracle such that Assumption 1 holds with o = 2
and the iterates produced by M-AdaGrad after K steps with stepsize v and starting point xq such
that R := xo — \/2e — 3~ > 0 satisfy the following implication:

+
VEY T es

i.e., the high-probability complexity of M-AdaGrad has inverse-power dependence on .

(20)

P{f(zg)— f(z*)>e} <6 = K:Q(blR 0R>’

Proof. Before we delve into the technical details, we provide an intuition behind the proof. We
want to use the lower bound from Corollary 1 and estimate the bound for the number of iterations
required to achieve the desired optimization error € with probability at least 1 — §. Moreover, we
need to set v depending on the accuracy € (v is analytically clarified later). We denote the output
of deterministic M-AdaGrad after ¢ iterations as £;. Then, we introduce the noise in the stochastic
gradient in the following way

gk = Vf(zr) — o,

where
0, for k > 0,
£ = —A,  with probability 5> o
o, with probability 1 — 5 otherwise,
A, with probability >z

where the formula for A is given later. The noise construction (21) implies that stochasticity appears
only at the first iteration of M-AdaGrad, and then it only affects the stepsizes. Therefore,
v

T1 = To — Fm07
0

where by = \/bgl + (v —0&)? and my = (1 — B1)(v — 0&). Moreover, x; can be bounded in
the following way

To+7y>x1 > %0 — .

18
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Choosing z in such a way that ¢y — 2y > v, we apply Corollary 1 and get that the algorithm needs
to make at least

(251—1/—7(14_M>>\/a

Ky =
5 (1 + max{:no,O})

iterations to reach e-accuracy, where a; = S—é ande = % Let us specify that this estimate depends
on the stochasticity at the first iteration, i.e., the bound on the number of iterations is random. Con-
sequently, if M-AdaGrad achieves e-solution after K steps, we should have K > K. Therefore,
P{K > Ko} > P{f(zx) — f(2*) < e} and we want to estimate K such that

P{Ky <K} >1-0.
Bounding the left-hand side,
P{Ko < K} =P{Ko < K[{ = —A}P{{ = —A} + P{K( < K|{o # —A}P{& # —A}

(5 v (1 sl ))
=P max{mg,0} = K& 7& -4 ED{&) ?é 7A}
7 (1 mipth)
+P{& = —A}.
If we choose R =29 — v —3vand A = A = LRU—H/, then mg can be bounded as
mo < v,

where we substitute £ = 0, A. Therefore, we get

(xl—y—y(1+w))\/a

P{Ko <K} <P 7(1+M>

S K| 7# —A  P{& # —A}

+P{& = —A}

< P{(wo - V;W?’V) Var _ K'go # A} P{¢o # —A} + P{& = —A}

<P{ /% < ke 2 -4} Plo £ -} + Pgo -4}

We notice that condition K > % is necessary, since otherwise it leads to the contradiction.

Indeed, it is enough to choose § = i:
3 1 1
S=1-6<P{=-Ay=— < -.
4 0= Pl b= 5 53
Substituting the analytical form of by, with K > % we get
2 s _ VKPP
PiKo < K} <P{it, + (-0t < D160 # -4 Pl £ —4) + Plo = —4)
22,2
=P {|ofo —v| <\ T — b6 # —A} P& # —A} +P{& = — A}
A2K2p2 )
<PJolél < 2 — b2+ # —ApP{& # —A} + P{{ = —A}

Therefore, P{ Ky < K} > 1 — ¢ implies

2K2 2
P{U|§0|§ 2 R2V 71)2_14»1/

o # A} P{& # —A} +P{{ =—-A} > 1-4.

19
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Consequently, since A = RTW, the first probability in the inequality above is equal to 1 — -,
since the only £y = 0 satisfies the condition on random variable. Hence, we have

1 1 1
- - > 1-4.
(1-5) (1= ) g 210

Denoting iz as @, one can obtain
2% — 20+ > 0.

In the case § > % we use that ﬁ < % < 4. For the § < % we solve the quadratic inequality and
get
1 < 0 <4
2A2 T 14+1-25 —
Consequently,
1
— = < V24.
AT =
Therefore,
R o
> = -1,
T (1/\/ 26 )
which concludes the proof since o/ves > 4 and v = v/2¢. O

B.2 FAILURE OF M-AdaGradD

Similarly to the case of M-AdaGrad, we start by obtaining the analytic form of iterations of the
deterministic M-AdaGradD in the following lemma.

Lemma 7. Suppose that starting point x is such that xo > 0. If after T iterations of deterministic
M-AdaGradD we have |z;| > v and x, > 0 forallt = 1,T — 1 with , then

t+1
et ZW

Proof. The proof is similar to the proof of Lemma 5. Since x; > v, the gradient at point z; is equal
to v. Substituting that into the iteration of M-AdaGradD for each ¢, we finish the proof. O

Now, let us estimate the interval where x lies.
Lemma 8. Let the conditions of Lemma 7 hold. Then, we have

1
x0—7<a+2\/a0+T—1—2~ﬁa0> nggxo—y(l—Bl)@ ao+T—2\/%),
YV @0
b2
where ag = o5

Proof. Let us start with Lemma 7:

t+1
T = To —7 tz; To T
where ag = z—é Next, we bound the second term in the following way:
T-1 _ g+l aotT 1
> g 21 | Fa-a-mevarTo2m. @
aop
ao+T—1

t+1 1 1

1
Zm Tt / ﬁdx:ﬁ+2m—2@. (23)

ao

Combining (22) and (23), we have the final result. L]

20
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Corollary 2. Ifzg —v > v >0, by > v and

(zo — v =)* + 4y(z0 — v — 7)y/ag
+ 2,
4~2

then x > v for deterministic M-AdaGradD. Conversely, the case |xr| < v implies that

(10— v~ 9 + 1(20 — v — ) /g
4~2

T<

T> + 2.

Proof. The proof is the same as for Corollary 1. [

Theorem 6. For any ¢,6 € (0,1), o > 0, there exists convex L-smooth minimization problem (8)
and stochastic gradient oracle such that Assumption I holds with o = 2 and the iterates produced by
M-AdaGradD after K steps with stepsize y and starting point x such that R := xq—+/2e —y > 0,
bo > v and (1=B1)oR/=\/5 > 16b% satisfy the following implication

oR

P{fax) - fa") 2} <5 — K:Q(Eﬁ)’ (24)

i.e., the high-probability complexity of M-AdaGradD has inverse-power dependence on 6.

Proof. The overall idea of the proof resembles the one for Theorem 5 — we combine the lower bound
for the number of iterations from Corollary 2 with the specific choice of stochasticity. Nevertheless,
to prove this theorem, we construct the adversarial noise in another way. More precisely, we consider
the following stochastic gradient

9k = vf(l‘k) — &g,
where
0, ifk < K—1or|ig| > v,
— Ay, with probability ﬁ
k
with probability 1 — A% otherwise,
k

1
2
247

(25)
Ag, with probability

where T is the result of deterministic M-AdaGradD after K iterations and A, =
max {17 %} What is more, E [¢,] = 0 and E [¢7] < 1 by the construction. Therefore,
the stochastic gradient satisfies the Assumption 1 with o = 2.

We want to prove that P{f(zx) — f(z*) > e} < . For § < 1, this implies that |Zx| < v with

2 . . . . . .
€ = %-. Indeed, assuming the contrary, the noise is equal to 0 for each iteration by the construction,
meaning that

P{f(zk) = f(z") > e} =P{[f(Zk) — f(z") > e} = P{|ek| > v} =1>4.
As aresult, |Z x| < v and, applying Corollary 2, we obtain

(20 — v —7)? + 4y(x0 — v — 7)y/ao

K= + 2.
> 2
What is more, x i can be written as
T A 1- of_
TK = TK-1— mK—lZzKJFM'
brx—1 br1

Hence,
P{f o) - fa") > 6} =F (jow] > v} =P
> P{' (1= B1)yoér—1

br—1

. 2Vb[{,1
=2 {lacalz 725}

(1 = Bu)yo€r-1| V}
br—1 -

> V+33K} > P{’(l — Bi)yoék 1

br—1

Tr +

> 21/}

21
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Ifmax{l, &ﬁ} =1, then

5> P{f(ax) ~ fla”) 2 e} > P{gK_ﬂ > 2””}“} -1,

(1= B1)vo
which leads us to the contradiction. Therefore max {17 (fibﬁfi ;';a } _ (fibﬁfi )iylg _and
52 P{fex) - o) 2 e} 2 P{lewnal > 2L - L LA
(1—=p51)yo A% 1202,

where we used that Ax_; = max {1 2vbK 1

’ (1-PB1)yo
M. What is more, by _1 can be bounded as

(1—ﬂ1)0’
bi_1 < \/b2 + K12

since the gradient of f is uniformly bounded by v. Hence, we obtain
(z0 —v =)  Azo—v—7)vao _ (wo—v—1)
42 4y - 42
(1—B1)%(xg — v —7)202
1612(b3 + Kv?)o

} and the noise structure. Consequently, v <

K >

>

Multiplying both sides by 2 (b3 + Kv?), we get

(1—B1)%*(x0 —v —7)2%02
166 ’

(b3 + Kv*)? > V2K (b3 + Kv?) >

implying that
(lfﬂl)O'R 2 (17ﬂ1)0’R 2 (lfﬂl)O'R
K>———— - b=—"F——-by>——F—,
= 4a2s 0 8o = 165v5

which finishes the proof.

B.3 FAILURE OF Adam

Similarly to the case of M-AdaGrad, we start by obtaining the analytical form of iterations of the
deterministic Adam in the following lemma.

Lemma 9. Suppose that the starting point xq is such that xo > 0. If after T iterations of deter-
ministic Adam with initial momentum m_y we have |xy| > v and x; > 0 forallt = 1,T — 1,
then

i f+1m71 + (1 — f“) v

pore \/[35“19271 +(1- BL 2

Proof. Since |x;| > v and z; is positive, the gradient at x; is equal to v. Hence, by substituting the
gradient into the algorithm, we get the final result. O

The above lemma relies on the condition that |x¢| > v and z; > 0 forallt = 1,7 — 1. For any
v,b_1 and T this condition can be achieved if we choose sufficiently small v.

Next, we estimate the interval where x lies.

Lemma 10. Let the conditions of Lemma 9 hold. Then, if B2 = 1—1/k, where K is the total number
of iterations of deterministic Adam, we have

2o - 2y(max{m_1,0} +v)T < op <o ~((1 = B1)v+ B min{m_l,O})T.

b71 \/b%l +V2

22
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Proof. From Lemma 9 we have:

T-1 f+1m 1+(17 t+1)y

T—xo_'VZ \/ﬂt“bQ 1_ﬂt+1) Vg

Next, we bound the second term in the inequality above in the following way:

T g 1+(1— v - 2T (max{m_1,0} +v)

< ; (26)
—o \/ﬁt+1b2 ﬁé-‘rl) V2 b_1
T 1 t+1m 14+ (1 _ §+1) v ((1=pB1)v+ Bymin{m_1,0H)T 27
t=0 \/ﬁt"'lb2 EH) V2 02+ 2
where we use the fact that with K > 2 next inequalities hold
1> p5 = (1= YK)" > (1= YK)* > 1/,

0<1-pB5<3a<1,

Combining (26) and (27), we get the final result. O]

Corollary 3. Ifzg > v > 0 and

(l‘o — U)b_l
2y(max{m_1,0} +v)’

T <

then x1 > v for deterministic Adam. Alternatively,
(JJO - I/)b_l

xr| < v implies that

T> .
~ 2y(max{m_1,0} +v)
Proof. Let us note that
2 _
V< oy ~(max{m_1,0} + v)T
b1

is equivalent to

T < (IEO — V)b,1

2y(max{m_1,0} +v)’
The second part of the corollary is just a negation of the implication stated in the first part of the
corollary. O

Theorem 7. For any e, € (0,1),0 > 0, there exists convex L-smooth minimization problem (8)
and stochastic gradient oracle such that Assumption 1 holds with o = 2 and the iterates produced
by Adam after K steps with stepsize v and starting point xy such that R := xo — v > 0 and
xo — V/vI=B2 — v > 0 satisfy the following implication:

) B o> bR ( oR &
P{f(zx) — fz") >} <6 = Ksz(mm{6 e (Wﬁ) }) 28)

i.e., the high-probability complexity of Adam has inverse-power dependence on 0.

Proof. The main idea is quite similar to the proof of Theorem 5. We introduce the noise in the
stochastic gradient in the following way

gk = Vf(zr) — o,
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where
0, for k > 0,
—A ith probability 53
& = ) W¥ proa?f}’gAz ) . (29)
0, with probability 1 — 45 otherwise,
A, with probability 7z

where the formula for A is given later. The noise construction (29) implies that stochasticity appears
only at the first iteration of Adam, and then it only affects the stepsizes. Therefore,

o Y
T1=To — Fmo7
0

where by = \/ﬂgbz_l + (1= p2)(v—0&)? and mg = (1 — B1)(v — 0&). Moreover, x; can be
bounded in the following way

o +V/Vi=Bs > x1 > X9 — V/VI—Ps.

Choosing z in such a way that ¢ — 7/v/I=8> > v, we apply Corollary 3 and get that the algorithm
needs to make at least

x1 — V)b
Ko = (z1 —v)bo
2vy(max{mog, 0} + v)
2
iterations to reach e-accuracy, where ¢ = %-. Let us specify that this estimate depends on the

stochasticity at the first iteration, i.e., the bound on the number of iterations is random. Consequently,
if Adam achieves e-solution after K steps, we should have K > K. Therefore, P{K > Ky} >
P{f(xk) — f(z*) < £} and we want to estimate K such that

P{Ky <K} >1-0.
Bounding the left-hand side,
P{K, < K} = P{Ky < K|¢ = —A}P{& = —A} + P{K, < K|¢ # —A}P{&o # —A}

SP{QV( (zlfV)bO )SK‘&O#—A}P{&)#_A}+HD{§O:_A}

max{mg, 0} + v

xo—vﬁ—yb

:[P{ ( 0 )0)<K’ﬁo?’é—A}P{&)?ﬁ—A}‘FP{fO:—A}

27y (max{mg,0} + v
Moreover, according to the analytical form of my, if {; # — A, then
mo < V.
Therefore,

(o — v)bg — 4yv

Pl < K) <P < Ko # -4} Plea # —4) + Pleo = —4)

4vv

{0 < K+ 1fe0 £ -A} Bleo 7 -4} + Plo = -4}

where R = xy — v. Substituting the analytical form of by, we get

1672(K +1

2V2
Pl < K} <P{gu, + (1 g — o < I g 2 abpeg 2 )

+P{& = —A}

We notice that condition K + 1 > is necessary for the convergence because of the similar

VB2b_1R
vy

VB2b_1R
vy

idea from the proof of Theorem 5. Therefore, we have K + 1 > and can continue the
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derivation as follows:

%A%gf_&&l

P{Ko < K} <P{ o —v| < §o # —A p P{& # —A}

V1—p
+P{§ = —A}
Y2 (K+1)? 2
R CL Y N
<P U§O|S\/ Ij/m : +v|o # —A P P{& # —A}
+P{&{ = —A}.

Therefore, P{ Ky < K} > 1 — ¢ implies

\/ (K+1)2V2 — B b2
W

P olél < +v

€o#—AP{to # —A} +P{& =—A} > 1-4.

Consequently, if we choose A = A”l’(féjézr + \/15 oo then the only realization of the random

variable &y at which the inequality in the first probability is satisfied is 0. Hence, we have the

quadratic inequality:
1 1 1
1-—=]1-=— — >1-0.
< A2>< 2A2>+2A2—

Applying the idea similar to the proof of Theorem 5, we obtain

1_ Vi-fo _ p5s

AT e, =

Therefore,
/T—
K118 (520 - 1> ,
SN ZVE
Applying the fact that 1 — 85 = /K, we conclude the proof since vV1-520//z5 > 4 (otherwise
K > o%/16:5) and v = /2¢. O

B.4 FAILURE OF AdamD

We follow the idea for previous proofs and start by obtaining the analytical form of iterations of the
deterministic AdamD in the following lemma.

Lemma 11. Suppose that the starting point x is such that xo > 0. If after T iterations of deter-
ministic AdamD we have |x;| > v and xy > 0 forallt =1,T — 1, then

t+1

xT—xo*’)’l/Z tbQ 1_ﬁ2)1/2

Proof. Since |x;| > v and z; is positive, the gradient at x; is equal to v. Hence, by substituting the
gradient into the algorithm, we get the final result. O

The above lemma relies on the condition that |x;| > v and z; > 0 forallt = 1,7 — 1. For any -, by
and T this condition can be achieved if we choose sufficiently small v.
Next, we estimate the interval where x lies.

Lemma 12. Let the conditions of Lemma 11 hold. Then, if 8o = 1 — /K, where K is the total
number of iterations of deterministic AdamD, we have
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Proof. From Lemma 11 we have:

t+1

xT—IO*’YVZ tbQ 1—ﬂ§)1/2.

Next, we bound the second term in the inequality above in the following way:

t+1
2T
Z <=, (30)
\/6§b2 (1=phv2 ™ ho
t+1
1—-p561)T
Z > (1-51) 7 31)
R Vi
where we use the fact that with K > 2 next inequalities hold
1> 85 = (1= YR) > (1= YR)K > 1,
0<1-p5<3a<1.
Combining (30) and (31), we get the final result. ]
Corollary 4. Ifzg > v > 0 and
T < (330 — V)b()7
2vv
then xp > v for deterministic AdamD. Alternatively, |z | < v implies that
T> (w0 — V)bo.
- 2vv
Proof. The proof is the same as for Corollary 3. O

Theorem 8. Foranye,é € (0,1), o > 0, there exists convex L-smooth minimization problem (8)
and stochastic gradient oracle such that Assumption 1 holds with o = 2 and the iterates produced
by AdamD after K steps with stepsize v and starting point xo such that R :== xog — v > 0, bg > v
and 7R/=\/5 > 16b3 satisfy the following implication

P{f(zx) — fla*) >} <6 = K= Q(Zﬁ) (32)

i.e., the high-probability complexity of AdamD has inverse-power dependence on 6.

Proof. The overall idea of the proof resembles the one for Theorem 7 — we combine the lower bound
for the number of iterations from Corollary 4 with the specific choice of stochasticity. Nevertheless,
to prove this theorem, we construct the adversarial noise in another way. More precisely, we consider
the following stochastic gradient

gr = Vf(z) — ok,

where
0, ifk<K—1lor|tg|>v,

— Ay, with probability 5 A2

Sk = 0, with probability 1 — —2 otherwise, (33)
k

. ey L

Ag, with probability 5 v
where Zj is the result of deterministic AdamD after K iterations and A = max {1, ﬁ }

What is more, E [§;] = 0 and E [5,3] < 1 by the construction. Therefore, the stochastic gradient
satisfies the Assumption 1 with o = 2.
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We want to prove that P{f(zx) — f(z*) > e} < . For § < 1, this implies that |Zx| < v with

v

€ = 5. Indeed, assuming the contrary, the noise is equal to 0 for each iteration by the construction,
meaning that

P{f(zk)— f(z*) > e} =P{f(2¢r) — f(z¥) > e} =P{|lix| >v}=1>4.
As aresult, |Z x| < v and, applying Corollary 4, we obtain

(370 — I/)bo .

K>
- 2vv

‘What is more, x g can be written as

A oA (1 - 51)7051(—1
Tk =TK-1— Mmyg_1 =& +———
br_1 br—1
Hence,
(1= pB1)yoér—1 > V}
br—1

> V+5€K} > ]P’{’(l — B1)v0K 1

Tx +

P{f(ox) - fa") 2 6} =F (jow] 2 v} =P
> IP’{’ (1= B1)yoér—1

bK_1 bK—l

> 21/}

20bp
P{|5K_1z KoL }

(1= pB1)yo

Ifmax{l, (12117611)}10} =1, then
(1= pi)vo

2ubg 1 . 2vbg 1
Yo T (1=B1)vo’

6>Pumm—fuﬂ>@>P{&<n>”“fl}zL

which leads us to the contradiction. Therefore max {1, and

2wbg_1 } 1 (1 — B1)*y%0?
A

62P{f(:1?1<)—f(x*)ze}ZP{KK_l'Z (1= pBi)yo -

2 = 272 )
K—1 4v2bye_y

21/1)1(71
(1-B1)yo

. What is more, bx_1 can be bounded as

br_1 < \/b%—Fl/Q

since the gradient of f is uniformly bounded by v. Hence, we obtain with by > v

(zo — V)b < (1= p1)(xg —v)oby S (1= p1)(xg —v)o _ (1-p1)Ro

2vv AV 7V, A 812v/6 16ev5

which finishes the proof.

where we used that Ax_; = max {1, } and the noise structure. Consequently, v <

2ubx —1V3
(17ﬁ1)0’

K>
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C MISSING PROOFS FROM SECTION 3

In this section, we provide missing proofs for Algorithm 2 in the convex and non-convex cases. For
each case, the proof consists of two parts — descent lemma and main theorem. Moreover, for conve-
nience of the proofs, we consider a reweighted version of Algorithm 2 summarized in Algorithm 3,
which has an additional parameter 7 > 0 appearing in the update rule for ;. However, Algorithms 2
and 3 are equivalent: if we divide b; and « in Algorithm 3 by /7, the method reduces to Algo-
rithm 2 but produces exactly the same points as before (given the same initialization and source of
stochasticity, i.e., seed), since 7/b, remains unchanged.

Algorithm 3 Reweighted Clip-Adam/Clip-AdamD and Clip-M-AdaGrad/Clip-M-AdaGradD

Input: Stepsize v > 0, starting point 2o € RY, initial constant b_; > 0 (for Adam and M-
AdaGrad) or by > 0 (for AdamD and M-AdaGradD), momentum parameters 31, 82 € [0, 1],
level of clipping A > 0, reweighting parameter > 0

1: Setm_1 =0

2: fort=0,1,... do

3: my = Blmt,1 + (1 — ﬁl)clip (Vfgt ((Et), )\)
4:  if no delay then

[ /BabE 401~ Ba)llcLip (Ve (2, M]P  for Clip-Adam

b

e alleip (Ve (@) V)P for Clip-M-AdaGrad
6: else
L \/B2b? + (1 — Bo)l|cLip (V e, (2), M) for Clip-AdamD
R alletin (T @), VP for Clip-M-AdaGradD
8: endif
9: Ti41 = Tt — blmt
10: end for

C.1 TECHNICAL LEMMAS

Here we introduce technical lemmas for the future proofs.
Lemma 13. Let the sequence {b; }1—o is generated by Algorithm 3 in K iterations. Then, for every
t,r:t > rwe get

bt Z Cmbra

where the constant c,, depends on the update rule for b,. To be more precise, ¢, = 1 for the

Clip-M-AdaGrad/Clip-M-AdaGradD, and c,,, = /2 for Clip-Adam/Clip-AdamD.

Proof. The case of Clip-M-AdaGrad/Clip-M-AdaGradD is obvious since the sequence {b; };— is
non-decreasing. For the Clip-Adam/Clip-AdamD we obtain that

1 t—r 1 K
s (1-5) w2 (1-g) Bz

where we, without loss of generality, assume that K > 2 and apply the analytical form of 55 with

fact that g(K) = (1 - %)K is increasing function. Taking the square root from both parts, we
conclude the proof. O

Lemma 14. Let the sequence {m; }1—o is generated by Algorithm 3 in K iterations. Then, for every
0 <t < K —1itholds that

Zﬁ (1-P1)g

Moreover, % can be bounded in the followmg way:

lme||* < (1= 877 ZB (1= B0)lgell”.
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Proof. The first part of the lemma is the direct consequence of update rule of momentum m;. For
the second part we need to apply the Jensen’s inequality as follows:

2
1_
Z A, ‘ Z AW,

where we use the convexity of ||-||* and Z Bi7R(1 = B) = 1 — UL, Multiplying both sides by
=0

(1 — B2, we get the final result. O

C.2 NON-CONVEX CASE: METHODS WITH DELAY

fe +2A and ||z —y|| < VA } where f(xo) — fo = Ao < A. Then, after T iterations of

Lemma 15 (Descent lemma). Let Assumption 2 hold on Q = {x eRYI|Fy e R : f(y) <

20VL
CIip-M-AdaGradD/CIip-AdamD with by > 2vL/(1-81)%c2,, if 2 € Q Vt = 0, 0, T, we have
T—1
C
Z TNV )|? < Do — Ar — > (4Cr — 24,) (V (), 67)
t=0

T—-1 9 T—1
> G027+ 24410817,
t=0 t=0

T-1
where Cy = S 1= 51 Bt A= %};fjl)(lﬂ —t+1)8¥" and c,, is taken from Lemma 13.
k=t k=t "

Proof. We start with the L-smoothness of f:
L
f(@es1) = f(@e) SV f(e), me1 — @) + §H$t+1 — 2]

2
RS (34)

= T ( f (), ma) + f;bgn

bt
Using the update rule of Algorithm 3, we can obtain
—(Vf(@e),me) = =B (Vf(xe),me—1) — (1 = B1) (V (@), g¢)
= =BV f(ze) =V (wi—1),mi_1) — B (Vf(xs-1),ms—1)
= (1 =BV f(x1), 9t)
< =B (Vf(zt-1),mi-1) + B[V f(x1) = Vf(ze—1)| a1l
— (1= B)(Vf(zt), )
< =B (Vf(@e-1),me—1) + BiL|lze — x| el
— (1= B)(Vf(2e), 9t)
B1L

= =BV () me) + 3 e |
- (1 - 51) <Vf($t)79t> )

where we use the Cauchy-Schwarz inequality and L-smoothness of f. Applying the same idea for
thet —1,t —2,...,0 and noting that m_; = 0, we get

B~

—(Vf (@), my) < =(1-p1) ZB (Vf(2k), gk +LVZ (35)

Therefore, substituting (35) into (34) we have

f@epr) = fla) < - 1_61 VZB (Vf(2k),

L 2
2 9 2
mi +ﬁnmtu

1*51726 (V f (@),

| /\

N
b =
LI
b

i
i: —
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k+1

Applying Lemma 14 with 1 — < 1, we can rewrite the inequality above as follows:

Flaen) — fla) < - (1_61726 (V (), 98)

k=0

t—k k
”25 Zﬁ’wl—ﬁl g1

_ 1—51725 (VF (@), o)

L 2
u%ZZﬂ;,k 1 (L= B gl (36)

where we change the limits of summation. Now let us bound the second term. Applying Lemma 13,
we obtain that by, > c¢,,bg (the constant ¢,, is taken from Lemma 13). Consequently,

t

t t —
Ly? 2(1—p1)
B ZZ I - gyl < L2 " ZZB% “8r 7 gsll”
=0 k= j=0 k=j
t
Ly (1= B1)
t— 1 37

Thus, substituting (37) into (36), we get

flwee) — flae) < - Bl - Zﬁ (Vf(xk), gr)

"By Zﬂ (t— k+ 1) gxl”

Cm btbO

After summing overt =0,...7 — 1,

T—1 6
flar) - -y ”Zﬁ (Vf(@n), gr)
t=0
— L 1*51 2
> S kzoﬁ — ke 1)gl.

The main idea is to estimate the coefficients corresponding to (V f(z,.), g-) and ||g,||*. These mul-
tiplicative factors can be estimated as

T—1
1- —r
t=r t
for the scalar product and
T—1
Ly*(1 - -
VC(TbOBI)(t—T+1) : (39)

t=r

for the squared norm, respectively. For (39) we can apply Lemma 13 in the following way:

-1, t Tl 20 N
Z ( 51)( r+ 1)51—7‘ < Z ’ycﬁ(lbrboﬂl)(t —r 4+ 1) ¢

t=r Em bt bO t=r

Ly’(1 - 1) = .
= —r41
2 b Z(t r+1)p;

t=r
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T-1
Applying Lemma 1, and using that > ;™" < 1=z, we get
t=r

T-1

Ly*(1 - p) - Ly®
A, = — = (t = 1 T 40
; P Sy G gy “0)
foreach k = 0, ..., r. Moreover, let us denote the factor corresponding to the scalar product (38) as

—~C.. C,. can be bounded as follows:

1 - ﬁl 61 t—r 1
< g < g r<
B CmbO 1 - CmbO,

=T

where we apply Lemma 13. Therefore, the descent lemma can be formulated as

T-1 T-1
Flar) = fo) < =Y ACH(Vf(20),90) + Y Arllgell”.
t=0 t=0
Substituting the analytical form of g,, we have
T-1 T—1
fl@r) = f(xo) < — Z YO AV f(@1), 9) + Z Allg:®
)
== 329G (V@) 00) + V@)l
=0
-
+ 3 A (1107 + 2495 (0), 00 + 9 £ (2
=0
t T-1 T-1
==Y (G = AV ()l = Y (vCr = 241) (V f (1), 01)
=0 =0
r-3 t
+ At]|64]]
t=0

Choosing v < %, we get that vC; — 2A4; > 0 since the boundary C; > 1;? L and (40)
hold with k£ = ¢. Therefore, using that 6, = ;' + 9?, one can obtain

T-1 T—1
flor) = flwo) < =Y (Cr = AV f (@)l = D (VCs = 24¢) (V f(1),00)
T_)i—o t=0
+ > A6
t=0
T-1 T-1

(vCr = AV f(z4)] Z YCy = 244) (V f (1), 6%)

M

t=0 t=
T—1 T—1 ~C
u h t 2
e 2 (jort” = ) + X (%5 - 4) 197G
t=0 t=
T—1
vC b2
+Z( - ) [t
t=0
T— 17 T—1
= THVf(a:t)H = > (vCe = 244) (V£ (1), 6})
t=0 t=0
T—1 ~C )
+ 3 2 +Z< : At) oIl
t=
Using that %Ct > Ay, and rearranging terms with A; = f(xz;) — f., we get the final result. [

31



Under review as a conference paper at ICLR 2025

Remark 1. It is important to note that ) can be any non-empty subset of R® as long as the iterates
belong to it. In this sense, the form of Q is not that important for the proof (a similar observation
holds for Lemma 16 in the convex case). Nevertheless, Q) plays a key role in the next part of the
proof.

Theorem 9. Let Assumptions 1 and 2 hold on Q = {x € R |y € RE . fly) <

fe +2A and ||z —y| < VA } with f(xo) — f« = A¢ < A. Then, after K + 1 iterations

20V L
of Clip-M-AdaGradD/Clip-AdamD with
v < min { (1= 1)’ bo(K + 1)3 emy/T = Bi35aboVA
- 80L In A+ 1432% .20V Lo (K + 1)5a2 In“s AEED
(1 — By)Fo=T by ATe=T L1 - By)?
47551 90381 3% L35 (K 4 1)%5% Inda=t (@) } o AT
(41)
and
\— eI BiboVA(K + 1)3a=2 @)
20v/Ly1n (%)
the bound

K o
!

Z THVJC(M)H2 <2A

k=0

holds with probability at least 1 —§. In particular, when v equals the minimum from (41), the iterates
produced by Clip-M-AdaGradD/Clip-AdamD satisfy

| X
THZ IV f ()1

k=0
LAIn £+ NN £l g%(LA);’TZﬁ In3==% K+l })

= O [ max a1 a2 o= a—
( {u — BB F1)ET (L= )R (K + 1) (1= B) 51 (K + 1)
with probability at least 1 — 0.

Proof. Our proof is induction-based (similarly to the one for Clip-SGD by Sadiev et al. (2023)).
We introduce probability event E}, as follows: inequalities

t—1 t—1 T-1
u 2 u
=3 (G = 240) (V). 0 + S ACH o]+ 3 240601 < A,
1=0 1=0 1=0
A; < 2A
hold simultaneously V¢t = 0,1, ..., k. We want to show that P{E},} > 1— Kk—il Vk=0,1,..., K+

1. The case when k = 0 is obvious. Now let us make an induction step: let the statement hold for
somek=T—-1<K:P{Eyr_1} >1— (T=13 1t remains to prove that P{Er} > 1 — KT—_fl. The

K+l
event Ep_; implies that 7; € {y € R?: f(y) < fu +2A}Vt =0,...,T — 1 and
¥ YA emVA VA
— 1l == ) < =— <
for = orall =g meall < 40 s S i = 0L

since ¢,,, < 1. Hence, event E7_; implies {xt}tTZO C @ and we can apply Lemma 15:

t—1 t—1 t—1
C
> THIVA@)I < 80— A = 3 (101 = 240) (VF (), 67) + Y ACilJef |

t—1

w2

+) 24167
1=0
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Vt=1,...,TandVt =1,...T — 1 it implies that

t—1 t—1 t—1
C 2
S LAV < 80— A = (101 = 240) (Vi (), 67) + Y ACil|6F |
t—1
+ > 241617 < 24
=0

t—1
Taking into account that "’TC’ V£ (z)||> > 0 for all ¢, we get that Ep_; implies
1=0

T—1 T—1 T—1
Ar < Do — " (1C, = 240) (V (), 00) + Y ACll6r]* + > 24,6y
t=0 t=0 t=0
T—1 T—1 5
= Ao — Y (vCr — 24,) (VF (1), 0) + > 7Ci]|0}
t=0 t=0

T-1 T-1

U 2 X73 2 u 2

+ > 24, (10717 — Ee 617) + 3 24Ee 1671
t=0 t=0

Next, for vectors

N = {vf(xt)v IV f (x| < 2VLA

0, otherwise

forallt =0,1,...,7 — 1, we have that that with probability 1
]| < 2VLA. 43)
What is more, forallt = 0,...7 — 1 Ep_; implies
V(o) < VLA, <2VIA < 5
Thus, Ep_q implies n; = V f () fort =0,1,...,7 — 1 and

T-1 T-1

Ar < Bo— S (4G — 24) (. 6+ 3 7G| |62
t=0 t=0
@ @
T-1 T-1
+ 3 24, (10817 — Be1017) + D 24Ee, 67 (44)
t=0 t=0
[€) @

It remains to bound each term in (44) separately with high probability. Before we move on, we also
note that event E7_; implies ||V f(z;)|| < 3. Therefore, one can apply Lemma 3 and get

64 < 2A, (45)
2040.04

621 < So= (46)

Ee, |62 < 18A2~0®. 47)

Bound for @©. The definition of 8" implies
Eft [_ (’th - 2"415) <nt7 91?>] =0.

What is more, since C; < we get

_1
cmbo’

. i 43,45 4y AVLA A B
(G0 = 240) (e, B)] < ACe Il 107 < T2 < —— s =
51n I
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Let us define 07 = E¢, |(vCy — 24,)° (n, 07)°

. Hence,
(4%) Y 4v2 LA "
< (101 = 240)° ALARG 105 < =y B 1071 48)
Therefore, we can apply Bernstein’s inequality (Lemma 4) with G = 48017%
T—1 A T-1 A2
u 2
]P’{’— ; (YCr —2A4,) (Vf(xe),01)] > 1 and ; o; < G} < 2exp <_16 e A6C)>

B 1
2K +1)

Thus, we get

T—1 A T-1 5
P{either — ; (YCr —244) (Vf(xe),01)] < 7o ; o2 > G} >1- ®+1)
Moreover, event Ep_1 implies

T‘la @D T2’ N0 LAT @) T2, (1= f1)' = 27b5 RTNK 4 ) S GO LAT

t =

=0 b C%QOQ_O‘\F b% In?~ "“74(1(;1)
<2> TA2

T 4801n AEADS

Bound for @. For the second term, we get that Fp_ 1 implies

2(46) 4%g2e~T
ZVCtH@b < 27” ol <

)\2@ 2b

(a=1)(2a=2) o
(4<2) 4@0.2a,y(K+1) 202&_2[/0‘_1’}/20‘_2(K—|—1) 31022 2 1112 9 (@)
- cmbo 2a—2(1 — b )a—1bga—2Aa_1
4o . 20204720.2(J¢L0¢71([(+ 1) (320(0: In 200—2 (%)
G (L= Br)e gyt A

,720471
(CSVAVAN
< —
-4’

where in the last step, we apply the third condition on v from (41).
Bound for ®. Similarly to @, we have unbiased and bounded terms in the sum

e [240 (1617 ~ Be. o)) | =

and, since (40) from Lemma 15 hold with k£ = 0,

“ 16 LA%? A 15A
2A (9“ — Ee, |16} ) < < =c. 49
‘ t H || EtH H = %,ng(l — B]) >~ 25 In 4(}(6_,’_1) > A7In 4(K;S+1) C ( )

2
Next, we define 67 = Eg, [4142 (HH“H —E, HG#H2> ] . For the introduced quantities, we have

“9) 4L~
) w2 w2 vc w2
07 < e, {2At‘(|\9t 17 — Ee, [163] )H < WE&H@ [ (50)
Therefore, we can apply Bernstein’s inequality (Lemma 4) with G = 150417%
T-1 A T-1 A2
P 2A(9"2—E 0y 2) > — and 62<Gp<2exp| ——r——r~
{Z (1P~ Belor1®) > Fand 3 0F <G < 2o | ~rmoy
_ )
2K +1)
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Thus, we get

3 24, (677 ~ e, 67 7) | < 5 or ZA2>G} 2(K6+1)

T-1
P {either

t=0

Moreover, event F'p_1 implies

2_3a+2

T‘l&g 049 T2LYZNP 0 2 7267002 OAT (K 4 1) S o LT
t — — o
paars bl =01) 7 g02-aco (1— )8 VL “p2In> UKD
b 7Ac < TA?
T 480 T 15041n AEFD

Bound for @. For the last term, we have that E_; implies

T-1

> 24 |6} < Z sz )E&neun

t=0 t=0

(49 36Ly°\* 0T (2 367202 VAT (K +1) o902 oI
= TRRIB) S e - gtV g e
w__ta A
T 9601 AEFD T4

>

Thus, taking into account the bounds above, the probability event Er_1 N 1 N Ey implies that

AT§A+4%:2A,

where
T-1 9 T-1 2
. v Ly A 9 TA
Ei = ther |— —— — 0y < — _
1 {el er 2 (bt ® ><vf($t)u P < 7o 2 o; > 805 4(,{;1) )
T-1 T-1
L~? u u A . TA?
By = either | S = (11071 = Ee 1071)| < T or Y67 > ——
t=0 t t=0 15041n?
Therefore,
P{Er} >P{Er_1NE NE}=1-P{Er_UE,UE,}
_ _ — T6
>1—-P{Epr_1}—P{E{} —P{Ey} >1— ———.
> 1B {Fr) - B{E) P (B} 21
Hence, forall k =0,..., K + 1 we get P(Ey) > K+1 As revision result, event Fx 11 implies
that
C
Z TRVl < 24 (51)
k=0
holds with probability at least 1 — 6.
Therefore, we get that with probability at least 1 — §
K
4A 1
\V/ o2 —.
SOIVE@))? < - max &
k=0
and, since C}, > 1;}531 , we obtain
4A
\Y _ by 52
ZII fan)ll S S Ay el b (52)
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Moreover,

K
b <0 +0 > (3IVF@IP + 316117 +3]62]) (53)
k=0

for the Clip-AdaGradD of by, and

K
B <8+ ey > (BIV Al + 31101 + 3102 (54)
k:O

for the Clip-AdamD, respectively. Next, we use that the event Fx 1 implies

K

A
> H92H2§z§
k=0

Cm bO

K 2
A
< —
> a3

because we could substitute bounds on C; and A; directly in Lemma 15 and all steps in @, ® and @
will be the same. Therefore, with applying Lemma 13, next bounds

K K
4A 3nbo A 3nb2(1 — B1)A
Do IVI@* < T +30 > IV ()| + 202 4 2 (1 —B1)

~(1—f1) pr 4y 4L~ ;
K

) AA 3nboA 3nbg(1 — B1)A
SVl <~ b2+K+1Z”Vf I ke D+ A ® 1)

hold with probability at least 1 — §, where we substitute different c,,, from Lemma 13 and (53), (54)
for Clip-M-AdaGradD and Clip-AdamD, respectively. Next, solving quadratic inequalities above

K
with respect to > ||V f (z1)]1%,
k=0

we obtain

487 A2 9-44n2 A4 16A2 3nboA | 3nbE(1—B1)A 2
Fa-pE T \/’v“(l—ﬁl)“ + P-pp ( -t T

K 1y
S IVl < >
k=0
B 24nA?
21— )2
\/ 57602 A by A3 3nbRAS ABRA2
Y41 = B)* (73(151)2 +L’Y4(1*51) 72(151)2>

A 24nA 576m2 A2 3nboyA 3nb3A 4b%~2 )
e ((1 —e \/(1 —Bt ((1 —B T I(-p) G-
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for Clip-M-AdaGradD and
K

2 247’]A2
kZ:OHVﬂxk)H S AT ARYETT

9- 432 A4 4A2 3nbo A 3nb2(1 — B1)A
+\/y( n + ( 1100 +770( ﬁl))—i—b%)

A=K +1)2 A2(1—61)2 \8y(K+1)  16L~y3(K +1

B 24nA?

S PP(1-B)2(K +1)

. \/ 576m2 A < 3nbo A3 . 3nbRA3 LA )
Y41 = B (K +1)? SA=B)AHE+1) ALY -B)(K+1) (1 —p51)?

B é 24nA
P\ (A= B)AK +1)

N 576m2A2 N ( 3nboyA N 3nbgA N 4b%~2? )
(1=K +1) 20 =) (K +1) 4LA-B)(K+1)  (1-p5)?

for the Clip-AdamD. Substituting = M and applying Va2 + b2 + ¢ + d? < a+b+c+d
for non-negative numbers, one can obtain the bound for Clip-M-AdaGradD:

K
) A 27b
VeI s Gy (48“” BL7b + /31203(1 — B) + 1150)
k:
A 2 \/7 27by
< — 272(1 _
< TP <49L7 +34/7263(1 - 1) + 1—61>

A 2vbg
< ——  [491~? —|—Sb+
S (K+1)72< Y Y00 51)

2A
< 7) max {49L72, 57b0 }

(K +1)72
_ {98LA 10Abg }
n K+1 vK+1)(1-p5)

(55)

and for Clip-AdamD:
K
1 9 A 48L~? 3L~3bg 3v2b3(1 — B1) . 2vbo
- <
1kz=0‘|vf(x’“)” S K+ 12 <K+1+ d K+ N HE+D) -4

A 48 L~ L~3bg 27bg
SE P <K+1 T Tt 1-,@1>
A (49L72 L 4o )
SETDR\K+1  1-5
< 2A - X{49L72 4vbg }
= (K +1)2 K+1'1-5

. { 98LA 8Aby } 56)
- (K+1)2" y(K+1)(1=51) )’

where we use that 2v/ab < a + b. Consequently, after substitution of (41) into (55), (56), we get
final bounds for Clip-M-AdaGradD/Clip-AdamD:
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K
1 2 Vi@
k:

o LAIn K41 VIAsIn“s K8 gmi(LA)% 1 Insa-t K4
= max o_1 > a—2 9 a— a—

(L= B)P(K + 1572 (1= f)F (K + 1) (1= f) 570 (K 4 1) %=
holds with probability at least 1 — 6. O

C.3 CONVEX CASE: METHODS WITH DELAY

Lemma 16 (Descent lemma). Let Assumptions 2 and 3 hold on Q = Bag(z*), where ||xg — 2*|| <
R. Assume that x; € Q ¥t = 0,T. Then, after T iterations of Clip-M-AdaGradD/Clip-AdamD

with by > %, we have
T-1 T-1
Z VC (f(r) = ) S RS = RP = D 29Cy (= a7, 00) + D 24467,
t=0 t=0
1—B1 pi—t 1= 1 (1-p1)
where Cy = X:t 61 and Ay = ; - bbol BiTt(i —t +1).
Proof. According to the update rule of Algorithm 3, we have
* (12 * (12 27 * 72 2
@11 — 2|7 = [loe — 2™|]” - E<$t—$ yme) + ol
t

To bound the scalar product, we substitute the update rule for m;:
=z — 2", mu) = —Pr (e — 2" 1) — (1= B1) (20 — 27, 1)
=B (v —wi1,me1) — B (Te—1 — ", my_1)
— (1= p1) (xe — 2%, g¢)
< =B (@—1 — ", my1) — (1= B1) (w7 — 2%, gr)
+ B llwe = el Ima—y ]|
= =P (ze—1 — 2", mu—1) — (1= B1) (¢ — 2™, gr)

+ 2 [fmg—a |
1

Applying the same idea for ¢ — 1, — 2, ..., 0 and using that m_; = 0, one can obtain
t

a—atme) < = 3 (1= BB (o — o ge) + Z’”} .

k=0

Therefore, we get

t 2 ¢
112 2 7 * 727
_ < ||z — —-—) (1= -
lzirr — 2™ < [y — 2™ b, kz: BB (wp — %, ) + 5, kgo

gLk 2
L

k+1
1

Substituting the bound for [|my||* from Lemma 14 with 1 — < 1, we have

t
* 12 * (12 27 —k *
lze41 —2*||” < |l — 2™[]" — EZ(I — B1)BLF (z — ¥, i)

t—k k
L2 Zﬂ Zﬁ'”l—ﬁl lgs®

t
* 2 *
— [|lo — 2" - b—jZ(l — BB (w, — 2, i)
k=0

272 & el 2
+ == (1= By)llgs ).
by k=0 j=0 bi



Under review as a conference paper at ICLR 2025

Applying the same technique as in Lemma 15 (see (37)), one can obtain

t
* * 27 1__ﬁ1 — *
|z — a*|? < |l — = ||2—%Zﬁi Elay — 3%, gp)
k=0

29*(1 = B1) 2
(t— il
. }jﬂ i+ Dlgl
After summing over t:

1_
oz =2 < o — o[ = 3 2= 51 ZB (2 — 2°, )

t=0

29%(
(t— 1 57
+Z Cmbtbo Zﬁ i+ Dllgs|*- (57)
Therefore, multiplicative factors for (z, — z*, gr> and ||g, || are equal to
T-1 T—1
29(1 = B1) oo 29*(1 = B1) pie
— — 5" and —— 0 (t - 1),
o 2o D
respectively. Let us denote them as —2~C,. and A,.. Using the same idea as in Lemma 15, we get
M <0, < —
b, cmbp
and
2 2
A i

B
"7 bpbo(1 - )
for all p = 0, . ..r because of Lemma 13. Rewriting (57) in terms of C,., A,.,

lor —2*)1* < oo — 2™ 1* = Y 29Ci {ae — 2%, g9) + > Adllgel®.

Consequently,

T-1 T-1
* (|2 * (12 * 2
|z — 2" — ||z — 2*||” < —227@ (xt— ,9t>+ZAt||gtH

T-1 T-1
= NCy (@ — a*, V(o) +01) + Y AV F(ze) + 0
t=0 t=0
T-1 T-1
< - 27vCy (xy — 2™,V f (1)) Z 2vCy (xy — 2™, 04)
t=0 t=0
-1 T-1
+ Z 2AVE () * + > 244160,
=0 t=0
Using Assumptions 2 and 3, one can obtain
T-1 T-1
> @9C = ALA) (f(w) = £2) £ 3 (29 (e — 2%, T f () = 24 f ()]
t=0 t=0

T—1
< oo — a*|* = llzg — 2| = Y 29Cy (x0 — 27, 0;)
t=0

T-1
+ Z 240
=0

If we choose v < %, then 2vC; — 4L A; > ~C because of lower bound on C; and upper
bound for A;. This finishes the proof. O

39



Under review as a conference paper at ICLR 2025

Theorem 10. Let Assumptions 1, 2, and 3 hold on Q = Bag(z*) with ||xg — z*|| < R, Then, after
K + 1 iterations of Clip-M-AdaGradD/Clip-AdamD with

< min (1= B1)%c2,bo V1 — Bicq Rbg - 31— By)?
= ) 1 1 a—1 ’ - 2 )
160L1In (2USE)) 40 92 (K +1)% 5 (25 R
(58)

and

\ = \/]. — ﬂlcmboR (59)

40y 1n <M)
B

the bound

K
> ACk (f(xr) — f.) < 2R
k=0

holds with probability at least 1 —§. In particular, when y equals the minimum from (58), the iterates
produced by Clip-M-AdaGradD/Clip-AdamD satisfy

LR2In K41 oRIn"“% K& })

1

fla) = e =0 (max{u PR ) (1= g HK - )

with probability at least 1 — 0, where T = ﬁ Zi{:o Tk.

Proof. Our proof is induction-based (similarly to the one for Clip-SGD by Sadiev et al. (2023)).
We introduce probability event E}, as follows: inequalities

t—1 t—1
=" 2yCy{m — 27, 0) + > 2410, < R,
=0 =0

R, < V2R

hold simultaneously V¢ = 0,1, ..., k. We want to show that P{E},} > 1— Kk—jl vk =0,1,..., K+

1. The case when k = 0 is obvious. Now let us make an induction step: let the statement hold for
somek=T—-1<K:P{Er_1} >1-— (7;(;11)5. It remains to prove that P{Ep} > 1 — KT—fl. The
event By implies v, € B s55(z*) Vt =0,...,T — 1. Hence, Er_; also implies

A A
ler — 27|l < leg—1 — 2*|| + = [mr—1]| < V2R + - < V2R + "~ <2R.
br_1 br_1 cmbo

Therefore, E7_ implies {z;}_, C Bar(z*) and we can apply Lemma 16:

t—1 t—1 t—1
D ACH(f(ar) = £o) < RG = RE =Y 29Ci{a — ™, 00) + y 2416,
=0 =0 =0

Vi=1,...,TandVt =1,...T — 1 it implies that

t—1 t—1 t—1

D ACH(f(@) = £) S R =Y 29Ci{m — 2,01 + Y 24,16, < 2R*.

=0 =0 =0

t—1
Taking into account that Y, vCy (f(x;) — f«) > 0, we get that Ep_; implies
=0

T-1 T-1
t=0 t=0
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Next, for vectors

fa—a*, |z — 2| < V2R
= 0, otherwise

forallt =0,1,...,T — 1, we have that with probability 1

]l < V2R. (61)
Then, Er_; implies that n, = 2y —x* forallt =0,...7 — 1. What is more, forallt =0,...7 —1
Er_ implies

59 A
IV f@oll < Ll — %] < V2LR < 5

Hence, using the notation from Appendix A, we have that F'r_1 implies

T-1

T-1 T-1
R < RE= 3 29C (w —a",00) = Y 29Ci (we — 2%, 00) + 3 44, (1671 — B, 0717
t=0 t=0 t=0

@ @ ®
T—-1 T—1 9
+ > AAE 077+ 44|07 (62)
t=0 t=0
@ ®

Next, we bound each term separately with high probability. Before we move on, we also note that
event Ep_y implies ||V f(z,)|| < 3. Therefore, one can apply Lemma 3 and get

0£]] < 2, (63)
20 g
621l < Sa= (64)
Ee, [|01]]> < 18A2~ 0. (65)

Bound for @. The definition of 8" implies

Moreover, applying the bound on Cy: Cy < ﬁ from Lemma 16,
©1),(63) GyAR (59 3R?
—27C, 0| < 2vC, 0y < <
[=29Ce (e, O8] < 20 Ce e[ N0 < == < o (4@;1))

For o7 = [, [47203 (ne, 0%)? | we also derive

2 22 w2 2 8’}’232 w2
o < 4y CiBe, 67 lIme]l” < —57o-Ee, 161" (66)
00
R* .
100 In( 2EAD )

T—-1 27 R2 T—1 R4
PSS Vg, a0 > and S o2 <G <2exp -
{ 2; b (T 08) > Tand D of < }‘“p< 25@04-%R)>

Hence, we can apply Bernstein’s inequality (Lemma 4) with ¢ defined above and G =

—0 15
__ 9
(K +1)
Therefore,
T—1 T-1
. 2,)/ . R2 9 1)
p&m—gm@rm%s5m§%>02“%mn'
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In addition, event E_; implies that (due to (66) and (65))

W, 14492027900 R2T 9 144(1 — 1)1~ 8 42b2 g R4OT
T 2

T e (A
o 14401 = B)RIT Rt
9 402(K + 1) In (AU ) T 0010 (AU

2 12
t=0 Cmb

Bound for @. For the second term, one can obtain from (58), (59) and o < 2 that Ep_; implies

T-1 T-1

27 (61),(64) 2\/§ 296y TR
= NG (w —a",0) < Y vl < ZvE2 g Oiit
fz:; Y t<$t x, t> = ; cmbo ”nt” H t|| > Cmbo)\o‘_l

39 4-2°40%0* TR~ 9 4-2%(1 - B)TR?
40(1 — By) 2 ez bg In' @ (@) = 360-(K+1)
2R? R?

< <

— 45 T 5

Bound for ®. For the third part, we have

w2 w2
Ee, [44: (1101 — Ee.1071) | = o.
What is more,
63) 6472)\2 (59 R?

(
u (|2 w (|2 w2 wn?2
— < < —
’4At (||9t 17— Ee, |16 )’ <44, (H@t 17 + e, [167 ) S 2RO-B)  251? (4(K5+1)>

3R?

= om (@) - “

We also define

. 2 22

o = Be, | 1647 (o1 ~ Eclor”) |
Hence,

(67) 2
03 S Ik [Jaa, (1017 - Ee 0P |
201n (405
12+2 R?

w2
S 2 1.2 4(K+1) Egt‘let || .

5Cmb0(]. — 51) ln <f)
Therefore, we can apply Bernstein’s inequality (Lemma 4) with ¢ defined above and G =

R* .

T-1 R2 T-1 R4
P 44, (10017 = Be,|60%)?) > = and Y 62 <Gy <2exp|-——
{; (10017 = B 1671%) > 5 and 3007 <G f < 200 — o

__ 6
2K +1)
Consequently,
T—1 -1
R? 0
. w2 w2 52
]P’{elther ; 44, (Hgt 17— Ee, |67l ) S 5or ; or > G} z1- 2(K 4+ 1)
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Moreover, event Ep_; implies that

T-1

Z_: 1292 R? 10 ”2 (65 18 - 1242\2=9¢ 2 R2T
ft t
=i s - ) (H5) 5%%u—mw%ﬂ%ﬁ)
9 1812 40°y* 0 R*°T P 18- 12R'T
5-402¢g, (1 — 1) % b In®~° (@) T 9.5-40%(K + 1) In? (@)

R4
< 4(K+1))
1001n (4550

Bound for @. For the fourth part, we get that Ep_; implies

T-1 —
6 )144,)/2/\2 agam
AAE 0817 <Y 5 Ee, |02 < g
tz:; s Z; gn() B¢ 21— B
8) 1447740°R? =0T @ 144R2T
40%e5,b (1 — 51)% 2~ (L) 7 9. 402(K 4+ 1) n (40520
R? _R?
<<
=700~ 5

Bound for ®. For the last term, Ep_; implies

— T—1
2 8+?2 2 (64> 8. 4%g2a2T
441087 < — |
Z tH tH — ; c?nbg(l H H — c%nb%(l —ﬁl))\2(a_1)
8. 4a402a0.2a,>/2aT1n2(a71) (4(K5+1))
4022002 (1 — 1) R2(e—1)
9 S ACRT SR _ R’

~ 3602(K +1)2 — 452 — 5 °
Thus, taking into account the bounds above, the probability event Er_1 N Fy N E5 implies that

59

R2
R% < R? +5 = 2R?,
where
T—1 T—1
2 R? R*
E, = either—zl<xt—m*,9;‘>§—or ol > — 3
= b S 100m (AR
T—1 T-1
42 R? R*
o = { either Y i (16717 —Ee,10717) < £ or 367 > ——
+=0 t t=0 100 hl (T)
Therefore,
P{Er} >P{Er_1NE NE} =1-P{Er_;UE,UE,}
_ _ — TS
>1—-—Pi{Er_1t —P{E1} —P{Ey} >1— ——.
21 BT} BB} P {B) 21
Hence, forall k = 0,..., K +1we get P{F}} > 1 — 2. As the result, event Ex 1 implies that
Z Oy (f () — f2) < 2R? (68)
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with probability at least 1 — §. Next, from (68) we get that with probability at least 1 — §

K
2R? 1

—f) < = _
kzo(f(xk) fe) < S

Moreover, c%c can be bounded in the following way (from Lemma 16):

1 h
k ~ (1=p1)
Hence, we get
K 9R2
2 o) = 1) = S e )

Also we can bound by, for Clip-M-AdaGradD using that g, = V f(z1) + ) and Assumption 2:

K
b <00 (4L (Flan) - £) +2000)

k=0
and for Clip-AdamD, respectively
. K
2 12 ( _ 2) .

b <0+ e kZ:O AL (f(wr) = f) + 26

Therefore, due to the fact that the event Ex ;1 implies (see the bounds for @, @ and ®)
3R?
|I9k I” <=,

we get

2 2 & 3n(1 — 51)b3R2

by, < by +7724L((f(117k) — f)) + T
k=0

for Clip-M-AdaGradD scheme and

3n(1 — B1)bER?

K
B S+ g DAL (S w) = ) + S T
k=0

for Clip-AdamD, where we substitute the constant ¢, from Lemma 13. Consequently, substituting
bounds above in (69), we get

K 2 4 K . 272
(Z (f(an) - m) < (bg 0 L)~ )+ W)

k=0

for Clip-M-AdaGradD and

K 2 K
AR ) 3n(1 — B1) R2b?
(Z (f(an) - m) < A B (bo g 2 UL (fak) = f) + M)

k=0

for Clip-AdamD, respectively. Solving these quadratic inequalities, we have that F 1 implies

K

B & ALyR? 161212 R4 2( 72 3nR? )
kzo(f(l‘k) fi) < 2 ((151)2 +\/(15 )4 +o (1—p1)? * 10(1 — B4)
6R? 8LnR*  boy n
< { T T T )
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and

2R? 4LnR?
Z(f(wk) — f) < ,Y2<(1 —B1)2(K +1)

16L2n2 R4 ) ~2 3nR2
* \/<1 “K+ 1 T ((1 — 87 00— (K + 1)))

6 R? SLnR? boy n
= wma’{{(l—ﬁm(ml)’ g <1—,61><K+1>}'

with probability at least 1 — 6. Choosing n = 72(2%;2'81)2, ~ equal to the minimum from (58) and

using that 2v/ab < a + b, we obtain the bound for Clip-M-AdaGradD/Clip-AdamD for the convex
case:

1 < o LR*In £ ng"‘T’l%
KJrlkZ:O(f(l’k) f*) =0 (max{(lﬂl)S(KJrl)’ (1—,81)%(K+1)QT71 })

with probability at least 1 — 0. To get the final result, it remains to apply Jensen’s inequality. O

C.4 NON-CONVEX CASE: METHODS WITHOUT DELAY

Lemma 17 (Descent lemma). Let Assumptions 2 and 4 hold. Then, after T iterations of Clip-M-
AdaGrad/Clip-Adam, we have

-1 6 9L T-1 T-1
> sl < (201 + )2+ lad? = o ac (9.0
t=0 2 n(1=p) t=0 t=0
T—1
~Cy b2
+>_ o llel
t=0
T—1
for Clip-M-AdaGrad, where C; = 3 (1 — 1), and
k=t
T-1 T-1 T-1
’}/Ct 2 16KL’YQ 2 n 2
i <(3m4+ 222 g2 4 2 - ou
S VAN < (38 + ) |k e Sl - 340 (5t 0)

it ~C 2
t
+> 5l
t=0

T—1
Clip-Adam, where Cy = > (1=81)61""/(V/Bz)*.
k=t

Proof. The first part of the proof is similar to the Lemma 15. We start with the L-smoothness of f:

Floess) = Flwe) < (VH@), wes = a0) + 5 [oess = el

L 2
N _blt (V (), mi) + o [ (70)
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Using the update rule of Algorithm 3, we can obtain

—(Vf(ze),me) = =B (Vf(2e),mu—1) — (1 = B1) (Vf(t), g1)
= —B1(Vf(@:) = V[ (@i-1),mi—1) — B1 (Vf(@e-1), me_1)
= (1= B1)(Vf(xe), 9t)
< =BV f(zi-1),mi—1) + B IV f(we) = Vf(zi—1) || |1
- (1 - B1) <Vf<xt)>gt>
< =B (Vf(@i—1),me—1) + P1L ||wy — zp—1 ]| [|[my—1]]
— (1= B)(Vf(zt), )
vB1L

=B (Vf(@-1),m4-1) + b [ |?
— (1= B1)(Vf(xe),9¢)

where we use the Cauchy-Schwarz inequality and L-smoothness of f. Applying the same idea for
thet —1,t —2,...,0 and noting that m_; = 0, we get

—(Vf(xy),my) < —(1 = 1) ZB (Vf(@r), gr) +vaﬁ

(71)

Therefore, substituting (71) into (70), we have
2 t— 1

_ L 2
Feesn) — ) < — 1‘%7235 (V f (), MF+§%WWW

1_5”26 V£ @x) gn) +—Zﬂ

< -
Applying Lemma 14 with 1 — k“ < 1, we can rewrite the inequality above as follows:
t t k Kk
A-pB)y Bl gl Ly? gk 2
f(@eg1) = f@e) < = Zﬁ (Vf(zr), TZ (1= B)llg
k=0 k= j=0
gtk
A

t
= 1_5172ﬁ (Vf(zk) 9k>+Lbi Z
=0 k=3

Y= B)llgslIP

where we change the limits of summation. Multiplying both sides of the inequality above by %,
where

Dy = {1, for Clip-M-AdaGrad 72)

(v/B2)t, for Clip-Adam

and using that b, > ¢,,,b; (see Lemma 13), one can obtain

Y Flou) — Fa) < - “_ﬁl”Ejﬂ (V). o)
Dt Dt =0

L
”}jﬂ (1= 8= + Dl

After summing over ¢,

" T—1 ¢ gtk
Z* (Tt+1) — fl@e)) < —(1 =5 'YZZ (VF(zk), gr)
= Pt =0 k=0 It
Tl g
+L’YQZZ &l (1= Bt —j+1)lg;]1*.
=0 j=0 ¢ th



Under review as a conference paper at ICLR 2025

Next, applying the same idea as in Lemma 15, we get that multiplicative factors are equal to

T-1 t—r
t

t=r

for the scalar product (V f(z,), g.) and

T-1
Ly*(1 = B1) b
A=) Tt )BT 4

" Cmbrpt (t e ) ! (7 )

t=r

for the squared norm || g, 2 respectively. Moreover, it can be shown that p; > ¢, for corresponding
update rule of b;. Hence, for (74) we apply Lemma 1 to obtain the next bound:

__Lr
C%Ibr(]. — 51) ’

Therefore, rewn’ting the descent lemma in terms of (73) and (74), we have

Ar <

= P gl
Z bi(f(we1) = f@0)) < =D AC(V (@), 1) + —5) Z gbf
t=0 1 =0 t
Using that g, = V f(x¢) + 6;, we get
i s b — lgel®
VGV () <D (@) = f@en) = > AC (V (), 0r) + - Z
=0 =0 *'t =0 1 f) =0 by
T—-1 b T—1
= > S (fl@) = fo = (F@nr) = £2)) = f@isn)) = D AC(V f(21), 6,)
i—o Pt t=0
Ly & gl
Ta -8 & b
T—1 b b L T—1
t t—
< —(f(xo) = f«) + 2 (pt - pt1> (f(xe) — tz; YC NV f(x4),0)
Ly & el
TZa-m) ; b

Since p; = 1 for Clip-M-AdaGrad, we can use that b; > b;_1, and for Clip-Adam we get b; >
v/ B2bi—1, what is equal to ]l;t > ;;t L with p; = (1/B2). Therefore, applying Assumption 4, we
obtain

T-1 T—1
boM by M lge®
CiIVf(x)|? < 2= + 21— Ci (Vf(xy),0; .
;:0 YOIV f (@) || 0 P ;:0 YO (V f (@), 0r) + 2 1 —51 ;o

Now we construct descent lemmas for each considering update separately. For Clip-M-AdaGrad
we directly apply Lemma 2 to bound the last term:

T-1 T-1

2
Z YC |V f () |* < 2Mbpy — Z VGV (), 0) + L+bT—1
v paar n(l—p)
92 T-1
= (2M + M) br_1 — Z 70t <Vf(l‘t), 0t>

t=0

L2 T-1
(2M + 77(1ﬂ)) br_q1 — tz; YC (N f(24),0%)

C C
Z”Ww H+Z”w

(75)
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where we use that ¢,,, = 1 and p; = 1 for Clip-M-AdaGrad. For the Clip-Adam, we get

T-1

— lg:l” 1 1llgel”
sl Ly

b S\ JBEE  ( - Ban S B ok
T-1 2
_K 22 |
t 2
=0 \/b2—1 + % Ek:o Il gl

1K
Z lgell,
"

where we use that 85 > 1/4 for all k = 0,..., K. Consequently, with upper bound on b; and
¢m = 1/2, for Clip-Adam one can obtain

| /\

> GVl < b + (j%);” - j;:vct (V). 6)
" m 2, ;‘)ngkn
< <3M n M) 2+ 2 T; lgell® - Tgvct (V (1), 0:)
< <3M + 771(61K_L;12)> b2, + % Tz__:l llgell® — 27@ (Vf(2e),0;)

Ct Ct
Z IV ) + Z e

After substitution of the analytical form of by_; in (75) and different options of p;, we claim the
final result. O]

Theorem 11. Let Assumptions 1, 2 and 4 hold. Then, after K iterations of Clip-M-AdaGrad/Clip-
Adam with

b K b_ VM
v < min 3
48LIn(5) 4% - 12VIo(K + 1)7= In"+ (%)
by M= S s S

4757 12561 g3t [ 3T (K 4 1)%2 InZa-1 (%) ’ M(1-p)’

and
12\/Z7 In (%)

the bound

1 K-1
= > IVF@l
k=0
<1max{LMln(§) \/70'111 o (%) 0'2& 1(LM)2a 111122 ?(%) })
) :

(1-p1)3 K= K353 ’ K33
holds with probability at least 1 — 0.
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Proof. The main idea of the proof is similar to the proof of Theorem 9, but we do not need to
introduce any probabilistic events since according to Assumption 4 the norm of gradient is always
bounded:

IV F @)l < 2L (F@e) — o) < VAL < %

Therefore, one can apply Lemma 3 and get

1631 < 22, (78)
2%
b
16:]] < Sa=t (79)
e, [|6]]* < 18X\, (80)
According to the Lemma 17, we get
T—1 T—1 T—1
~C 2LA? u
> IVl < (2M + s ) (02 0 D ol = Y AC (T f (), 67)
P (1 = 51) t=0 t=0

'yC’
+ Z Sl

T-1
with Cy, = 3 (1 — $1)8F ! for Clip-M-AdaGrad and
k=t

VC 16K L? 7 iy — u
Z LIV F @l < <3M + w(1—=B1) b2, + X Z llgell® - Z YC: (V f (1), 0;')
t=0 N L t=0 t=0

T-1 ")/C’ 9
t
+> 5 lletll
t=0

with C; = Z (18181 /(vBa)* for Clip-Adam. Let us bound C; regardless of the method. In can

be shown that
1— B < Cy(Clip-M-AdaGrad) < Y (1 - 5)8F =1
k=0
and

1— B < Cy(Clip-Adam) <2 (1 - B1)Bf =2,
k=0
since (v/B2)T~1 > 1/2. Therefore, descent lemmas for Clip-M-AdaGrad and Clip-Adam can be
rewritten in the following way:

. . o2 T-1
S Iv sl < (a4 225 ) 2,40 Y Lol
=0 =0

T—1 T—1 9
= ACHV (), 01 + > |07 | (81)
t=0 t=0

for Clip-M-AdaGrad and

v(1 = 51) i 2 16K L~? 7 = 2
TSP IwsGl < (33 (G55 ) P+ 5 Sl

T—1 T—1
G (V) 6+ S A6 (82)

t=0 t=0
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T-1
for Clip-Adam. Moreover, 3 ||g:||* can be bounded as follows:
=0

T-1 T-1
>l <337 (19 + (1617 — Be, 107 17) +Ee 071+ 07]7) - 83)
t=0 t=0

The main idea is to give upper bounds for the next terms for all T' < K:

T—1 L'y ’Y T—1 N b T— ~y
> e 10311% — Ee, |63 | Z s Eelloy®, Y o He Z— (Vf (1), 00) .
b= b b_
t=0 t=0 t=0
@ @ &) @

In cases of @, @ and ® we multiply sums from (83) to the factors to move to the corresponding type
of sums from Theorem 9.

Bound for @®. We have bounded and unbiased terms in the sum:
L’YQ w2 w2
Ee, |5 (10017 - Belof17) | =
-1

and
Lfy 1 8) 8Lvy2)\? 24M

< =
b2, T 19Inj

7 (161° ~ e loyI) | <

Next, we define 67 = E, [ (||0§‘ I? - Ee, |16} ||2>} . For the introduced quantities, we have

2
.o _ cLy
Ut S b2 Eﬁt
—1

w2 w2 20L72 w2
1621 — Ee,I0317| < =5 Ee, 16711
-1

3M? .
38In(4)"

T-1 M2 5
> M and 62 <Gy <2 —_—— | = =.
. ;O—t a } a exp< 2G+ 2CA[> 2

3

Therefore, we can apply Bernstein’s inequality (Lemma 4) with G =

r{l

- 2 (1617 - Ee o)

t=0 —

Thus, we get
T-1 I T-1 5
cither |3 73— ( 622 —Egtnegnz) <Mor Y 57 >Gp>1-c.
t=0 —1 t=0
Moreover,
TZ’R 0 36cT LN\~ 0" (7D 36¢T Ly Y
— 2 — 2—a
n b2, 122-ape VI I (4)
a6 3M>2
= 38In (%)

Bound for @. For the second term, we get

(- a)(z )

Z E jou 80 TN 00" 0 18T Ly /M K
i

BT e VI ()

76) M

<

S 3 s
Bound for ®. For the third sum, we obtain

< M.
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where we choose the third option for 7.
Bound for @. Similarly to @, we have unbiased and bounded terms in sum:

e, [-2 (wr0. 0] =0

and

4'yA\/2L 3M

(V (1), 67) < T (1

= C.

’YCt
by

< LI H Gl 6] S

Let us define 07 = E, [ L (Vf(xe),01) ] Hence,
52 < 8v2LM

P Bl

Therefore, we can apply Bernstein’s inequality (Lemma 4) with G = i (24) :
s

1

~1C, -« M’ 5
u 2
p{|_z 19 )07 > M and 3 o ga} < 2exp <_W> 0
t=0 t=0 3
Thus, we get
e T-1 5
. t
]P’{elther _Zb_l (Vf(xs),0) < M or th >G}>1—2
t=0 t=0
Moreover,
Zl 2 60 1442 LMTN 0" ) 144y M TR YRS o LM T o M
2 2= = e
= L 122-0p2 VLT “In? (4) 41n ()

Consequently, next inequality holds with probability at least 1 — § forall T' < K:

N o, 6MY%,  3Mb_,
z::llgtll §3§||Vf(xt)ll e T

Let us specify 7 for each method. This parameter can be chosen as follows:

- {M(l) for Clip-M-AdaGrad

Tkaz, for Clip-Adam

Therefore, (81) and (82) can be rewritten in an unified form with 7' = K and @, @, @ and @:

K-1 K— 2
’Y(l 51) 9 9 6b71 31)’7[)_1
_ Vifx <19M ,| b Vf(z +
9 kE:O IV f(z)lI” < 1+ §= IV f () 1 2 1- 5

+2Mb_4

K-1
holds with probability at least 1 — & for both algorithms. Denoting Y. ||V f(x)|” as Sk and
k=0

squaring the inequality above, we get
2

7(1 = B)? 3Ly? 66, | 3Lyb,
TP g2 19M b2, + K+ + +2M
4 K= R VT Ry M )
3L~? 602,  3Lyb_,
< 762M*? <b2 + Sk + + + 8M3p? |,
- YTMA -8 T8 15 !
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where we use the fact that (a + b)? < 2a? + 2b%. Rearranging the terms, we have
, 6-382LM 2-382M2 (., 8%,  6b_1  3Lyb_4

Sk — 35k — 5723 (021t <0.

(1-5) 21— pB1) 62 1= 1=/

Solving the quadratic inequality and using that v/a2 + b2 < a + b, one can obtain

6-382LM  38V2M 8b2
Sk < + b2, +
== 63 7(1—51)\/ !

- 6-382LM+ 38v2M <2lb_1 3b_4 )
T (1-061)2  ~A(1-p1) 19 Vi=51)’

because Ly < by Therefore, after division of both sides by K and substitution of ~ from (76), we
get the final bound for Clip-M-AdaGrad/Clip-Adam:

6b2,  3Lyb_,
62 ' 1—pB,  1-pj

| K=l
= S IVl
k=0
1 LMIn (%) VIMoln™s (%) o= (LM)%=r Ins-1 (4)
=0 | —5 max 2 —— ) —
(1-p1)2 K3a—2 K35a=2 K 3a—2
with probability at least 1 — 4.

O
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Figure 4: Performance of different versions of AdaGrad (with and without clipping/delay) with
stepsize v = 1/128 on the quadratic problem.

D NUMERICAL EXPERIMENTS: ADDITIONAL DETAILS AND RESULTS

D.1 QUADRATIC PROBLEM

In addition to the results provided in the main text, we compare the performance of different versions
of AdaGrad with v = 1/128. The results are given in Figure 4. One can notice that methods with
clipping consistently outperform the methods without clipping for this stepsize as well.

Moreover, we provide the results of similar experiments for Adam with and without clipping/delay
in Figure 5 (for 51 = 0.9 and B = 0.999). In general, the observed results for Adam-based
methods are very similar to the ones obtained for AdaGrad: clipped versions of Adam show better
high-probability convergence than non-clipped ones.

D.2 ALBERT BASE v2 FINE-TUNING

In our experiments with finetuning of the ALBERT Base v2 model on CoLa and RTE datasets, we
follow a standard practice of usage Adam, we apply bias correction to Adam and Clip-Adam. For
the delayed version — Clip-AdamD — we do not apply bias correction and tune by instead.

In the main part of our work, we present the results for Clip-Adam with layer-wise clipping. In
Figure 6, we provide the results in the case of coordinate-wise clipping. In general, they are quite
similar to the ones given in Figure 3, indicating that both clipping strategies can be useful in practice
and improve the high-probability convergence of Adam.

We also conducted experiments with Clip-AdamD and compared its performance with Clip-
Adam. We tuned parameter ¢ defining b as b = ¢1, where 1 = (1,1,...,1)" € R Tun-
ing was performed in two phases: during the first phase, we selected the best values of €
from {1078,1077,1076,107°,1074,1073,1072}, and then for every selected ¢ we tried ¢ €
{0.2¢,0.5¢,0.8¢, 2¢, 5¢, 8¢}. In the case of CoLa dataset, the best € was 2 - 107°, and in the case of
RTE dataset, the best € was 2 - 1076,

The results are presented’ in Figure 7 and show that Clip-AdamD performs worse than Clip-Adam,
especially on CoLa dataset. However, it is worth mentioning that the clipping level was selected
the same for both Clip-Adam and Clip-AdamD. Moreover, we have not tried to use bias correction
for Clip-AdamD that could also improve its performance. Finally, the tuning of € parameter over
multiple runs can also improve the result of Clip-AdamD.

Finally, we also conducted similar experiments with AdaGrad-based methods with and without
clipping/delay. Parameter v and batchsize were tuned across the same values as in the case of
Adam. Moreover, similarly to the experiments with Adam, we used standard layer-wise clipping
for AdaGrad-based methods since it gave better results. The final parameters are (i) v = 1074,
batchsize 4, A = 5 for (Clip-)AdaGrad on CoLa dataset, (ii) v = 10~%, batchsize 16, A = 1 for
(Clip-)AdaGrad on RTE dataset, (iii) v = 10~%, batchsize 4, A\ = 5 for (Clip-)AdaGradD on CoLa

"In the plots, we use the name Clip-RAdamD, which is equivalent to Clip-AdamD as explained at the
beginning of Appendix C.
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Figure 5: Performance of different versions of Adam (with and without clipping/delay) under the
standard setting (8; = 0.9, 82 = 0.999) with stepsizes v = 1 (first row) and v = 1/16 (second row)
on the quadratic problem.
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Figure 6: Validation loss for ALBERT Base v2 fine-tuning task on the CoLa and RTE datasets.
Clip-Adam is used with coordinate-wise clipping (A = 0.02 for CoLa and A = 0.005 for RTE).

dataset, and (iv) v = 10~*, batchsize 16, A = 0.1 for (Clip-)AdaGradD on RTE dataset. The
results are presented in Figure 8. For this particular case, there is no big difference between versions
of AdaGrad with and without clipping, and only for CoLa dataset we see that Clip-AdaGrad has
much smaller error band than AdaGrad.
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Figure 7: Validation loss for ALBERT Base v2 fine-tuning task on the CoLa and RTE datasets.
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Figure 8: Validation loss for ALBERT Base v2 fine-tuning task on the CoLa and RTE datasets.
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