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ABSTRACT

Methods with adaptive stepsizes, such as AdaGrad and Adam, are essential for
training modern Deep Learning models, especially Large Language Models. Typ-
ically, the noise in the stochastic gradients is heavy-tailed for the later ones.
Gradient clipping provably helps to achieve good high-probability convergence
for such noises. However, despite the similarity between AdaGrad/Adam and
Clip-SGD, the current understanding of the high-probability convergence of Ada-
Grad/Adam-type methods is limited in this case. In this work, we prove that Ada-
Grad/Adam (and their delayed version) can have provably bad high-probability
convergence if the noise is heavy-tailed. We also show that gradient clipping fixes
this issue, i.e., we derive new high-probability convergence bounds with polylog-
arithmic dependence on the confidence level for AdaGrad and Adam with clip-
ping and with/without delay for smooth convex/non-convex stochastic optimiza-
tion with heavy-tailed noise. Our empirical evaluations highlight the superiority
of clipped versions of AdaGrad/Adam in handling the heavy-tailed noise.

1 INTRODUCTION

Stochastic first-order optimization methods such as Stochastic Gradient Descent (SGD) (Robbins
& Monro, 1951) are the methods of choice in training modern Machine Learning (ML) and Deep
Learning (DL) models (Shalev-Shwartz & Ben-David, 2014; Goodfellow et al., 2016). There are
multiple reasons for that, including but not limited to their simplicity, computation cost, memory
usage, and generalization. However, standard SGD is rarely used due to its sensitivity to the choice
of stepsize. Therefore, methods such as AdaGrad (Streeter & McMahan, 2010; Duchi et al., 2011)
and Adam (Kingma & Ba, 2014), which use adaptive1 stepsizes, are much more popular in the
DL community (Vaswani et al., 2017; You et al., 2019; Nikishina et al., 2022; Moskvoretskii et al.,
2024). In particular, Adam-type methods are not just easier to tune but they also typically achieve
much better results in terms of the model performance than SGD in the training of Large Language
Models (LLMs) (Devlin et al., 2019; Zhang et al., 2020).

In the attempt to explain the later phenomenon, Zhang et al. (2020) consider the noise distribution
in the stochastic gradients appearing in the pre-training of the BERT model (Devlin et al., 2019) and
show that (i) the gradient noise is heavy-tailed in this case, (ii) Adam significantly outperforms SGD
(with momentum), (iii) Clip-SGD (Pascanu et al., 2013) also converges better than SGD for such
problems, and (iv) Clip-SGD is provably convergent (in-expectation) when the noise has bounded
α-th moment for some α ∈ (1, 2] while SGD can diverge for α < 2. Moreover, gradient clipping
also plays a central role in the recent advances on the high-probability convergence of stochastic
methods under the heavy-tailed noise (Gorbunov et al., 2020; Cutkosky & Mehta, 2021; Sadiev
et al., 2023; Nguyen et al., 2023). Taking into account the similarities between Adam and Clip-
SGD (the former one can be seen as Clip-SGD with momentum and iteration-dependent clipping
level), one can conjecture that Adam enjoys good theoretical high-probability convergence when the
gradient noise is heavy-tailed. If this was true, it would be perfectly aligned with the observations
from (Zhang et al., 2020) about the connection between the noise in the gradients and Adam’s
performance. Moreover, some recent works show that AdaGrad/Adam have provable convergence

1Throughout the paper, we use the word “adaptivity” in its general meaning: stepsizes are adaptive if they
depend on the (stochastic) gradients or function values. We emphasize that, in this sense, an adaptive method
can still have parameters affecting its convergence.
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under generalized smoothness assumptions (Faw et al., 2023; Wang et al., 2023; Li et al., 2023;
Wang et al., 2024). Since Clip-SGD has similar convergence properties and since some authors
explicitly mention that in this regard Adam and Clip-SGD are similar2, it is natural to conjecture
that clipping is not needed in Adam/AdaGrad.

However, there are no theoretical results showing the high-probability convergence with polyloga-
rithmic dependence on the confidence level of Adam under the heavy-tailed noise and even in the
case of the bounded variance. Even for simpler “twin”3 such as AdaGrad there exists a similar
gap in the literature. Moreover, Mosbach et al. (2020) apply gradient clipping even for Adam in
the fine-tuning of BERT and ALBERT (Lan et al., 2019) models. However, Mosbach et al. (2020)
do not report the results that can be achieved by Adam without clipping. Therefore, it remains
unclear whether and when the gradient clipping is needed for AdaGrad/Adam and whether Ada-
Grad/Adam enjoy desirable high-probability convergence under the heavy-tailed noise.

In this work, we address this gap in the literature, i.e., we consider the following questions:

Does the high-probability complexity of Adam/AdaGrad without clipping has
polylogarithmic dependence on the confidence level under the heavy-tailed noise?

Does clipping improve the convergence of AdaGrad/Adam under the heavy-tailed noise?

We provide a negative answer to the first question and a positive answer to the second one.

1.1 OUR CONTRIBUTIONS

The main contributions of this work are summarized below.

• Negative results for Adam and AdaGrad. We show that the high-probability complexities of
Adam and AdaGrad and their variants with delay by Li & Orabona (2020) do not have poly-
logarithmic dependence on the confidence level in the worst case when the noise is heavy-tailed.
In particular, we design an example of a convex stochastic optimization problem such that the
noise is heavy-tailed and the high-probability convergence complexity of Adam/AdaGrad has
the inverse-power dependence on the target accuracy and confidence level.

• Clipping fixes Adam and AdaGrad. We prove that the above issue can be addressed via gra-
dient clipping. That is, we derive high-probability complexity results for Clip-Adam and Clip-
AdaGrad (with and without momentum) in the case of smooth convex (for the methods with
delay) and non-convex (for the methods with and without delay) optimization with the heavy-
tailed noise having bounded α-th moment with α ∈ (1, 2]. The obtained results have the desired
polylogarithmic dependence on the confidence level. Moreover, in the non-convex case, the de-
rived complexities are optimal up to logarithmic factors, and match the complexity of Clip-SGD
in the convex case up to logarithmic factors.

• Numerical experiments. We conducted numerical experiments for synthetic and real-world prob-
lems. More precisely, we illustrate the superiority of different versions of Adam/AdaGrad with
clipping to the non-clipped versions of Adam/AdaGrad on a simple quadratic problem with ad-
ditive heavy-tailed noise in the gradients. Next, we also test Adam with and without clipping on
the fine-tuning of ALBERT Base model (Lan et al., 2019) on CoLa and RTE datasets (Wang et al.,
2018) and observe that Adam with clipping significantly outperforms Adam without clipping
when the noise is heavy-tailed.

1.2 PRELIMINARIES

In this section, we formalize the setup. We focus on unconstrained minimization problems

min
x∈Rd

f(x), (1)

2Pan & Li (2023) write in the abstract: “We conclude that the sharpness reduction effect of adaptive
coordinate-wise scaling is the reason for Adam’s success in practice.” In addition, Zhou et al. (2020) men-
tion in the discussion of the related work: “... adaptation in ADAM provides a clipping effect.”

3The existing convergence results for Adam often require the choice of parameters that make Adam very
similar to AdaGrad with momentum (Défossez et al., 2022); see more details in Section 1.3.
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where the differentiable function f(x) is accessible through the calls of stochastic first-order oracle
returning an approximation ∇fξ(x) of ∇f(x). Here ξ is a random variable following some distri-
bution D that may be dependent on x and time. In the simplest case, fξ(x) is a loss function on the
data sample ξ and f(x) = Eξ∼D[fξ(x)] is a population risk (Shalev-Shwartz & Ben-David, 2014).

Notation. The notation is quite standard in this work. We use Eξ[·] to denote an expectation w.r.t.
random variable ξ. All norms are standard Euclidean ones: ∥x∥ =

√
⟨x, x⟩. The ball centered at x

with a radius R is defined as BR(x) := {y ∈ Rd | ∥y − x∥ ≤ R}. We also use x∗ to denote (any)
solution of (1) and f∗ := infx∈Rd f(x). Clipping operator with clipping level λ > 0 is defined as
clip(x, λ) := min{1, λ/∥x∥}x for x ̸= 0 and clip(x, λ) := 0 for x = 0.

Assumptions. We start with the assumption4 about the noise.
Assumption 1. There exists set Q ⊆ Rd and σ ≥ 0, α ∈ (1, 2] such that the oracle satisfies

E [∇fξ(x)] = ∇f(x), E [∥∇fξ(x)− f(x)∥α] ≤ σα. (2)

The above assumption is used in many recent works (Zhang et al., 2020; Cutkosky & Mehta, 2021;
Sadiev et al., 2023; Nguyen et al., 2023). When α < 2, it allows the stochastic gradients to have
unbounded variance, e.g., Lévy α-stable noise. When α = 2, it reduces to the standard bounded
variance assumption (Nemirovski et al., 2009; Ghadimi & Lan, 2012; 2013; Takáč et al., 2013).

Next, we make a standard assumption about the smoothness of the objective function.
Assumption 2. There exists set Q ⊆ Rd and L > 0 such that for all x, y ∈ Q

∥∇f(y)−∇f(x)∥ ≤ L ∥y − x∥ , ∥∇f(x)∥2 ≤ 2L(f(x)− f∗). (3)

We emphasize that the second part of (3) follows from the first part if Q = Rd. However, in more
general situations, this is not always the case; see (Sadiev et al., 2023, Appendix B) for further
details. Interestingly, when Q is a compact set, function f can have non-Lipschitz gradients (e.g.,
polynomially growing with x) on Rd, see also (Patel et al., 2022; Patel & Berahas, 2022).

In addition, for some of our results, we assume that the objective is convex.
Assumption 3 (Optional). There exists set Q ⊆ Rd such that for all x, y ∈ Q

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ . (4)

Finally, for the methods without the delay, we assume that function f is bounded.
Assumption 4 (Optional). There exists constant M > 0 such that for all x ∈ Rd

f(x)− f∗ ≤ M. (5)

A stronger version of the above assumption (boundedness of the empirical risk) is used in (Li & Liu,
2023), which is the only existing work analyzing AdaGrad with gradient clipping.

Why high-probability convergence? The vast majority of the existing literature on stochastic op-
timization focuses on the in-expectation convergence guarantees only. In particular, for some metric
P(x) quantifying the output’s quality, e.g., P(x) = f(x) − f(x∗), ∥∇f(x)∥2, ∥x− x∗∥2, such
guarantees provide upper bounds on the number of iterations/oracle calls required for a method to
find x such that E[P(x)] ≤ ε. However, during recent years, high-probability convergence guar-
antees have been gaining a lot of attention as well. Such guarantees give upper bounds on the
number of iterations/oracle calls required for a method to find x such that P{P(x) ≤ ε} ≥ 1 − δ,
where δ is usually called confidence level or failure probability. One can argue that using Markov’s
inequality, one can easily deduce a high-probability guarantee from an in-expectation one: if

4Similarly to (Sadiev et al., 2023), for our results, it is sufficient to make all the assumptions only on some
set Q. This set is typically bounded and depends on some metric of sub-optimality of the starting point, e.g.,
the distance from the starting point to the optimum. We emphasize that our assumptions are strictly weaker
than corresponding ones for Q = Rd. To achieve this kind of generality, we prove that the proposed method
does not leave some set Q with high probability.
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E[P(xK(εδ))] ≤ εδ, where xK(εδ) is an output of the method after K(εδ) iterations/oracle calls,
then P{P(xK(εδ)) > ε} < E[P(xK(εδ))]/ε ≤ δ. Unfortunately, for many methods such as SGD
(Ghadimi & Lan, 2013) K(ε) has inverse-power dependence on ε implying that K(εδ) has inverse-
power dependence on εδ, leading to a noticeable deterioration when δ is small. Therefore, deriv-
ing high-probability complexities with polylogarithmic dependence on δ requires a separate and
thorough consideration and analysis. Moreover, such bounds more accurately reflect the methods’
behavior than in-expectation ones (Gorbunov et al., 2020).

1.3 RELATED WORK

High-probability convergence. The first results showing the high-probability convergence of
SGD and its variants are derived under the sub-Gaussian noise assumption for convex and strongly
convex problems by Nemirovski et al. (2009); Ghadimi & Lan (2012); Harvey et al. (2019) for
non-convex problems by Li & Orabona (2020). Although the distribution of the noise is near-sub-
Gaussian in some cases, like in the training of ResNet50 (He et al., 2016) on ImageNet (Russakovsky
et al., 2015) as shown by Zhang et al. (2020), this assumption does not cover even the distributions
with bounded variance. To relax the sub-Gaussian noise assumption, Nazin et al. (2019) consider
a truncated version of Stochastic Mirror Descent, which is closely related to Clip-SGD, and prove
its high-probability complexity with polylogarithmic dependence on δ under bounded variance as-
sumption for convex smooth problems on the bounded domain. In the strongly convex case, Davis
et al. (2021) propose a general approach for obtaining high-probability convergence based on the
robust distance estimation and show accelerated high-probability rates in the strongly convex case.
Next, for the unconstrained problems, Gorbunov et al. (2020) prove the first high-probability con-
vergence results for Clip-SGD and the first accelerated high-probability rates in the convex case
for a version of Clip-SGD with Nesterov’s momentum (Nesterov, 1983). This result is generalized
to the problems with Hölder-continuous gradients by Gorbunov et al. (2021). Cutkosky & Mehta
(2021) derive the first high-probability convergence results under Assumption 1 with α < 2 for
a version of Clip-SGD with normalization and Polyak’s momentum (Polyak, 1964) in the case of
non-convex problems with bounded gradient. Sadiev et al. (2023) remove the bounded gradient as-
sumption in the non-convex case and also prove the first high-probability convergence results under
Assumption 1 for Clip-SGD and its accelerated version in the convex and strongly convex cases.
Nguyen et al. (2023) provide improved results in the non-convex case under Assumption 1 and also
improved the dependency on the logarithmic factors in the convergence bounds. The generalization
to the composite and distributed optimization problems is developed by Gorbunov et al. (2024).
It is also worth mentioning (Jakovetić et al., 2023; Puchkin et al., 2024) who consider potentially
heavier noise than in Assumption 1 through utilizing the additional structure of the noise such as
(near-)symmetry. This direction is further explored by Kornilov et al. (2024) and adjusted to the
case of the zeroth-order stochastic oracle.

AdaGrad and Adam. AdaGrad5 (Streeter & McMahan, 2010; Duchi et al., 2011) has the follow-
ing update-rule

xt+1 = xt −
γ

bt
∇fξt(xt), where bt =

√
b2t−1 + (∇fξt(xt))2 (AdaGrad-CW)

where all operations (taking a square and taking a square root of a vector, division by a vector) are
performed coordinate-wise. The method is analyzed in many works, including (Streeter & McMa-
han, 2010; Duchi et al., 2011; Zou et al., 2018; Chen et al., 2018; Ward et al., 2020; Défossez et al.,
2022; Faw et al., 2022) to name a few. However, the high-probability convergence of AdaGrad
is studied under restrictive assumptions such as almost surely sub-Gaussian noise (Li & Orabona,
2020; Liu et al., 2023) or without such an assumption but with inverse-power dependence on the con-
fidence level δ (Wang et al., 2023) or boundedness of the empirical risk and (non-central) α-th mo-
ment (Li & Liu, 2023), which in the worst case implies boundedness of the stochastic gradient (see
the discussion after Theorem 4). In contrast, our results for Clip-Adam(D)/Clip-M-AdaGrad(D)
hold under Assumption 1 (and under additional Assumption 4 for the methods without delay) and
have polylogarithmic dependence on the confidence level δ.

5The original AdaGrad is described in formula (AdaGrad-CW). However, for the sake of simplicity, we
use the name AdaGrad to describe a “scalar” version of AdaGrad also known as AdaGrad-Norm (Ward et al.,
2020), see Algortihm 1 for the pseudocode. A similar remark holds for Adam.
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Adam (Kingma & Ba, 2014) can be seen as a modification of AdaGrad with an exponential moving
average b2t of the squared stochastic gradients and with Polyak’s momentum (Polyak, 1964):

xt+1 = xt −
γ

bt
mt, (Adam-CW)

mt = β1mt−1 + (1− β1)∇fξt(xt), bt =
√

β2b2t−1 + (1− β2)(∇fξt(xt))2, (6)

where all operations (taking a square and taking a square root of a vector, division by a vector) are
performed coordinate-wise. Although the original proof by Kingma & Ba (2014) has a flaw spotted
by Reddi et al. (2019), one can still show the convergence of Adam when β2 goes to 1 (Défossez
et al., 2022; Zhang et al., 2022; Wang et al., 2024). Moreover, for any fixed β1 and β2 such that β1 <√
β2, e.g., for the default values β1 = 0.9 and β2 = 0.999, Adam is not guaranteed to converge

(Reddi et al., 2019, Theorem 3). Therefore, the standard choice of β2 in theory is β2 = 1 − 1/K,
where K is the total number of steps, and that is why, as noticed by Défossez et al. (2022), AdaGrad
and Adam are “twins”. Indeed, taking β1 = 0 (no momentum) and β2 = 1− 1/K in (6) we get that
b2t = (1− 1/K)t+1b2−1 +

1
K

∑t
k=0(1− 1/K)t−k(∇fξk(xk))

2 = Θ
(
b2−1 +

1
K

∑t
k=0(∇fξk(xk))

2
)

since 1/4 = (1− 1/2)2 ≤ (1− 1/K)t−k ≤ 1 for 0 ≤ k ≤ t ≤ K. Thus, up to the rescaling of γ and
b2−1 the effective stepsize of Adam-CW is Θ(·) of the effective stepsize of AdaGrad-CW (though
the points where the gradents are calculated can be quite different for these two methods). This
aspect explains why AdaGrad and Adam have similar proofs and convergence guarantees. The
high-probability convergence of Adam is studied by Li et al. (2023) under bounded noise and sub-
Gaussian noise assumptions, while our results for Clip-Adam(D) do not require such assumptions.

2 FAILURE OF Adam/AdamD AND AdaGrad/AdaGradD WITH MOMENTUM

Algorithm 1 Adam/AdamD and M-AdaGrad/M-AdaGradD

Input: Stepsize γ > 0, starting point x0 ∈ Rd, initial constant b−1 > 0 (for Adam and M-
AdaGrad) or b0 > 0 (for AdamD and M-AdaGradD), momentum parameters β1, β2 ∈ [0, 1]

1: Set m−1 = 0
2: for t = 0, 1, . . . do
3: mt = β1mt−1 + (1− β1)∇fξt(xt)
4: if no delay then

5: bt =


√

β2b2t−1 + (1− β2)∥∇fξt(xt)∥2 for Adam√
b2t−1 + ∥∇fξt(xt)∥2 for M-AdaGrad

6: else

7: bt+1 =


√

β2b2t + (1− β2)∥∇fξt(xt)∥2 for AdamD√
b2t + ∥∇fξt(xt)∥2 for M-AdaGradD

8: end if
9: xt+1 = xt − γ

bt
mt

10: end for

In this section, we present the negative result on the convergence of Adam, AdaGrad with Momen-
tum (M-AdaGrad), and their delayed versions – AdamD/M-AdaGradD (Li & Orabona, 2020).

Theorem 1. For any σ > 0 and sufficiently small ε, δ ∈ (0, 1), there exist problems (1) such that
Assumptions 1, 2, 3, hold with with L = 1, α = 2, and the iterates produced by Adam(D)/M-
AdaGrad(D) with x0 such that ∥x0 − x∗∥ ≫ γL and with β2 = 1− 1/T for Adam(D) satisfy:

P {f(xT )− f(x∗) ≥ ε} ≤ δ =⇒ T = Ω
(
poly(ε−

1/2, δ−
1/2)
)
, (7)

i.e., the complexity of Adam(D)/M-AdaGrad(D) has inverse-power dependence on δ.
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Sketch of the proof. To construct our example, we consider the Huber loss function (Huber, 1992)

f(x) =

{
1
2x

2, if |x| ≤ ν,

ν
(
|x| − 1

2ν
)
, otherwise,

(8)

and design two specific sequences of noises (one for Adam/M-AdaGrad and the second one for
AdamD/M-AdaGradD). For Adam/M-AdaGrad, we consider a discrete additive noise for the first
step such that Markov’s inequality holds as equality, and for the remaining steps, noise equals zero.
Then, with high probability, bt becomes large after the first step, which slowdowns the method. As
for AdamD/M-AdaGradD, similarly to Sadiev et al. (2023), we add the noise only to the last step:
since bt is constructed using the norm of the previous stochastic gradient, the noise is independent
of the stepsize and can spoil the last iterate. See the complete proofs and details in Appendix B.

Interestingly, in the above example, it is sufficient to consider the noise with bounded variance to
show that the high-probability convergence rates of Adam(D)/M-AdaGrad(D) depend polynomi-
ally on ε−1 and δ−1/2. Moreover, following a similar argument to (Zhang et al., 2020, Remark 1),
one can show the non-convergence of AdamD/M-AdaGradD when α < 2. We also conjecture that
for α < 2 one can show even worse dependence on ε and δ for Adam/AdaGrad (or even non-
convergence) since bt will grow with high probability even faster in this case. Moreover, we also
emphasize that the negative result for Adam(D) is established only for β2 = 1−1/T , which is a stan-
dard assumption to ensure convergence of Adam-type methods. Nevertheless, the negative result
of Theorem 1 provides necessary evidence that Adam(D)/M-AdaGrad(D) do not achieve desired
high-probability convergence rates and motivates us to apply clipping to Adam(D)/M-AdaGrad(D).

3 NEW RESULTS FOR Adam AND AdaGrad WITH CLIPPING

Algorithm 2 Clip-Adam/Clip-AdamD and Clip-M-AdaGrad/Clip-M-AdaGradD

Input: Stepsize γ > 0, starting point x0 ∈ Rd, initial constant b−1 > 0 (for Adam and M-
AdaGrad) or b0 > 0 (for AdamD and M-AdaGradD), momentum parameters β1, β2 ∈ [0, 1],
level of clipping λ > 0

1: Set m−1 = 0
2: for t = 0, 1, . . . do
3: mt = β1mt−1 + (1− β1)clip (∇fξt(xt), λ)
4: if no delay then

5: bt =


√

β2b2t−1 + (1− β2)∥clip (∇fξt(xt), λ)∥2 for Clip-Adam√
b2t−1 + ∥clip (∇fξt(xt), λ)∥2 for Clip-M-AdaGrad

6: else

7: bt+1 =


√

β2b2t + (1− β2)∥clip (∇fξt(xt), λ)∥2 for Clip-AdamD√
b2t + ∥clip (∇fξt(xt), λ)∥2 for Clip-M-AdaGradD

8: end if
9: xt+1 = xt − γ

bt
mt

10: end for

Methods. To address the issue indicated in Theorem 1, we consider Clip-Adam(D)/Clip-M-
AdaGrad(D) (see Algorithm 2). In contrast to the existing practice (Pan & Li, 2023), we use
clipping of the stochastic gradient not only in the update rule for momentum buffer mt (Line 3 in
Algorithm 2), but also in the computation of the scaling factor bt (Lines 5 and 7 in Algorithm 2).
The role of clipping in mt is similar to the role of clipping in Clip-SGD-type methods: it prevents
the method from too large steps that may occur due to the presence of the heavy-tailed noise in the
gradients. In this regard, it is important to select clipping level in such a way that bias and variance
of the estimator are balanced. However, the role of clipping in bt is different: clipping prevents bt
from growing too quickly since such a growth can lead to poor high-probability guarantees (see the
proof’s sketch of Theorem 1). We note that clipping is also used in Clip-AdaGrad (without mo-
mentum) for both mt and bt computation by Li & Liu (2023) but the authors do not comment about
the role of clipping in bt and use restrictive assumptions as we explain later in this section.
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Convergence results. We derive new high-probability convergence bounds for the generalized
method formalized as Algorithm 2 in the convex and non-convex cases. The following theorem
gives the main result for Clip-AdamD/Clip-AdaGradD in the convex case.
Theorem 2 (Convex Case). Let K > 0 and δ ∈ (0, 1] and Assumptions 1, 2, and 3 hold for
Q = B2R(x

∗) for some R ≥ ∥x0 − x∗∥. Assume that β1 ∈ [0, 1), β2 = K
K+1 (for Clip-AdamD)

γ = Θ

(
min

{
(1− β1)

2b0
LA

,

√
1− β1Rb0

σ(K + 1)
1
αA

α−1
α

})
, λ = Θ

(√
1− β1b0R

γA

)
, (9)

where A = ln (4(K+1)/δ). Then, to guarantee f(xK)− f(x∗) ≤ ε with probability at least 1− δ for
xK = 1

K+1

∑K
t=0 xt Clip-AdamD/Clip-M-AdaGradD requires :

Õ

(
max

{
LR2

(1− β1)3ε
,

(
σR

(1− β1)
3
2 ε

) α
α−1

})
iterations/oracle calls. (10)

Moreover, with probability at least 1− δ, all iterates {xt}Kt=0 stay in Q.

Next, we present our main results for Clip-AdamD/Clip-M-AdaGradD and Clip-Adam/Clip-M-
AdaGrad in the non-convex case.
Theorem 3 (Non-Convex Case: Methods with Delay). Let K > 0 and δ ∈ (0, 1] and Assumptions 1
and 2 hold for Q =

{
x ∈ Rd | ∃y ∈ Rd : f(y) ≤ f∗ + 2∆ and ∥x− y∥ ≤

√
∆/20

√
L
}

for some
∆ ≥ f(x0)− f∗. Assume that β1 ∈ [0, 1), β2 = K

K+1 (for Clip-AdamD)

γ = Θ

(
min

{
(1− β1)

2b0

L(K + 1)
α−1
3α−2A

,

√
1− β1b0

√
∆

√
Lσ(K + 1)

α
3α−2A

α−1
α

, (11)

(1− β1)
α−1
2α−1 b0∆

α
2α−1

σ
2α

2α−1L
α−1
2α−1 (K + 1)

α
3α−2A

2α−2
2α−1

})
, λ = Θ

( √
1− β1b0

√
∆

√
LγA(K + 1)

α−1
3α−2

)
, (12)

where A = ln (4(K+1)/δ). Then, to guarantee 1
K+1

∑K
t=0 ∥∇f(xt)∥2 ≤ ε with probability at least

1− δ Clip-AdamD/Clip-M-AdaGradD requires the following number of iterations/oracle calls:

Õ

max


(

L∆

(1− β1)3ε

) 3α−2
2α−1

,

(
σ
√
L∆

(1− β1)
3
2 ε

) 3α−2
2α−2

,

(
σ

2α
2α−1 (L∆)

α−1
2α−1

(1− β1)
3α−2
2α−1 ε

) 3α−2
2α−2


 . (13)

Moreover, with probability at least 1− δ, all iterates {xt}Kt=0 stay in Q.
Theorem 4 (Non-Convex Case: Methods without Delay). Let K > 0 and δ ∈ (0, 1] and Assump-
tions 1, 2, 4 hold for Q = Rd. Assume that β1 ∈ [0, 1), β2 = 1− 1

K (for Clip-Adam)

γ = Θ

(
min

{
b−1

L(K + 1)
α−1
3α−2A

,
b−1

√
M

√
Lσ(K + 1)

α
3α−2A

α−1
α

, (14)

b−1M
α

2α−1

σ
2α

2α−1L
α−1
2α−1 (K + 1)

α
3α−2A

2α−2
2α−1

})
, λ = Θ

(
b−1

√
M

√
LγA(K + 1)

α−1
3α−2

)
, (15)

where A = ln (4/δ). Then, to guarantee 1
K+1

∑K
t=0 ∥∇f(xt)∥2 ≤ ε with probability at least 1 − δ

Clip-Adam/Clip-M-AdaGrad requires the following number of iterations/oracle calls:

Õ

 1

(1− β1)
3
2

max


(
LM

ε

) 3α−2
2α−1

,

(
σ
√
LM

ε

) 3α−2
2α−2

,

(
σ

2α
2α−1 (L∆)

α−1
2α−1

ε

) 3α−2
2α−2


 . (16)

Discussion of the results. Theorems 2, 3, and 4 provide high-probability complexities for Clip-
Adam(D)Clip-M-AdaGrad(D) with polylogarithmic dependence on the confidence level δ. Up to
the differences in logarithmic factors, these complexities coincide with the best-known ones for
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Figure 1: Performance of different versions of AdaGrad (with and without clipping/delay) with
stepsizes γ = 1 (first row) and γ = 1/16 (second row) on the quadratic problem.

Clip-SGD (Sadiev et al., 2023; Nguyen et al., 2023). Moreover, the leading terms in (13) and (16)
are optimal up to logarithmic factors (Zhang et al., 2020), though the first terms in (13) and (16)
can be improved (Arjevani et al., 2023). In the convex case, the first term in (10) is not optimal
(Nemirovskij & Yudin, 1983) and can be improved (Gorbunov et al., 2020; Sadiev et al., 2023). The
optimality of the second term in (10) is still an open question.

It is also worth mentioning that the existing high-probability complexities for Adam/AdaGrad-type
(without clipping) methods either have inverse power dependence on δ (Wang et al., 2023) or have
polylogarithmic dependence on δ but rely on the assumption that the noise is sub-Gaussian/bounded
(Li & Orabona, 2020; Liu et al., 2023; Li et al., 2023), which is stronger than bounded variance
assumption. Under the additional assumption that the emprical risk is bounded and the (non-central)
α-th moment of the stochastic gradient are bounded and the empirical risk is smooth, which are
stronger than Assumptions 4, 1 and 2 respectively, Li & Liu (2023) derive a similar bound to (16)
for Clip-AdaGrad. We emphasize that boundedness and smoothness of the empirical risk imply
the boundedness and smoothness of all fξ(x) in the worst case (e.g., when the distribution D is
discrete). Therefore, in the worst case, these assumptions imply the boundedness of ∇fξ(x) (in
view of the second part of (3) for function fξ), meaning that the noise is bounded and, thus, sub-
Gaussian. In this case, clipping is not needed for AdaGrad to achieve good high-probability con-
vergence guarantees as shown by Li & Orabona (2020); Liu et al. (2023). Our Theorem 4 extends
this result to the momentum version of Clip-AdaGrad under less restrictive assumptions (not im-
plying sub-Gaussianity of the noise) and gives the first high-probability convergence bounds for
Clip-Adam with polylogarithmic dependence on δ. Moreover, to the best of our knowledge, The-
orems 2 and 3 are the first results showing high-probability convergence of Adam/AdaGrad-type
methods with polylogarithmic dependence on the confidence level in the case of the heavy-tailed
noise without extra assumptions such as Assumption 4. Moreover, we also show that the iterates of
Clip-AdamD/Clip-M-AdaGradD do not leave set Q with high probability, where Q = B2R(x

∗) in
the convex case and Q =

{
x ∈ Rd | ∃y ∈ Rd : f(y) ≤ f∗ + 2∆ and ∥x− y∥ ≤

√
∆/20

√
L
}

in the
non-convex case. Further details and proofs are deferred to Appendix C.

4 NUMERICAL EXPERIMENTS

In this section, we illustrate numerically that clipping indeed helps AdaGrad and Adam to achieve
better high-probability convergence.
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Figure 2: Gradient noise evolution for Adam on CoLa (the first row) and RTE (the second row)
datasets. Histograms were evaluated after 0 steps, after ≈ 1/3 and ≈ 2/3 of all steps, and in the end.

Quadratic problem. In the first experiment, we test the performance of different versions of
AdaGrad with and without clipping on the 1-dimensional quadratic objective with additive heavy-
tailed noise: f(x) = x2

/2, ∇fξ(x) = x + ξ, where the noise ξ has probability density function
p(t) = 3

4(1+|t|)2.5 . In this case, Assumption 1 is satisfied with any α ∈ (1, 1.5) and the α-th moment
is unbounded for α ≥ 1.5. Moreover, the function is strongly convex and L-smooth with L = 1.
We choose x0 = 2, b0 = 3 (for the versions of AdaGrad with delay), b−1 = 3 (for other cases),
λ = 1/2 for the methods with clipping, and choose γ from {1, 1/16, 1/128}. Each method was run
100 times with different seeds.

The results are given in Figure 1, where for each method, we show its trajectory in terms of the
squared distance to the solution for γ = 1 and γ = 1/16 (the results for γ = 1/128 are given in
Appendix D.1). More precisely, solid lines correspond to the median value of the squared distances,
and the error bands cover the areas from the 10-th to 90-th percentiles of (xt − x∗)2. These results
show that clipped versions of AdaGrad (with and without delay) achieve better convergence with
higher probability than their non-clipped counterparts. Moreover, versions with clipping exhibit
similar behavior to each other. That is, the error bands for Clip-AdaGrad(D) are lower than for
AdaGrad(D) (note that the vertical axis is shown in the logarithmic scale making the error bands for
Clip-AdaGrad(D) look wider than for AdaGrad(D), while they are not). In general, the observed
results for AdaGrad-type methods are perfectly aligned with the theory developed in this paper. We
provide the results for Adam with and without clipping/delay in Appendix D.1.

ALBERT Base v2 fine-tuning. In the second part of our experiments, we consider fine-tuning
the pre-trained ALBERT Base v2 model (Lan et al., 2019) on CoLa and RTE datasets (Wang
et al., 2018). Since Adam-based algorithms are the methods of choice for NLP tasks, in the main
part of the paper, we focus on Adam and its clipped versions – Clip-Adam and Clip-AdamD
– and provide additional experiments with AdaGrad-based methods in Appendix D.2. We took
a pre-trained model from the Hugging Face library. Then, the model was fine-tuned following
the methodology suggested by Mosbach et al. (2020). More precisely, we used linear warmup
with warmup ratio being 0.1, and hyperparameters were β1 = 0.9, β2 = 0.999, b = ϵ1, where
1 = (1, 1, . . . , 1)⊤ ∈ Rd. We tuned batchsize and stepsize γ for Adam and selected best values
from {4, 8, 16, 32} for the batchsize and from {10−6, 3 · 10−6, 10−5, 3 · 10−5, 10−4} for γ. For the
CoLa dataset, the best batchsize was 16 and γ = 10−5, and for the RTE dataset, the best batchsize
was 8 and γ = 10−5. For the methods with clipping, we used the same batchsize and stepsize as for
Adam and tuned the clipping level for the two types of clipping6. We tested coordinate-wise clip-
ping with λ ∈ {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1} and layer-wise clipping with

6We did not consider the global/norm clipping (the considered in theory), since typically coordinate-wise
or layer-wise clipping work better in training neural networks.
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Figure 3: Validation loss for ALBERT Base v2 fine-tuning task on the CoLa and RTE datasets.

λ ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10}. For the CoLa dataset, the best results were achieved with λ = 1
for layer-wise clipping and λ = 0.02 for coordinate-wise clipping, and for the RTE dataset, the
best results were achieved with λ = 2 for layer-wise clipping and λ = 0.005 for coordinate-wise
clipping. In the main text, we show the results with layer-wise clipping and defer the results with
coordinate-wise clipping to Appendix D.2.

Before comparing the methods, we ran Adam and checked how heavy-tailed the noise in the stochas-
tic gradients is along the trajectory. In particular, for both tasks, we selected 4 iterates corresponding
to the starting point, points generated after ≈ 1/3 and ≈ 2/3 of all steps, and the last iterate. Then, for
each of these points, we sampled size-16 (for CoLa) and size-8 (for RTE) mini-batched estimator
∇fξ(x) of the gradient 1000 times, saved the resulting norms of the differences ∥∇fξ(x)−∇f(x)∥,
and plotted their histogram, i.e., we plotted the histograms of the noise norm. Moreover, we also
measure the heavy-tailedness of the noise following the approach from (Gorbunov et al., 2022): we
compute two metrics pmR = F1.5(∥∇fξ(x)−∇f(x)∥), which quantifies “mild” heavy tails, and
peR = F3(∥∇fξ(x)−∇f(x)∥) introduced by Jordanova & Petkova (2017), which quantifies “ex-
treme” heavy tails, where Fa(∥∇fξ(x)−∇f(x)∥) = P{∥∇fξ(x)−∇f(x)∥ > Q3+a(Q3−Q1)}
and Qi is the i-th quartile of ∥∇fξ(x)−∇f(x)∥. To illustrate the heavy-tailedness clearly, we di-
vide these metrics to the ones computed for the standard normal distribution (pmRN and peRN ) and
show ρmR = pmR/pmRN and ρeR = peR/peRN on the plots.

The histograms are provided in Figure 2, where we additionally estimate the mean and standard
deviation and plot the density of the normal distribution with these parameters (black curve). For
the CoLa dataset, the noise distribution changes significantly after the start of the training, and its
mean drifts to the right. However, the standard deviation does not change significantly, and, more
importantly, metrics ρmR and ρeR remain quite large, showing that the distribution is significantly
heavy-tailed. In contrast, for the RTE dataset, the noise distribution does not drift significantly, and,
interestingly, ρeR decreases towards the end of training and becomes zero, while ρmR stays in the
interval [5, 10]. Therefore, the noise distribution has much heavier tails for CoLa than for RTE.

Then, similarly to the experiments with the quadratic problem, we ran the methods 100 times, and
for each step, we computed the median value of the validation loss and its 5-th and 95-th percentiles.
The results are presented in Figure 3, where the solid lines correspond to the medians and the error
bands cover the areas between 5-th and 95-th percentiles. As expected, Adam exhibits poor high-
probability convergence on the CoLa datasets where the noise is significantly heavy-tailed, and
Clip-Adam shows much better performance: the area between 5-th and 95-th percentiles is relatively
narrow for Clip-Adam. In contrast, for the RTE dataset, Clip-Adam performs similarly to Adam.
This is also expected since the noise is much less heavy for RTE, as Figure 2 shows. Taking into
account the negative results from Section 2, and the upper bounds from Section 3, we conclude that
these numerical results are well-aligned with the theory developed in the paper.
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A TECHNICAL DETAILS AND AUXILIARY RESULTS

Additional notation. For the ease of exposition, we introduce the following notation for the
proofs:

gt = clip (∇fξt(xt), λ) ,

θt = gt −∇f(xt),

θut = gt − Eξt [gt],

θbt = Eξt [gt]−∇f(xt),

Rt = ∥xt − x∗∥ ,
∆t = f(xt)− f∗.

Auxiliary results. We also use the following standard results.
Proposition 1 (Young’s inequality.). For any x, y ∈ Rd and p > 0 the following inequality holds:

∥x+ y∥2 ≤ (1 + p) ∥x∥2 +
(
1 +

1

p

)
∥y∥2.

In particular, for p = 1

∥x+ y∥2 ≤ 2∥x∥2 + 2∥y∥2.
Lemma 1 (Lemma B.2 from (Défossez et al., 2022)). Let 0 ≤ a ≤ b be some non-negative integers
and 0 ≤ q < 1. Then,

b∑
k=a

qkk ≤ q

(1− q)2
.

Lemma 2 (Lemma 1 from (Streeter & McMahan, 2010)). Let {ai}ni=1 and c be non-negative reals.
Then,

n∑
k=1

ak√
c+

∑k
i=1 ai

≤ 2

√√√√c+

n∑
k=1

ak

The following lemma by Sadiev et al. (2023) helps to estimate bias and variance of the clipped
stochastic gradient satisfying Assumption 1.

Lemma 3 (Lemma 5.1 from (Sadiev et al., 2023)). Let X be a random vector from Rd and X̂ =

clip(X,λ). Then,
∥∥∥X̂ − E

[
X̂
]∥∥∥ ≤ 2λ. Moreover, if for some σ ≥ 0 and α ∈ (1, 2] we have

E [X] = x ∈ Rd, E [∥X − x∥α] ≤ σα, and ∥x∥ ≤ λ
2 , then∥∥∥E [X̂]− x
∥∥∥ ≤ 2ασα

λα−1
,

E
[∥∥∥X̂ − x

∥∥∥2] ≤ 18λ2−ασα,

E
[∥∥∥X̂ − E

[
X̂
]∥∥∥2] ≤ 18λ2−ασα.

Finally, in the analysis of Clip-RAdaGradD, we face the sums of martingale-difference sequences.
One of the tools that we use to handle them is Bernstein’s inequality (Bennett, 1962; Dzhaparidze
& Van Zanten, 2001; Freedman et al., 1975).
Lemma 4 (Bernstein’s inequality). Let the sequence of random variables {Xi}i≥1 form a martin-
gale difference sequence, i.e., E [Xi | Xi−1, . . . , X1] = 0 for all i ≥ 1. Assume that conditional
variances σ2

i = E
[
X2

i | Xi−1, . . . , X1

]
exist and are bounded and also assume that there exists

deterministic constant c > 0 such that |Xi| ≤ c almost surely for all i ≥ 1. Then for all b > 0,
G > 0 and n ≥ 1

P

{∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ > b and
n∑

i=1

σ2
i ≤ G

}
≤ 2 exp

(
− b2

2G+ 2cb
3

)
.
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B MISSING PROOFS FROM SECTION 2

In this section, we provide further details regarding Theorem 1 giving a negative result about high-
probability convergence of Adam/M-AdaGrad and AdamD/M-AdaGradD. For all methods, we
use the 1-dimensional Huber loss function:

f(x) =

{
1
2x

2, if |x| ≤ ν,

ν
(
|x| − 1

2ν
)
, otherwise.

This function is convex and L-smooth with L = 1. However, the construction of noises and proofs
are different for Adam, M-AdaGrad, AdamD, and M-AdaGradD. Therefore, we provide the neg-
ative results for these methods separately in the following subsections.

B.1 FAILURE OF M-AdaGrad

We start with the following lemma giving a closed-form expression for the iterates of deterministic
M-AdaGrad applied to (8).
Lemma 5. Suppose that the starting point x0 is such that x0 > 0. If after T iterations of determin-
istic M-AdaGrad with initial momentum m−1 we have |xt| > ν and xt > 0 for all t = 1, T − 1,
then

xT = x0 − γν

T−1∑
t=0

1− βt+1
1 + βt+1

1
m−1

ν√
b2−1 + (t+ 1)ν2

.

Proof. Since |xt| > ν and xt is positive, the gradient at xt is equal to ν. Hence, by substituting the
gradient into the algorithm, we get the final result.

The above lemma relies on the condition that |xt| > ν and xt > 0 for all t = 1, T − 1. For any
γ, b−1 and T this condition can be achieved if we choose sufficiently small ν.

Next, we estimate the interval where xT lies.
Lemma 6. Let the conditions of Lemma 5 hold. Then, we have

xT ≥ x0 − γ

(
1 +

max{m−1, 0}
ν

)(
1√

1 + a0
+ 2
√
a0 + T − 2

√
a0 + 1

)
,

xT ≤ x0 − γ

(
1− β1 + β1

min{m−1, 0}
ν

)(
2
√
a0 + T + 1− 2

√
a0 + 1

)
,

where a0 =
b2−1

ν2 .

Proof. From Lemma 5 we have:

xT = x0 − γ

T−1∑
t=0

1− βt+1
1 + βt+1

1
m−1

ν√
a0 + (t+ 1)

,

where a0 =
b2−1

ν2 . Next, we bound the second term in the following way:

T−1∑
t=0

1− βt+1
1 + βt+1

1
m−1

ν√
a0 + (t+ 1)

≥
(
1− β1 + β1

min{m−1, 0}
ν

) a0+T∫
a0

1√
1 + x

dx

=

(
1− β1 + β1

min{m−1, 0}
ν

)
(2
√

a0 + T + 1− 2
√
a0 + 1), (17)

T−1∑
t=0

1− βt+1
1 + βt+1

1
m−1

ν√
a0 + (t+ 1)

≤
1 + max{m−1,0}

ν√
1 + a0

+

(
1 +

max{m−1, 0}
ν

) a0+T−1∫
a0

1√
1 + x

dx

=

(
1 +

max{m−1, 0}
ν

)(
1√

1 + a0
+ 2
√

a0 + T − 2
√
a0 + 1

)
.

(18)
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Combining (17) and (18), we get the final result.

Corollary 1. If x0 − γ > ν > 0, γ̂ = γ
(
1 + max{m−1,0}

ν

)
and

T <
(x0 − ν − γ̂)2 + 4γ̂(x0 − ν − γ̂)

√
a0 + 1

4γ̂2
+ 1,

then xT > ν for deterministic M-AdaGrad. Alternatively, |xT | ≤ ν implies that

T ≥ (x0 − ν − γ̂)2 + 4γ̂(x0 − ν − γ̂)
√
a0 + 1

4γ̂2
+ 1.

Proof. First, let us show that

ν < x0 − γ̂
(
1 + 2

√
a0 + T − 2

√
a0 + 1

)
(19)

is equivalent to

T <
(x0 − ν − γ̂)2 + 4γ(x0 − ν − γ̂)

√
a0 + 1

4γ̂2
+ 1.

Rewriting the (19), one can obtain

2γ̂
√
a0 + T < x0 − ν − γ̂ + 2γ̂

√
a0 + 1.

Squaring both parts of the inequality above and expressing T , we get the alternative equivalent
formula. Noticing that 1 ≥ 1√

1+a0
and applying Lemma 6, we get the final result. The second part

of the corollary is just a negation of the implication stated in the first part of the corollary.

Theorem 5. For any ε, δ ∈ (0, 1), σ > 0 such that σ/
√
εδ ≥ 4, there exists convex L-smooth

minimization problem (8) and stochastic gradient oracle such that Assumption 1 holds with α = 2
and the iterates produced by M-AdaGrad after K steps with stepsize γ and starting point x0 such
that R := x0 −

√
2ε− 3γ > 0 satisfy the following implication:

P {f(xK)− f(x∗) ≥ ε} ≤ δ =⇒ K = Ω

(
b−1R√

εγ
+

σR

γ
√
εδ

)
, (20)

i.e., the high-probability complexity of M-AdaGrad has inverse-power dependence on δ.

Proof. Before we delve into the technical details, we provide an intuition behind the proof. We
want to use the lower bound from Corollary 1 and estimate the bound for the number of iterations
required to achieve the desired optimization error ε with probability at least 1 − δ. Moreover, we
need to set ν depending on the accuracy ε (ν is analytically clarified later). We denote the output
of deterministic M-AdaGrad after t iterations as x̂t. Then, we introduce the noise in the stochastic
gradient in the following way

gk = ∇f(xk)− σξk,

where

ξk =


0, for k > 0,
−A, with probability 1

2A2

0, with probability 1− 1
A2

A, with probability 1
2A2

otherwise,
(21)

where the formula for A is given later. The noise construction (21) implies that stochasticity appears
only at the first iteration of M-AdaGrad, and then it only affects the stepsizes. Therefore,

x1 = x0 −
γ

b0
m0,

where b0 =
√
b2−1 + (ν − σξ0)2 and m0 = (1 − β1)(ν − σξ0). Moreover, x1 can be bounded in

the following way

x0 + γ > x1 > x0 − γ.
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Choosing x0 in such a way that x0 − 2γ > ν, we apply Corollary 1 and get that the algorithm needs
to make at least

K0 =

(
x1 − ν − γ

(
1 + max{m0,0}

ν

))√
a1

γ
(
1 + max{m0,0}

ν

)
iterations to reach ε-accuracy, where a1 =

b20
ν2 and ε = ν2

2 . Let us specify that this estimate depends
on the stochasticity at the first iteration, i.e., the bound on the number of iterations is random. Con-
sequently, if M-AdaGrad achieves ε-solution after K steps, we should have K ≥ K0. Therefore,
P{K ≥ K0} ≥ P{f(xK)− f(x∗) ≤ ε} and we want to estimate K such that

P{K0 ≤ K} ≥ 1− δ.

Bounding the left-hand side,

P{K0 ≤ K} = P{K0 ≤ K|ξ0 = −A}P{ξ0 = −A}+ P{K0 ≤ K|ξ0 ̸= −A}P{ξ0 ̸= −A}

≤ P


(
x1 − ν − γ

(
1 + max{m0,0}

ν

))√
a1

γ
(
1 + max{m0,0}

ν

) ≤ K

∣∣∣∣∣ξ0 ̸= −A

P{ξ0 ̸= −A}

+ P{ξ0 = −A}.

If we choose R = x0 − ν − 3γ and A = A =
γKν
R +ν

σ , then m0 can be bounded as

m0 ≤ ν,

where we substitute ξ0 = 0, A. Therefore, we get

P{K0 ≤ K} ≤ P


(
x1 − ν − γ

(
1 + max{m0,0}

ν

))√
a1

γ
(
1 + max{m0,0}

ν

) ≤ K

∣∣∣∣∣ξ0 ̸= −A

P{ξ0 ̸= −A}

+ P{ξ0 = −A}

≤ P
{
(x0 − ν − 3γ)

√
a1

2γ
≤ K

∣∣∣∣ξ0 ̸= −A

}
P{ξ0 ̸= −A}+ P{ξ0 = −A}

≤ P
{
R
√
a1

2γ
≤ K

∣∣∣∣ξ0 ̸= −A

}
P{ξ0 ̸= −A}+ P{ξ0 = −A}.

We notice that condition K ≥ b−1R
νγ is necessary, since otherwise it leads to the contradiction.

Indeed, it is enough to choose δ = 1
4 :

3

4
= 1− δ ≤ P{ξ0 = −A} =

1

2A2
≤ 1

2
.

Substituting the analytical form of b0, with K ≥ b−1R
νγ we get

P{K0 ≤ K} ≤ P
{
b2−1 + (ν − σξ0)

2 ≤ γ2K2ν2

R2

∣∣∣∣ξ0 ̸= −A

}
P{ξ0 ̸= −A}+ P{ξ0 = −A}

= P

{
|σξ0 − ν| ≤

√
γ2K2ν2

R2
− b2−1

∣∣∣∣ξ0 ̸= −A

}
P{ξ0 ̸= −A}+ P{ξ0 = −A}

≤ P

{
σ |ξ0| ≤

√
γ2K2ν2

R2
− b2−1 + ν

∣∣∣∣ξ0 ̸= −A

}
P{ξ0 ̸= −A}+ P{ξ0 = −A}

Therefore, P{K0 ≤ K} ≥ 1− δ implies

P

{
σ |ξ0| ≤

√
γ2K2ν2

R2
− b2−1 + ν

∣∣∣∣ξ0 ̸= −A

}
P{ξ0 ̸= −A}+ P{ξ0 = −A} ≥ 1− δ.
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Consequently, since A =
γKν
R +ν

σ , the first probability in the inequality above is equal to 1 − 1
A2 ,

since the only ξ0 = 0 satisfies the condition on random variable. Hence, we have(
1− 1

A2

)(
1− 1

2A2

)
+

1

2A2
≥ 1− δ.

Denoting 1
2A2 as x, one can obtain

2x2 − 2x+ δ ≥ 0.

In the case δ ≥ 1
2 we use that 1

2A2 ≤ 1
2 ≤ δ. For the δ < 1

2 we solve the quadratic inequality and
get

1

2A2
≤ δ

1 +
√
1− 2δ

≤ δ.

Consequently,
1

A
=

σ
γKν
R + ν

≤
√
2δ.

Therefore,

K ≥ R

γ

(
σ

ν
√
2δ

− 1

)
,

which concludes the proof since σ/
√
εδ ≥ 4 and ν =

√
2ε.

B.2 FAILURE OF M-AdaGradD

Similarly to the case of M-AdaGrad, we start by obtaining the analytic form of iterations of the
deterministic M-AdaGradD in the following lemma.
Lemma 7. Suppose that starting point x0 is such that x0 > 0. If after T iterations of deterministic
M-AdaGradD we have |xt| > ν and xt > 0 for all t = 1, T − 1 with , then

xT = x0 − γν

T−1∑
t=0

1− βt+1
1√

b20 + tν2
.

Proof. The proof is similar to the proof of Lemma 5. Since xt > ν, the gradient at point xt is equal
to ν. Substituting that into the iteration of M-AdaGradD for each t, we finish the proof.

Now, let us estimate the interval where xT lies.
Lemma 8. Let the conditions of Lemma 7 hold. Then, we have

x0 − γ

(
1

√
a0

+ 2
√
a0 + T − 1− 2

√
a0

)
≤ xT ≤ x0 − γ(1− β1)

(
2
√
a0 + T − 2

√
a0

)
,

where a0 =
b20
ν2 .

Proof. Let us start with Lemma 7:

xT = x0 − γ

T−1∑
t=0

1− βt+1
1√

a0 + t
,

where a0 =
b20
ν2 . Next, we bound the second term in the following way:

T−1∑
t=0

1− βt+1
1√

a0 + t
≥ (1− β1)

a0+T∫
a0

1√
x
dx = (1− β1)(2

√
a0 + T − 2

√
a0), (22)

T−1∑
t=0

1− βt+1
1√

a0 + t
≤ 1

√
a0

+

a0+T−1∫
a0

1√
x
dx =

1
√
a0

+ 2
√
a0 + T − 1− 2

√
a0. (23)

Combining (22) and (23), we have the final result.
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Corollary 2. If x0 − γ > ν > 0, b0 ≥ ν and

T <
(x0 − ν − γ)2 + 4γ(x0 − ν − γ)

√
a0

4γ2
+ 2,

then xT > ν for deterministic M-AdaGradD. Conversely, the case |xT | ≤ ν implies that

T ≥
(x0 − ν − γ)2 + 4γ(x0 − ν − γ)

√
a0

4γ2
+ 2.

Proof. The proof is the same as for Corollary 1.

Theorem 6. For any ε, δ ∈ (0, 1), σ > 0, there exists convex L-smooth minimization problem (8)
and stochastic gradient oracle such that Assumption 1 holds with α = 2 and the iterates produced by
M-AdaGradD after K steps with stepsize γ and starting point x0 such that R := x0−

√
2ε−γ > 0,

b0 > ν and (1−β1)σR/ε
√
δ ≥ 16b20 satisfy the following implication

P {f(xK)− f(x∗) ≥ ε} ≤ δ =⇒ K = Ω

(
σR

ε
√
δ

)
, (24)

i.e., the high-probability complexity of M-AdaGradD has inverse-power dependence on δ.

Proof. The overall idea of the proof resembles the one for Theorem 5 – we combine the lower bound
for the number of iterations from Corollary 2 with the specific choice of stochasticity. Nevertheless,
to prove this theorem, we construct the adversarial noise in another way. More precisely, we consider
the following stochastic gradient

gk = ∇f(xk)− σξk,

where

ξk =


0, if k < K − 1 or |x̂K | > ν,
−Ak, with probability 1

2A2
k

0, with probability 1− 1
A2

k

Ak, with probability 1
2A2

k

otherwise,
(25)

where x̂K is the result of deterministic M-AdaGradD after K iterations and Ak =

max
{
1, 2νbk

(1−β1)γσ

}
. What is more, E [ξk] = 0 and E

[
ξ2k
]
≤ 1 by the construction. Therefore,

the stochastic gradient satisfies the Assumption 1 with α = 2.

We want to prove that P{f(xK) − f(x∗) > ε} ≤ δ. For δ < 1, this implies that |x̂K | ≤ ν with
ε = ν2

2 . Indeed, assuming the contrary, the noise is equal to 0 for each iteration by the construction,
meaning that

P {f(xK)− f(x∗) > ε} = P {f(x̂K)− f(x∗) > ε} = P {|x̂K | > ν} = 1 > δ.

As a result, |x̂K | ≤ ν and, applying Corollary 2, we obtain

K ≥
(x0 − ν − γ)2 + 4γ(x0 − ν − γ)

√
a0

4γ2
+ 2.

What is more, xK can be written as

xK = x̂K−1 −
γ

bK−1
mK−1 = x̂K +

(1− β1)γσξK−1

bK−1
.

Hence,

P {f(xK)− f(x∗) ≥ ε} = P {|xK | ≥ ν} = P
{∣∣∣∣x̂K +

(1− β1)γσξK−1

bK−1

∣∣∣∣ ≥ ν

}
≥ P

{∣∣∣∣ (1− β1)γσξK−1

bK−1

∣∣∣∣ ≥ ν + x̂K

}
≥ P

{∣∣∣∣ (1− β1)γσξK−1

bK−1

∣∣∣∣ ≥ 2ν

}
= P

{
|ξK−1| ≥

2νbK−1

(1− β1)γσ

}
.
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If max
{
1, 2νbK−1

(1−β1)γσ

}
= 1, then

δ ≥ P {f(xK)− f(x∗) ≥ ε} ≥ P
{
|ξK−1| ≥

2νbK−1

(1− β1)γσ

}
= 1,

which leads us to the contradiction. Therefore max
{
1, 2νbK−1

(1−β1)γσ

}
= 2νbK−1

(1−β1)γσ
, and

δ ≥ P {f(xK)− f(x∗) ≥ ε} ≥ P
{
|ξK−1| ≥

2νbK−1

(1− β1)γσ

}
=

1

A2
K−1

=
(1− β1)

2γ2σ2

4ν2b2K−1

,

where we used that AK−1 = max
{
1, 2νbK−1

(1−β1)γσ

}
and the noise structure. Consequently, γ ≤

2νbK−1

√
δ

(1−β1)σ
. What is more, bK−1 can be bounded as

bK−1 ≤
√

b20 +Kν2

since the gradient of f is uniformly bounded by ν. Hence, we obtain

K ≥ (x0 − ν − γ)2

4γ2
+

4(x0 − ν − γ)
√
a0

4γ
≥ (x0 − ν − γ)2

4γ2

≥ (1− β1)
2(x0 − ν − γ)2σ2

16ν2(b20 +Kν2)δ
.

Multiplying both sides by ν2(b20 +Kν2), we get

(b20 +Kν2)2 ≥ ν2K(b20 +Kν2) ≥ (1− β1)
2(x0 − ν − γ)2σ2

16δ
,

implying that

K ≥ (1− β1)σR

4ν2
√
δ

− b20 =
(1− β1)σR

8ε
√
δ

− b20 ≥ (1− β1)σR

16ε
√
δ

,

which finishes the proof.

B.3 FAILURE OF Adam

Similarly to the case of M-AdaGrad, we start by obtaining the analytical form of iterations of the
deterministic Adam in the following lemma.
Lemma 9. Suppose that the starting point x0 is such that x0 > 0. If after T iterations of deter-
ministic Adam with initial momentum m−1 we have |xt| > ν and xt > 0 for all t = 1, T − 1,
then

xT = x0 − γ

T−1∑
t=0

βt+1
1 m−1 +

(
1− βt+1

1

)
ν√

βt+1
2 b2−1 +

(
1− βt+1

2

)
ν2

.

Proof. Since |xt| > ν and xt is positive, the gradient at xt is equal to ν. Hence, by substituting the
gradient into the algorithm, we get the final result.

The above lemma relies on the condition that |xt| > ν and xt > 0 for all t = 1, T − 1. For any
γ, b−1 and T this condition can be achieved if we choose sufficiently small ν.

Next, we estimate the interval where xT lies.
Lemma 10. Let the conditions of Lemma 9 hold. Then, if β2 = 1−1/K, where K is the total number
of iterations of deterministic Adam, we have

x0 −
2γ(max{m−1, 0}+ ν)T

b−1
≤ xT ≤ x0 −

γ((1− β1)ν + β1 min{m−1, 0})T√
b2−1 + ν2

.
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Proof. From Lemma 9 we have:

xT = x0 − γ

T−1∑
t=0

βt+1
1 m−1 +

(
1− βt+1

1

)
ν√

βt+1
2 b2−1 +

(
1− βt+1

2

)
ν2

.

Next, we bound the second term in the inequality above in the following way:

T−1∑
t=0

βt+1
1 m−1 +

(
1− βt+1

1

)
ν√

βt+1
2 b2−1 +

(
1− βt+1

2

)
ν2

≤ 2T (max{m−1, 0}+ ν)

b−1
, (26)

T−1∑
t=0

βt+1
1 m−1 +

(
1− βt+1

1

)
ν√

βt+1
2 b2−1 +

(
1− βt+1

2

)
ν2

≥ ((1− β1)ν + β1 min{m−1, 0})T√
b2−1 + ν2

, (27)

where we use the fact that with K ≥ 2 next inequalities hold

1 ≥ βk
2 = (1− 1/K)k ≥ (1− 1/K)K ≥ 1/4,

0 ≤ 1− βk
2 ≤ 3/4 ≤ 1.

Combining (26) and (27), we get the final result.

Corollary 3. If x0 > ν > 0 and

T <
(x0 − ν)b−1

2γ(max{m−1, 0}+ ν)
,

then xT > ν for deterministic Adam. Alternatively, |xT | ≤ ν implies that

T ≥ (x0 − ν)b−1

2γ(max{m−1, 0}+ ν)
.

Proof. Let us note that

ν < x0 −
2γ(max{m−1, 0}+ ν)T

b−1

is equivalent to

T <
(x0 − ν)b−1

2γ(max{m−1, 0}+ ν)
.

The second part of the corollary is just a negation of the implication stated in the first part of the
corollary.

Theorem 7. For any ε, δ ∈ (0, 1), σ > 0, there exists convex L-smooth minimization problem (8)
and stochastic gradient oracle such that Assumption 1 holds with α = 2 and the iterates produced
by Adam after K steps with stepsize γ and starting point x0 such that R := x0 − ν > 0 and
x0 − γ/

√
1−β2 − ν > 0 satisfy the following implication:

P {f(xK)− f(x∗) ≥ ε} ≤ δ =⇒ K = Ω

(
min

{
σ2

εδ
,
b−1R√

εγ
+

(
σR

γ
√
εδ

)2/3
})

, (28)

i.e., the high-probability complexity of Adam has inverse-power dependence on δ.

Proof. The main idea is quite similar to the proof of Theorem 5. We introduce the noise in the
stochastic gradient in the following way

gk = ∇f(xk)− σξk,
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where

ξk =


0, for k > 0,
−A, with probability 1

2A2

0, with probability 1− 1
A2

A, with probability 1
2A2

otherwise,
(29)

where the formula for A is given later. The noise construction (29) implies that stochasticity appears
only at the first iteration of Adam, and then it only affects the stepsizes. Therefore,

x1 = x0 −
γ

b0
m0,

where b0 =
√
β2b2−1 + (1− β2)(ν − σξ0)2 and m0 = (1 − β1)(ν − σξ0). Moreover, x1 can be

bounded in the following way

x0 + γ/
√
1−β2 > x1 > x0 − γ/

√
1−β2.

Choosing x0 in such a way that x0 − γ/
√
1−β2 > ν, we apply Corollary 3 and get that the algorithm

needs to make at least

K0 =
(x1 − ν)b0

2γ(max{m0, 0}+ ν)

iterations to reach ε-accuracy, where ε = ν2

2 . Let us specify that this estimate depends on the
stochasticity at the first iteration, i.e., the bound on the number of iterations is random. Consequently,
if Adam achieves ε-solution after K steps, we should have K ≥ K0. Therefore, P{K ≥ K0} ≥
P{f(xK)− f(x∗) ≤ ε} and we want to estimate K such that

P{K0 ≤ K} ≥ 1− δ.

Bounding the left-hand side,

P{K0 ≤ K} = P{K0 ≤ K|ξ0 = −A}P{ξ0 = −A}+ P{K0 ≤ K|ξ0 ̸= −A}P{ξ0 ̸= −A}

≤ P
{

(x1 − ν)b0
2γ(max{m0, 0}+ ν)

≤ K
∣∣∣ξ0 ̸= −A

}
P{ξ0 ̸= −A}+ P{ξ0 = −A}

= P

{
(x0 − γm0

b0
− ν)b0

2γ(max{m0, 0}+ ν)
≤ K

∣∣∣ξ0 ̸= −A

}
P{ξ0 ̸= −A}+ P{ξ0 = −A}.

Moreover, according to the analytical form of m0, if ξ0 ̸= −A, then

m0 ≤ ν.

Therefore,

P{K0 ≤ K} ≤ P
{
(x0 − ν)b0 − 4γν

4γν
≤ K

∣∣∣ξ0 ̸= −A

}
P{ξ0 ̸= −A}+ P{ξ0 = −A}

= P
{
Rb0
4γν

≤ K + 1
∣∣∣ξ0 ̸= −A

}
P{ξ0 ̸= −A}+ P{ξ0 = −A},

where R = x0 − ν. Substituting the analytical form of b0, we get

P{K0 ≤ K} ≤ P
{
β2b

2
−1 + (1− β2)(ν − σξ0)

2 ≤ 16γ2(K + 1)2ν2

R2

∣∣∣ξ0 ̸= −A

}
P{ξ0 ̸= −A}

+ P{ξ0 = −A}

We notice that condition K + 1 ≥
√
β2b−1R
νγ is necessary for the convergence because of the similar

idea from the proof of Theorem 5. Therefore, we have K + 1 ≥
√
β2b−1R
νγ and can continue the
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derivation as follows:

P{K0 ≤ K} ≤ P

|σξ0 − ν| ≤

√
γ2(K+1)2ν2

R2 − β2b2−1√
1− β2

∣∣∣∣∣ξ0 ̸= −A

P{ξ0 ̸= −A}

+ P{ξ0 = −A}

≤ P

σ |ξ0| ≤

√
γ2(K+1)2ν2

R2 − β2b2−1√
1− β2

+ ν

∣∣∣∣∣ξ0 ̸= −A

P{ξ0 ̸= −A}

+ P{ξ0 = −A}.
Therefore, P{K0 ≤ K} ≥ 1− δ implies

P

σ |ξ0| ≤

√
γ2(K+1)2ν2

R2 − β2b2−1√
1− β2

+ ν

∣∣∣∣∣ξ0 ̸= −A

P{ξ0 ̸= −A}+ P{ξ0 = −A} ≥ 1− δ.

Consequently, if we choose A = γν(K+1)√
1−β2Rσ

+ ν√
1−β2σ

, then the only realization of the random
variable ξ0 at which the inequality in the first probability is satisfied is 0. Hence, we have the
quadratic inequality: (

1− 1

A2

)(
1− 1

2A2

)
+

1

2A2
≥ 1− δ.

Applying the idea similar to the proof of Theorem 5, we obtain

1

A
=

√
1− β2σ

γ(K+1)ν
R + ν

≤
√
2δ.

Therefore,

K + 1 ≥ R

γ

(√
1− β2σ

ν
√
δ

− 1

)
,

Applying the fact that 1 − β2 = 1/K, we conclude the proof since
√
1−β2σ/

√
εδ ≥ 4 (otherwise

K ≥ σ2
/16εδ) and ν =

√
2ε.

B.4 FAILURE OF AdamD

We follow the idea for previous proofs and start by obtaining the analytical form of iterations of the
deterministic AdamD in the following lemma.
Lemma 11. Suppose that the starting point x0 is such that x0 > 0. If after T iterations of deter-
ministic AdamD we have |xt| > ν and xt > 0 for all t = 1, T − 1, then

xT = x0 − γν

T−1∑
t=0

1− βt+1
1√

βt
2b

2
0 + (1− βt

2) ν
2
.

Proof. Since |xt| > ν and xt is positive, the gradient at xt is equal to ν. Hence, by substituting the
gradient into the algorithm, we get the final result.

The above lemma relies on the condition that |xt| > ν and xt > 0 for all t = 1, T − 1. For any γ, b0
and T this condition can be achieved if we choose sufficiently small ν.

Next, we estimate the interval where xT lies.
Lemma 12. Let the conditions of Lemma 11 hold. Then, if β2 = 1 − 1/K, where K is the total
number of iterations of deterministic AdamD, we have

x0 −
2γνT

b0
≤ xT ≤ x0 −

γν (1− β1)T√
b20 + ν2

.
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Proof. From Lemma 11 we have:

xT = x0 − γν

T−1∑
t=0

1− βt+1
1√

βt
2b

2
0 + (1− βt

2) ν
2
.

Next, we bound the second term in the inequality above in the following way:

T−1∑
t=0

1− βt+1
1√

βt
2b

2
0 + (1− βt

2) ν
2
≤ 2T

b0
, (30)

T−1∑
t=0

1− βt+1
1√

βt
2b

2
0 + (1− βt

2) ν
2
≥ (1− β1)T√

b20 + ν2
, (31)

where we use the fact that with K ≥ 2 next inequalities hold

1 ≥ βk
2 = (1− 1/K)k ≥ (1− 1/K)K ≥ 1/4,

0 ≤ 1− βk
2 ≤ 3/4 ≤ 1.

Combining (30) and (31), we get the final result.

Corollary 4. If x0 > ν > 0 and

T <
(x0 − ν)b0

2γν
,

then xT > ν for deterministic AdamD. Alternatively, |xT | ≤ ν implies that

T ≥ (x0 − ν)b0
2γν

.

Proof. The proof is the same as for Corollary 3.

Theorem 8. For any ε, δ ∈ (0, 1), σ > 0, there exists convex L-smooth minimization problem (8)
and stochastic gradient oracle such that Assumption 1 holds with α = 2 and the iterates produced
by AdamD after K steps with stepsize γ and starting point x0 such that R := x0 − ν > 0, b0 > ν
and σR/ε

√
δ ≥ 16b20 satisfy the following implication

P {f(xK)− f(x∗) ≥ ε} ≤ δ =⇒ K = Ω

(
σR

ε
√
δ

)
, (32)

i.e., the high-probability complexity of AdamD has inverse-power dependence on δ.

Proof. The overall idea of the proof resembles the one for Theorem 7 – we combine the lower bound
for the number of iterations from Corollary 4 with the specific choice of stochasticity. Nevertheless,
to prove this theorem, we construct the adversarial noise in another way. More precisely, we consider
the following stochastic gradient

gk = ∇f(xk)− σξk,

where

ξk =


0, if k < K − 1 or |x̂K | > ν,
−Ak, with probability 1

2A2
k

0, with probability 1− 1
A2

k

Ak, with probability 1
2A2

k

otherwise,
(33)

where x̂K is the result of deterministic AdamD after K iterations and Ak = max
{
1, 2νbk

(1−β1)γσ

}
.

What is more, E [ξk] = 0 and E
[
ξ2k
]
≤ 1 by the construction. Therefore, the stochastic gradient

satisfies the Assumption 1 with α = 2.
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We want to prove that P{f(xK) − f(x∗) > ε} ≤ δ. For δ < 1, this implies that |x̂K | ≤ ν with
ε = ν2

2 . Indeed, assuming the contrary, the noise is equal to 0 for each iteration by the construction,
meaning that

P {f(xK)− f(x∗) > ε} = P {f(x̂K)− f(x∗) > ε} = P {|x̂K | > ν} = 1 > δ.

As a result, |x̂K | ≤ ν and, applying Corollary 4, we obtain

K ≥ (x0 − ν)b0
2γν

.

What is more, xK can be written as

xK = x̂K−1 −
γ

bK−1
mK−1 = x̂K +

(1− β1)γσξK−1

bK−1
.

Hence,

P {f(xK)− f(x∗) ≥ ε} = P {|xK | ≥ ν} = P
{∣∣∣∣x̂K +

(1− β1)γσξK−1

bK−1

∣∣∣∣ ≥ ν

}
≥ P

{∣∣∣∣ (1− β1)γσξK−1

bK−1

∣∣∣∣ ≥ ν + x̂K

}
≥ P

{∣∣∣∣ (1− β1)γσξK−1

bK−1

∣∣∣∣ ≥ 2ν

}
= P

{
|ξK−1| ≥

2νbK−1

(1− β1)γσ

}
.

If max
{
1, 2νbK−1

(1−β1)γσ

}
= 1, then

δ ≥ P {f(xK)− f(x∗) ≥ ε} ≥ P
{
|ξK−1| ≥

2νbK−1

(1− β1)γσ

}
= 1,

which leads us to the contradiction. Therefore max
{
1, 2νbK−1

γσ

}
= 2νbK−1

(1−β1)γσ
, and

δ ≥ P {f(xK)− f(x∗) ≥ ε} ≥ P
{
|ξK−1| ≥

2νbK−1

(1− β1)γσ

}
=

1

A2
K−1

=
(1− β1)

2γ2σ2

4ν2b2K−1

,

where we used that AK−1 = max
{
1, 2νbK−1

(1−β1)γσ

}
and the noise structure. Consequently, γ ≤

2νbK−1

√
δ

(1−β1)σ
. What is more, bK−1 can be bounded as

bK−1 ≤
√
b20 + ν2

since the gradient of f is uniformly bounded by ν. Hence, we obtain with b0 ≥ ν

K ≥ (x0 − ν)b0
2γν

≥ (1− β1)(x0 − ν)σb0

4
√
b20 + ν2ν2

√
δ

≥ (1− β1)(x0 − ν)σ

8ν2
√
δ

=
(1− β1)Rσ

16ε
√
δ

,

which finishes the proof.
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C MISSING PROOFS FROM SECTION 3

In this section, we provide missing proofs for Algorithm 2 in the convex and non-convex cases. For
each case, the proof consists of two parts – descent lemma and main theorem. Moreover, for conve-
nience of the proofs, we consider a reweighted version of Algorithm 2 summarized in Algorithm 3,
which has an additional parameter η > 0 appearing in the update rule for bt. However, Algorithms 2
and 3 are equivalent: if we divide bt and γ in Algorithm 3 by

√
η, the method reduces to Algo-

rithm 2 but produces exactly the same points as before (given the same initialization and source of
stochasticity, i.e., seed), since γ/bt remains unchanged.

Algorithm 3 Reweighted Clip-Adam/Clip-AdamD and Clip-M-AdaGrad/Clip-M-AdaGradD

Input: Stepsize γ > 0, starting point x0 ∈ Rd, initial constant b−1 > 0 (for Adam and M-
AdaGrad) or b0 > 0 (for AdamD and M-AdaGradD), momentum parameters β1, β2 ∈ [0, 1],
level of clipping λ > 0, reweighting parameter η > 0

1: Set m−1 = 0
2: for t = 0, 1, . . . do
3: mt = β1mt−1 + (1− β1)clip (∇fξt(xt), λ)
4: if no delay then

5: bt =


√
β2b2t−1 + η(1− β2)∥clip (∇fξt(xt), λ)∥2 for Clip-Adam√
b2t−1 + η∥clip (∇fξt(xt), λ)∥2 for Clip-M-AdaGrad

6: else

7: bt+1 =


√

β2b2t + η(1− β2)∥clip (∇fξt(xt), λ)∥2 for Clip-AdamD√
b2t + η∥clip (∇fξt(xt), λ)∥2 for Clip-M-AdaGradD

8: end if
9: xt+1 = xt − γ

bt
mt

10: end for

C.1 TECHNICAL LEMMAS

Here we introduce technical lemmas for the future proofs.
Lemma 13. Let the sequence {bt}t=0 is generated by Algorithm 3 in K iterations. Then, for every
t, r: t ≥ r we get

bt ≥ cmbr,

where the constant cm depends on the update rule for bt. To be more precise, cm = 1 for the
Clip-M-AdaGrad/Clip-M-AdaGradD, and cm = 1/2 for Clip-Adam/Clip-AdamD.

Proof. The case of Clip-M-AdaGrad/Clip-M-AdaGradD is obvious since the sequence {bt}t=0 is
non-decreasing. For the Clip-Adam/Clip-AdamD we obtain that

b2t ≥ βt−r
2 b2r =

(
1− 1

K

)t−r

b2r ≥
(
1− 1

K

)K

b2r ≥ 1

4
b2r,

where we, without loss of generality, assume that K ≥ 2 and apply the analytical form of β2 with
fact that g(K) =

(
1− 1

K

)K
is increasing function. Taking the square root from both parts, we

conclude the proof.

Lemma 14. Let the sequence {mt}t=0 is generated by Algorithm 3 in K iterations. Then, for every
0 ≤ t ≤ K − 1 it holds that

mt =

t∑
k=0

βt−k
1 (1− β1)gk.

Moreover, ∥mt∥2 can be bounded in the following way:

∥mt∥2 ≤ (1− βt+1
1 )

t∑
k=0

βt−k
1 (1− β1)∥gk∥2.
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Proof. The first part of the lemma is the direct consequence of update rule of momentum mt. For
the second part we need to apply the Jensen’s inequality as follows:∥∥∥∥∥

t∑
k=0

βt−k
1 (1− β1)

1− βt+1
1

gk

∥∥∥∥∥
2

≤
t∑

k=0

βt−k
1 (1− β1)

1− βt+1
1

∥gk∥2,

where we use the convexity of ∥·∥2 and
t∑

k=0

βt−k
1 (1 − β1) = 1 − βt+1

1 . Multiplying both sides by

(1− βt+1
1 )2, we get the final result.

C.2 NON-CONVEX CASE: METHODS WITH DELAY

Lemma 15 (Descent lemma). Let Assumption 2 hold on Q =
{
x ∈ Rd | ∃y ∈ Rd : f(y) ≤

f∗ + 2∆ and ∥x− y∥ ≤
√
∆

20
√
L

}
, where f(x0) − f∗ = ∆0 ≤ ∆. Then, after T iterations of

Clip-M-AdaGradD/Clip-AdamD with b0 ≥ 2γL/(1−β1)
2c2m, if xt ∈ Q ∀t = 0, T , we have

T−1∑
t=0

γCt

2
∥∇f(xt)∥2 ≤ ∆0 −∆T −

T−1∑
t=0

(γCt − 2At) ⟨∇f(xt), θ
u
t ⟩

+

T−1∑
t=0

γCt

∥∥θbt∥∥2 + T−1∑
t=0

2At∥θut ∥
2
,

where Ct =
T−1∑
k=t

1−β1

bk
βk−t
1 , At =

T−1∑
k=t

Lγ2(1−β1)
cmbkb0

(k − t+ 1)βk−t
1 and cm is taken from Lemma 13.

Proof. We start with the L-smoothness of f :

f(xt+1)− f(xt) ≤ ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

= − γ

bt
⟨∇f(xt),mt⟩+

Lγ2

2b2t
∥mt∥2. (34)

Using the update rule of Algorithm 3, we can obtain
−⟨∇f(xt),mt⟩ = −β1 ⟨∇f(xt),mt−1⟩ − (1− β1) ⟨∇f(xt), gt⟩

= −β1 ⟨∇f(xt)−∇f(xt−1),mt−1⟩ − β1 ⟨∇f(xt−1),mt−1⟩
− (1− β1) ⟨∇f(xt), gt⟩
≤ −β1 ⟨∇f(xt−1),mt−1⟩+ β1 ∥∇f(xt)−∇f(xt−1)∥ ∥mt−1∥
− (1− β1) ⟨∇f(xt), gt⟩
≤ −β1 ⟨∇f(xt−1),mt−1⟩+ β1L ∥xt − xt−1∥ ∥mt−1∥
− (1− β1) ⟨∇f(xt), gt⟩

= −β1 ⟨∇f(xt−1),mt−1⟩+
γβ1L

bt−1
∥mt−1∥2

− (1− β1) ⟨∇f(xt), gt⟩ ,
where we use the Cauchy-Schwarz inequality and L-smoothness of f . Applying the same idea for
the t− 1, t− 2, . . . , 0 and noting that m−1 = 0, we get

−⟨∇f(xt),mt⟩ ≤ −(1− β1)

t∑
k=0

βt−k
1 ⟨∇f(xk), gk⟩+ Lγ

t−1∑
k=0

βt−k
1

bk
∥mk∥2. (35)

Therefore, substituting (35) into (34), we have

f(xt+1)− f(xt) ≤ − (1− β1)γ

bt

t∑
k=0

βt−k
1 ⟨∇f(xk), gk⟩+

Lγ2

bt

t−1∑
k=0

βt−k
1

bk
∥mk∥2 +

Lγ2

2b2t
∥mt∥2

≤ − (1− β1)γ

bt

t∑
k=0

βt−k
1 ⟨∇f(xk), gk⟩+

Lγ2

bt

t∑
k=0

βt−k
1

bk
∥mk∥2.
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Applying Lemma 14 with 1− βk+1
1 ≤ 1, we can rewrite the inequality above as follows:

f(xt+1)− f(xt) ≤ − (1− β1)γ

bt

t∑
k=0

βt−k
1 ⟨∇f(xk), gk⟩

+
Lγ2

bt

t∑
k=0

βt−k
1

bk

k∑
j=0

βk−j
1 (1− β1)∥gj∥2

= − (1− β1)γ

bt

t∑
k=0

βt−k
1 ⟨∇f(xk), gk⟩

+
Lγ2

bt

t∑
j=0

t∑
k=j

βt−k
1

bk
βk−j
1 (1− β1)∥gj∥2, (36)

where we change the limits of summation. Now let us bound the second term. Applying Lemma 13,
we obtain that bk ≥ cmb0 (the constant cm is taken from Lemma 13). Consequently,

Lγ2

bt

t∑
j=0

t∑
k=j

βt−k
1

bk
βk−j
1 (1− β1)∥gj∥2 ≤ Lγ2(1− β1)

cmbtb0

t∑
j=0

t∑
k=j

βt−k
1 βk−j

1 ∥gj∥2

=
Lγ2(1− β1)

cmbtb0

t∑
j=0

βt−j
1 (t− j + 1)∥gj∥2. (37)

Thus, substituting (37) into (36), we get

f(xt+1)− f(xt) ≤ − (1− β1)γ

bt

t∑
k=0

βt−k
1 ⟨∇f(xk), gk⟩

+
Lγ2(1− β1)

cmbtb0

t∑
k=0

βt−k
1 (t− k + 1)∥gk∥2.

After summing over t = 0, . . . T − 1,

f(xT )− f(x0) ≤ −
T−1∑
t=0

(1− β1)γ

bt

t∑
k=0

βt−k
1 ⟨∇f(xk), gk⟩

+

T−1∑
t=0

Lγ2(1− β1)

cmbtb0

t∑
k=0

βt−k
1 (t− k + 1)∥gk∥2.

The main idea is to estimate the coefficients corresponding to ⟨∇f(xr), gr⟩ and ∥gr∥2. These mul-
tiplicative factors can be estimated as

−
T−1∑
t=r

γ(1− β1)

bt
βt−r
1 (38)

for the scalar product and

T−1∑
t=r

Lγ2(1− β1)

cmbtb0
(t− r + 1)βt−r

1 (39)

for the squared norm, respectively. For (39) we can apply Lemma 13 in the following way:

T−1∑
t=r

Lγ2(1− β1)

cmbtb0
(t− r + 1)βt−r

1 ≤
T−1∑
t=r

Lγ2(1− β1)

c2mbrb0
(t− r + 1)βt−r

1

=
Lγ2(1− β1)

c2mbrb0

T−1∑
t=r

(t− r + 1)βt−r
1 .
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Applying Lemma 1, and using that
T−1∑
t=r

βt−r
1 ≤ 1

1−β1
, we get

Ar =

T−1∑
t=r

Lγ2(1− β1)

cmbtb0
(t− r + 1)βt−r

1 ≤ Lγ2

c2mbkb0(1− β1)
(40)

for each k = 0, . . . , r. Moreover, let us denote the factor corresponding to the scalar product (38) as
−γCr. Cr can be bounded as follows:

(1− β1)

br
≤

T−1∑
t=r

(1− β1)

bt
βt−r
1 ≤

T−1∑
t=r

(1− β1)

cmb0
βt−r
1 ≤ 1

cmb0
,

where we apply Lemma 13. Therefore, the descent lemma can be formulated as

f(xT )− f(x0) ≤ −
T−1∑
t=0

γCt ⟨∇f(xt), gt⟩+
T−1∑
t=0

At∥gt∥2.

Substituting the analytical form of gt, we have

f(xT )− f(x0) ≤ −
T−1∑
t=0

γCt ⟨∇f(xt), gt⟩+
T−1∑
t=0

At∥gt∥2

= −
T−1∑
t=0

γCt

(
⟨∇f(xt), θt⟩+ ∥∇f(xt)∥2

)
+

T−1∑
t=0

At

(
∥θt∥2 + 2 ⟨∇f(xt), θt⟩+ ∥∇f(xt)∥2

)
= −

T−1∑
t=0

(γCt −At)∥∇f(xt)∥2 −
T−1∑
t=0

(γCt − 2At) ⟨∇f(xt), θt⟩

+

T−1∑
t=0

At∥θt∥2.

Choosing γ ≤ (1−β1)
2c2mb0

2L , we get that γCt − 2At ≥ 0 since the boundary Ct ≥ 1−β1

bt
and (40)

hold with k = t. Therefore, using that θt = θut + θbt , one can obtain

f(xT )− f(x0) ≤ −
T−1∑
t=0

(γCt −At)∥∇f(xt)∥2 −
T−1∑
t=0

(γCt − 2At) ⟨∇f(xt), θt⟩

+

T−1∑
t=0

At∥θt∥2

≤ −
T−1∑
t=0

(γCt −At)∥∇f(xt)∥2 −
T−1∑
t=0

(γCt − 2At) ⟨∇f(xt), θ
u
t ⟩

+

T−1∑
t=0

2At

(
∥θut ∥

2
+
∥∥θbt∥∥2)+ T−1∑

t=0

(
γCt

2
−At

)
∥∇f(xt)∥2

+

T−1∑
t=0

(
γCt

2
−At

)∥∥θbt∥∥2
= −

T−1∑
t=0

γCt

2
∥∇f(xt)∥2 −

T−1∑
t=0

(γCt − 2At) ⟨∇f(xt), θ
u
t ⟩

+

T−1∑
t=0

2At∥θut ∥
2
+

T−1∑
t=0

(
γCt

2
+At

)∥∥θbt∥∥2.
Using that γCt

2 ≥ At, and rearranging terms with ∆t = f(xt)− f∗, we get the final result.
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Remark 1. It is important to note that Q can be any non-empty subset of Rd as long as the iterates
belong to it. In this sense, the form of Q is not that important for the proof (a similar observation
holds for Lemma 16 in the convex case). Nevertheless, Q plays a key role in the next part of the
proof.

Theorem 9. Let Assumptions 1 and 2 hold on Q =
{
x ∈ Rd | ∃y ∈ Rd : f(y) ≤

f∗ + 2∆ and ∥x− y∥ ≤
√
∆

20
√
L

}
with f(x0) − f∗ = ∆0 ≤ ∆. Then, after K + 1 iterations

of Clip-M-AdaGradD/Clip-AdamD with

γ ≤ min

{
(1− β1)

2c2mb0(K + 1)
1−α
3α−2

80L ln 4(K+1)
δ

,
cm

√
1− β135

1
α b0

√
∆

432
1
α · 20

√
Lσ(K + 1)

α
3α−2 ln

α−1
α

4(K+1)
δ

,

cm(1− β1)
α−1
2α−1 b0∆

α
2α−1

4
α+1
2α−1 · 20

2α−2
2α−1σ

2α
2α−1L

α−1
2α−1 (K + 1)

α
3α−2 ln

2α−2
2α−1

(
4(K+1)

δ

)}, η =
Lγ2(1− β1)

2

∆
,

(41)
and

λ =
cm

√
1− β1b0

√
∆(K + 1)

1−α
3α−2

20
√
Lγ ln

(
4(K+1)

δ

) (42)

the bound
K∑

k=0

γCk

2
∥∇f(xk)∥2 ≤ 2∆

holds with probability at least 1−δ. In particular, when γ equals the minimum from (41), the iterates
produced by Clip-M-AdaGradD/Clip-AdamD satisfy

1

K + 1

K∑
k=0

∥∇f(xk)∥2

= O

(
max

{
L∆ ln K+1

δ

(1− β1)3(K + 1)
2α−1
3α−2

,

√
L∆σ ln

α−1
α K+1

δ

(1− β1)
3
2 (K + 1)

2α−2
3α−2

,
σ

2α
2α−1 (L∆)

α−1
2α−1 ln

2α−2
2α−1 K+1

δ

(1− β1)
3α−2
2α−1 (K + 1)

2α−2
3α−2

})
with probability at least 1− δ.

Proof. Our proof is induction-based (similarly to the one for Clip-SGD by Sadiev et al. (2023)).
We introduce probability event Ek as follows: inequalities

−
t−1∑
l=0

(γCl − 2Al) ⟨∇f(xl), θ
u
l ⟩+

t−1∑
l=0

γCl

∥∥θbl ∥∥2 + T−1∑
l=0

2Al∥θul ∥
2 ≤ ∆,

∆t ≤ 2∆

hold simultaneously ∀t = 0, 1, . . . , k. We want to show that P{Ek} ≥ 1− kδ
K+1 ∀k = 0, 1, . . . ,K+

1. The case when k = 0 is obvious. Now let us make an induction step: let the statement hold for
some k = T − 1 ≤ K: P{ET−1} ≥ 1− (T−1)δ

K+1 . It remains to prove that P{ET } ≥ 1− Tδ
K+1 . The

event ET−1 implies that xt ∈ {y ∈ Rd : f(y) ≤ f∗ + 2∆} ∀t = 0, . . . , T − 1 and

∥xT − xT−1∥ =
γ

bt
∥mT−1∥ ≤ γλ

b0
≤ cm

√
∆

20
√
L ln 4(K+1)

δ

≤
√
∆

20
√
L

since cm ≤ 1. Hence, event ET−1 implies {xt}Tt=0 ⊆ Q and we can apply Lemma 15:
t−1∑
l=0

γCl

2
∥∇f(xl)∥2 ≤ ∆0 −∆t −

t−1∑
l=0

(γCl − 2Al) ⟨∇f(xl), θ
u
l ⟩+

t−1∑
l=0

γCl

∥∥θbl ∥∥2
+

t−1∑
l=0

2Al∥θul ∥
2
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∀t = 1, . . . , T and ∀t = 1, . . . T − 1 it implies that
t−1∑
l=0

γCl

2
∥∇f(xl)∥2 ≤ ∆0 −∆t −

t−1∑
l=0

(γCl − 2Al) ⟨∇f(xl), θ
u
l ⟩+

t−1∑
l=0

γCl

∥∥θbl ∥∥2
+

t−1∑
l=0

2Al∥θul ∥
2 ≤ 2∆.

Taking into account that
t−1∑
l=0

γCl

2 ∥∇f(xl)∥2 ≥ 0 for all t, we get that ET−1 implies

∆T ≤ ∆0 −
T−1∑
t=0

(γCt − 2At) ⟨∇f(xt), θ
u
t ⟩+

T−1∑
t=0

γCt

∥∥θbt∥∥2 + T−1∑
t=0

2At∥θut ∥
2

= ∆0 −
T−1∑
t=0

(γCt − 2At) ⟨∇f(xt), θ
u
t ⟩+

T−1∑
t=0

γCt

∥∥θbt∥∥2
+

T−1∑
t=0

2At

(
∥θut ∥

2 − Eξt∥θut ∥
2
)
+

T−1∑
t=0

2AtEξt∥θut ∥
2
.

Next, for vectors

ηt =

{
∇f(xt), ∥∇f(xt)∥ ≤ 2

√
L∆

0, otherwise

for all t = 0, 1, . . . , T − 1, we have that that with probability 1

∥ηt∥ ≤ 2
√
L∆. (43)

What is more, for all t = 0, . . . T − 1 ET−1 implies

∥∇f(xt)∥ ≤
√
2L∆t ≤ 2

√
L∆

(42)
≤ λ

2

Thus, ET−1 implies ηt = ∇f(xt) for t = 0, 1, . . . , T − 1 and

∆T ≤ ∆0 −
T−1∑
t=0

(γCt − 2At) ⟨ηt, θut ⟩︸ ︷︷ ︸
①

+

T−1∑
t=0

γCt

∥∥θbt∥∥2︸ ︷︷ ︸
②

+
T−1∑
t=0

2At

(
∥θut ∥

2 − Eξt∥θut ∥
2
)

︸ ︷︷ ︸
③

+

T−1∑
t=0

2AtEξt∥θut ∥
2

︸ ︷︷ ︸
④

. (44)

It remains to bound each term in (44) separately with high probability. Before we move on, we also
note that event ET−1 implies ∥∇f(xt)∥ ≤ λ

2 . Therefore, one can apply Lemma 3 and get

∥θut ∥ ≤ 2λ, (45)∥∥θbt∥∥ ≤ 2ασα

λα−1
, (46)

Eξt∥θut ∥
2 ≤ 18λ2−ασα. (47)

Bound for ①. The definition of θut implies

Eξt [− (γCt − 2At) ⟨ηt, θut ⟩] = 0.

What is more, since Ct ≤ 1
cmb0

, we get

|(γCt − 2At) ⟨ηt, θut ⟩| ≤ γCt ∥ηt∥ ∥θut ∥
(43),(45)
≤ 4γλ

√
L∆

cmb0
≤ ∆

5 ln
(

4(K+1)
δ

) = c.
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Let us define σ2
t = Eξt

[
(γCt − 2At)

2 ⟨ηt, θut ⟩
2
]
. Hence,

σ2
t

(43)
≤ (γCt − 2At)

2 · 4L∆Eξt∥θut ∥
2 ≤ 4γ2L∆

c2mb20
Eξt∥θut ∥

2
. (48)

Therefore, we can apply Bernstein’s inequality (Lemma 4) with G = 7∆2

480 ln
4(K+1)

δ

:

P

{∣∣∣∣∣−
T−1∑
t=0

(γCt − 2At) ⟨∇f(xt), θ
u
t ⟩

∣∣∣∣∣ > ∆

4
and

T−1∑
t=0

σ2
t ≤ G

}
≤ 2 exp

(
− ∆2

16
(
2G+ ∆c

6

))

=
δ

2(K + 1)
.

Thus, we get

P

{
either

∣∣∣∣∣−
T−1∑
t=0

(γCt − 2At) ⟨∇f(xt), θ
u
t ⟩

∣∣∣∣∣ ≤ ∆

4
or

T−1∑
t=0

σ2
t > G

}
≥ 1− δ

2(K + 1)
.

Moreover, event ET−1 implies
T−1∑
t=0

σ2
t

(47)
≤ 72γ2λ2−ασαL∆T

c2mb20

(42)
=

72c2−α
m (1− β1)

1−α
2 γαb2−α

0

√
∆

2−α
(K + 1)

α2−3α+2
3α−2 σαL∆T

c2m202−α
√
L
2−α

b20 ln
2−α 4(K+1)

δ

(41)
≤ 7∆2

480 ln 4(K+1)
δ

.

Bound for ②. For the second term, we get that ET−1 implies
T−1∑
t=0

γCt

∥∥θbt∥∥2 ≤
T−1∑
t=0

γ

cmb0

∥∥θbt∥∥2 (46)
≤ 4ασ2αγT

cmλ2α−2b0

(42)
≤ 4ασ2αγ(K + 1)

cmb0
·
202α−2Lα−1γ2α−2(K + 1)

(α−1)(2α−2)
3α−2 ln2α−2

(
4(K+1)

δ

)
c2α−2
m (1− β1)α−1b2α−2

0 ∆α−1

=
4α · 202α−2σ2αLα−1(K + 1)

α(2α−1)
3α−2 ln2α−2

(
4(K+1)

δ

)
c2α−1
m (1− β1)α−1b2α−1

0 ∆α−1
· γ2α−1

(41)
≤ ∆

4
,

where in the last step, we apply the third condition on γ from (41).

Bound for ③. Similarly to ①, we have unbiased and bounded terms in the sum:

Eξt

[
2At

(
∥θut ∥

2 − Eξt∥θut ∥
2
)]

= 0

and, since (40) from Lemma 15 hold with k = 0,∣∣∣2At

(
∥θut ∥

2 − Eξt∥θut ∥
2
)∣∣∣ (45)

≤ 16Lλ2γ2

c2mb20(1− β1)
≤ ∆

25 ln 4(K+1)
δ

≤ 15∆

47 ln 4(K+1)
δ

= c. (49)

Next, we define σ̂2
t = Eξt

[
4A2

t

(
∥θut ∥

2 − Eξt∥θut ∥
2
)2]

. For the introduced quantities, we have

σ̂2
t

(49)
≤ cEξt

[
2At

∣∣∣(∥θut ∥2 − Eξt∥θut ∥
2
)∣∣∣] ≤ 4Lγ2c

c2mb20(1− β1)
Eξt∥θut ∥

2
. (50)

Therefore, we can apply Bernstein’s inequality (Lemma 4) with G = 7∆2

1504 ln
4(K+1)

δ

:

P

{∣∣∣∣∣
T−1∑
t=0

2At

(
∥θut ∥

2 − Eξt∥θut ∥
2
)∣∣∣∣∣ > ∆

4
and

T−1∑
t=0

σ̂2
t ≤ G

}
≤ 2 exp

(
− ∆2

16
(
2G+ ∆c

6

))

=
δ

2(K + 1)
.
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Thus, we get

P

{
either

∣∣∣∣∣
T−1∑
t=0

2At

(
∥θut ∥

2 − Eξt∥θut ∥
2
)∣∣∣∣∣ ≤ ∆

4
or

T−1∑
t=0

σ̂2
t > G

}
≥ 1− δ

2(K + 1)
.

Moreover, event ET−1 implies

T−1∑
t=0

σ̂2
t

(50),(45)
≤ 72Lγ2cλ2−ασα

c2mb20(1− β1)

(42)
≤ 72cγαb2−α

0

√
∆

2−α
(K + 1)

α2−3α+2
3α−2 σαLT

202−αcαm(1− β1)
α
2

√
L
2−α

b20 ln
2−α 4(K+1)

δ

(41)
≤ 7∆c

480
≤ 7∆2

1504 ln 4(K+1)
δ

.

Bound for ④. For the last term, we have that ET−1 implies
T−1∑
t=0

2AtEξt∥θut ∥
2 ≤

T−1∑
t=0

2Lγ2

c2mb20(1− β1)
Eξt∥θut ∥

2

(45)
≤ 36Lγ2λ2−ασαT

c2mb20(1− β1)

(42)
≤ 36γαb2−α

0

√
∆

2−α
(K + 1)

α2−3α+2
3α−2 σαLT

202−α(1− β1)
α
2

√
L
2−α

b20 ln
2−α 4(K+1)

δ

(41)
≤ 7∆

960 ln 4(K+1)
δ

≤ ∆

4
.

Thus, taking into account the bounds above, the probability event ET−1 ∩ E1 ∩ E2 implies that

∆T ≤ ∆+ 4
∆

4
= 2∆,

where

E1 =

{
either

∣∣∣∣∣−
T−1∑
t=0

(
γ

bt
− Lγ2

b2t

)
⟨∇f(xt), θ

u
t ⟩

∣∣∣∣∣ ≤ ∆

4
or

T−1∑
t=0

σ2
t >

7∆2

480 ln 4(K+1)
δ

}
,

E2 =

{
either

∣∣∣∣∣
T−1∑
t=0

Lγ2

b2t

(
∥θut ∥

2 − Eξt∥θut ∥
2
)∣∣∣∣∣ ≤ ∆

4
or

T−1∑
t=0

σ̂2
t >

7∆2

1504 ln 4(K+1)
δ

}
.

Therefore,

P {ET } ≥ P {ET−1 ∩ E1 ∩ E2} = 1− P
{
ET−1 ∪ E1 ∪ E2

}
≥ 1− P

{
ET−1

}
− P

{
E1

}
− P

{
E2

}
≥ 1− Tδ

K + 1
.

Hence, for all k = 0, . . . ,K + 1 we get P(Ek) ≥ 1− kδ
K+1 . As revision result, event EK+1 implies

that
K∑

k=0

γCk

2
∥∇f(xk)∥2 ≤ 2∆ (51)

holds with probability at least 1− δ.

Therefore, we get that with probability at least 1− δ

K∑
k=0

∥∇f(xk)∥2 ≤ 4∆

γ
max

k∈[0,K]

1

Ck
.

and, since Ck ≥ 1−β1

bk
, we obtain

K∑
k=0

∥∇f(xk)∥2 ≤ 4∆

γ(1− β1)
max

k∈[0,K]
bk. (52)
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Moreover,

b2k ≤ b20 + η

K∑
k=0

(
3∥∇f(xk)∥2 + 3∥θuk∥

2
+ 3
∥∥θbk∥∥2) (53)

for the Clip-AdaGradD of bk and

b2k ≤ b20 +
η

K + 1

K∑
k=0

(
3∥∇f(xk)∥2 + 3∥θuk∥

2
+ 3
∥∥θbk∥∥2) (54)

for the Clip-AdamD, respectively. Next, we use that the event EK+1 implies

K∑
k=0

γ

cmb0

∥∥θbk∥∥2 ≤ ∆

4
;

K∑
k=0

2Lγ2

c2mb20(1− β1)
∥θuk∥

2 ≤ ∆

2

because we could substitute bounds on Ct and At directly in Lemma 15 and all steps in ②,③ and ④
will be the same. Therefore, with applying Lemma 13, next bounds

K∑
k=0

∥∇f(xk)∥2 ≤ 4∆

γ(1− β1)

√√√√b20 + 3η

K∑
k=0

∥∇f(xk)∥2 +
3ηb0∆

4γ
+

3ηb20(1− β1)∆

4Lγ2
;

K∑
k=0

∥∇f(xk)∥2 ≤ 4∆

γ(1− β1)

√√√√b20 +
3η

K + 1

K∑
k=0

∥∇f(xk)∥2 +
3ηb0∆

8γ(K + 1)
+

3ηb20(1− β1)∆

16Lγ2(K + 1)

hold with probability at least 1− δ, where we substitute different cm from Lemma 13 and (53), (54)
for Clip-M-AdaGradD and Clip-AdamD, respectively. Next, solving quadratic inequalities above

with respect to
K∑

k=0

∥∇f(xk)∥2, we obtain

K∑
k=0

∥∇f(xk)∥2 ≤

48η∆2

γ2(1−β1)2
+

√
9·44η2∆4

γ4(1−β1)4
+ 16∆2

γ2(1−β1)2

(
3ηb0∆
4γ +

3ηb20(1−β1)∆
4Lγ2 + b20

)
2

=
24η∆2

γ2(1− β1)2

+

√
576η2∆4

γ4(1− β1)4
+

(
3ηb0∆3

γ3(1− β1)2
+

3ηb20∆
3

Lγ4(1− β1)
+

4b20∆
2

γ2(1− β1)2

)

=
∆

γ2

(
24η∆

(1− β1)2
+

√
576η2∆2

(1− β1)4
+

(
3ηb0γ∆

(1− β1)2
+

3ηb20∆

L(1− β1)
+

4b20γ
2

(1− β1)2

))
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for Clip-M-AdaGradD and

K∑
k=0

∥∇f(xk)∥2 ≤ 24η∆2

γ2(1− β1)2(K + 1)

+

√
9 · 43η2∆4

γ4(1− β1)4(K + 1)2
+

4∆2

γ2(1− β1)2

(
3ηb0∆

8γ(K + 1)
+

3ηb20(1− β1)∆

16Lγ2(K + 1)
+ b20

)
=

24η∆2

γ2(1− β1)2(K + 1)

+

√
576η2∆4

γ4(1− β1)4(K + 1)2
+

(
3ηb0∆3

2γ3(1− β1)2(K + 1)
+

3ηb20∆
3

4Lγ4(1− β1)(K + 1)
+

4b20∆
2

γ2(1− β1)2

)

=
∆

γ2

(
24η∆

(1− β1)2(K + 1)

+

√
576η2∆2

(1− β1)4(K + 1)2
+

(
3ηb0γ∆

2(1− β1)2(K + 1)
+

3ηb20∆

4L(1− β1)(K + 1)
+

4b20γ
2

(1− β1)2

))

for the Clip-AdamD. Substituting η = Lγ2(1−β1)
2

∆ and applying
√
a2 + b2 + c2 + d2 ≤ a+b+c+d

for non-negative numbers, one can obtain the bound for Clip-M-AdaGradD:

1

K + 1

K∑
k=0

∥∇f(xk)∥2 ≤ ∆

(K + 1)γ2

(
48Lγ2 +

√
3Lγ3b0 +

√
3γ2b20(1− β1) +

2γb0
1− β1

)
≤ ∆

(K + 1)γ2

(
49Lγ2 + 3

√
γ2b20(1− β1) +

2γb0
1− β1

)
≤ ∆

(K + 1)γ2

(
49Lγ2 + 3γb0 +

2γb0
1− β1

)
≤ 2∆

(K + 1)γ2
max

{
49Lγ2,

5γb0
1− β1

}
= max

{
98L∆

K + 1
,

10∆b0
γ(K + 1)(1− β1)

}
(55)

and for Clip-AdamD:

1

K + 1

K∑
k=0

∥∇f(xk)∥2 ≤ ∆

(K + 1)γ2

(
48Lγ2

K + 1
+

√
3Lγ3b0
2(K + 1)

+

√
3γ2b20(1− β1)

4(K + 1)
+

2γb0
1− β1

)

≤ ∆

(K + 1)γ2

(
48Lγ2

K + 1
+ 2

√
Lγ3b0
(K + 1)

+ γb0 +
2γb0
1− β1

)

≤ ∆

(K + 1)γ2

(
49Lγ2

K + 1
+

4γb0
1− β1

)
≤ 2∆

(K + 1)γ2
max

{
49Lγ2

K + 1
,
4γb0
1− β1

}
= max

{
98L∆

(K + 1)2
,

8∆b0
γ(K + 1)(1− β1)

}
, (56)

where we use that 2
√
ab ≤ a + b. Consequently, after substitution of (41) into (55), (56), we get

final bounds for Clip-M-AdaGradD/Clip-AdamD:

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

1

K + 1

K∑
k=0

∥∇f(xk)∥2

= O

(
max

{
L∆ ln K+1

δ

(1− β1)3(K + 1)
2α−1
3α−2

,

√
L∆σ ln

α−1
α K+1

δ

(1− β1)
3
2 (K + 1)

2α−2
3α−2

,
σ

2α
2α−1 (L∆)

α−1
2α−1 ln

2α−2
2α−1 K+1

δ

(1− β1)
3α−2
2α−1 (K + 1)

2α−2
3α−2

})
holds with probability at least 1− δ.

C.3 CONVEX CASE: METHODS WITH DELAY

Lemma 16 (Descent lemma). Let Assumptions 2 and 3 hold on Q = B2R(x
∗), where ∥x0 − x∗∥ ≤

R. Assume that xt ∈ Q ∀t = 0, T . Then, after T iterations of Clip-M-AdaGradD/Clip-AdamD
with b0 ≥ 8γL

(1−β1)2c2m
, we have

T−1∑
t=0

γCt (f(xt)− f∗) ≤ R2
0 −R2

t −
T−1∑
t=0

2γCt ⟨xt − x∗, θt⟩+
T−1∑
t=0

2At∥θt∥2,

where Ct =
T−1∑
i=t

1−β1

bi
βi−t
1 and At =

T−1∑
i=t

2γ2(1−β1)
cmbib0

βi−t
1 (i− t+ 1).

Proof. According to the update rule of Algorithm 3, we have

∥xt+1 − x∗∥2 = ∥xt − x∗∥2 − 2γ

bt
⟨xt − x∗,mt⟩+

γ2

b2t
∥mt∥2.

To bound the scalar product, we substitute the update rule for mt:
−⟨xt − x∗,mt⟩ = −β1 ⟨xt − x∗,mt−1⟩ − (1− β1) ⟨xt − x∗, gt⟩

= −β1 ⟨xt − xt−1,mt−1⟩ − β1 ⟨xt−1 − x∗,mt−1⟩
− (1− β1) ⟨xt − x∗, gt⟩
≤ −β1 ⟨xt−1 − x∗,mt−1⟩ − (1− β1) ⟨xt − x∗, gt⟩
+ β1 ∥xt − xt−1∥ ∥mt−1∥
= −β1 ⟨xt−1 − x∗,mt−1⟩ − (1− β1) ⟨xt − x∗, gt⟩

+
γβ1

bt−1
∥mt−1∥2 .

Applying the same idea for t− 1, t− 2, . . . , 0 and using that m−1 = 0, one can obtain

−⟨xt − x∗,mt⟩ ≤ −
t∑

k=0

(1− β1)β
t−k
1 ⟨xk − x∗, gk⟩+

t−1∑
k=0

γβt−k
1

bk
∥mk∥2.

Therefore, we get

∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2 − 2γ

bt

t∑
k=0

(1− β1)β
t−k
1 ⟨xk − x∗, gk⟩+

2γ2

bt

t∑
k=0

βt−k
1

bk
∥mk∥2.

Substituting the bound for ∥mk∥2 from Lemma 14 with 1− βk+1
1 ≤ 1, we have

∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2 − 2γ

bt

t∑
k=0

(1− β1)β
t−k
1 ⟨xk − x∗, gk⟩

+
2γ2

bt

t∑
k=0

βt−k
1

bk

k∑
j=0

βk−j
1 (1− β1)∥gj∥2

= ∥xt − x∗∥2 − 2γ

bt

t∑
k=0

(1− β1)β
t−k
1 ⟨xk − x∗, gk⟩

+
2γ2

bt

t∑
k=0

k∑
j=0

βt−j
1

bk
(1− β1)∥gj∥2.
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Applying the same technique as in Lemma 15 (see (37)), one can obtain

∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2 − 2γ(1− β1)

bt

t∑
k=0

βt−k
1 ⟨xk − x∗, gk⟩

+
2γ2(1− β1)

cmbtb0

t∑
j=0

βt−j
1 (t− j + 1)∥gj∥2.

After summing over t:

∥xT − x∗∥2 ≤ ∥x0 − x∗∥2 −
T−1∑
t=0

2γ(1− β1)

bt

t∑
k=0

βt−k
1 ⟨xk − x∗, gk⟩

+

T−1∑
t=0

2γ2(1− β1)

cmbtb0

t∑
j=0

βt−j
1 (t− j + 1)∥gj∥2. (57)

Therefore, multiplicative factors for ⟨xr − x∗, gr⟩ and ∥gr∥2 are equal to

−
T−1∑
t=r

2γ(1− β1)

bt
βt−r
1 and

T−1∑
t=r

2γ2(1− β1)

cmbtb0
βt−r
1 (t− r + 1),

respectively. Let us denote them as −2γCr and Ar. Using the same idea as in Lemma 15, we get
(1− β1)

br
≤ Cr ≤ 1

cmbp

and

Ar ≤ 2γ2

c2mbpb0(1− β1)

for all p = 0, . . . r because of Lemma 13. Rewriting (57) in terms of Cr, Ar,

∥xT − x∗∥2 ≤ ∥x0 − x∗∥2 −
T−1∑
t=0

2γCt ⟨xt − x∗, gt⟩+
T−1∑
t=0

At∥gt∥2.

Consequently,

∥xT − x∗∥2 − ∥x0 − x∗∥2 ≤ −
T−1∑
t=0

2γCt ⟨xt − x∗, gt⟩+
T−1∑
t=0

At∥gt∥2

= −
T−1∑
t=0

2γCt ⟨xt − x∗,∇f(xt) + θt⟩+
T−1∑
t=0

At∥∇f(xt) + θt∥2

≤ −
T−1∑
t=0

2γCt ⟨xt − x∗,∇f(xt)⟩ −
T−1∑
t=0

2γCt ⟨xt − x∗, θt⟩

+

T−1∑
t=0

2At∥∇f(xt)∥2 +
T−1∑
t=0

2At∥θt∥2.

Using Assumptions 2 and 3, one can obtain
T−1∑
t=0

(2γCt − 4LAt) (f(xt)− f∗) ≤
T−1∑
t=0

(
2γCt ⟨xt − x∗,∇f(xt)⟩ − 2At∥f(xt)∥2

)
≤ ∥x0 − x∗∥2 − ∥xT − x∗∥2 −

T−1∑
t=0

2γCt ⟨xt − x∗, θt⟩

+

T−1∑
t=0

2At∥θt∥2.

If we choose γ ≤ (1−β1)
2c2mb0

8L , then 2γCt − 4LAt ≥ γCt because of lower bound on Ct and upper
bound for At. This finishes the proof.
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Theorem 10. Let Assumptions 1, 2, and 3 hold on Q = B2R(x
∗) with ∥x0 − x∗∥ ≤ R, Then, after

K + 1 iterations of Clip-M-AdaGradD/Clip-AdamD with

γ ≤ min

 (1− β1)
2c2mb0

160L ln
(

4(K+1)
δ

) , √
1− β1cmRb0

40 · 9 1
ασ(K + 1)

1
α ln

α−1
α

(
4(K+1)

δ

)
 , η =

γ2(1− β1)
2

R2
,

(58)

and

λ =

√
1− β1cmb0R

40γ ln
(

4(K+1)
δ

) (59)

the bound
K∑

k=0

γCk (f(xk)− f∗) ≤ 2R2

holds with probability at least 1−δ. In particular, when γ equals the minimum from (58), the iterates
produced by Clip-M-AdaGradD/Clip-AdamD satisfy

f(xK)− f(x∗) = O

(
max

{
LR2 ln K+1

δ

(1− β1)3(K + 1)
,

σR ln
α−1
α K+1

δ

(1− β1)
3
2 (K + 1)

α−1
α

})

with probability at least 1− δ, where xK = 1
K+1

∑K
k=0 xk.

Proof. Our proof is induction-based (similarly to the one for Clip-SGD by Sadiev et al. (2023)).
We introduce probability event Ek as follows: inequalities

−
t−1∑
l=0

2γCl ⟨xl − x∗, θl⟩+
t−1∑
l=0

2Al∥θl∥2 ≤ R2,

Rt ≤
√
2R

hold simultaneously ∀t = 0, 1, . . . , k. We want to show that P{Ek} ≥ 1− kδ
K+1 ∀k = 0, 1, . . . ,K+

1. The case when k = 0 is obvious. Now let us make an induction step: let the statement hold for
some k = T − 1 ≤ K: P{ET−1} ≥ 1− (T−1)δ

K+1 . It remains to prove that P{ET } ≥ 1− Tδ
K+1 . The

event ET−1 implies xt ∈ B√
2R(x

∗) ∀t = 0, . . . , T − 1. Hence, ET−1 also implies

∥xT − x∗∥ ≤ ∥xT−1 − x∗∥+ γ

bT−1
∥mT−1∥ ≤

√
2R+

γλ

bT−1
≤

√
2R+

γλ

cmb0
≤ 2R.

Therefore, ET−1 implies {xt}Tt=0 ⊆ B2R(x
∗) and we can apply Lemma 16:

t−1∑
l=0

γCl (f(xl)− f∗) ≤ R2
0 −R2

t −
t−1∑
l=0

2γCl ⟨xl − x∗, θl⟩+
t−1∑
l=0

2Al∥θl∥2

∀t = 1, . . . , T and ∀t = 1, . . . T − 1 it implies that

t−1∑
l=0

γCl (f(xl)− f∗) ≤ R2
0 −

t−1∑
l=0

2γCl ⟨xl − x∗, θl⟩+
t−1∑
l=0

2Al∥θl∥2 ≤ 2R2.

Taking into account that
t−1∑
l=0

γCl (f(xl)− f∗) ≥ 0, we get that ET−1 implies

R2
T ≤ R2

0 −
T−1∑
t=0

2γCt ⟨xt − x∗, θt⟩+
T−1∑
t=0

2At∥θt∥2. (60)
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Next, for vectors

ηt =

{
xt − x∗, ∥xt − x∗∥ ≤

√
2R

0, otherwise

for all t = 0, 1, . . . , T − 1, we have that with probability 1

∥ηt∥ ≤
√
2R. (61)

Then, ET−1 implies that ηt = xt−x∗ for all t = 0, . . . T − 1. What is more, for all t = 0, . . . T − 1
ET−1 implies

∥∇f(xt)∥ ≤ L ∥xt − x∗∥ ≤
√
2LR

(59)
≤ λ

2

Hence, using the notation from Appendix A, we have that ET−1 implies

R2
T ≤ R2

0 −
T−1∑
t=0

2γCt ⟨xt − x∗, θut ⟩︸ ︷︷ ︸
①

−
T−1∑
t=0

2γCt

〈
xt − x∗, θbt

〉
︸ ︷︷ ︸

②

+

T−1∑
t=0

4At

(
∥θut ∥

2 − Eξt∥θut ∥
2
)

︸ ︷︷ ︸
③

+

T−1∑
t=0

4AtEξt∥θut ∥
2

︸ ︷︷ ︸
④

+

T−1∑
t=0

4At

∥∥θbt∥∥2︸ ︷︷ ︸
⑤

. (62)

Next, we bound each term separately with high probability. Before we move on, we also note that
event ET−1 implies ∥∇f(xt)∥ ≤ λ

2 . Therefore, one can apply Lemma 3 and get

∥θut ∥ ≤ 2λ, (63)∥∥θbt∥∥ ≤ 2ασα

λα−1
, (64)

Eξt∥θut ∥
2 ≤ 18λ2−ασα. (65)

Bound for ①. The definition of θut implies

Eξt [−2γCt ⟨ηt, θut ⟩] = 0.

Moreover, applying the bound on Ct: Ct ≤ 1
cmb0

from Lemma 16,

|−2γCt ⟨ηt, θut ⟩| ≤ 2γCt ∥ηt∥ ∥θut ∥
(61),(63)
≤ 6γλR

cmb0

(59)
≤ 3R2

20 ln
(

4(K+1)
δ

) = c.

For σ2
t = Eξt

[
4γ2C2

t ⟨ηt, θut ⟩
2
]

we also derive

σ2
t ≤ 4γ2C2

t Eξt∥θut ∥
2∥ηt∥2 ≤ 8γ2R2

c2mb20
Eξt∥θut ∥

2
. (66)

Hence, we can apply Bernstein’s inequality (Lemma 4) with c defined above and G = R4

100 ln( 4(K+1)
δ )

:

P

{
−

T−1∑
t=0

2γ

bt
⟨xt − x∗, θut ⟩ >

R2

5
and

T−1∑
t=0

σ2
t ≤ G

}
≤ 2 exp

(
− R4

25
(
2G+ 2cR2

15

))

=
δ

2(K + 1)
.

Therefore,

P

{
either −

T−1∑
t=0

2γ

bt
⟨xt − x∗, θut ⟩ ≤

R2

5
or

T−1∑
t=0

σ2
t > G

}
≥ 1− δ

2(K + 1)
.
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In addition, event ET−1 implies that (due to (66) and (65))

T−1∑
t=0

σ2
t ≤ 144γ2λ2−ασαR2T

c2mb20

(59)
≤ 144(1− β1)

1−α
2 γαb2−α

0 σαR4−αT

402−αcαmb20 ln
2−α

(
4(K+1)

δ

)
(58)
≤ 144(1− β1)R

4T

9 · 402(K + 1) ln
(

4(K+1)
δ

) ≤ R4

100 ln
(

4(K+1)
δ

) .
Bound for ②. For the second term, one can obtain from (58), (59) and α ≤ 2 that ET−1 implies

−
T−1∑
t=0

2γCt

〈
xt − x∗, θbt

〉
≤

T−1∑
t=0

2γ

cmb0
∥ηt∥

∥∥θbt∥∥ (61),(64)
≤ 2

√
2 · 2ασαγTR

cmb0λα−1

(59)
=

4 · 2α40ασαγαTR2−α

40(1− β1)
α
2 −1cαmbα0 ln1−α

(
4(K+1)

δ

) (58)
≤ 4 · 2α(1− β1)TR

2

360 · (K + 1)

≤ 2R2

45
≤ R2

5
.

Bound for ③. For the third part, we have

Eξt

[
4At

(
∥θut ∥

2 − Eξt∥θut ∥
2
)]

= 0.

What is more,∣∣∣4At

(
∥θut ∥

2 − Eξt∥θut ∥
2
)∣∣∣ ≤ 4At

(
∥θut ∥

2
+ Eξt∥θut ∥

2
) (63)

≤ 64γ2λ2

c2mb20(1− β1)

(59)
=

R2

25 ln2
(

4(K+1)
δ

)
≤ 3R2

20 ln
(

4(K+1)
δ

) = c. (67)

We also define

σ̂2
t = Eξt

[
16A2

t

(
∥θut ∥

2 − Eξt∥θut ∥
2
)2]

.

Hence,

σ̂2
t

(67)
≤ 3R2

20 ln
(

4(K+1)
δ

)Eξt

[∣∣∣4At

(
∥θut ∥

2 − Eξt∥θut ∥
2
)∣∣∣]

≤ 12γ2R2

5c2mb20(1− β1) ln
(

4(K+1)
δ

)Eξt∥θut ∥
2
.

Therefore, we can apply Bernstein’s inequality (Lemma 4) with c defined above and G =
R4

100 ln( 4(K+1)
δ )

:

P

{
T−1∑
t=0

4At

(
∥θut ∥

2 − Eξt∥θut ∥
2
)
>

R2

5
and

T−1∑
t=0

σ̂2
t ≤ G

}
≤ 2 exp

(
− R4

25
(
2G+ 2cR2

15

))

=
δ

2(K + 1)
.

Consequently,

P

{
either

T−1∑
t=0

4At

(
∥θut ∥

2 − Eξt∥θut ∥
2
)
≤ R2

5
or

T−1∑
t=0

σ̂2
t > G

}
≥ 1− δ

2(K + 1)
.
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Moreover, event ET−1 implies that

T−1∑
t=0

σ̂2
t ≤

T−1∑
t=0

12γ2R2

5c2mb20(1− β1) ln
(

4(K+1)
δ

)Eξt∥θut ∥
2

(65)
≤ 18 · 12γ2λ2−ασαR2T

5c2mb20(1− β1) ln
(

4(K+1)
δ

)
(59)
=

18 · 12 · 40αγασαR4−αT

5 · 402cαm(1− β1)
α
2 bα0 ln3−α

(
4(K+1)

δ

) (58)
≤ 18 · 12R4T

9 · 5 · 402(K + 1) ln2
(

4(K+1)
δ

)
≤ R4

100 ln
(

4(K+1)
δ

) .
Bound for ④. For the fourth part, we get that ET−1 implies

T−1∑
t=0

4AtEξt∥θut ∥
2 ≤

T−1∑
t=0

8γ2

c2mb20(1− β1)
Eξt∥θut ∥

2
(65)
≤ 144γ2λ2−ασαT

c2mb20(1− β1)

(58)
=

144γα40αR2−ασαT

402cαmbα0 (1− β1)
α
2 ln2−α

(
4(K+1)

δ

) (58)
≤ 144R2T

9 · 402(K + 1) ln
(

4(K+1)
δ

)
≤ R2

100
≤ R2

5
.

Bound for ⑤. For the last term, ET−1 implies

T−1∑
t=0

4At

∥∥θbt∥∥2 ≤
T−1∑
t=0

8γ2

c2mb20(1− β1)

∥∥θbt∥∥2 (64)
≤ 8 · 4ασ2αγ2T

c2mb20(1− β1)λ2(α−1)

(59)
=

8 · 4α402ασ2αγ2αT ln2(α−1)
(

4(K+1)
δ

)
402c2αm b2α0 (1− β1)αR2(α−1)

(58)
≤ 8 · 4αR2T

3602(K + 1)2
≤ 8R2

452
≤ R2

5
.

Thus, taking into account the bounds above, the probability event ET−1 ∩ E1 ∩ E2 implies that

R2
T ≤ R2 + 5

R2

5
= 2R2,

where

E1 =

either −
T−1∑
t=0

2γ

bt
⟨xt − x∗, θut ⟩ ≤

R2

5
or

T−1∑
t=0

σ2
t >

R4

100 ln
(

4(K+1)
δ

)
 ,

E2 =

either
T−1∑
t=0

4γ2

b2t

(
∥θut ∥

2 − Eξt∥θut ∥
2
)
≤ R2

5
or

T−1∑
t=0

σ̂2
t >

R4

100 ln
(

4(K+1)
δ

)
 .

Therefore,

P {ET } ≥ P {ET−1 ∩ E1 ∩ E2} = 1− P
{
ET−1 ∪ E1 ∪ E2

}
≥ 1− P

{
ET−1

}
− P

{
E1

}
− P

{
E2

}
≥ 1− Tδ

K + 1
.

Hence, for all k = 0, . . . ,K + 1 we get P{Ek} ≥ 1− kδ
K+1 . As the result, event EK+1 implies that

K∑
k=0

γCk (f(xk)− f∗) ≤ 2R2 (68)
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with probability at least 1− δ. Next, from (68) we get that with probability at least 1− δ

K∑
k=0

(f(xk)− f∗) ≤
2R2

γ
max

k∈[0,K]

1

Ck
.

Moreover, 1
Ck

can be bounded in the following way (from Lemma 16):

1

Ck
≤ bk

(1− β1)
.

Hence, we get

K∑
k=0

(f(xk)− f∗) ≤
2R2

γ(1− β1)
max

k∈[0,K]
bk. (69)

Also we can bound bk for Clip-M-AdaGradD using that gk = ∇f(xk) + θk and Assumption 2:

b2k ≤ b20 + η

K∑
k=0

(
4L (f(xk)− f∗) + 2∥θk∥2

)
and for Clip-AdamD, respectively

b2k ≤ b20 +
η

K + 1

K∑
k=0

(
4L (f(xk)− f∗) + 2∥θk∥2

)
.

Therefore, due to the fact that the event EK+1 implies (see the bounds for ③, ④ and ⑤)

K∑
k=0

4γ2

c2mb20(1− β1)
∥θk∥2 ≤ 3R2

5
,

we get

b2k ≤ b20 + η

K∑
k=0

4L ((f(xk)− f∗)) +
3η(1− β1)b

2
0R

2

10γ2

for Clip-M-AdaGradD scheme and

b2k ≤ b20 +
η

K + 1

K∑
k=0

4L ((f(xk)− f∗)) +
3η(1− β1)b

2
0R

2

40γ2(K + 1)

for Clip-AdamD, where we substitute the constant cm from Lemma 13. Consequently, substituting
bounds above in (69), we get(

K∑
k=0

(f(xk)− f∗)

)2

≤ 4R4

γ2(1− β1)2

(
b20 + η

K∑
k=0

(4L (f(xk)− f∗)) +
3η(1− β1)R

2b20
10γ2

)
for Clip-M-AdaGradD and(

K∑
k=0

(f(xk)− f∗)

)2

≤ 4R4

γ2(1− β1)2

(
b20 +

η

K + 1

K∑
k=0

(4L (f(xk)− f∗)) +
3η(1− β1)R

2b20
40γ2(K + 1)

)
for Clip-AdamD, respectively. Solving these quadratic inequalities, we have that EK+1 implies

K∑
k=0

(f(xk)− f∗) ≤
2R2

γ2

(
4LηR2

(1− β1)2
+

√
16L2η2R4

(1− β1)4
+ b20

(
γ2

(1− β1)2
+

3ηR2

10(1− β1)

))

≤ 6R2

γ2
max

{
8LηR2

(1− β1)2
,

b0γ

1− β1
, b0R

√
η

1− β1

}
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and

K∑
k=0

(f(xk)− f∗) ≤
2R2

γ2

(
4LηR2

(1− β1)2(K + 1)

+

√
16L2η2R4

(1− β1)4(K + 1)2
+ b20

(
γ2

(1− β1)2
+

3ηR2

40(1− β1)(K + 1)

))

≤ 6R2

γ2
max

{
8LηR2

(1− β1)2(K + 1)
,

b0γ

1− β1
, b0R

√
η

(1− β1)(K + 1)

}
.

with probability at least 1 − δ. Choosing η = γ2(1−β1)
2

R2 , γ equal to the minimum from (58) and
using that 2

√
ab ≤ a+ b, we obtain the bound for Clip-M-AdaGradD/Clip-AdamD for the convex

case:

1

K + 1

K∑
k=0

(f(xk)− f∗) = O

(
max

{
LR2 ln K+1

δ

(1− β1)3(K + 1)
,

σR ln
α−1
α K+1

δ

(1− β1)
3
2 (K + 1)

α−1
α

})

with probability at least 1− δ. To get the final result, it remains to apply Jensen’s inequality.

C.4 NON-CONVEX CASE: METHODS WITHOUT DELAY

Lemma 17 (Descent lemma). Let Assumptions 2 and 4 hold. Then, after T iterations of Clip-M-
AdaGrad/Clip-Adam, we have

T−1∑
t=0

γCt

2
∥∇f(xt)∥2 ≤

(
2M +

2Lγ2

η(1− β1)

)√√√√b2−1 + η

T−1∑
t=0

∥gt∥2 −
T−1∑
t=0

γCt ⟨∇f(xt), θ
u
t ⟩

+

T−1∑
t=0

γCt

2

∥∥θbt∥∥2

for Clip-M-AdaGrad, where Ct =
T−1∑
k=t

(1− β1)β
k−t
1 , and

T−1∑
t=0

γCt

2
∥∇f(xt)∥2 ≤

(
3M +

16KLγ2

η(1− β1)

)√√√√b2−1 +
η

K

T−1∑
t=0

∥gt∥2 −
T−1∑
t=0

γCt ⟨∇f(xt), θ
u
t ⟩

+

T−1∑
t=0

γCt

2

∥∥θbt∥∥2

Clip-Adam, where Ct =
T−1∑
k=t

(1−β1)β
k−t
1 /(

√
β2)

k.

Proof. The first part of the proof is similar to the Lemma 15. We start with the L-smoothness of f :

f(xt+1)− f(xt) ≤ ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

= − γ

bt
⟨∇f(xt),mt⟩+

Lγ2

2b2t
∥mt∥2. (70)
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Using the update rule of Algorithm 3, we can obtain

−⟨∇f(xt),mt⟩ = −β1 ⟨∇f(xt),mt−1⟩ − (1− β1) ⟨∇f(xt), gt⟩
= −β1 ⟨∇f(xt)−∇f(xt−1),mt−1⟩ − β1 ⟨∇f(xt−1),mt−1⟩
− (1− β1) ⟨∇f(xt), gt⟩
≤ −β1 ⟨∇f(xt−1),mt−1⟩+ β1 ∥∇f(xt)−∇f(xt−1)∥ ∥mt−1∥
− (1− β1) ⟨∇f(xt), gt⟩
≤ −β1 ⟨∇f(xt−1),mt−1⟩+ β1L ∥xt − xt−1∥ ∥mt−1∥
− (1− β1) ⟨∇f(xt), gt⟩

= −β1 ⟨∇f(xt−1),mt−1⟩+
γβ1L

bt−1
∥mt−1∥2

− (1− β1) ⟨∇f(xt), gt⟩ ,

where we use the Cauchy-Schwarz inequality and L-smoothness of f . Applying the same idea for
the t− 1, t− 2, . . . , 0 and noting that m−1 = 0, we get

−⟨∇f(xt),mt⟩ ≤ −(1− β1)

t∑
k=0

βt−k
1 ⟨∇f(xk), gk⟩+ Lγ

t−1∑
k=0

βt−k
1

bk
∥mk∥2. (71)

Therefore, substituting (71) into (70), we have

f(xt+1)− f(xt) ≤ − (1− β1)γ

bt

t∑
k=0

βt−k
1 ⟨∇f(xk), gk⟩+

Lγ2

bt

t−1∑
k=0

βt−k
1

bk
∥mk∥2 +

Lγ2

2b2t
∥mt∥2

≤ − (1− β1)γ

bt

t∑
k=0

βt−k
1 ⟨∇f(xk), gk⟩+

Lγ2

bt

t∑
k=0

βt−k
1

bk
∥mk∥2.

Applying Lemma 14 with 1− βk+1
1 ≤ 1, we can rewrite the inequality above as follows:

f(xt+1)− f(xt) ≤ − (1− β1)γ

bt

t∑
k=0

βt−k
1 ⟨∇f(xk), gk⟩+

Lγ2

bt

t∑
k=0

βt−k
1

bk

k∑
j=0

βk−j
1 (1− β1)∥gj∥2

= − (1− β1)γ

bt

t∑
k=0

βt−k
1 ⟨∇f(xk), gk⟩+

Lγ2

bt

t∑
j=0

t∑
k=j

βt−k
1

bk
βk−j
1 (1− β1)∥gj∥2,

where we change the limits of summation. Multiplying both sides of the inequality above by bt
pt

,
where

pt =

{
1, for Clip-M-AdaGrad
(
√
β2)

t, for Clip-Adam
(72)

and using that bk ≥ cmbj (see Lemma 13), one can obtain

bt
pt
(f(xt+1)− f(xt)) ≤ − (1− β1)γ

pt

t∑
k=0

βt−k
1 ⟨∇f(xk), gk⟩

+
Lγ2

pt

t∑
j=0

βt−j
1

cmbj
(1− β1)(t− j + 1)∥gj∥2.

After summing over t,

T−1∑
t=0

bt
pt
(f(xt+1)− f(xt)) ≤ −(1− β1)γ

T−1∑
t=0

t∑
k=0

βt−k
1

pt
⟨∇f(xk), gk⟩

+ Lγ2
T−1∑
t=0

t∑
j=0

βt−j
1

cmbjpt
(1− β1)(t− j + 1)∥gj∥2.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Next, applying the same idea as in Lemma 15, we get that multiplicative factors are equal to

−γCr = −
T−1∑
t=r

γ(1− β1)β
t−r
1

pt
(73)

for the scalar product ⟨∇f(xr), gr⟩ and

Ar =

T−1∑
t=r

Lγ2(1− β1)

cmbrpt
(t− r + 1)βt−r

1 (74)

for the squared norm ∥gr∥2, respectively. Moreover, it can be shown that pt ≥ cm for corresponding
update rule of bt. Hence, for (74) we apply Lemma 1 to obtain the next bound:

Ar ≤ Lγ2

c2mbr(1− β1)
.

Therefore, rewriting the descent lemma in terms of (73) and (74), we have
T−1∑
t=0

bt(f(xt+1)− f(xt)) ≤ −
T−1∑
t=0

γCt ⟨∇f(xt), gt⟩+
Lγ2

c2m(1− β1)

T−1∑
t=0

∥gt∥2

bt
.

Using that gt = ∇f(xt) + θt, we get
T−1∑
t=0

γCt∥∇f(xt)∥2 ≤
T−1∑
t=0

bt
pt
(f(xt)− f(xt+1))−

T−1∑
t=0

γCt ⟨∇f(xt), θt⟩+
Lγ2

c2m(1− β1)

T−1∑
t=0

∥gt∥2

bt

=

T−1∑
t=0

bt
pt

(f(xt)− f∗ − (f(xt+1)− f∗))− f(xt+1))−
T−1∑
t=0

γCt ⟨∇f(xt), θt⟩

+
Lγ2

c2m(1− β1)

T−1∑
t=0

∥gt∥2

bt

≤ b0
p0

(f(x0)− f∗) +

T−1∑
t=1

(
bt
pt

− bt−1

pt−1

)
(f(xt)− f∗)−

T−1∑
t=0

γCt ⟨∇f(xt), θt⟩

+
Lγ2

c2m(1− β1)

T−1∑
t=0

∥gt∥2

bt
.

Since pt = 1 for Clip-M-AdaGrad, we can use that bt ≥ bt−1, and for Clip-Adam we get bt ≥√
β2bt−1, what is equal to bt

pt
≥ bt−1

pt−1
with pt = (

√
β2)

t. Therefore, applying Assumption 4, we
obtain

T−1∑
t=0

γCt∥∇f(xt)∥2 ≤ b0M

p0
+

bT−1M

pT−1
−

T−1∑
t=0

γCt ⟨∇f(xt), θt⟩+
Lγ2

c2m(1− β1)

T−1∑
t=0

∥gt∥2

bt
.

Now we construct descent lemmas for each considering update separately. For Clip-M-AdaGrad
we directly apply Lemma 2 to bound the last term:

T−1∑
t=0

γCt∥∇f(xt)∥2 ≤ 2MbT−1 −
T−1∑
t=0

γCt ⟨∇f(xt), θt⟩+
Lγ2

η(1− β1)
bT−1

=

(
2M +

2Lγ2

η(1− β1)

)
bT−1 −

T−1∑
t=0

γCt ⟨∇f(xt), θt⟩

≤
(
2M +

2Lγ2

η(1− β1)

)
bT−1 −

T−1∑
t=0

γCt ⟨∇f(xt), θ
u
t ⟩

+

T−1∑
t=0

γCt

2
∥∇f(xt)∥2 +

T−1∑
t=0

γCt

2

∥∥θbt∥∥2, (75)
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where we use that cm = 1 and pt = 1 for Clip-M-AdaGrad. For the Clip-Adam, we get

T−1∑
t=0

∥gt∥2

bt
=

1

η

T−1∑
t=0

η∥gt∥2√
βt+1
2 b2−1 + (1− β2)η

∑t
k=0 β

t−k
2 ∥gk∥2

≤ K

η

T−1∑
t=0

2 η
K ∥gt∥2√

b2−1 +
η
K

∑t
k=0 ∥gk∥

2

≤ 4K

η

√√√√b2−1 +
η

K

T−1∑
t=0

∥gt∥2,

where we use that βk
2 ≥ 1/4 for all k = 0, . . . ,K. Consequently, with upper bound on bt and

cm = 1/2, for Clip-Adam one can obtain

T−1∑
t=0

γCt∥∇f(xt)∥2 ≤ b0M +
bT−1M

(
√
β2)T−1

−
T−1∑
t=0

γCt ⟨∇f(xt), θt⟩

+
16KLγ2

η(1− β1)

√√√√b2−1 +
η

K

t∑
k=0

∥gk∥2

≤
(
3M +

16KLγ2

η(1− β1)

)√√√√b2−1 +
η

K

T−1∑
t=0

∥gt∥2 −
T−1∑
t=0

γCt ⟨∇f(xt), θt⟩

≤
(
3M +

16KLγ2

η(1− β1)

)√√√√b2−1 +
η

K

T−1∑
t=0

∥gt∥2 −
T−1∑
t=0

γCt ⟨∇f(xt), θ
u
t ⟩

+

T−1∑
t=0

γCt

2
∥∇f(xt)∥2 +

T−1∑
t=0

γCt

2

∥∥θbt∥∥2.
After substitution of the analytical form of bT−1 in (75) and different options of pt, we claim the
final result.

Theorem 11. Let Assumptions 1, 2 and 4 hold. Then, after K iterations of Clip-M-AdaGrad/Clip-
Adam with

γ ≤ min

{
b−1K

1−α
3α−2

48L ln
(
4
δ

) , b−1

√
M

4
1
α · 12

√
Lσ(K + 1)

α
3α−2 ln

α−1
α
(
4
δ

) ,
b−1M

α
2α−1

4
α

2α−1 · 12
2α−2
2α−1σ

2α
2α−1L

α−1
2α−1 (K + 1)

α
3α−2 ln

2α−2
2α−1

(
4
δ

)
}
, η =

Lγ2

M(1− β1)
, (76)

and

λ =
b−1

√
M(K + 1)

1−α
3α−2

12
√
Lγ ln

(
4
δ

) (77)

the bound

1

K

K−1∑
k=0

∥∇f(xk)∥2

= O

(
1

(1− β1)
3
2

max

{
LM ln

(
4
δ

)
K

2α−1
3α−2

,

√
LMσ ln

α−1
α
(
4
δ

)
K

2α−2
3α−2

,
σ

2α
2α−1 (LM)

α−1
2α−1 ln

2α−2
2α−1

(
4
δ

)
K

2α−2
3α−2

})
holds with probability at least 1− δ.
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Proof. The main idea of the proof is similar to the proof of Theorem 9, but we do not need to
introduce any probabilistic events since according to Assumption 4 the norm of gradient is always
bounded:

∥∇f(xt)∥ ≤
√
2L (f(xt)− f∗) ≤

√
2LM

(77)
≤ λ

2
.

Therefore, one can apply Lemma 3 and get

∥θut ∥ ≤ 2λ, (78)∥∥θbt∥∥ ≤ 2ασα

λα−1
, (79)

Eξt∥θut ∥
2 ≤ 18λ2−ασα. (80)

According to the Lemma 17, we get

T−1∑
t=0

γCt

2
∥∇f(xt)∥2 ≤

(
2M +

2Lγ2

η(1− β1)

)√√√√b2−1 + η

T−1∑
t=0

∥gt∥2 −
T−1∑
t=0

γCt ⟨∇f(xt), θ
u
t ⟩

+

T−1∑
t=0

γCt

2

∥∥θbt∥∥2
with Ct =

T−1∑
k=t

(1− β1)β
k−t
1 for Clip-M-AdaGrad and

T−1∑
t=0

γCt

2
∥∇f(xt)∥2 ≤

(
3M +

16KLγ2

η(1− β1)

)√√√√b2−1 +
η

K

T−1∑
t=0

∥gt∥2 −
T−1∑
t=0

γCt ⟨∇f(xt), θ
u
t ⟩

+

T−1∑
t=0

γCt

2

∥∥θbt∥∥2
with Ct =

T−1∑
k=t

(1−β1)β
k−t
1 /(

√
β2)

k for Clip-Adam. Let us bound Ct regardless of the method. In can

be shown that

1− β1 ≤ Ct(Clip-M-AdaGrad) ≤
∞∑
k=0

(1− β1)β
k
1 = 1

and

1− β1 ≤ Ct(Clip-Adam) ≤ 2

∞∑
k=0

(1− β1)β
k
1 = 2,

since (
√
β2)

T−1 ≥ 1/2. Therefore, descent lemmas for Clip-M-AdaGrad and Clip-Adam can be
rewritten in the following way:

γ(1− β1)

2

T−1∑
t=0

∥∇f(xt)∥2 ≤
(
2M +

2Lγ2

η(1− β1)

)√√√√b2−1 + η

T−1∑
t=0

∥gt∥2

−
T−1∑
t=0

γCt ⟨∇f(xt), θ
u
t ⟩+

T−1∑
t=0

γ
∥∥θbt∥∥2 (81)

for Clip-M-AdaGrad and

γ(1− β1)

2

T−1∑
t=0

∥∇f(xt)∥2 ≤
(
3M +

16KLγ2

η(1− β1)

)√√√√b2−1 +
η

K

T−1∑
t=0

∥gt∥2

−
T−1∑
t=0

γCt ⟨∇f(xt), θ
u
t ⟩+

T−1∑
t=0

γ
∥∥θbt∥∥2 (82)
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for Clip-Adam. Moreover,
T−1∑
t=0

∥gt∥2 can be bounded as follows:

T−1∑
t=0

∥gt∥2 ≤ 3

T−1∑
t=0

(
∥∇f(xt)∥2 +

(
∥θut ∥

2 − Eξt∥θut ∥
2
)
+ Eξt∥θut ∥

2
+
∥∥θbt∥∥2) . (83)

The main idea is to give upper bounds for the next terms for all T ≤ K:

T−1∑
t=0

Lγ2

b2−1

(
∥θut ∥

2 − Eξt∥θut ∥
2
)

︸ ︷︷ ︸
①

,

T−1∑
t=0

Lγ2

b2−1

Eξt∥θut ∥
2

︸ ︷︷ ︸
②

,

T−1∑
t=0

γ

b−1

∥∥θbt∥∥2︸ ︷︷ ︸
③

, −
T−1∑
t=0

γ

b−1
Ct ⟨∇f(xt), θ

u
t ⟩︸ ︷︷ ︸

④

.

In cases of ①,② and ③ we multiply sums from (83) to the factors to move to the corresponding type
of sums from Theorem 9.

Bound for ①. We have bounded and unbiased terms in the sum:

Eξt

[
Lγ2

b2−1

(
∥θut ∥

2 − Eξt∥θut ∥
2
)]

= 0

and ∣∣∣∣Lγ2

b2−1

(
∥θut ∥

2 − Eξt∥θut ∥
2
)∣∣∣∣ (78)

≤ 8Lγ2λ2

b2−1

≤ 24M

19 ln 4
δ

= c.

Next, we define σ̂2
t = Eξt

[
L2γ4

b4−1

(
∥θut ∥

2 − Eξt∥θut ∥
2
)]

. For the introduced quantities, we have

σ̂2
t ≤ cLγ2

b2−1

Eξt

∣∣∣∥θut ∥2 − Eξt∥θut ∥
2
∣∣∣ ≤ 2cLγ2

b2−1

Eξt∥θut ∥
2
.

Therefore, we can apply Bernstein’s inequality (Lemma 4) with G = 3M2

38 ln( 4
δ )

:

P

{∣∣∣∣∣
T−1∑
t=0

Lγ2

b2−1

(
∥θut ∥

2 − Eξt∥θut ∥
2
)∣∣∣∣∣ > M and

T−1∑
t=0

σ̂2
t ≤ G

}
≤ 2 exp

(
− M2

2G+ 2cM
3

)
=

δ

2
.

Thus, we get

P

{
either

∣∣∣∣∣
T−1∑
t=0

Lγ2

b2−1

(
∥θut ∥

2 − Eξt∥θut ∥
2
)∣∣∣∣∣ ≤ M or

T−1∑
t=0

σ̂2
t > G

}
≥ 1− δ

2
.

Moreover,
T−1∑
t=0

σ̂2
t

(80)
≤ 36cTLγ2λ2−ασα

b2−1

(77)
≤ 36cTLγα

√
M

2−α
K

(1−α)(2−α)
3α−2

122−αbα−1

√
L
2−α

ln2−α
(
4
δ

)
(76)
≤ 3M2

38 ln
(
4
δ

) .
Bound for ②. For the second term, we get

T−1∑
t=0

Lγ2

b2−1

Eξt∥θut ∥
2

(80)
≤ 18TLγ2λ2−ασα

b2−1

(77)
≤ 18TLγα

√
M

2−α
K

(1−α)(2−α)
3α−2

122−αbα−1

√
L
2−α

ln2−α
(
4
δ

)
(76)
≤ M

32
≤ M.

Bound for ③. For the third sum, we obtain
T−1∑
t=0

γ

b−1

∥∥θbt∥∥2 (79)
≤ 4ασ2αγT

b−1λ2α−2

(77)
=

4α122α−2σ2αγ2α−1TLα−1 ln2α−2
(
4
δ

)
b2α−1
−1 Mα−1K

(1−α)(2α−2)
3α−2

(76)
≤ M,
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where we choose the third option for γ.

Bound for ④. Similarly to ①, we have unbiased and bounded terms in sum:

Eξt

[
−γCt

b−1
⟨∇f(xt), θ

u
t ⟩
]
= 0

and ∣∣∣∣−γCt

b−1
⟨∇f(xt), θ

u
t ⟩
∣∣∣∣ ≤ 2γ

b−1
∥∇f(xt)∥ ∥θut ∥

(78)
≤ 4γλ

√
2LM

b−1
≤ 3M

4 ln
(
4
δ

) = c.

Let us define σ2
t = Eξt

[
γ2C2

t

b2−1
⟨∇f(xt), θ

u
t ⟩

2
]
. Hence,

σ2
t ≤ 8γ2LM

b2−1

Eξt∥θut ∥
2
.

Therefore, we can apply Bernstein’s inequality (Lemma 4) with G = M2

4 ln( 4
δ )

:

P

{∣∣∣∣∣−
T−1∑
t=0

γCt

b−1
⟨∇f(xt), θ

u
t ⟩

∣∣∣∣∣ > M and
T−1∑
t=0

σ2
t ≤ G

}
≤ 2 exp

(
− M2

2G+ 2cM
3

)
=

δ

2
.

Thus, we get

P

{
either

∣∣∣∣∣−
T−1∑
t=0

γCt

b−1
⟨∇f(xt), θ

u
t ⟩

∣∣∣∣∣ ≤ M or
T−1∑
t=0

σ2
t > G

}
≥ 1− δ

2
.

Moreover,
T−1∑
t=0

σ2
t

(80)
≤ 144γ2LMTλ2−ασα

b2−1

(77)
=

144
√
M

2−α
K

(1−α)(2−α)
3α−2 γαLMTσα

122−αbα−1

√
L
2−α

ln2−α
(
4
δ

) (76)
≤ M2

4 ln
(
4
δ

) .
Consequently, next inequality holds with probability at least 1− δ for all T ≤ K:

T−1∑
t=0

∥gt∥2 ≤ 3

T−1∑
t=0

∥∇f(xt)∥2 +
6Mb2−1

Lγ2
+

3Mb−1

γ
.

Let us specify η for each method. This parameter can be chosen as follows:

η =

{
Lγ2

M(1−β1)
, for Clip-M-AdaGrad

KLγ2

M(1−β1)
, for Clip-Adam

Therefore, (81) and (82) can be rewritten in an unified form with T = K and ①, ②, ③ and ④:

γ(1− β1)

2

K−1∑
k=0

∥∇f(xk)∥2 ≤ 19M

√√√√b2−1 +
3Lγ2

M(1− β1)

K−1∑
k=0

∥∇f(xk)∥2 +
6b2−1

1− β1
+

3Lγb−1

1− β1

+ 2Mb−1

holds with probability at least 1 − δ for both algorithms. Denoting
K−1∑
k=0

∥∇f(xk)∥2 as SK and

squaring the inequality above, we get

γ2(1− β1)
2

4
S2
K ≤

19M

√
b2−1 +

3Lγ2

M(1− β1)
SK +

6b2−1

1− β1
+

3Lγb−1

1− β1
+ 2M

2

≤ 762M2

(
b2−1 +

3Lγ2

M(1− β1)
SK +

6b2−1

1− β1
+

3Lγb−1

1− β1

)
+ 8M2b2−1,
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where we use the fact that (a+ b)2 ≤ 2a2 + 2b2. Rearranging the terms, we have

S2
K − 6 · 382LM

(1− β1)3
SK − 2 · 382M2

γ2(1− β1)2

(
b2−1 +

8b2−1

762
+

6b−1

1− β1
+

3Lγb−1

1− β1

)
≤ 0.

Solving the quadratic inequality and using that
√
a2 + b2 ≤ a+ b, one can obtain

SK ≤ 6 · 382LM
(1− β1)3

+
38

√
2M

γ(1− β1)

√
b2−1 +

8b2−1

762
+

6b2−1

1− β1
+

3Lγb−1

1− β1

≤ 6 · 382LM
(1− β1)3

+
38

√
2M

γ(1− β1)

(
21b−1

19
+

3b−1√
1− β1

)
,

because Lγ ≤ b−1

48 . Therefore, after division of both sides by K and substitution of γ from (76), we
get the final bound for Clip-M-AdaGrad/Clip-Adam:

1

K

K−1∑
k=0

∥∇f(xk)∥2

= O

(
1

(1− β1)
3
2

max

{
LM ln

(
4
δ

)
K

2α−1
3α−2

,

√
LMσ ln

α−1
α
(
4
δ

)
K

2α−2
3α−2

,
σ

2α
2α−1 (LM)

α−1
2α−1 ln

2α−2
2α−1

(
4
δ

)
K

2α−2
3α−2

})
with probability at least 1− δ.
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Figure 4: Performance of different versions of AdaGrad (with and without clipping/delay) with
stepsize γ = 1/128 on the quadratic problem.

D NUMERICAL EXPERIMENTS: ADDITIONAL DETAILS AND RESULTS

D.1 QUADRATIC PROBLEM

In addition to the results provided in the main text, we compare the performance of different versions
of AdaGrad with γ = 1/128. The results are given in Figure 4. One can notice that methods with
clipping consistently outperform the methods without clipping for this stepsize as well.

Moreover, we provide the results of similar experiments for Adam with and without clipping/delay
in Figure 5 (for β1 = 0.9 and β2 = 0.999). In general, the observed results for Adam-based
methods are very similar to the ones obtained for AdaGrad: clipped versions of Adam show better
high-probability convergence than non-clipped ones.

D.2 ALBERT BASE V2 FINE-TUNING

In our experiments with finetuning of the ALBERT Base v2 model on CoLa and RTE datasets, we
follow a standard practice of usage Adam, we apply bias correction to Adam and Clip-Adam. For
the delayed version – Clip-AdamD – we do not apply bias correction and tune b0 instead.

In the main part of our work, we present the results for Clip-Adam with layer-wise clipping. In
Figure 6, we provide the results in the case of coordinate-wise clipping. In general, they are quite
similar to the ones given in Figure 3, indicating that both clipping strategies can be useful in practice
and improve the high-probability convergence of Adam.

We also conducted experiments with Clip-AdamD and compared its performance with Clip-
Adam. We tuned parameter ϵ defining b as b = ϵ1, where 1 = (1, 1, . . . , 1)⊤ ∈ Rd. Tun-
ing was performed in two phases: during the first phase, we selected the best values of ϵ
from {10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2}, and then for every selected ϵ̂ we tried ϵ ∈
{0.2ϵ̂, 0.5ϵ̂, 0.8ϵ̂, 2ϵ̂, 5ϵ̂, 8ϵ̂}. In the case of CoLa dataset, the best ϵ was 2 · 10−6, and in the case of
RTE dataset, the best ϵ was 2 · 10−6.

The results are presented7 in Figure 7 and show that Clip-AdamD performs worse than Clip-Adam,
especially on CoLa dataset. However, it is worth mentioning that the clipping level was selected
the same for both Clip-Adam and Clip-AdamD. Moreover, we have not tried to use bias correction
for Clip-AdamD that could also improve its performance. Finally, the tuning of ϵ parameter over
multiple runs can also improve the result of Clip-AdamD.

Finally, we also conducted similar experiments with AdaGrad-based methods with and without
clipping/delay. Parameter γ and batchsize were tuned across the same values as in the case of
Adam. Moreover, similarly to the experiments with Adam, we used standard layer-wise clipping
for AdaGrad-based methods since it gave better results. The final parameters are (i) γ = 10−4,
batchsize 4, λ = 5 for (Clip-)AdaGrad on CoLa dataset, (ii) γ = 10−4, batchsize 16, λ = 1 for
(Clip-)AdaGrad on RTE dataset, (iii) γ = 10−4, batchsize 4, λ = 5 for (Clip-)AdaGradD on CoLa

7In the plots, we use the name Clip-RAdamD, which is equivalent to Clip-AdamD as explained at the
beginning of Appendix C.
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Figure 5: Performance of different versions of Adam (with and without clipping/delay) under the
standard setting (β1 = 0.9, β2 = 0.999) with stepsizes γ = 1 (first row) and γ = 1/16 (second row)
on the quadratic problem.

Figure 6: Validation loss for ALBERT Base v2 fine-tuning task on the CoLa and RTE datasets.
Clip-Adam is used with coordinate-wise clipping (λ = 0.02 for CoLa and λ = 0.005 for RTE).

dataset, and (iv) γ = 10−4, batchsize 16, λ = 0.1 for (Clip-)AdaGradD on RTE dataset. The
results are presented in Figure 8. For this particular case, there is no big difference between versions
of AdaGrad with and without clipping, and only for CoLa dataset we see that Clip-AdaGrad has
much smaller error band than AdaGrad.
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Figure 7: Validation loss for ALBERT Base v2 fine-tuning task on the CoLa and RTE datasets.

Figure 8: Validation loss for ALBERT Base v2 fine-tuning task on the CoLa and RTE datasets.
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