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ABSTRACT

We study in-context learning (ICL) with Transformers for categorical outputs
yi, a setting largely unexplored compared to research on real-valued yi. While
attention-only Transformers can, in principle, perform functional gradient descent
(GD) inference for real-valued outputs, we show that categorical yi introduce a
non-linearity in GD that attention-only models cannot capture. This reveals a cru-
cial role for the Transformer’s multi-layered perceptron (MLP) layers, which we
show are generally necessary for categorical ICL. However, we also analyze con-
ditions under which attention-only models can, surprisingly, still perform well.
Since training for categorical ICL requires substantial data, we propose a sparse
Transformer parametrization linked to functional GD. This model trains far more
efficiently with minimal performance degradation compared to an unconstrained
Transformer. Our sparse design proves particularly valuable for data-limited ap-
plications, which we demonstrate through the ICL analysis of human surgical pro-
cedures.

1 INTRODUCTION

The remarkable success of Transformers in language generation and other tasks (Vaswani et al.,
2017; Radford et al., 2019; Devlin et al., 2019; Brown et al., 2020; Touvron et al., 2023; DeepSeek,
2025) has spurred intensive research into understanding their in-context learning (ICL) capabilities.
A key insight from recent theoretical work is that when performing ICL with real-valued outputs,
Transformers can implement functional gradient descent in the Transformer forward pass, through
their attention mechanisms alone (von Oswald et al., 2023; Ahn et al., 2023; Zhang et al., 2023;
Cheng et al., 2024). This explains why attention-only models (without MLP layers) suffice for tasks
like linear and kernel regression.

However, a fundamental question arises when extending ICL to categorical outputs: do the
same principles apply? Categorical ICL introduces softmax nonlinearities that are absent in the
real-valued case. Specifically, optimal inference requires computing expectations of the form
E[w|f(x)] =

∑
c wc · softmax(W⊤

e f(x))c, where wc are learned category embeddings that define
the columns ofWe. These nonlinear computations suggest a role for the MLP layers in conventional
Transformers.

This theoretical analysis suggests that the MLP layers in Transformers — previously deemed unnec-
essary for ICL — should become essential for categorical outputs. The MLPs could approximate
the required nonlinear expectations through their universal approximation capabilities. Based on
this reasoning, one would expect attention-only Transformers to perform poorly on categorical ICL
tasks.

An Empirical Puzzle. To test this theoretical prediction, we conducted experiments on sophisti-
cated synthetic and real-world data, comparing attention-only Transformers against full Transform-
ers (with MLPs) on categorical ICL. Contrary to our expectations, under some (but not all) settings,
attention-only models performed nearly as well as their MLP-equipped counterparts.

Our Investigation. We provide both theoretical analysis and extensive experiments to understand
this puzzle, and through this enhance understanding of the role of MLP layers in Transformer ICL,
when yi is categorical. Through detailed mechanistic investigation, we show that while exact cat-
egorical ICL inference is indeed nonlinear, a simple linear approximation in certain settings can
suffice in practice. We derive conditions under which this approximation holds, showing exam-
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ples of where attention-alone works well, and where it does not. Furthermore, we leverage these
insights to develop sparse parameter Transformer initialization strategies that reduce training data
requirements significantly.

1.1 SUMMARY OF CONTRIBUTIONS

1. Theoretical analysis of categorical ICL revealing the nonlinear computations that distinguish it
from real-valued ICL, and the mechanistic role this suggests for MLP layers.

2. Empirical discovery that in some settings attention-only Transformers perform well on categor-
ical ICL despite theoretical predictions, and analysis showing when and why linear approxima-
tions to nonlinear expectations suffice.

3. Practical insights enabling sparse parameter initialization that dramatically reduces training data
requirements without performance loss, validated on both synthetic and real-world surgical pro-
cedure datasets.

4. New application domain demonstrating categorical ICL for multi-question image analysis in
surgical contexts, extending ICL beyond single classification tasks.

1.2 RELATED WORK

Mechanistic analyses of in-context learning. Recent theoretical work has shown that Transform-
ers can implement functional gradient descent (GD) in the forward pass when outputs are real-
valued. For example, von Oswald et al. (2023); Ahn et al. (2023); Zhang et al. (2023) demonstrated
that attention-only Transformers are sufficient for tasks such as linear regression, where GD updates
can be expressed linearly. Cheng et al. (2024) extended this analysis to nonlinear real-valued func-
tions, further supporting the connection between self-attention and GD in function space. These
studies, however, focus almost exclusively on real-valued outcomes, leaving the categorical setting
largely unexplored.

Categorical in-context learning. The categorical case introduces a fundamental difference: the
required updates involve nonlinear expectations over category embeddings under a softmax distri-
bution. The most closely related prior work is Wang et al. (2025), who studied categorical ICL
but proposed new cross-attention mechanisms rather than analyzing the capabilities of the standard
Transformer architecture. Our work connects directly to this line of research by showing that – even
without architectural modifications – Transformers can approximate categorical ICL effectively, and
we explain why for some problems attention-only models are sufficient.

Sparsity and initialization. Our GD-based sparse parameterization is related to the literature on
sparse neural networks, particularly the Lottery Ticket Hypothesis (Frankle & Carbin, 2019; Brix
et al., 2020), which argues that subnetworks with carefully chosen initializations can match the
performance of dense models. In contrast to empirical pruning approaches, our sparsity patterns are
derived directly from functional GD analysis, yielding an interpretable initialization strategy with
orders-of-magnitude lower data requirements. This also connects to work on solution multiplicity
in neural networks (Draxler et al., 2018; Garipov et al., 2018; Lee et al., 2019), which shows that
different parameterizations can yield similar functional behavior.

Applications of categorical ICL. Most investigations of Transformer ICL focused on mechanistic
understanding have considered simulated data. We demonstrate the utility of categorical ICL in real-
world surgical video understanding, a domain where labeled data is scarce and categorical outcomes
(e.g., instruments, actions, targets) are natural. This is among the first real applications of this
technology.

2 SETUP: IN-CONTEXT LEARNING WITH TRANSFORMERS

For categorical outcomes yi ∈ {1, . . . , C}, an embedding vector wc ∈ Rd′
is learned for each

category c = 1, . . . , C; embedding-vector dimension d′ is a design choice, like in language mod-
els (Vaswani et al., 2017). For use with a Transformer, the N labeled samples (xi, yi) are en-
coded as zi = (xi, wyi), for covariates xi ∈ Rd. Sample N + 1, which is the query, is encoded
zN+1 = (xN+1, 0d′), where 0d′ is a d′-dimensional vector of zeros (yN+1 is of course unavailable
as Transformer input, and it is what we seek to infer). The encoding of observed categorical out-
comes by their corresponding learned embedding vector is as in language models (Vaswani et al.,
2017), and is a natural consequence of the analysis in Section 4.

The input to the Transformer is
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Z0 =

[
z1 z2 . . . zN zN+1

0s 0s . . . 0s 0s

]
=

[
x1 x2 . . . xN xN+1

wy1
wy2

. . . wyN
0d′

0s 0s . . . 0s 0s

]
∈ R(d+d′+s)×(N+1) (1)

where 0s is a vector of s zeros, constituting s-dimensional “scratch space” that the Transformer may
use (if needed) to perform or store computations. The use of scratch space by Transformers has been
discussed previously in Akyurek et al. (2023).

Following conventional Transformer design (Vaswani et al., 2017), the attention mechanism for head
h ∈ {1, . . . , H} is

Attnh(Z) = VhZM ·A(KhZ,QhZ) (2)
where Vh, Kh and Qh are each (d + d′ + s) × (d + d′ + s) real matrices, and the function
A : R(d+d′+s)×(N+1) × R(d+d′+s)×(N+1) → R(N+1)×(N+1) represents attention, with compo-
nent (n,m) of the output of A(·) representing the attention between column n of KhZ and column

m of QhZ (Vaswani et al., 2017). Following Cheng et al. (2024), the mask M =

[
IN×N 0N×1

01×N 0

]
imposes that only labeled (contextual) data are keys and values. We will consider kernel-based
attention as in Cheng et al. (2024), as well as traditional softmax-based attention (Vaswani et al.,
2017). For H heads, the composite of attention from all heads is

∑H
h=1 Ph · Attnh(Z), where

Ph ∈ R(d+d′+s)×(d+d′+s).

We consider attention blocks, as in the original Transformer (Vaswani et al., 2017), which include
multi-layered perceptron (MLP) layers and associated skip connections:

Zℓ+1 = Z̃ℓ+1 + MLPℓ(Z̃ℓ+1) , Z̃ℓ+1 = Zℓ +

H∑
h=1

Ph,ℓ · Attnh,ℓ(Zℓ) (3)

where MLPℓ(Z̃ℓ+1) acts separately on each column of Z̃ℓ+1. For an L-layer Transformer, the up-
dates in (3) are performed sequentially from ℓ = 0, . . . , L, and ZL+1 is output from the last (Lth)
attention block. The predicted f̂(xN+1) associated with the query is within column N +1 of ZL+1.

As the final element of the Transformer, the query output is modeled via softmax as

p(YN+1 = c|XN+1 = xN+1, C) =
exp[w⊤

c f̂(xN+1)]∑C
c′=1 exp[w

⊤
c′ f̂(xN+1)]

(4)

The Transformer parameters are learned by seeking to minimize the cross-entropy loss based on
the model p(YN+1|XN+1 = xN+1, C), using a training set of contextual data (x

(m)
i , y

(m)
i ) for

i = 1, . . . , N + 1, for m = 1, . . . ,M example sets.

3 INITIAL EMPIRICAL OBSERVATIONS OF ICL FOR CATEGORICAL yi
3.1 EXPERIMENTS ON SYNTHETIC DATA, TRAIN AND TEST DATA ALIGNED

We consider simulated data introduced in Wang et al. (2025); we choose these data because they
represent a challenging in-context classification problem, and they allow us to connect to recent
relevant work. We subsequently show results based on two real-data scenarios.

The data are generated p(Y = c|f(x)) = exp[wT
c f(x)]/

∑C
c′=1 exp[w

T
c′f(x)], for C = 25 and

wc ∈ R5, where wc represents the category-dependent embedding vectors used for data synthe-
sis (hidden from the Transformer). For data synthesis, wc are generated (once) randomly, with
each matrix component drawn i.i.d. from N (0, 1). After We is so drawn, different contextual
datasets consider a distinct function f (m)(x), where m represents the context index. To consti-
tute f (m)(x), 5 categories are selected uniformly at random from the dictionary of C = 25 cate-
gories. Let c(m)(1), . . . , c(m)(5) denote these categories for context l. We further randomly gen-
erate 5 respective “anchor positions,” x̃(1), . . . , x̃(5), each drawn i.i.d. from N (0d, Id), where
d = 10 (for covariates x ∈ R10). The function for context m is represented as f (m)(x) =

λ
∑5

k=1 wc(k)κRBF [x − x̃(k);σℓ], where the RBF kernel parameter σm for component m is se-
lected such that κRBF [x− x̃(m);σm] = exp(−σ2

m∥x− x̃m∥2) equals 0.1 at the center of the other
kernel to which it is closest (in a Euclidean distance sense). Parameter λ = 10, selected so as to
have category c(m) be clearly most probable in the region of x̃(m). Each contextual block considers
N = 50 samples.
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GD and Trained TF with MLP

GD and Trained TF – Linear Approximation

Zoom-in Plots

Figure 1: Classification accuracy (left) and cross-entropy loss (right) for the synthetic data, evaluated after
training on separate test data, as a function of the number of contextual datasets M on which it was trained.
The training data are {(x(m)

i , y
(m)
i )}i=1,N+1, m = 1, . . . ,M , and the horizontal axis is M . Results are shown

for the GD and Trained TF forms of the Transformer training, as a function of the number of layers (e.g., 3-L
is a three-layer model). MLP layers follow each self-attention layer. Five random seeds were used to train each
model, and the error bars (often small) reflect variance across these seeds.

GD and Trained TF with MLP

GD and Trained TF – Linear Approximation

Zoom-in Plots

Figure 2: Results as in Figure 1, but here no MLP layers are present, and therefore the Transformer is attention-
only.

3.2 EXPERIMENTS ON REAL DATA, MISMATCH OF DATA USED FOR TRAINING AND TESTING

We also present our first experiment based on real data, for which there is a mismatch between the
data used for training and testing. The covariates xi for image i are features from a pre-trained
(self-supervised) masked-autoencoder based vision Transformer (He et al., 2022; Dosovitskiy et al.,
2020). The covariates are here d = 768, and we considered embedding vectors of dimension d′ = 5.
Each contextual block considered images from 5 label types, and the query was from one of these.
A total of N = 50 contextual labeled samples are provided to the Transformer, plus a query, xN+1.

The Transformer was trained using data from Caltech256 (Griffin et al., 2007), and here we show test
results on data from TinyImageNet dataset (Le & Yang, 2015). Given the relatively large quantity
of data needed to train the Trained TF versions of the Transformer, we present all results in Figure
3 for the sparse, GD-based versions of the Transformers, with and without MLP layers. In Figure
3 we also show results from the cross-attention (CA) model of Wang et al. (2025), which performs
exact functional GD, but uses a model design that is inconsistent with the traditional Transformer.
We also considered test experiments on the distinct DomainNet dataset (Peng et al., 2019), and those
results are also shown in Appendix C (see Figure 7 there).

Concerning training on Caltech256 (Griffin et al., 2007), there are 256 object categories, with be-
tween 31–80 samples for each. The TinyImageNet (Le & Yang, 2015) dataset used for testing
contains 200 classes with 500 samples per category. We also tested on DomainNet (Peng et al.,
2019) (details in Appendix C), focusing on five visual domains: ClipArt (clipart illustrations), Info-
Graph (infographic images), QuickDraw (hand-drawn sketches from Google’s Quick Draw game),
Real (photographs), and Sketch (artistic sketches), each spanning across 345 categories.

As in the experiment with synthetic data, the Transformer is given contextual data of size N = 50,
with 10 samples from each of 5 classes (labels), selected uniformly at random (without replacement)
from the train/test dataset. The query xN+1 is from among the five classes. The number of categories
in this experiment is always C = 5, so the learned embedding vectors are near orthogonal (there is
no fixed meaning in the labels between contexts).

3.3 SUMMARY OF INITIAL EMPIRICAL FINDINGS

In our experiments, we have implemented attention based on a radial basis function (RBF) kernel,
and based on the traditional softmax-based attention widely used in Transformers. In all of our
experiments, we find that these two types of attention mechanisms yield similar results. However,
with unnormalized vectors, the ℓ2 norm required in the RBF kernel is considerably more expensive
computationally than the single inner product connected with softmax-based attention. In Figures
1-3 we present results based on softmax attention.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Testing ICL results on the TinyImageNet dataset, comparing our model with the MLP (left), and the
CA model from Wang et al. (2025) (center), and our model with the linear approximation (right). For each of
these Transformers sparse parameter training was performed guided by GD, and the models were trained on
the Caltech256 dataset.

Following notation in the literature Cheng et al. (2024); von Oswald et al. (2023); Wang et al.
(2025), when the Transformer parameters are trained from a random initialization of all parameters,
without restrictions, the model is termed “Trained TF.” A “GD” Transformer is one that is trained
with constraints on its parameters, such that they are sparse in a way connected to functional GD
analysis. We provide details on the GD-based implementation in the next section.

With categorical yi, large quantities of training data are needed to learn accurate Trained TF
models. The test results for the synthetic data are shown in Figures 1 and 2 as a function of the
number of contextual datasets M employed for training, where m = 1, . . . ,M and the mth training
set is {(x(m)

i , y
(m)
i )} for i = 1, . . . , N + 1 (N = 50 in these experiments). For the two- and

three-layer models, Trained TF requires up to M =100,000 to match the results of GD trained on
M =20,000. The need for large training sets for Trained TF was found in all our experiments, as
was the relatively efficient training of GD.

Sparse Transformer design based on functional GD analysis performs well, and requires far
less training data. In Figures 1 and 2, it is noted that GD trains far more effectively than Trained
TF. A key reasons for this is that for the GD-based model the number of unknown parameters
is substantially smaller than that of Trained TF (the parameter counts for all models, across all
experiments, are summarized in Appendix A).

It is important to emphasize that the GD-based models are not exactly performing functional GD.
However, as we discuss in the next sections, they perform inference that is closely related to (guided
by) functional GD, and yields predictions that are very similar. In the next section we also explore
details of the MLP-based and attention-only models, to explain why the latter is sometimes effective
in this ICL setting, despite nonlinearities that are inherent to the setting of categorical yi.

Results from the cross-attention (CA) model of Wang et al. (2025) agree well with our MLP-
based Transformer. Considering the left and center subfigures in Figure 3, the highly similar
predictive behavior of the Transformer with MLP layers, as compared to the CA model of Wang
et al. (2025), indicates similar functional outputs of these two models (if not precise alignment in
the underlying algorithm). As discussed further in Appendix B, this is believed to be connected to
the MLP replacing the cross attention mechanistically. While we do not directly compare to Wang
et al. (2025) in Figures 1 and 2, those data came from Wang et al. (2025), and the reader can verify
that the results in Figures 1 and 2 align well with those published in Wang et al. (2025).

In some settings, attention-only Transformers are effective for ICL with categorical outcomes
yi. These initial findings present a compelling puzzle. Our synthetic data experiments (Figures
1-2) and our surgical data experiment that we will present later, in Section 6, demonstrate that
attention-only models can perform remarkably well, challenging the theoretical need for MLPs.
However, our experiments on Tiny ImageNet (Figure 3) show the opposite: MLPs provide a sub-
stantial performance gain. A key difference between these experiments is the nature of the data
used for training the Transformer versus for testing it. In the experiments where attention-only mod-
els succeeded, the train and test data were drawn from similar distributions (synthetic-to-synthetic,
surgery-to-surgery). In the experiment where MLPs were critical, the model was trained on nat-
ural images (Caltech256) and tested on a different domain (TinyImageNet and DomainNet). The
additional experiments like Figure 3, shown in Appendix C, consider test data from DomainNet,
which also represents a mismatch to the Caltech256 training data (see Figure 7). Those results also
demonstrate poor performance of the attention-only Transformer.
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Before concluding this section, we wish to benchmark the difficulty of the task in Figure 3. We
considered k nearest neighbors of the query relative to the labeled contextual data, and it achieves
about 40% accuracy on these data, as shown in Appendix C (see Table 5).

4 MECHANISTIC INVESTIGATION OF TRANSFORMER INFERENCE

4.1 TRANSFORMER INFERENCE THROUGH LENS OF FUNCTIONAL GD
Like recent research on Transformer ICL (Cheng et al., 2024; von Oswald et al., 2023; Garg et al.,
2022; Akyurek et al., 2023), we analyze how a Transformer could perform inference through the
lens of functional gradient descent (GD). This entails examination of GD-based inference when yi
is categorical, and how aspects of such inference map to Transformer elements. While a Transformer
could implement such inference, or its close analog, this does not mean that the Transformer will
learn to do such inference in practice.

The in-context cross-entropy loss for the observed data (xi, yi) for i = 1, . . . , N is L(f) =

− 1
N

∑N
i=1 log p(Yi = yi|f(xi)) using the softmax-based likelihood function in (4). If we assume

that f ∈ F where F is a reproducing kernel Hilbert space (RKHS) (Schölkopf & Smola, 2002) with
kernel κ(xi, xj) (like done in Cheng et al. (2024) for real yi), then functional gradient descent (GD)
for f(xi) yields the updates:

fi,ℓ+1 = fi,ℓ +∆fi,ℓ , ∆fi,ℓ =
α

N

N∑
j=1

[wyj − E(w|fj,ℓ)]κ(xi, xj) (5)

where fi,ℓ represents f(xi) after ℓ > 0 steps of functional GD, and α is the learning rate (in gen-
eral, different for each functional GD step ℓ, and a different rate for each component of the latent
function). The update in (5) is derived in Appendix E. The expectation

E(w|fi,ℓ) =We · Softmax(W⊤
e fi,ℓ) (6)

where We ∈ Rd′×C has columns defined by the C category embedding vectors. The expression
E(w|fi,ℓ) is the expectation over category embedding vectors, given fi,ℓ and the softmax over cate-
gories in (4). The index ℓ is used for functional GD steps, because it will be connected to layers of
the Transformer.

Recall from Section 2 the imposition of scratch space in the encoding of the vectors flowing through
the Transformer; we now provide more details on how it is utilized in our model, for the Transformer
forward pass to infer fi,ℓ. For position i at Transformer layer ℓ, we impose:

e⊤i,ℓ =
[
xi , wyi , fi,ℓ , E(w|fi,ℓ)︸ ︷︷ ︸

scratch space

]
(7)

As discussed below, we will connect GD steps to Transformer layers, motivating use of ℓ for GD
steps. The position of fi,ℓ in (7) is imposed by using those d′ positions of eN+1,L+1 (output from the
Transformer) as the input to the softmax over categories (recall (4)) for prediction of the probability
over categories at the output. In (7), it is meant that the d′-dimensional position for E(w|fi,ℓ) is
where such is placed in the scratch space, although in general this expectation is not computed
exactly, and a trained Transformer need not be constrained to exactly perform GD-based inference.
With proper initialization, a Transformer can perform the first step of functional GD exactly,
without MLP layers. As in previous Transformer-based ICL research (Cheng et al., 2024; von
Oswald et al., 2023; Wang et al., 2025), we initialize fi,0 = 0d′ for all i, and consequently in (7)
this implies the initial expectation E(w|fi,0) = 1

C

∑C
c=1 wc, which we note is the same for all

i. As shown in Appendices F and I, there are Transformer self-attention parameters such that the
first update ∆fi,0 may be implemented exactly, for all i = 1, . . . , N + 1. Importantly, this first
step of inference of the latent fi,1 can be done with the first self-attention layer alone (no need for
subsequent MLP).

However, if one is to perform further GD steps, the associated nonlinear expectation must cor-
respondingly be updated. Specifically, for steps ℓ > 0 one must update E(w|fi,ℓ+1) based on
fi,ℓ+1 from the preceding self-attention layer. As E(w|fi,ℓ+1) is a nonlinear function of fi,ℓ+1,
it is anticipated that nonlinear functions layers should follow each self-attention layer, to compute
E(w|fi,ℓ+1). This suggests a role for the Transformer MLP layers and the following overall Trans-
former interleaved process:
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• Self-attention layer: Update fi,ℓ → fi,ℓ+1, using existing approximation to E(w|fi,ℓ).
• Subsequent MLP layer: Using the updated fi,ℓ+1, compute and store E(w|fi,ℓ+1).

As detailed in Appendix F, an H = 2 head Transformer, with interleaved self-attention and MLP
layers, can approximate aforementioned two interleaved steps of in-context learning.

4.2 LINEAR APPROXIMATION TO EXPECTATION: ATTENTION-ONLY TRANSFORMER

In Appendix H we show that under a first-order Taylor expansion

E(w|fi,ℓ) ≈ E(w|fi,ℓ−1) +We · softmax(W⊤
e fi,ℓ−1) · W̃e,ℓ−1 ·∆fi,ℓ−1 (8)

recalling that the cth column of We ∈ Rd′×C is the embedding vector wc; the cth column of W̃e is
wc − E(w|fi,ℓ−1).

With the same initialization as discussed above, fi,0 = 0d′ , softmax(W⊤
e fi,0) is uniformly dis-

tributed for all i, and therefore we may approximate

E(w|fi,1) ≈
1

C

[ C∑
c=1

wc +WeW̃
⊤
e ∆fi,0

]
(9)

where ∆fi,0 is the output of the preceding (first) self-attention layer, and W̃e is independent of
index i. As shown in Appendix I, the linear update in (9) can be implemented within the same
self-attention layer used to compute ∆fi,0, and therefore there is not a need for an MLP layer for its
computation (within the linear approximation).

There are two reasons that the approximation in (9) could work well: (1) fi,0 = 0d′ is the same
for all i = 1, . . . , N , and therefore the same linear approximation holds for all i; (2) the linear
approximation is performed about fi,0 = 0d′ , which is the center of the linear region of the softmax,
for all c = 1, . . . , C. Hence, this linear approximation is particularly well suited for updating
E(w|fi,1), under the imposed fi,0.
The first two steps of functional GD typically can be performed well with self-attention alone,
assuming a good match between the training and testing data. As discussed in the previous
subsection, with the initialization fi,0 = 0d′ , the first GD step can be done exactly with the first
self-attention layer (note that setting fi,0 = 0d′ is not special to this setting; it aligns with all prior
ICL research (von Oswald et al., 2023; Cheng et al., 2024; Wang et al., 2025; Ahn et al., 2023;
2024)). Based on the above discussion, with that same first attention layer, one may accurately
update E(w|fi,0) → E(w|fi,1) within a linear approximation. The next (second) self-attention
layer, leveraging the updated E(w|fi,1), can then perform the second step to compute ∆fi,1. Hence,
it is anticipated that the first two steps of functional GD inference can be performed well with two
self-attention layers, and no MLPs. Importantly, it is possible that this approximation could be
sensitive to a match between the training and testing data, which the experiment in Figure 3 violates.
After the first two self-attention layers, the linear approximation is less appropriate. From
(9), the linear approximation for E(w|fi,2) involves an expansion about fi,1. There are two problems
with this: (1) In general fi,1 is different for each i, and therefore the same linear approximation
does not hold for all i (but in an attention-only Transformer, we have to assume the same linear
relationship for all i); (2) depending on fi,1, the softmax function may no longer be in its linear
regime, further undermining the linear approximation. Therefore, for E(w|fi,ℓ) for ℓ ≥ 2, which are
needed for GD steps 3 and beyond, a nonlinear representation of the expectation may be important.
This implies that for layers three and beyond of the Transformer, MLP layers ideally should follow
each self-attention layer.

4.3 FINER-GRAINED EXAMINATION OF MLP & LINEAR APPROXIMATION

In the above discussion we have suggested that a role of the MLP, for categorical yi, may be in
computing the nonlinear expectation E(w|fi,ℓ). We have also articulated domains in which a lin-
ear approximation may be adequate. To test this further, we trained a cross-attention Transformer
from Wang et al. (2025), in which the expectation is performed exactly. We kept all parameters
unchanged, but dropped in either an MLP or linear approximation to represent E(w|fi,ℓ), instead
of using the cross attention. As detailed in Appendix B and shown in Figure 6, both the MLP
and the linear approximation were able to replicate the exact expectation with very low error. In
Appendix B we also perform comparisons of our Transformer predictions, with and without MLP
layers, to the only prior ICL model Wang et al. (2025) that considered categorical yi (the latter is
not a conventional Transformer, as it has cross-attention not MLP layers).
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Figure 4: Depiction of the characteristics of the learned parameters on the synthetic data, for attention-only
two-layer Transformers, where the top row is from GD and the bottom row is Trained TF. The Transformers
employ softmax attention, so the key-query attention is defined by Q⊤K (left two columns). The right two
columns depict how the vectors are updated via attention, manifested by PV . We identify which part of the
parameters are tied to xi, wyi − E(w|fi,ℓ) and fi,ℓ.

5 WHAT ALGORITHM IS “TRAINED TF” LEARNING, WITH ENOUGH DATA?
In Figures 1-2 we noted close agreement between Trained TF and GD predictive accuracy and cross-
entropy loss (on test data), assuming that the training set for Trained TF was large enough. While
these predictive results indicate that these models offer similar predictions, it does not mean that
the two models are acting similarly mechanistically. We now examine the characteristics of the
parameters learned for the Trained TF and GD models, to examine their similarity (or not), and
hence to examine the degree to which these models implement similar algorithms at inference.

With softmax-based attention, using query and key matrices Q and K respectively, for vec-
tors ei and ej at the respective Transformer positions, attention involves elements of the form
exp[λ(Qej)

⊤(Kei)] = exp[λ(e⊤j Q
⊤Kei)], and therefore attention is dependent on the matrix prod-

uct Q⊤K. Similarly, from the review of the Transformer in Section 2, (for one attention head) the
output of attention involves the matrix product PV . The Transformer does not depend on the spe-
cific form of Q, K, V and P (which are in general not identifiable), but it does depend on the
aforementioned matrix products, which guide the algorithm the Transformer implements.

In Figure 4 we present these learned matrix products, for the GD-based and Trained TF models.
Results are shown for a two-layer model. While the Trained TF and GD matrix products do not agree
exactly, there is close agreement in general, indicating that these two Transformers are performing
similar algorithms. For example, from the left two columns in Figure 4 it is seen that Trained TF
(like GD) computes attention weights based on the covariates xi. We see that the latent function fi,ℓ
is updated at the output of layers 1 and 2, for both GD and Trained TF, while the expectation is only
updated in both cases at the output of layer 1.

These results are for the self-attention-alone form of the Transformer, chosen because it can be im-
plemented with a single attention head (see Appendix I), and therefore the comparisons are less
ambiguous. We have also performed comparisons when the MLP layers are present, and similar
agreement in implied underlying algorithms is revealed. The presence of MLP layers is more com-
plicated to compare, because it involves two attention heads (see Appendix F). We emphasize that
the general level of agreement reflected in Figure 4 is only manifested when the Trained TF is trained
with 100,000 or more training examples, which is consistent with Figures 1 and 2 that it is only with
such large training sets that Trained TF performance approaches that of the GD-based Transformer.

In Table 4 of Appendix B we perform additional close inspection of the relationship between the
Trained TF and GD-based models. Those experiments further the understanding that Trained TF
(when trained on enough data) makes similar predictions to the GD-based counterpart.

6 REAL-WORLD USE OF TRANSFORMER-BASED ICL
We consider in-context answering of questions about images, where the questions have a set of
categorical answers. The context-dependent probability of answers to question q = 1, . . . , Q is

p(Y
(q)
N+1 = c|XN+1 = xN+1, C) =

exp[(w
(q)
c )⊤f̂(xN+1)]∑C

c′=1 exp[(w
(q)
c′ )⊤f̂(xN+1)]

(10)
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Figure 5: GD-based Transformers ICL performance on the surgery data, where a set of Q = 5 binary questions
are answered, and each question connects to the presence of a surgical instrument and/or organ in the image.
Left: MLP layers present, Right: no MLP layers (attention-only). Results are shown on test data, for which the
items in the questions were not seen in the training images.

where w(q)
c ∈ Rd′

is an embedding vector for answer c ∈ {1, . . . , C}, question q ∈ {1, . . . , Q}.

For this setting, we show in Appendix G that from functional GD analysis:

fi,ℓ+1 = fi,ℓ +
α

N

N∑
j=1

1

Q

Q∑
q=1

[w
(q)

y
(q)
j

− E(w(q)|fj,ℓ)]κ(xi, xj) (11)

where the data for sample i is (xi, y
(1)
i , . . . , y

(Q)
i ), where y(q)i ∈ {1, . . . , C} is the answer observed

for question q ∈ {1, . . . , Q}; for a context of size N , data of this form exists for i = 1, . . . , N , and
there is a query xN+1. The GD-based sparse Transform design is detailed in Appendix G.

We leverage the CholecT45 dataset, a subset of the CholecT50 dataset Nwoye et al. (2023); Nwoye
& Padoy (2022), and train the Transformer to detect action “triplets.” CholecT45 consists of 45
video recordings of laparoscopic cholecystectomy, formalizing surgical activities in the form triplets
<instrument, verb, target>. There are a total of 100 action triplet classes, composed from 6 instru-
ments (grasper, bipolar, hook, scissors, clipper, irrigator), 10 verbs (grasp, retract, dissect, coagu-
late, clip, cut, aspirate, irrigate, pack, null), and 15 targets (gallbladder, cystic-duct, cystic-artery,
blood-vessel, fluid, abdominalwall or cavity, liver, omentum, peritoneum, gut, specimen-bag, null).
In Appendix D we show example images from this dataset.

We consider the 25 most prevalent triplets in our empirical evaluations. We divide the dataset into
two halves: a train/validation set and a test set. For train/validation, we consider surgical images
with a randomly chosen 10 action triplets, and for testing, we consider the images with the rest of
the 15 action triplets. We use three different random seeds and report the model performance in the
form of mAP score (Nwoye & Padoy, 2022; Nwoye et al., 2022) by taking average over three seeds.

There is an important distinction between this experiment and that considered in Figure 3. In the
latter, not only were the label classes seen at test different, the form of the images was different. By
contrast, while here the triplets seen while training are different from those considered at test, for
both training and testing the images are from surgeries of the same general type, so the form of the
images is not mismatched. Example images from this dataset are shown in Appendix D.

In this experiment the feature extractor for xi are the same masked autoencoder features as consid-
ered in Figure 3, of dimension d = 768. We considered embedding vectors of dimension d′ = 4.
Each contextual block considered images from Q = 5 action-triplet types, and the query was also
from those 5 action-triplets (this is distinct from classification, because multiple triplets – up to 5
– can be in the same image). A total of N = 50 contextual labeled samples are provided to the
Transformer, plus a query, xN+1. Empirical results are shown on Figure 5, using GD with and with-
out MLP layers. These two models perform similarly, achieving mAP > 0.9 with two layers. The
MLP-based Transformer achieves a slightly higher mAP score.

7 CONCLUSIONS

We have considered Transformer-based ICL for data with categorical outcomes. We have high-
lighted nonlinearities that arise in this setting, that were absent in almost all prior work with real
outcomes. We have performed a detailed mechanistic analysis of Transformer inference in this set-
ting, showing that the Transformer learns to perform inference in a manner that has close (but not
exact) connections to functional GD. In some experiments attention-only Transformers performed
well, and we performed a detailed analysis of why this occurs. However, Transformers with MLP
layers always performed well, and they are recommended. We demonstrated the utility of this tech-
nology on a real-world problem connected to human surgery.
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A PARAMETER COUNTS FOR EXPERIMENTS

Table 1: Comparison of total number of parameters between GD and Trained TF, with or without
MLP, on the synthetic dataset.

Layers GD-Linear Approximation TF-Linear Approxmation GD-MLP TF-MLP
1 156 1725 296 5290
2 186 3325 301 10290
3 216 4925 306 15290

Table 2: Comparison of total number of parameters between GD - MLP and GD - Linear Approxi-
mation, on the image dataset considered in Figure 3.

Layers GD-Linear Approximation GD-MLP
1 56 146
2 86 151
3 116 156

Table 3: Comparison of total number of parameters between GD - MLP and GD - Linear Approxi-
mation, on the surgery dataset.

Layers GD-Linear Approximation GD-MLP
1 105 1245
2 109 1249
3 113 1253

B FURTHER EXAMINATION OF THE ROLE OF MLP AND LINEAR
APPROXIMATION

B.1 REPRESENTATION OF E(w|fi,ℓ) BY MLP/LINEAR APPROXIMATION

We have postulated a role for the MLP units within a Transformer, when yi is categorical, could be
for computing the expectation E(w|fi,ℓ). As a test for that, we consider the cross-attention-based
Transformer of Wang et al. (2025), which effectively performs exact functional GD, with E(w|fi,ℓ)
computed exactly via cross attention. Such a Transformer was trained on the synthetic data of
Section 3. After training, all model parameters were frozen, and the cross-attention was removed. In
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Figure 6: The cross-attention-based Transformer (Wang et al., 2025) was trained on the synthetic data of
Section 3 and all parameters frozen. The cross attention was removed, and replaced by an MLP (left) or with
a linear approximation (right). The parameters of the MLP/matrix were then trained, with all other parameters
unchanged. Here is plotted the MSE error relative to the norm of the output of the cross-attention output.

Table 4: Comparison of the softmax probability over categories, at the output of Transformer ICL. At right,
as a reference, we show the entropy of the softmax predictions, based on the cross-attention (CA) Transformer
(Wang et al., 2025), that effectively performs exact functional GD. We also consider the cross-entropy between
the output of Transformers considered here, relative to the softmax outputs of CA (Wang et al., 2025). The
cross attention is shown between a GD-based form of the Transformer and with Trained TF (TF). Models of
1, 2 and 3 layers are considered, with the self-attention-only version of the ICL Transformer, and with MLP
layers.

Model GD vs CA TF vs CA Entropy of CA
Self-Attention Only (1 Layer) 1.377± 0.062 1.442± 0.089 1.238± 0.035
Self-Attention Only (2 Layers) 1.310± 0.043 1.282± 0.038 1.084± 0.031
Self-Attention Only (3 Layers) 1.244± 0.056 1.234± 0.052 1.028± 0.038
MLP layers present (1 Layer) 1.357± 0.033 1.442± 0.091 1.238± 0.035
MLP layers present (2 Layers) 1.268± 0.049 1.332± 0.038 1.084± 0.031
MLP layers present (3 Layers) 1.204± 0.051 1.271± 0.051 1.028± 0.038

place of the cross attention, we dropped in an MLP, and only trained the MLP parameters. Similarly,
we dropped in a matrix approximation, and only trained the matrix. We wish to consider the degree
to which the MLP/linear approximation recover the performance of the original cross-attention-
based Transformer.

In Figure 6 we show results as a function of the number of hidden units in the MLP, which for
the matrix approximation corresponds to the matrix rank. We observe that with five units (full rank
matrix approximation), the MLP and linear approximation emulate the expectation accurately, in the
relative MSE error compared to the output of the cross-attention diminishes quickly with increasing
number of units in the MLP/linear models.

These results are for a two-layer model. As discussed in Section 4, this is the regime for which we
expect the linear approximation to work well.

B.2 COMPARISON OF PREDICTIONS RELATIVE TO WANG ET AL. (2025)

In Figures 1 and 2 we considered predictions and the cross-entropy loss on the synthetic data intro-
duced in Wang et al. (2025). We here examine the similarity of predictions for the cross-attention-
based ICL model of Wang et al. (2025) on these data relative to our model, with and without the
MLP layers. Rather than comparing just the output predictions, which reflects top-1 predictions at
the softmax output of the model, we here compare the full softmax-generated probability mass func-
tion (PMF). Specifically, we treat the predictions of the cross-attention (CA) model of Wang et al.
(2025) as “ground truth,” because they effectively correspond to exact functional GD. We calculate
the cross-entropy between the PMF generated by the CA model of Wang et al. (2025) to the output
PMF from our model, with and without MLP layers. Results are summarized in Table 4.

By considering the cross-entropy between the CA-based PMF and the PMFs of our model, we
examine how closely our generated PMFs align with predictions from exact functional GD. Our GD
models are guided by functional GD analysis, but the MLP layers are sufficiently flexible to possibly
do better than functional GD inference.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Multiple issues can be examined by evaluating Table 4:

• Comparing results for GD vs CA and TF vs CA, we can evaluate the similarity of the GD
and Trained TF models, respectively (comparing the GD vs CA column to the TF vs. CA
column).

• For either the GD or Trained TF model, we can compare variation with and without the
MLP layers (comparing rows 1-3 to rows 4-6).

• The entropy of the CA model serves as a lower bound for the cross entropy.

The results in Table 4 indicate that the Trained TF softmax output is (on average) further from exact
functional GD (the CA model Wang et al. (2025)) than is the GD-based design of our Transformer.
However, the differences are within the standard deviation of the experiments. These results suggest
that while the Trained TF model (trained without constraints) yields inference predictions, here
across all 25 elements of the softmax output, that are relatively close to exact functional GD. We
also note that for these simulated data, the full softmax output from the Transformer with and without
MLPs are similar, with differences within the standard deviation. However, we emphasize that one
cannot expect the self-attention-alone models to be sufficient in general, as shown by Figures 3 and
7. The effectiveness of the linear approximation in (9) is key to whether attention-alone is sufficient.
However, in Section 6 we show another experiment, with real-world data, for which the attention-
only Transformer performs well.

C COMPARISON OF GD WITH SELF-ATTENTION ALONE, CROSS ATTENTION,
AND MLP LAYERS, IN THE PRESENCE OF DATA MISMATCH

In Figure 3 we presented results for Transformers trained on Caltech256, and tested on TinyIm-
ageNet. Those results, based on a GD-based sparse parameter implementation, for 1 to 3 layer
models, showed good agreement between the Transformer with MLP layers and the cross-attention-
based model of Wang et al. (2025). Importantly, they showed that the linear approximation did not
work well in this setting, that corresponding to the attention-only form of the Transformer.

To further examine this case, for which there is mismatch between the training and testing data, we
now present results when the model is again trained on Caltech256, but now tested on DomainNet.
In particular, we consider the ClipArt, InfoGraph, QuickDraw, Real and Sketch image forms from
the DomainNet dataset, with results summarized in Figure 7. These results demonstrate the same
conclusions as Figure 3: (1) good alignment of predictions from the CA-based model of Wang et al.
(2025) and our GD-based model in which the MLP layers are present. (2) Poor performance of the
2 and 3 layer versions of the Transformer that made a linear approximation to E(w|fi,ℓ), and hence
inappropriateness of the attention-alone Transformer.

Figure 7: Performance of the GD-based Transformers in which the MLP layers are present, a linear ap-
proximation (LA) is employed for E(w|fi,ℓ), and the cross-attention (CA) model of Wang et al. (2025). The
Transformers were trained on Caltech256, and tested on DomainNet data. Error bars reflect standard deviation
from multiple initializations of the Transformer parameters.

As a separate test of the difficulty of this ICL problem, we implemented a simple k-nearest neighbor
(kNN) classifier on the contextual data. Specifically, given the features from the masked autoencoder
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features, we simply calculated which k of the labeled contextual feature vectors were closest to the
feature vector of the query xN+1, and did a majority vote. Results are shown in Table 5, for different
choices of k, revealing consistently about 40% accuracy, which is similar to the performance of the
one-layer Transformers, as shown in Figure 3, but notably inferior to the deeper models, even that
with linear approximation for E(w|fi,ℓ).

Table 5: kNN Test Accuracy on the TinyImageNet dataset, using Masked Autoencoder (He et al.,
2022) extractor (the same covariates used by the Transformers).

k (Neighbors) Test Accuracy
1 0.4092
2 0.4092
3 0.4190
4 0.4232
5 0.4232
6 0.4250
7 0.4258
8 0.4142
9 0.4160

10 0.4130

D EXAMPLE IMAGES FROM THE SURGERY DATASET

Figure 8: Example figures taken from CholecT45 dataset (Nwoye et al., 2023; Nwoye & Padoy, 2022), demon-
strating surgical images with their associated action triplets. Bounding boxes are added manually for better
understanding.

Example images from the surgery dataset are shown in Figure 8. The rectangles identify where in
the image a “triplet” resides, and the three words associated with the triplet are also depicted. Note
that the number if triplets in an image is greater than or equal to one, and the ICL algorithm is
tasked with identifying the presence/absence of all triplets in a given image. Note that the triplets
are diverse, and that our ICL Transformer is trained on one set of possible triplets, and tested on
a distict set. While the type of triplets between training and testing data are distict, all images are
connected to surgery, so there is not a mismatch on the form of the images.

15
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E DERIVATION OF THE FUNCTIONAL GD UPDATE EQUATION FOR
CATEGORICAL yi

Our derivation is based on the assumption that f(x) resides in a reproducing kernel Hilbert space
(RKHS) (Schölkopf & Smola, 2002), but the setup extends to softmax-based attention kernels as
well (Wang et al., 2025). From the RKHS perspective, let f(x) = Aψ(x) + b, with ψ(x) a fixed
mapping of covariates x to a Hilbert space, and the parameters acting in that space are (A, b).

The cross-entropy cost function for inferring the parameters A ∈ Rd′×m and b ∈ Rd′
, may be

expressed as

L(A, b) =− 1

N

N∑
i=1

log

[
exp[wT

yi
(Aψ(xi) + b)]∑C

c=1 exp[w
T
c (Aψ(xi) + b)]

]

=− 1

N

N∑
i=1

[wT
yi
Aψ(xi) + wT

yi
b− log

C∑
c=1

exp(wT
c Aψ(xi) + wT

c b)] . (12)

Taking the partial derivative of L wrt bj , component j of b:

∂

∂bj
L =− 1

N

N∑
i=1

[wyi
(j)−

∑C
c=1 exp[w

T
c (Aψ(xi) + b)]wc(j)∑C

c′=0 exp[w
T
c′(Aψ(xi) + b)]

]
=− 1

N

N∑
i=1

[wyi
(j)−

∑C
c=1 exp[w

T
c fi]wc(j)∑C

c′=0 exp[w
T
c′fi]

] ,

where wyi(j) is component j of wyi ∈ Rd′
, and fi = Aψ(xi) + b. Therefore

∇bL =− 1

N

N∑
i=1

[
wyi −

∑C
c=1 exp[w

T
c fi]wc∑C

c′=0 exp[w
T
c′fi]

]

=− 1

N

N∑
i=1

[wyi − E(w|fi)] . (13)

We consequently have the GD update rule for b

b(l+1) = b(l) +
α

N

N∑
i=1

[wyi
− E(w|fi,ℓ)] , (14)

where l ≥ 0 is the GD step index, initialized at l = 0.

Similarly, let aj represent the jth row of A. Taking the gradient of L wrt aj :

∇aj
L =− 1

N

N∑
i=1

[
wyi

(j)ψ(xi)−
∑C

c=1 exp[w
T
c (Aψ(xi) + b)]wc(j)ψ(xi)∑C

c′=0 exp(w
T
c′(Aψ(xi) + b))

]
=− 1

N

N∑
i=1

[
wyi

(j)−
∑C

c=1 exp[w
T
c fi]wc(j)∑C

c′=0 exp(w
T
c′fi)

]
ψ(xi)

=− 1

N

N∑
i=1

[
wyi

(j)− E(w(j)|fi)
]
ψ(xi) . (15)

The gradient update step for aj is

a
(l+1)
j = a

(l)
j − α∇ajL

= a
(l)
j +

α

N

N∑
i=1

[
wyi

(j)− E(w(j)|fi)
]
ψ(xi) .
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Using the GD update rules for b and {aj}j=1,d′ , we have

f
(l+1)
j =

(a
(l+1)
1 )Tψ(xj) + b

(l+1)
1

...
(a

(l+1)
d′ )Tψ(xj) + b

(l+1)
d′



= f
(l)
j +

α

N

N∑
i=1

[wyi
− E(w|fi,ℓ)]κ(xi, xj) + α

N∑
i=1

[wyi
− E(w|fi,ℓ)] . (16)

In the main body of the paper we omitted the term α
∑N

i=1

[
wyi − E(w|fi,ℓ)

]
, which is connected

to the bias update.

F TRANSFORMER PARAMETERS FOR MULTI-STEP GD VIA
SELF-ATTENTION & MLP LAYERS

The input to the Transformer at layer l is

ei,ℓ =

 fi,ℓ
E(w|fi,ℓ)
wyi

xi

 (17)

Within ei,ℓ, the vector component fi,ℓ is iteratively updated with increasing layer index l, with the
update manifested by each self-attention layer. The expectation E(w|fi,ℓ) is updated by each MLP
layer. Vector components fi,ℓ and E(w|fi,ℓ) occupy what we term as computational scratch space.
The covariates xi and embedding vector wyi represent the encoding of the data (xi, yi), and the
portion of ei,ℓ occupied by (xi, wyi) remains fixed at all Transformer layers.

Each attention block consists of a self-attention layer, composed of two attention heads; one of these
attention heads implements fi,ℓ → fi,ℓ+1 like above (for which E(w|fi,ℓ) is needed), and the second
attention head erases E(w|fi,ℓ), preparing for its update by the subsequent MLP layer.

F.1 SELF-ATTENTION LAYER

In matrix form, the input at layer l is f1,ℓ . . . fN,ℓ fN+1,ℓ

E(w|f1,ℓ) . . . E(w|fN,ℓ) E(w|fN+1,ℓ)
wy1

. . . wyN
0d′

x1 . . . xN xN+1

 (18)

The update equation for fi,ℓ+1 is given by

fi,ℓ+1 = fi,ℓ +∆fi,ℓ (19)

where

∆fi,ℓ =
α

N

N∑
i=1

(wyi − E(w|fi,ℓ))κ(xi, xj) (20)

F.1.1 SELF-ATTENTION HEAD 1

We design W (1)
K , W (1)

Q , and W (1)
V such that

W
(1)
K ei,ℓ = (0d′ , 0d′ , 0d′ , xi)

T (21)

W
(1)
Q ej,ℓ = (0d′ , 0d′ , 0d′ , xj)

T (22)
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W
(1)
V ei,ℓ = (

α

N
[wyi

− E(w|fi,ℓ)], 0d, 0d′ , 0d′)T (23)

The output of this first attention head, at position j ∈ {1, . . . , N + 1} is

(
α

N

N∑
i=1

(wyi
− E(w|fi,ℓ))κ(xi, xj), 0d, 0d′ , 0d′)T (24)

The output of this first attention head at this first attention layer (before adding the skip connection)
is

O(1) =

∆f1,ℓ . . . ∆fN,ℓ ∆fN+1,ℓ

0d . . . 0d 0d
0d′ . . . 0d′ 0d′

0d′ . . . 0d′ 0d′

 (25)

F.1.2 SELF-ATTENTION HEAD 2

With the second attention head we want to add (0d,−E(w|f (l)j ), 0d′ , 0d′)T from position j, so we
clear out the prior expectation. This will provide “scratch space” into which, with the next attention
layer type, we will update the expectation, using f (l+1)

j . To do this, we design W (2)
Q and W (2)

K such
that

W
(2)
K ei,ℓ = λ(0d′ , 0d′ , 0d′ , xi)

T (26)

W
(2)
Q ej,ℓ = λ(0d′ , 0d′ , 0d′ , xj)

T (27)
where λ ≫ 1. With an RBF kernel, for example (similar things will happen with softmax), if λ is
very large,

κ(W
(2)
K ei,ℓ,W

(2)
Q ej,ℓ) = δi,j (28)

where δi,j = 1 if i = j, and it’s zero otherwise.

The value matrix is designed as

W
(2)
V ei,ℓ = (0d,E(w|fi,ℓ), 0d′ , 0d′)T (29)

The output of this head is

O(2) =

 0d . . . 0d 0d
E(w|f1,ℓ) . . . E(w|fN,ℓ) E(w|fN+1,ℓ)

0d′ . . . 0d′ 0d′

0d′ . . . 0d′ 0d′

 (30)

We then add P (1)O(1)+P (2)O(2), with P (1) and P (2) designed so as to yield the cumulative output
of the attention

O(total) =

 ∆f1,ℓ . . . ∆fN,ℓ ∆fN+1,ℓ

−E(w|f1,ℓ) . . . −E(w|fN,ℓ) −E(w|fN+1,ℓ)
0d . . . 0d 0d
0d′ . . . 0d′ 0d′

 (31)

This is now added to the skip connection, yielding the total output of this attention layer as

T =


f
(l+1)
1 . . . f

(l+1)
N f

(l+1)
N+1

0d′ . . . 0d′ 0d′

wy1
. . . wyN

0d′

x1 . . . xN xN+1

 (32)

With the first attention layer, with two heads, we update the functions, and we also erase the prior
expectations. In the next attention layer, we update the expectations, and place them in the locations
of the prior expectations.
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F.2 MULTI-LAYER PERCEPTRON (MLP) LAYER

The vectors connected to T above will go into the next layer, which will be characterized by a MLP.
Ideally, the MLP should implement the function

E(w|fi,ℓ+1) =

C∑
c=1

wc

[ exp(wT
c fi,ℓ+1)

C∑
c′=1

exp(wT
c′fi,ℓ+1)

]
(33)

to be consistent with functional GD. Let gγ(fi,ℓ+1) represent an MLP with parameters γ. The same
MLP acts on each of the vectors at positions i = 1, . . . , N , corresponding to the first N columns
of T , from left. The components of that vector corresponding to fi,ℓ+1 are input to gγ(·), and the
output is a d′-dimensional vector. The output is placed in the position of the zeros in T .

At each layer of the Transformer, the form of the function in (33) is the same. Consequently, within
the Transformer implementation, we tie the MLP parameters across all Transformer layer.

G SETUP FOR MULTIPLE QUESTIONS WITH CATEGORICAL ANSWERS

Consider data of the form (xi, yi), where xi ∈ Rd are covariates, and yi ∈ {1, . . . , C}Q, with
yi representing answers to Q questions with C categorical answers. A special case is C = 2,
corresponding to Q yes/no questions. Let yi,m ∈ {1, . . . , C} represent the qth component of yi,
q ∈ {1, . . . , Q}. We assume that the data are generated from the model

p(yi,q = c|X = xi) =
exp(f(xi)

Tw
(q)
c )∑C

c′=1 exp(f(xi)
Tw

(q)
c′ )

(34)

where {w(q)
c }q=1,Q represent a set of fixed (learned) vectors, with each w(q)

c ∈ Rd′
, and f(x) ∈ Rd′

is a context-dependent latent function. This generalizes our prior setup, which only considered one
categorical observation for each xi, to now consider M such categorical observations.

Assume that we are given contextual data {(xi, yi)}i=1,N , from which we wish to infer f(x), and
thereby predict yN+1 for a query xN+1. Assuming that the M categorical observations are condi-
tionally independent given f(x), as reflected in (34), then the log-likelihood of the contextual data
is

L =

N∑
i=1

Q∑
q=1

log
[ exp(f(xi)

Tw
(q)
c )∑C

c′=1 exp(f(xi)
Tw

(q)
c′ )

]
(35)

=

N∑
i=1

Q∑
q=1

[
f(xi)

Tw(q)
c − log

C∑
c′=1

exp(f(xi)
Tw

(q)
c′ )
]

(36)

We assume that f(x) = Aψ(x), where ψ(x) : Rd → RD is a (generally) nonlinear transformation
of the covariates x to a D-dimensional feature space (which could be infinite dimensional),
and A ∈ Rd′×D is a latent matrix. The matrix A is context-dependent, while ψ(x) is context-
independent. We wish to perform context-dependent gradient ascent to infer A.

Gradient ascent applied to this setup yields the following update equation for the latent function:

fℓ+1(x) = fℓ(x) + α

N∑
i=1

Q∑
q=1

[w(q)
yi,q

− E(w(q)|fℓ(xi))]κ(x, xi) (37)

where κ(xi, xj) = ψ(xi)
Tψ(xj), and

E(w(q)|fℓ(xi)) =
∑C

c=1 w
(q)
c exp(fℓ(xi)

Tw
(q)
c )∑C

c′=1 exp(fℓ(xi)
Tw

(q)
c′ )

(38)
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One can rewrite (37) as

fℓ+1(x) = fℓ(x) + α

N∑
i=1

1

Q

M∑
q=1

[w(q)
yi,q

− E(w(q)|fℓ(xi))]κ(x, xi) (39)

= fℓ(x) + α

N∑
i=1

[w̄i − E(w|fℓ(xi))]κ(x, xi) (40)

where

w̄i =
1

Q

Q∑
q=1

w(q)
yi,q

, E(w|fℓ(xi)) =
1

Q

Q∑
q=1

E(w(q)|fℓ(xi)) (41)

where we see that E(w|fℓ(xi)) is an average over expectations.

H LINEARIZATION OF THE EXPECTATION

Consider

E(w|fi,ℓ) = E(w|fi,ℓ−1 +∆fi,ℓ−1) (42)

=

∑C
c=1 exp[w

⊤
c fi,ℓ−1 + w⊤

c ∆fi,ℓ−1)]wc∑C
c′=1 exp(w

⊤
c′fi,ℓ−1 + w⊤

c′∆fi,ℓ−1)
(43)

Assuming that ∆fi,ℓ−1 makes a small change relative to fi,ℓ−1, which can be controlled by the
learning rate, we may approximate E(w|fi,ℓ) by its first-order (linear) Taylor expansion. We have

∇f
exp(w⊤

c f)∑C
c′=1 exp(w

⊤
c′f)

= wc
exp(w⊤

c f)∑C
c′=1 exp(w

⊤
c′f)

− exp(w⊤
c f)

[
∑C

c′=1 exp(w
⊤
c′f)]

2

C∑
c′=1

wc′ exp(w
⊤
c′f)

=
exp(w⊤

c f)∑C
c′=1 exp(w

⊤
c′f)

[
wc − E(w|f)

]
(44)

Therefore

E(w|fi,ℓ) ≈ E(w|fi,ℓ−1) +

C∑
c=1

wc

exp(w⊤
c fi,ℓ−1)∑C

c′=1 exp(w
⊤
c′fi,ℓ−1)

[wc − E(w|fi,ℓ−1)]
⊤∆fi,ℓ−1(45)

= E(w|fi,ℓ−1) +We · softmax(W⊤
e fi,ℓ−1) · W̃e,ℓ−1 ·∆fi,ℓ−1 (46)

where the cth column of W̃e,ℓ−1 corresponds to wc − E(w|fi,ℓ−1).

For ℓ = 1, fi,ℓ−1 = 0d′ , and therefore softmax(W⊤
e fi,ℓ−1) is a uniform C-dimensional probability

mass function (PMF), and hence

E(w|fi,1) ≈
1

C
1C

[
1 +WeW̃

⊤
e,0∆fi,0

]
(47)

where the cth column of W̃e,0 is wc − 1
C 1C , where 1C is a C-dimensional vector of all ones.

For ℓ = 1, for each i we may approximate E(w|fi,1) ≈ E(w|fi,0) + M1∆fi,0 where M1 =
1
CWeW̃

⊤
e . Note that this matrix is independent of i. More generally, and with a weaker approx-

imation, we use E(w|fi,ℓ) ≈ E(w|fi,ℓ−1) + Mℓ∆fi,ℓ−1. For ℓ > 1 this approximation is less
appropriate, because the above first-order analysis indicates that the linear approximation is depen-
dent on i, which we are ignoring. We expect the linear approximation to work best when the first
two steps of functional GD reach near conference of GD-based inference.

I GD PARAMETERS FOR ATTENTION-ONLY TRANSFORMER

Under the linear approximation for E(w|fi,ℓ), we can implement Transformer-based inference with
a single attention head, as detailed below. Let w̄ = 1

C

∑C
c=1 wc, i.e., the average embedding vector
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for all C categories. At the input layer, consider the encoding (xi, wyi
− w̄, 0d′), for i = 1, . . . , N ,

where the 0d′ vector is positioned where fi will be updated. Recall that w̄ = E(w|0d′), which is the
zero-order (initial) approximation to the expectation. The query is encoded as (xN+1, 0d′ , 0d′).

The Transformer matrices at each layer are

WQ =WK =

(
Id×d 0d×d′ 0d×d′

0d′×d 0d′×d′ 0d′×d′

0d′×d 0d′×d′ 0d′×d′

)
(48)

such that WQei,ℓ = WKei,ℓ = (xi, 0d′ , 0d′) at each layer, where ei,ℓ ∈ Rd+2d′
is the vector at

position i, output from layer ℓ.

The WV matrix can be expressed as

WV =
α

N

(
0d×d 0d×d′ 0d×d′

0d′×d 0d′×d′ 0d′×d′

0d′×d Id′×d′ 0d′×d′

)
(49)

and position i = 1, . . . , N are used for keys and values, where all i = 1, . . . , N + 1 positions are
used as queries. The output of attention from layer-1 is

N∑
i=1

WV ei,0κ(WKei,0,WQej,0) =

 0d
0d′

α
N

∑N
i=1[wyi

− w̄]κ(xi, xj)

 (50)

where it is understood that the above d′-dimensional vector vj is positioned as (0d, 0d′ , vj) in the
coordinate system of the Transformer vectors.

Finally, there is an output projection matrix at each layer:

Pℓ =

(
0d×d 0d×d′ 0d×d′

0d′×d 0d′×d′ −Mℓ

0d′×d 0d′×d′ Id′×d′

)
(51)

which will update the expectation, to within a linear approximation, with the updated increment to
the expectation appended to w̄:

ej,0 + P1

N∑
i=1

WV ei,0κ(WKei,0,WQej,0) =

(
xj

wyj
− w̄ −M1∆fj,0

∆fj,0

)
(52)

where ∆fj,0 = α
N

∑N
i=1[wyi

− w̄]κ(xi, xj).

The latent function fi,ℓ, for i = 1, . . . , N + 1, is updated in the last d′ positions of ei,ℓ at each layer
ℓ, and this is sent into the softmax at the last layer (for position i = N + 1).
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