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Abstract. Image registration is crucial for the alignment of medical im-
ages, enabling better analysis and interpretation. Although deep learning-
based methods have shown promising results, the impact of architectural
choices remains unclear, especially when training on scarce, small, or
low-quality datasets. This study compares four different architectures
for deep learning-based image registration. All methods were trained in
an unsupervised setting, using the same loss function and optimization
method, but with optimized hyperparameters for each method. In addi-
tion, two conventional optimization-based methods were included in the
comparison. Experiments were performed on Lung and Abdomen CT
datasets of the Learn2Reg challenge. Our findings suggest that the per-
formance of deep learning-based methods varies substantially depending
on the dataset type and its specific challenges.
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1 Introduction

Image registration is a critical process in radiotherapy and radiology. Its primary
objective is to align images to achieve spatial correspondence [7JI7JI6]. Various
studies are currently investigating image registration using deep learning (DL)
with both unsupervised and supervised training approaches [TOT4ITTI6IT5]. Jena
et al. [9] evaluated the advantages and limitations of DL methods compared to
classical optimization-based methods on brain MRI datasets. Their findings indi-
cate that DL methods may outperform classical methods when sufficient labeled
data are available for supervised training. However, obtaining these high-quality
labels in clinical practice poses a significant challenge due to the substantial time
and expertise required by clinicians [I]. Similarly, Jian et al. [I0] investigated
whether advanced computational modules improve the accuracy of registration
on MRI datasets, suggesting that simpler designs can often achieve equal or
greater performance than complex architectures. Despite extensive research on
DL methods, the impact of architectural choices on performance across various
organs and imaging modalities remains unclear [5], particularly when working
with scarce, small, or low-quality datasets that hinder accurate registration.
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To address these gaps, we present a systematic performance comparison of com-
monly used DL methods, including VoxelMorph (VXM) [3], Volume Tweening
Network (VTIN) |20], TransMorph (TSM) [4], and Contrastive Learning Registra-
tion Architecture based on VoxelMorph (CLM) [I3]. As baseline comparisons, we
include two widely used classical optimization-based methods, Elastix [12] and
Advanced Normalization Tools (ANTs) [2]. To investigate the impact of small,
low-quality datasets on model performance, our study analyze inter-patient regis-
tration on lung images and intra-patient registration on abdominal images, using
two public datasets from the Learn2Reg Grand Challenge (https://learn2reg.
grand-challenge.org/Datasets/)). Given the challenge of limited labeled data,
we evaluate all methods in an unsupervised setting, using overlap and deforma-
tion plausibility metrics to assess alignment accuracy and anatomical consis-
tency.

2 Material and Methods

2.1 Image Registration Methods

Given two images, the fixed image f(x) and the moving image m(x), where x de-
notes the coordinate, image registration aims to enhance spatial correspondence
by applying a transformation ¢ to the moving image. The objective is to min-
imize a cost function that quantifies the dissimilarity between the transformed
moving image and the fixed image:

¢ = arg;nin (Lsim (fimog)+ A Lsmooth(¢)) (1)

where mo¢ denotes the transformed moving image. The function L;,, quantifies
the similarity between the registered images, while Lgnootn regulates transfor-
mation smoothness, with A as the trade-off parameter for regularization strength.

Classical Image Registration. The classical registration process between
f and m iteratively optimizes transformation parameters to minimize a sim-
ilarity metric as given in Eq Elastix and ANTs were employed as classi-
cal optimization-based methods. For ANTs, we used Symmetric Normalization
(SyN) for affine plus deformable registration with mutual information as the op-
timization metric. In Elastix, affine and B-spline transformations were used for
affine and deformable registration, optimizing mutual information via adaptive
stochastic gradient descent.

Deep Learning-Based Image Registration. DL approaches are designed to
directly predict displacement fields, typically using an encoder-decoder architec-
ture. Variations among these methods lie primarily in how they generate the
displacement field and the resulting transformed image. We examined VXM,
VTN, TSM, and CLM to investigate how diverse architectures could improve
performance (Fig. . Although these methods support supervised training, we
focused on their unsupervised learning form. VXM employs a convolutional neu-
ral network to predict a dense displacement field that aligns m to f using a spatial
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Fig. 1: Deep learning-based image registration methods.

transformer network|8]. VTN employs a recursive registration strategy, repeating
the registration process (VXM) three times, while TSM leverages transformers
to enhance feature extraction. Unlike the other methods, CLM employs a dual-
encoder structure to process f and m independently and subsequently uses a
decoder architecture analogous to the other methods. All these methods first
apply an initial affine transformation, followed by deformable registration. For
the complete transformation, the total loss Liota; as the sum of the affine trans-
formation loss L,g and the deformable transformation loss Lget is used:

3
Liotal = Z(ai2 + 07 %) + det(A +I)+ Corr(f,mo ¢) + A Z [Vu)|?  (2)

i=1 xeN

Lag Laer

The L,g is the combination of a orthogonality loss and determinant loss to
penalize extreme affine transformations [20], where o; are the singular values of
the affine matrix A, and I denotes the identity matrix. The first term of Lget
represents the Pearson correlation coefficient as the similarity metric, assessing
the alignment of the images, while the second term employs total variation loss
for regularization, promoting smoothness in the displacement field u(x).

3 Experiments and Results

3.1 Datasets

Lung CT Dataset - It includes CT scans from 30 patients, divided into 20
training and 10 testing cases. Each case contains scans from both the inspiration
and expiration phases. Each scan has dimensions of 192 x 192 x 208, with a voxel
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spacing of 1.75 x 1.25 x 1.75 mm. The training dataset includes lung segmenta-
tions and keypoints, while the testing dataset provides lung segmentations and
annotated landmarks. The expiration scan is set as the fixed image, and the
inspiration scan as the moving image.

Abdomen CT Dataset - It includes 30 training and 20 testing scans, with fixed
and moving images randomly selected during training from different patients.
Each scan has dimensions of 192 x 160 x 256, with an isotropic voxel spacing
of 2 mm. The training dataset includes 13 manual anatomical segmentations
per patient. For the testing dataset, no manual segmentations were provided;
therefore, liver segmentations were generated using TotalSegmentator [I8] and
subsequently validated and corrected by a radiologist when necessary.

Both datasets pose significant challenges, including large deformations, small
sample sizes, and partial organ visibility. Scan fields of view are inconsistent.
Lung scans may miss parts of the lungs due to respiration, while abdominal
scans can include varying portions of lower thoracic organs. Manual annotations,
including segmentations, landmarks, and keypoints, were used exclusively for
evaluation purposes, as the methods operate in an unsupervised learning setting.

3.2 Implementation Details

We initialized the network weights using the Xavier initialization method with a
uniform distribution and optimized them using the Adam optimizer (5, = 0.5,
B2 = 0.999), learning rate set to le~* with a weight decay of le=*. The learn-
ing rate scheduler had a step size of 10 and a v = 0.96. A batch size of 1
was established during training, conducted for 100 epochs, since all methods
had converged by that point. For ANTs, we utilized default parameters, in-
cluding iterations set to {100,100,70}, a convergence threshold of 1 x 107¢,
smoothing factors of {0, 1, 2}, shrink factors of {4, 2, 1}, and a regulariza-
tion weight ranging from 0.01 to 0.1. Similarly, we applied the default param-
eters for Elastix, using a grid spacing of 8 voxels (lung) and 32 voxels (liver)
to balance flexibility and smoothness. Multi-resolution registration was imple-
mented across three levels. The code for this study is available on GitHub at
https://github.com/research-medical-imaging/image-registrationl

3.3 Evaluation Metrics

We evaluated performance using the Dice Similarity Coefficient (DSC), 95th per-
centile Hausdorff Distance (HD), Average Surface Distance (ASD), proportion of
voxels with non-positive Jacobian determinant (J < 0), and the standard devia-
tion of the Jacobian determinant (std(J)), capturing both overlap and deforma-
tion plausibility and physical realism through Jacobian-based metrics. For the
lung dataset, Target Registration Error (TRE) was included based on annotated
landmarks. HD, ASD, and TRE are reported in voxels. Statistical significance
was assessed using pairwise Wilcoxon signed-rank tests.
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Fig. 2: Scatter plot of DSC versus std(J) for each method across three values of
A, which controls the smoothness of the deformation field as seen in Eq.[2] Circle
size indicates the value of A: small (0.1), medium (1.0), and large (10.0).
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3.4 Results

Hyperparameter Optimization - To optimize the hyperparameter X in the
total loss function with respect to DSC, we evaluated values of 0.1, 1.0, and 10.0.
On the Lung dataset, most methods achieved their highest DSC at A = 0.1, with
the exception of TSM (A = 1.0). On the Abdomen dataset, A = 1.0 yielded opti-
mal performance for all methods except VXM (A = 0.1). To further investigate
the trade-off between segmentation accuracy and deformation regularity, Fig. [2]
illustrates scatter plots of DSC versus std(J), across different A values. The y-
axis uses a logarithmic scale to accommodate the broad range of deformation
variability. Notably, TSM and VTN exhibit increased std(J) at A = 0.1 on both
Lung and Abdomen datasets, respectively, indicating more irregular and poten-
tially less stable deformation fields under these settings.

Time of Inference and Memory Usage - Once trained, DL methods of-
fer significantly faster inference times compared to classical optimization-based
approaches. Among all evaluated methods, CLM achieved the fastest runtime,
while Elastix was the slowest. In terms of memory usage, VTN required the most
memory, whereas CLM was the most memory-efficient. Detailed runtimes and
memory usage are as follows: ANTs (105s), Elastix (129s), VXM (0.20s, 309MB),
VTN (0.14s, 620MB), TSM (0.31s, 451MB), and CLM (0.10s, 230MB).

Quantitative Results - Tables [I] and [2] present the quantitative results for
the Lung and Abdomen CT datasets, respectively. Statistical significance was
assessed using ANTs as the reference method, with a standard threshold of
p < 0.05. Significant differences are indicated with an asterisk (*).

Table 1: Results for the Lung CT dataset.
Method DSC 71 HD | ASD | TRE | J<0| std(J) J

ANTs  0.8940.06 15.3049.39 2.91+1.95 6.75+2.96 0.00--0.00 0.19+0.05
Elastix  0.93+0.03 10.5348.20"2.07+1.60 6.95+2.85" 0.00£0.00" 0.28+0.08"

VXM  0.944+0.01 4.40+0.64"1.07+£0.19" 7.16+2.97" 0.00+0.00" 1.63+0.36"
VTN 0.96+0.01%2.534+0.760.66+0.17"7.11+2.82 0.08+0.03" 2.49+0.67"
TSM 0.91+0.04 11.24+7.63 2.09+1.55 7.20+2.97" 0.07+0.01" 1.6140.64"
CLM 0.944+0.01 4.53£0.56"0.96+0.14" 7.26+£2.95" 0.11£0.03" 1.62+0.28"

On the Lung dataset (Table [1), VIN achieved the highest DSC (0.96 & 0.01),
along with the lowest HD (2.53 + 0.76) and ASD (0.66 £ 0.17), all significantly
better than ANTs. Although ANTs yielded the lowest mean TRE (6.75 £ 2.96),
the difference with VTN was not statistically significant (p > 0.05), indicating
comparable target localization accuracy. VXM also demonstrated competitive
performance, where it outperformed ANTs in both HD and ASD. In contrast,
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Table 2: Results for the Abdomen CT dataset.

Method DSC 1 HD | ASD | J<0l std(J)

ANTs 0.81+0.08 17.28+8.85 3.51+1.97 0.00+0.00 0.20+0.03
Elastix 0.80+0.12 17.5249.85 4.434+4.04" 0.02+£0.02°  0.53+0.13"
VXM 0.77+0.12° 16.80+9.16 4.37+3.59" 0.02+£0.01°  2.14+0.59"
VTN 0.7840.13° 17.06£10.01 4.114+4.10  0.024£0.01"  1.66+0.80"
TSM 0.7340.14" 18.32410.11 5.05+4.52" 0.05+0.01"  1.83+0.66"
CLM 0.7040.14"° 18.91+10.22" 5.374+4.47° 0.05+0.01°  1.0040.23"

results on the Abdomen dataset (Table [2)) consistently favored ANTSs, which
achieved the highest DSC (0.81 £ 0.08), lowest ASD (3.51 & 1.97), and regular
deformations. DL-based methods exhibited statistically significant degradation
in most metrics. TSM and CLM showed particularly high values in terms of J < 0
and std(J), indicating irregular deformation fields. Although VXM achieved the
lowest HD (16.80£9.16), this improvement was not significant (p > 0.05). VIN
performed relatively well in DSC and HD, but still showed worse regularity than
ANTs.

Qualitative Results - Fig. presents a qualitative comparison of results
across both datasets. For the Lung CT dataset, deformed moving images and seg-
mentations appear visually consistent across all methods, but differences emerge
in the Jacobian determinant maps. Classical methods exhibit smooth and reg-
ular deformation fields, while DL methods, particularly VIN and CLM, show
irregular patterns, indicating non-smooth or non-invertible transformations. For
the Abdomen CT dataset, all methods produce anatomically implausible defor-
mations, with DL methods demonstrating greater irregularities in the Jacobian
determinant maps.

4 Discussion and Conclusion

In this study, we focused on registration performance under the constraints of
small datasets and significant anatomical variability, conditions that reflect many
real-world clinical challenges. Our observations highlight several key limitations
and trade-offs in current DL-based registration methods in such settings.

A key observation is the sensitivity of DL methods to hyperparameter selec-
tion. Performance variability in terms of DSC underscores the need for careful
hyperparameter optimization. Based on the Wilcoxon test, DL-based methods
significantly outperformed ANTs on the Lung dataset across DSC, HD, and
ASD, with VTN leading the results. However, on the Abdomen dataset, ANTs
remained the most stable and accurate method across all metrics. Despite the
strong quantitative performance of VTN, it produced anatomically implausible
deformations, as evidenced by irregular Jacobian determinant patterns, partic-
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Fig. 3: Qualitative comparison. First two columns show fixed and moving images
with segmentations. Rows 1-2: deformed image and segmentation; row 3: Jaco-
bian map. Top: Lung CT; bottom: Abdomen CT.

ularly in the Abdomen CT dataset, which may be attributed to the increased
challenge of inter-patient variability. DL methods introduced non-physical dis-
tortions in soft tissue regions, whereas classical approaches like ANTs generated
smoother, anatomically more realistic Jacobian determinant maps. These find-
ings highlight the risks of relying solely on overlap-based metrics such as DSC
to evaluate registration quality. Analysis of the correlation between DSC and
std(J) (Fig. revealed that higher overlap scores did not consistently align
with physically plausible deformations, raising concerns about clinical applica-
bility. Additionally, convolution-based models (VXM) consistently outperformed
transformer-based models (TSM) across both datasets, with VXM offering bet-
ter memory efficiency and performance. This supports recent findings that sim-
pler architectures can match or exceed more complex models [I0]. In general,
our results highlight persistent challenges in DL-based registration with limited
data and high anatomical variability. They emphasize the need for task-specific
strategies, anatomically plausible regularization, and evaluation frameworks that
go beyond overlap metrics. Future work should standardize hyperparameter op-
timization, incorporate anatomical priors, and ensure validation across diverse
anatomies, modalities, and pathologies. Robust registration must ensure not
only accurate overlap but also anatomically plausible and clinically interpretable
transformations, even under data or resource constraints.
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