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Abstract

Single Image Super-Resolution (SISR) is a crucial task
in low-level computer vision, aiming to reconstruct high-
resolution images from low-resolution counterparts. Con-
ventional attention mechanisms have significantly improved
SISR performance but often result in complex network
structures and large number of parameters, leading to
slow inference speed and large model size. To address
this issue, we propose the Swift Parameter-free Attention
Network (SPAN), a highly efficient SISR model that bal-
ances parameter count, inference speed, and image qual-
ity. SPAN employs a novel parameter-free attention mech-
anism, which leverages symmetric activation functions and
residual connections to enhance high-contribution informa-
tion and suppress redundant information. Our theoreti-
cal analysis demonstrates the effectiveness of this design
in achieving the attention mechanism’s purpose. We eval-
uate SPAN on multiple benchmarks, showing that it outper-
forms existing efficient super-resolution models in terms of
both image quality and inference speed, achieving a signif-
icant quality-speed trade-off. This makes SPAN highly suit-
able for real-world applications, particularly in resource-
constrained scenarios. Notably, we won the first place
both in the overall performance track and runtime track of
the NTIRE 2024 efficient super-resolution challenge. Our
code and models are made publicly available at https:
//github.com/hongyuanyu/span.

1. Introduction
Single Image Super-Resolution (SISR) is a well-established
task in low-level computer vision, which aims to reconstruct
a high-resolution image from a single low-resolution im-
age. This task has broad applicability in enhancing image
quality across various domains [16, 37, 43, 44, 48, 49, 57].
The advent of deep learning has led to significant advance-
ments in this field [2, 10, 12, 19, 24, 32, 34, 36, 50, 59].
Recent progress in super-resolution tasks has been largely

*Equal contribution, Corresponding Author

10 15 20 25 30 35 40 45

28.35

28.40

28.45

28.50

28.55

28.60

28.65

ECBSR

SPAN (ours)

RLFN RFDN
IMDN

CARN
MAFFSRN

70 75

SAFMN

Latency (ms)

PS
NR

 (d
B)

Latency vs. PSNR vs. Parameters

Model Size
<=450
<=500
<=550
<=600
<=800
<=1000
<=1200

Figure 1. Latency, PSNR, and complexity of model comparison
on Set14 dataset in x4 scale factor task.

driven by the attention mechanism. Numerous state-of-the-
art super-resolution networks incorporate attention mecha-
nisms or even employ larger vision transformers (ViTs) as
the model architecture [6, 8, 20, 27, 32, 35, 42, 53, 60].
These networks emphasize key features and long-distance
dependencies between patches through attention maps, cap-
turing a wider range of contextual information to ensure
continuity of details and accuracy of edge textures. How-
ever, the computational requirements of the attention mech-
anism, which involve complex network structures and a
substantial number of additional parameters, lead to chal-
lenges such as large model size and slow inference speed.
These challenges limit the applicability of these models,
hindering their use in efficient, high-speed computing sce-
narios, such as SISR tasks on resource-constrained mobile
devices.

Numerous existing efficient super-resolution (ESR) tech-
niques have achieved certain successes in enhancing model
efficiency. Some models primarily focus on reducing model
FLOPs and parameters, accomplishing this through meth-
ods like group convolution and depth-wise separable convo-
lution [2, 19, 34]. However, simply reducing FLOPs or pa-
rameters sometimes does not lead to a significant improve-
ment in the model’s inference speed, and it can also de-
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crease model accuracy. Other models [23] reduce model pa-
rameter size through feature information sharing and down-
sizing non-attention branches. But these models still con-
tain many parameters within their complex computational
structures, resulting in long running time. To ensure fast
inference speed, it is crucial to maintain a simple network
topology. However, conventional attention mechanisms of-
ten result in more complex network structures. To ad-
dress this problem, we propose a parameter-free attention
mechanism and theoretically demonstrate that our Swift
Parameter-free Attention Network (SPAN) can achieve the
attention mechanism’s role of enhancing high-contribution
information and suppressing redundant information through
symmetric activation functions and residual connections.

In SPAN, a parameter-free attention mechanism is con-
structed by passing extracted features through a symmet-
ric activation function around the origin to calculate atten-
tion maps directly. This attention mechanism focuses on
information-rich regions without the need of additional pa-
rameter learning, allowing for rapid and effective feature
extraction from shallow to deep layers. The design of sym-
metric activation functions and residual connections in the
modules help to solve issues related to information loss of
the parameter-free attention modules. The simplicity of the
network structure ensures operational speed, addressing the
challenges posed by conventional attention mechanisms.

In summary, our main contributions are as follows:
• We design a novel parameter-free attention mechanism

that employs symmetric activation functions and resid-
ual connections to enhance high-contribution information
and suppress redundant information, thereby simplify-
ing the network structure and improving inference speed
without sacrificing accuracy.

• We propose the Swift Parameter-free Attention Network
(SPAN), which leverages the parameter-free attention
mechanism to achieve rapid and effective feature extrac-
tion from shallow to deep layers while maintaining low
model complexity and parameter count.

• Through theoretical analysis and experimental valida-
tion, we demonstrate the effectiveness and superiority of
SPAN in single-image super-resolution tasks, proving its
practicality and potential application value in resource-
constrained scenarios.

2. Related Work
2.1. Efficient Super Resolution on Image

Most existing ESR models focus on reducing model pa-
rameters or FLOPs to improve efficiency. SRCNN [11]
introduces an end-to-end mapping for single image super-
resolution using a deep convolutional neural network
(CNN), optimizing all layers jointly. DRCN [25] presents
a deeply-recursive convolutional network with up to 16

recursive layers to enhance super-resolution performance,
overcoming training challenges through innovative tech-
niques and achieving substantial improvements over previ-
ous methods. LatticeNet [38] introduces the Lattice Block
for combining Residual Blocks using a lattice filter bank,
showcasing improved performance through this novel com-
bination approach. CARN [3] implements a cascading
mechanism on a residual network to create an accurate and
lightweight model. IMDN [20] is a lightweight and accu-
rate single image SR model. It extracts hierarchical features
and selectively aggregates them using contrast-aware chan-
nel attention. RFDN [35] improves over IMDN using more
lightweight and flexible feature distillation connections and
shallow residual blocks, achieving better SR performance
with lower model complexity. However, simply minimiz-
ing parameters and FLOPs does not necessarily lead to bet-
ter model efficiency, especially during inference. There is
a need to develop SR models that prioritize faster inference
speed rather than just reducing parameters or FLOPs.

To address this, RLFN [27] enhances model com-
pactness and accelerates inference without sacrificing SR
restoration quality based on RFDN. They analyze properties
of intermediate features and find shallow features are criti-
cal for PSNR-oriented models. Based on this, they propose
an improved feature extractor to effectively capture edges
and details. Further, a multi-stage warm-up training strat-
egy is introduced to speed up model convergence and im-
prove SR restoration accuracy. Omni [53] introduces Ag-
gregation Networks for efficient lightweight image super-
resolution. It utilizes Omni Self-Attention to fuse spatial
and channel self-attentions. In addition, a multi-scale fea-
ture extraction method is introduced to achieve high-quality
restoration with low computational cost.

2.2. Attention Mechanism

For ESR task, the application of lightweight attention mech-
anisms play a significant role for enhancing model perfor-
mance without substantially increasing complexity. The
pivotal role of attention in modern vision models lies in
its dynamic re-weighting of features, which directs com-
putational resources to the most salient parts of the in-
put, thus boosting efficiency and efficacy across various
tasks [5, 15, 22, 29, 52, 56].

Attention-based super-resolution networks typically re-
quire a substantial receptive field to capture both local and
global information, thereby enhancing super-resolution per-
formance. However, the utilization of parameterized atten-
tion maps can slow down inference speed. In contrast, ef-
ficient super-resolution (SR) networks should maintain per-
formance while ensuring rapid inference speed.

We observe that attention maps can be generated with-
out necessitating additional training and parameters [7, 17],
yet still contribute positively to the model’s performance.
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Figure 2. The proposed SPAN architecture. The yellow area indicates the internal structure of each SPAB module. Att.Map2 denotes the
generated attention map. Input is a low resolution image, and output is a high resolution image.

The crux of this lightweight attention approach is to maxi-
mize the representational power of the super-resolution net-
work within a constrained model budget. By incorporating
these principles, we can develop a swift and effective at-
tention mechanism for super-resolution models. Our pro-
posed parameter-free attention mechanism utilizes existing
convolutional layers to enhance high-contribution informa-
tion and suppress redundant information, thus eliminating
the need for additional parameter-intensive processes. This
not only streamlines the model but also augments its abil-
ity to weakly localize objects, a feature that is essential for
refining super-resolution techniques [7].

3. Method
In this section, we will first present our proposed method:
the Swift Parameter-free Attention Block (SPAB) based on
the attention mechanism and the proposed SPAN built us-
ing SPABs for super resolution. Then, we will conduct the-
oretical analysis of SPAB, demonstrating the effectiveness
of parameter-free attention mechanisms for super resolution
tasks, especially with symmetric activation functions and
residual connections.

3.1. Network Architecture.

As shown in Figure 2, SPAN consists of 6 consecutive
SPABs and each SPAB block extracts progressively higher-
level features sequentially through three convolutional lay-
ers with C ′-channeled H ′×W ′-sized kernels (In our model,
we choose H ′ = W ′ = 3.). The extracted features Hi

are then added with a residual connection from the input

of SPAB, forming the pre-attention feature map Ui for that
block. The features extracted by the convolutional layers
are passed through an activation function σa(·) that is sym-
metric about the origin to obtain the attention map Vi. The
feature map and attention map are element-wise multiplied
to produce the final output Oi = Ui ⊙ Vi of the SPAB
block, where ⊙ denotes element-wise multiplication. We
use W

(j)
i ∈ RC′×H′×W ′

to represent the kernel of the j-th
convolutional layer of the i-th SPAB block and σ to rep-
resent the activation function following the convolutional
layer. Then the SPAB block can be expressed as:

Oi = F
(i)
Wi

(Oi−1) = Ui ⊙ Vi,

Ui = Oi−1 ⊕Hi, Vi = σa(Hi),

Hi = F
(i)
c,Wi

(Oi−1),

= W
(3)
i ⊗ σ(W

(2)
i ⊗ σ(W

(1)
i ⊗Oi−1)),

(1)

where ⊕ and ⊗ represent the element-wise sum between ex-
tracted features and residual connections, and the convolu-
tion operation, respectively. F (i)

Wi
and F

(i)
c,Wi

are the function
representing the i-th SPAB and the function representing the
3 convolution layers of i-th SPAB with parameters Wi =

(W
(1)
i ,W

(2)
i ,W

(3)
i ), respectively. O0 = σ(W0 ⊗ ILR) is

a C ′-channeled H ×W feature map from the C-channeled
H ×W -sized low-resolution input image ILR undergone a
convolutional layer with 3×3 sized kernel W0. This convo-
lutional layer ensures that each SPAB has the same number
of channels as input. The whole SPAN neural network can
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be described as

IHR = F (ILR) = PixelShuffle[Wf2 ⊗O],

O = Concat(O0, O1, O5,Wf1 ⊗O6),
(2)

where O is a 4C ′-channeled H×W -sized feature map with
multiple hierarchical features obtaining by concatenating
O0 with the outputs of the first, fifth, and the convolved out-
put of the sixth SPAB blocks by C ′-channeled 3 × 3-sized
kernel Wf1. O is processed through a 3 × 3 convolutional
layer to create an r2C channel feature map of size H ×W .
Pixel shuffle is a classic upsampling method [46], which
can increase the spatial resolution without adding computa-
tional complexity by rearranging the elements in the feature
maps. Then, this feature map goes through a pixel shuffle
module to generate a high-resolution image of C channels
and dimensions rH × rW , where r represents the super-
resolution factor.

3.2. Parameter-Free Attention Mechanism

In SPAB, we directly obtain the attention map from the
higher-level feature information extracted by the convolu-
tional layers through an origin-symmetric activation func-
tion σa. Because in the branch dedicated to computing the
attention map that diverges from the computation of the
feature map, there are no modules with trainable parame-
ters except for the activation function, our attention mecha-
nism is parameter-free. In previous super-resolution works,
while attention maps can improve model accuracy by al-
lowing the model to selectively focus on the most relevant
parts of the feature, calculating attention maps introduces
additional parameters, which slows down the model’s com-
putation [32, 51, 53] with extra calculations. To enhance
the computational efficiency of our model, we draw inspira-
tion from parameter-free attention mechanisms as proposed
in [7, 13, 47, 55], and in our attention mechanism, we di-
rectly obtain the attention map Vi through a parameter-free
activation function σa.

In the context of the super-resolution task, the reason
why computing the attention map in this way is effective
lies in the fact that, in super-resolution tasks, when utiliz-
ing attention mechanisms, the neural network should focus
on where local information such as complex textures, edges,
color transitions, and more is particularly rich, where super-
resolution is more challenging with issues such as blurring
artifacts tending to occur [39]. Interestingly, these edge and
texture information required for attention can be directly
detected through the convolutional kernels learned during
training [21] and at the same time, they are also the infor-
mation that networks need to extract in order to accomplish
the super-resolution task. Therefore, we can potentially de-
termine the region for attention directly based on the magni-
tudes of the convolutional layer’s output values and obtain
the attention map Vi = σa(Hi) parameter-free directly from

the output of the convolutional layer. This is also reflected
in the visualizations of the feature map after using our at-
tention in Figure 4a (compared with Figure 4c), where, af-
ter training, the attention map Vi directly computed from
the output of the convolutional layer Hi tend to make fea-
ture map Oi relatively higher in areas with complex textures
and boundaries.

Our parameter-free attention mechanism can be theoreti-
cally demonstrated through the following process. It should
be noted that because we analyze the role of the residual
connection in Section 3.3, we remove the residual connec-
tion in SPAB for simplicity in this section and add the resid-
ual connection for analyzing in Section 3.3. Without atten-
tion, the gradient used to update the i-th SPAB during the
training of the model can be expressed as

∂L

∂Wi
= Π

∂F
(i)
Wi

(Oi−1)

∂Wi

= Π
∂F

(i)
c,Wi

(Oi−1)

∂Wi
,

(3)

where L denotes the loss during training and Π represents

the product of gradients before
∂F

(i)
Wi

(Oi−1)

∂Wi
in the gradient

chain in back-propagation algorithm. While after adding
self attention mechanism, the gradient is

∂L

∂Wi
= Π

∂F
(i)
Wi

(Oi−1)

∂Wi

= Π
∂

∂Wi
(F

(i)
c,Wi

(Oi−1)⊙ σa(F
(i)
c,Wi

(Oi−1))) (4)

= Π
∂F

(i)
c,Wi

(Oi−1)

∂Wi
⊙ (Hi ⊙ σ′

a(Hi) + σa(Hi)).

According to Equation 4, it can be found that for
information-richer region, corresponding values in fea-
ture Hi and σa(Hi) have larger absolute value and with
σ′
a(Hi) > 0, corresponding absolute value in Hi ⊙

σ′
a(Hi) + σa(Hi) will be larger to make the information-

richer region have more influence on the gradient, so that
through the training process, the model will pay more at-
tention to information-rich regions.

3.3. Design Consideration

The idea of computing attention maps directly without pa-
rameters from feature extracted by convolutional layers, led
to two design considerations for our neural network: the
choice of activation function for computing the attention
map and the use of residual connections.
Symmetric Activation Function As mentioned in Section
3.1, we choose the activation function symmetric about the
origin to compute the attention map. There are two main
reasons, firstly, because in feature maps extracted through
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(a) H1 (b) V1 (c) O1

Figure 3. Attention Weakened by Non-odd activation function:
From left to right, the sequence are the first SPAB’s Pre-attention
Feature Map H1, the Attention Map V1, and the Output Feature
Map O1, when activation function σa is sigmoid. In the figures,
brighter regions denote larger absolute values.
structure-related convolutional layers, like gradient kernels,
sign of values always represents directions and the absolute
magnitude represents the feature quantity. To generate the
attention map σa(Hi) directly based on feature quantities,
it must roughly holds

|σa(x)| = |σa(|x|)| = |σa(−x)|. (5)

Second, per Equation 4, our attention method amplifies gra-
dients in information-rich regions and dampens those in
information-poor regions. To ensure these effects, Hi ⊙
σ′
a(Hi) and σa(Hi) must not cancel each other out, thus it

is necessary to ensure:

xσ′
a(x) · σa(x) > 0

σ′
a(x)>0⇒ xσa(x) > 0.

(6)

The second inequality in Equation 6 is due to the fact
that common activation functions are increasing functions.
Based on 5 and 6, it can be deduced that σa needs to be an
odd function symmetric about the origin. In addition, us-
ing non-odd activation functions like Sigmoid, which com-
pletely filter out negative values, would result in the loss of
information for features with large magnitudes but negative
values (|x| ≫ 0, x < 0), as shown in Figure 3. In Figure 3,
comparing H1 and V1, it can be observed that in H1, some
areas with large absolute feature values become dimmer in
V1 = σa(Hi), representing a decrease in magnitude, due
to the effect of the sigmoid function filtering out negative
values. The resulting feature map Oi, obtained using this
type of attention map V1, fails to emphasize the features,
resulting in a rather blurred representation compared to ini-
tial features.
Residual Connection On the other hand, the attention
mechanism enhances higher-level features extracted at each
layer, which can lead to a significant loss of information
in regions where higher-level features are less prominent.
Compared to the results without using attention (Figure 4f),
using attention can cause issue of the excessive loss of in-
formation with the later SPAB block (Figure 4e), ultimately
leading to a decrease in the accuracy of super-resolution re-
sults (Table 3). We employ residual connections to address
this problem. Through residual connections, we use lower-
level features from the input of the SPAB layer to compen-
sate for the excessive loss of information during the feature

LR Input

(a) 1st SPAB (b) 1st SPAB nores (c) 1st SPAB empty

(d) 6th SPAB (e) 6th SPAB nores (f) 6th SPAB empty

Figure 4. Residual Connections Improve Attention: a compari-
son is made between the output feature maps of the first and sixth
SPABs for complete SPAB (a) (d), SPAB with no residual connec-
tions (b) (e), and SPAB without attention and residual connections
(c) (f). It is observed that the SPAB with attention but lacking
residual connections tends to lose a substantial amount of infor-
mation, which issue is alleviated by incorporating residual con-
nections.

map generation process, and in the final SPAB (Equation
1), Vi ⊙Hi is replaced by Vi ⊙ (Hi ⊕Oi−1). This will re-
sult in the gradient ∂L

∂Wi
for updating Wi during the training

process in Equation 4 become

∂L

∂Wi
= Π

∂F
(i)
Wi

(Oi−1)

∂Wi

=Π
∂

∂Wi
((F

(i)
c,Wi

(Oi−1)+Oi−1)⊙σa(F
(i)
c,Wi

(Oi−1))) (7)

=Π
∂F

(i)
c,Wi

(Oi−1)

∂Wi
⊙((Hi+Oi−1)⊙σ′

a(Hi)+σa(Hi)).

In this way, because of the existing of Oi−1 in ∂L
∂Wi

, for
the trained model, the regions focused on by the attention
mechanism are determined not only by the information of
the current level but also by the lower-level information out-
put by the previous SPAB. This alleviates the significant
loss of information caused by overly focusing on higher-
level features.

By comparing the feature maps of the first and sixth
layers of the block with no attention (Figure 4c and 4f),
the block with attention (Figure 4b and 4e), and the block
with improved attention through residual connections (Fig-
ure 4a and 4d), we observe that the SPAB block with resid-
ual connections can further highlight features compared to
the block with no attention. At the same time, it does not
suffer from the loss of excessive information seen in the
block with attention but without residual connections, en-
suring that lower-level information is preserved. Detailed
numerical results are shown in Table 3
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Scale Model Params Runtime Set5 Set14 BSD100 Urban100 Manga109
(K) (ms) PSNR↑ / SSIM↑ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑

× 2

SRCNN[11] 24 6.92 36.66 / 0.9542 32.42 / 0.9063 31.36 / 0.8879 29.50 / 0.8946 35.74/0.9661
FSRCNN[12] 12 9.02 36.98 / 0.9556 32.62 / 0.9087 31.50 / 0.8904 29.85 / 0.9009 36.67/0.9694

VDSR[24] 666 35.37 37.53 / 0.9587 33.05 / 0.9127 31.90 / 0.8960 30.77 / 0.9141 37.22/0.9729
DRCN[23] 1774 716.45 37.63 / 0.9588 33.04 / 0.9118 31.85 / 0.8942 30.75 / 0.9133 28.93 / 0.8854

LapSRN[28] 251 53.98 37.52 / 0.9591 32.99 / 0.9124 31.80 / 0.8952 30.41 / 0.9103 37.27/0.9740
CARN[2] 1592 159.10 37.76 / 0.9590 33.52 / 0.9166 32.09 / 0.8978 31.92 / 0.9256 38.36/0.9765
IMDN[19] 694 77.34 38.00 / 0.9605 33.63 / 0.9177 32.19 / 0.8996 32.17 / 0.9283 38.88/0.9774
RFDN[34] 534 74.51 38.05 / 0.9606 33.68 / 0.9184 32.16 / 0.8994 32.12 / 0.9278 38.88/0.9773

MAFFSRN[42] 402 152.91 37.97 / 0.9603 33.49 / 0.9170 32.14 / 0.8994 31.96 / 0.9268 /
ECBSR[59] 596 39.96 37.90 / 0.9615 33.34 / 0.9178 32.10 / 0.9018 31.71 / 0.9250 /
RLFN-S[27] 454 56.09 38.05 / 0.9607 33.68 / 0.9172 32.19 / 0.8997 32.17 / 0.9286 /
RLFN[27] 527 60.39 38.07 / 0.9607 33.72 / 0.9187 32.22 / 0.9000 32.33 / 0.9299 /

ShuffleMixer[50] 394 218.36 38.01 / 0.9606 33.63 / 0.9180 32.17 / 0.8995 31.89 / 0.9257 38.83/0.9774
SAFMN[51] 228 118.07 38.00 / 0.9605 33.54 / 0.9177 32.16 / 0.8995 31.84 / 0.9256 38.71/0.9771

SPAN-S (ours) 411 45.08 38.06 / 0.9608 33.73 / 0.9187 32.21 / 0.9001 32.20 / 0.9288 38.85 / 0.9776
SPAN (ours) 481 50.39 38.08 / 0.9608 33.71 / 0.9183 32.22 / 0.9002 32.24 / 0.9294 38.94 / 0.9777

× 4

SRCNN[11] 57 1.90 30.48 / 0.8628 27.49 / 0.7503 26.90 / 0.7101 24.52 / 0.7221 27.58 / 0.8555
FSRCNN[12] 13 2.22 30.72 / 0.8660 27.61 / 0.7550 26.98 / 0.7150 24.62 / 0.7280 27.90 / 0.8610

VDSR[24] 666 8.95 31.35 / 0.8838 28.01 / 0.7674 27.29 / 0.7251 25.18 / 0.7524 28.83 / 0.8870
DRCN[23] 1774 176.59 31.53 / 0.8854 28.02 / 0.7670 27.23 / 0.7233 25.14 / 0.7510 28.93 / 0.8854

LapSRN[28] 502 66.81 31.54 / 0.8852 28.09 / 0.7700 27.32 / 0.7275 25.21 / 0.7562 29.09 / 0.8900
CARN[2] 1592 39.96 32.13 / 0.8937 28.60 / 0.7806 27.58 / 0.7349 26.07 / 0.7837 30.47 / 0.9084
IMDN[19] 715 20.56 32.21 / 0.8948 28.58 / 0.7811 27.56 / 0.7353 26.04 / 0.7838 30.45 / 0.9075
RFDN[34] 550 20.40 32.24 / 0.8952 28.61 / 0.7819 27.57 / 0.7360 26.11 / 0.7858 30.58 / 0.9089

MAFFSRN[42] 441 39.69 32.18 / 0.8948 28.58 / 0.7812 27.57 / 0.7361 26.04 / 0.7848 /
ECBSR[59] 603 10.21 31.92 / 0.8946 28.34 / 0.7817 27.48 / 0.7393 25.81 /0.7773 /

FDIWN-M[14] 454 - 32.17 / 0.8941 28.55 / 0.7806 27.58 / 0.7364 26.02 / 0.7844 /
RLFN-S[27] 470 15.16 32.23 / 0.8961 28.61 / 0.7818 27.58 / 0.7359 26.15 / 0.7866 /
RLFN[27] 543 16.41 32.24 / 0.8952 28.62 / 0.7813 27.60 / 0.7364 26.17 / 0.7877 /

ShuffleMixer[50] 411 144.22 32.21 / 0.8953 28.66 / 0.7827 27.61 / 0.7366 26.08 / 0.7835 30.65 / 0.9093
SAFMN[51] 240 72.06 32.18 / 0.8948 28.60 / 0.7813 27.58 / 0.7359 25.97 / 0.7809 30.43/0.9063

SPAN-S (ours) 426 12.22 32.20 / 0.8950 28.64 / 0.7828 27.60 / 0.7368 26.13 / 0.7865 30.60 / 0.9095
SPAN (ours) 498 13.67 32.20 / 0.8953 28.66 / 0.7834 27.62 / 0.7374 26.18 / 0.7879 30.66 / 0.9103

Table 1. Quantitative results of the state-of-the-art ESR models on five benchmark datasets. The approach to evaluating inference time
remains consistent with RLFN [27]. The best and second-best results are marked in red and blue colors, and the bold numbers represent
that the inference speed of our model is the fastest when the performance and number of parameters are similar.

4. Experiments
4.1. Experimental Setup

Datasets and Metrics In accordance with established tech-
niques [30, 32], our models are trained on the DF2K dataset,
which is a combination of DIV2K [1] and Flickr2K [33]
datasets, comprising a total of 3450 (800 + 2650) high-
quality images. We adopt standard protocols to generate
LR images by bicubic downscaling of reference HR im-
ages. We evaluate our models on 4 different benchmark
dataset: Set5 [4], Set14 [58], B100 [40], Urban100 [18]
and Manga109 [41], PSNR and SSIM are used as perfor-
mance on the Y channel of YCbCr space for SR task.
Implementation Details Six SPAB modules with 48-
channeled feature maps are depolyed for training proce-
dure. We have employed the re-parameterization method
(REP) [9] to improve the efficiency during the inference
stage. During each training batch, 64 HR RGB patches
are cropped, measuring 256 × 256, and subjected to ran-
dom flipping and rotation. The learning rate is initialized at

5 × 10−4 and undergoes a halving process every 2 × 105

iterations. The network undergoes training in for a total
of 106 iterations on four NVIDIA A100 GPUs, with each
run taking approximately 12 hours, and the L1 loss func-
tion being minimized through the utilization of the Adam
optimizer[26]. We perform the aforementioned training set-
tings twice after loading the trained weights to obtain the
optimal results.

4.2. Quantitative Results

In this study, we conduct 2x and 4x upscaling on the SPAN
and SPAN-S models across various benchmark tests, and
compare their detailed test results with the current state-
of-the-art efficient super-resolution models [2, 11, 12, 14,
19, 23, 24, 27, 28, 34, 42, 50, 51, 54, 59]. For detailed
results, please refer to Table 1. Across multiple bench-
marks, SPAN and SPAN-S exhibit superior performance in
terms of PSNR and SSIM compared to other models, espe-
cially notable in inference time. With 50K fewer parame-
ters than RLFN and RLFN-S, SPAN and SPAN-S demon-
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σa(x) Learnable Set14 BSD100 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM

Sigmoid(x) - 28.62/0.7826 27.59/0.7366 26.08/0.7854
Sigmoid(x)− 0.5 - 28.63/0.7825 27.60/0.7368 26.10/0.7856

Sigmoid(ax)− 0.5 ✓ 28.62/0.7825 27.60/0.7368 26.12/0.7861
b× (Sigmoid(ax)− 0.5) ✓ 28.62/0.7826 27.61/0.7367 26.11/0.7860

Table 2. Performance comparison of using different activation
functions σa(x) evaluated on three benchmark datasets.

strate significant advantages in inference speed and in the
performance metrics of PSNR and SSIM. As illustrated in
Figure 1, through visualizing the relationship between im-
age quality, inference time, and model size, we observe that
SPAN achieves significantly higher PSNR than other mod-
els at comparable inference speeds; and with similar model
parameter counts, it not only performs better but also oper-
ates faster. Hence, RLFN and RLFN-S have achieved the
best current balance in terms of quality, parameter count,
and inference speed.

4.3. Activation Function

In the Section 3.2, we discuss the use of origin-symmetric
activation functions σa(x) in the context of a parameter-free
attention mechanism, its role and principles. We experiment
with and proposed several different origin-symmetric acti-
vation functions, comparing their impact on the ESR perfor-
mance with the attention mechanism. As shown in Table 2,
we conduct experiments to compare the effects of different
activation functions. To ensure model speed, we ultimately
choose σa(x) = Sigmoid(x) − 0.5 as the activation func-
tion, which is simple but effective for the attention mecha-
nism in our SPAN model. The proposed learnable activation
functions, serving as an extension to the SPAN model and a
discussion point on activation functions, demonstrate poten-
tially higher performance. However, it is observed that the
speed tends to decrease with the use of learnable activation
functions.

4.4. Ablation Study

In the ablation experiment, we uniformly conduct x4 scale
factor experiments on the models with 48 channels.
Residual Connection As discussed in Section 3, we have
improved the performance of our model under the non-
parametric attention mechanism by incorporating residual
connections within each SPAB module to mitigate exces-
sive information loss. To demonstrate the effectiveness of
these intra-module residual connections, we conduct ex-
periments by removing them from every SPAB module
in our model and comparing the results with our baseline
model. The model without residual connections is denoted
as SPAN nores. All experimental settings for this model are
kept consistent with our SPAN model.

We thoroughly train both models under identical settings
and evaluate their performance on four benchmark datasets:
Set5, Set14, BSD100, and Urban100. Table 3 presents the

Model Runtime Set5 Set14 BSD100 Urban100
(ms) PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

SPAN nores 11.65 31.25/0.8808 28.05/0.7687 27.21/0.7236 25.09/0.7496
SPAN noatt 10.85 32.07/0.8943 28.56/0.7813 27.57/0.7357 25.97/0.7817

SPAN empty 10.22 32.06/0.8939 28.56/0.7811 27.56/0.7355 26.02/0.7830
SPAN (ours) 12.22 32.18/0.8950 28.63/0.7825 27.60/0.7368 26.10/0.7856

Table 3. Performance comparison of SPAN nores, SPAN noatt,
SPAN empty, and our baseline SPAN. Runtime is the average time
of 10 runs on DF2K validation set.

Model Set5 Set14 BSD100 Urban100
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

SPAN no rep 32.11/0.8943 28.59/0.7818 27.58/0.7358 26.02/0.7833
SPAN rep 32.18/0.8950 28.63/0.7825 27.60/0.7368 26.10/0.7856

Table 4. Comparision of our baseline SPAN with re-
parameterization and SPAN no rep without using the re-
parameterization technology for training process.

results, highlighting the impact of residual connections on
model performance. Notably, these connections enhance
image quality while maintaining high inference speed.
Attention Mechanism To assess the efficacy of our atten-
tion mechanism’s foundation, which utilizes a parameter-
free attention process for information feedback, we con-
duct an experiment by removing the activation function and
the element-wise multipication operation from the attention
component within the SPAB module. This effectively elim-
inates the parameter-free attention mechanism, enabling the
module to output a direct residual connection with the orig-
inal input. Maintaining the same experimental setup, we
designate this modified model as SPAN noatt and com-
pare it across various dimensions with the original SPAN
model. Table 3 demonstrates the enhanced performance
of SPAN over SPAN noatt, validating the effectiveness of
our parameter-free attention mechanism in augmenting net-
work capabilities and accentuating high-frequency features
in feature maps.
Combination Module We also perform an extensive val-
idation of the proposed module design. The SPAB mod-
ule, which integrates residual connections with a parameter-
free attention mechanism, achieves efficient direct enhance-
ment. To evaluate this, we remove these two key compo-
nents in our experiments while maintaining other exper-
imental settings constant. Results from Table 3 demon-
strate that our proposed attention module, incorporating
residual connections, significantly improves image quality
in super-resolution tasks without compromising processing
speed. These findings robustly substantiate the effective-
ness and practicality of our module design in enhancing
super-resolution processing outcomes.
Re-parameterization As Table 4 showed, we have imple-
mented the re-parameterization technique (rep) [9] to en-
hance the efficiency of the inference phase.
Training Setting As can be seen from Table 5, training
the model one more time can improve its performance, but
more training rounds will not bring significant gains.
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PSNR 18.06 dB 21.15 dB 21.53 dB 20.48 dB
Reference Bicubic CARN-M [2] CARN [2] IMDN [19]

Urban100: img 024.png
19.75 dB 21.20 dB 21.26 dB 21.54 dB 22.26 dB

ShuffleMixer [50] FDIWN [14] SAFMN [51] EDSR [33] SPAN (Ours)

PSNR 28.14 dB 29.24 dB 29.33 dB 29.46 dB
Reference Bicubic CARN-M [2] CARN [2] IMDN [19]

Urban100: img 097.png
29.42 dB 29.54 dB 29.33 dB 29.59 dB 29.71 dB

ShuffleMixer [50] FDIWN [14] SAFMN [51] EDSR [33] SPAN (Ours)
Figure 5. Visual comparison for ×4 SR methods. The patches for comparison are marked with red boxes. (Best viewed by zooming.)

Model Set5 Set14 BSD100 Urban100
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

SPAN stage1 32.18/0.8950 28.63/0.7825 27.60/0.7368 26.10/0.7856
SPAN stage2 32.20/0.8953 28.64/0.7828 27.61/0.7370 26.13/0.7864
SPAN stage3 32.20/0.8952 28.64/0.7828 27.61/0.7371 26.13/0.7865

Table 5. Performance comparison of SPAN in different training
stages, SPAN stage3 represents our latest model.

4.5. SPAN for NTIRE 2024 challenge

Our team won the 1st place in the main track (Overall Per-
formance Track) and the 1st place in the sub-track1 (In-
ference Runtime Track) of NTIRE 2024 efficient super-
resolution challenge [45]. The model structure and training
strategy are slightly different from the above. The proposed
model has 6 SPABs, in which the number of feature chan-
nels is set to 28. DIV2K and LSDIR [31] datasets are used
for training in this challenge. During each training batch, 64
HR RGB patches are cropped, measuring 256 × 256, and
subjected to random flipping and rotation. In the training
phase, NGswin [8] is used as the teacher model for boost-
ing the restoration performance. The learning rate is ini-
tialized at 5× 10−4 and undergoes a halving process every
2 × 105 iterations. The network undergoes training for a
total of 106 iterations, with the L1 loss function being min-
imized through the utilization of the Adam optimizer [26].
We repeat the aforementioned training settings four times
after loading the trained weights. Subsequently, fine-tuning
is executed using the L1 and L2 loss functions, with an ini-
tial learning rate of 1 × 10−5 for 5 × 105 iterations, and
HR patch size of 512. We conduct finetuning on four mod-
els utilizing both L1 and L2 losses, and employ batch sizes
of 64 and 128. Finally, we integrate these four models to
obtain the ultimate model. In comparison to the RLFN

Team name PSNR PSNR Ave Time Parameters FLOPs Overall
[val] [test] [ms] [M] [G] Ranking

XiaomiMM(ours) 26.94 27.01 5.592 0.151 9.83 1
Cao Group 26.90 27.00 8.372 0.215 13.05 2

BSR 26.90 27.00 9.384 0.218 11.95 3
VPEG O 26.90 27.01 9.630 0.212 13.86 4
CMVG 26.90 27.01 10.022 0.202 12.17 5

RLFN(Baseline) 26.96 27.07 11.77 0.317 19.67 /

Table 6. Mean Results of 5 runs (With an extra zero-run to warm-
up the GPU first) on single NVIDIA GeForce RTX 3090 GPU of
NTIRE2024 ESR Challenge. The top five methods are included.

method that secure the first place in the NTIRE2022 Effi-
cient Super-Resolution Challenge, our method significantly
outperforms other methods across all metrics while attain-
ing the fastest running time.

5. Conclusion
In this paper, we have presented the Swift Parameter-free
Attention Network, an efficient SISR model that addresses
the challenges posed by conventional attention mechanisms
in terms of complex network structures, slow inference
speed, and large model size. SPAN uses a parameter-free
attention mechanism to enhance important information and
reduce redundancy. Its simple structure, symmetric activa-
tion functions, and residual connections ensure high image
quality and fast inference speed. Our extensive experiments
on multiple benchmarks have shown that SPAN image qual-
ity existing efficient super-resolution models in terms of
both performance and inference speed, achieving a signifi-
cant quality-speed trade-off. This makes SPAN highly suit-
able for real-world applications, particularly in resource-
constrained scenarios such as mobile devices. Future re-
search may apply the parameter-free attention mechanism
to other computer vision tasks and further optimize the net-
work for greater efficiency.
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