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ABSTRACT

We present CreAgentive, an agent workflow driven multi-category creative gen-
eration engine that addresses four key limitations of contemporary large language
models in writing stories, drama and other categories of creatives: restricted genre
diversity, insufficient output length, weak narrative coherence, and inability to en-
force complex structural constructs. At its core, CreAgentive employs a Story Pro-
totype, which is a genre-agnostic, knowledge graph-based narrative representation
that decouples story logic from stylistic realization by encoding characters, events,
and environments as semantic triples. CreAgentive engages a three-stage agent
workflow that comprises: an Initialization Stage that constructs a user-specified
narrative skeleton; a Generation Stage in which long- and short-term objectives
guide multi-agent dialogues to instantiate the Story Prototype; a Writing Stage
that leverages this prototype to produce multi-genre text with advanced structures
such as retrospection and foreshadowing. This architecture reduces storage redun-
dancy and overcomes the typical bottlenecks of long-form generation. In extensive
experiments, CreAgentive generates thousands of chapters with stable quality and
low cost (less than $1 per 100 chapters) using a general-purpose backbone model.
To evaluate performance, we define a two-dimensional framework with 10 narra-
tive indicators measuring both quality and length. Results show that CreAgentive
consistently outperforms strong baselines and achieves robust performance across
diverse genres, approaching the quality of human-authored novels.

1 INTRODUCTION

In recent years, the rapid advancement of large language models (LLMs) has reshaped the landscape
of natural language generation (NLG) tasks(Tian et al., 2024). From poetry composition(Wang et al.,
2025b), fiction writing(Huot et al., 2025), to research report generation(Xiong et al., 2025), LLMs
have demonstrated remarkable capabilities in short-form creation (on the scale of a few thousand
words). However, extending the application of LLMs to long-form narratives, such as serialized
novels or multi-act screenplays, remains fundamentally challenging. As shown in Table 1, real-
world creative writing tasks demand not only extensive length, but also diverse styles and complex
narrative structures, representing critical bottlenecks for existing approaches. This gap stems from
both the technical limitations inherent in the models(Liu et al., 2023) and the inherent complexity
of the art of storytelling(Chakrabarty et al., 2024a), which together constrain the scale and depth of
automated creative work.

Table 1: Comparison of narrative genres, typical word counts, and representative works.

Genre Typical Word Count Representative Work

Web Novel 2M–8M+ Worm
Murder Mystery 50k–100k Betrayal at House on the Hill
Light Novel 50k–100k per volume Mushoku Tensei
Podcast Drama 80k–150k per season Serial
Short Drama Script 60k–120k total Emma Approved
Game Script 100k–300k(main story) Genshin Impact

1
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Current research indicates that existing LLM-based automated creative writing methods face four
core limitations in long-form creative writing:

1. Lack of Genre Diversity: Most current systems are optimized for specific genres, making
it difficult to effectively transfer the same story content across different genres (e.g., novels,
screenplays, and poetry). This severely limits the ability of LLMs to generate diverse texts
(Truong et al., 2025).

2. Limited Long-Range Consistency: The models struggle to manage long-range contextual
information, which often leads to ”hallucinations” in long-form generation. This can result
in contradictory character behavior, fragmented plots, or inconsistent world building (Li
et al., 2025).

3. Output Length Constraints: Due to the limitations of context windows, existing methods
cannot generate a complete long-form text in a single pass. Repeated calls are not only
inefficient, but can also weaken overall coherence (Mao et al., 2025).

4. Lack of Complex Narrative Structures: Most current models rely on linear plot pro-
gression, making it difficult to implement advanced narrative techniques such as nonlinear
storytelling, multiple foreshadowing events, or chapter-to-chapter flashbacks and nested
plots (Yu et al., 2025).

To systematically address these challenges, we propose CreAgentive: An Agent Workflow Driven
Multi-Category Creative Generation Engine. The core idea of CreAgentive is to decouple narra-
tive logic from text generation, thereby supporting the creation of long-form, multi-genre, and com-
plex narratives. To achieve this, we introduce the novel concept of Story Prototype, which uses a
multi-version character plot dual knowledge graph to store and manage global narrative information.
Building on this, CreAgentive is designed with a three-stage multi-agent workflow: the Initializa-
tion Stage sets the core theme, setting, and main character relationships based on user requirements;
the Story Generation Stage plans the global narrative logic and plot development to generate the
story prototype; and the Writing Stage transforms the story prototype into natural language text of
the target genre. This framework design enables CreAgentive to operate independently of specific
generative models or single methodologies. Instead, it can flexibly replace and integrate diverse
generative components as needed, achieving both universality and scalability. Building upon this
foundation, CreAgentive not only ensures coherence and consistency in long-form narratives but
also holds future potential for constructing nonlinear narratives and other more complex narrative
structures. Experimental results show that CreAgentive can efficiently generate long-form texts of
millions of words or more at a relatively low generation cost, while supporting multiple genres. Its
performance on key metrics such as generated length and narrative consistency significantly outper-
forms existing methods, fully validating the framework’s practicality and adaptability for large-scale
creative writing tasks.

The main contributions of this paper are as follows:

• We introduce the concept of Story Prototype for the first time, which decouples narrative
logic from text generation through dual Character-Plot knowledge graphs. This approach
provides a new paradigm for generating long-form, multi-genre, and complex narratives.

• We propose CreAgentive, a creative writing framework built on a three-stage multi-agent
workflow. Supported by the Story Prototype, CreAgentive can effectively handle the gener-
ation of long-form, multi-genre, and complex narratives while maintaining high flexibility
and scalability.

• We designed a systematic evaluation framework for long-form story generation. This
framework combines human and automated evaluations to measure generation effective-
ness across two dimensions, quality and length, using a total of 10 narrative indicators,
thereby addressing a key gap in current research methodologies.

2 RELATED WORK

Evolution of Story Generation Methods. The field of automated story generation has evolved
from symbolic planning and early neural models to approaches driven by Large Language Mod-
els (LLMs). A central challenge it faces is maintaining long-text consistency (Alabdulkarim et al.,
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2021), which refers to the need to ensure logical coherence, factual plausibility, and world consis-
tency as the complexity of the generated text increases. Early research enhanced narrative control-
lability via planning frameworks (Yao et al., 2019; Fan et al., 2019), followed by the emergence of
outline-and-revise mechanisms that achieved more fine-grained control over long-form narratives
(Yang et al., 2022a;b; Alhussain & Azmi, 2021). With the advent of LLMs, researchers have pro-
posed methods such as explicit length control (Park et al., 2024) and extending the context window
(Bai et al., 2024). The emergence of LLMs has further advanced the field, demonstrating immense
potential (Wei et al., 2022; Coetzee, 2023). Concurrently, knowledge enhancement has become a
focal point, with researchers attempting to incorporate external structured knowledge to improve
coherence and factual grounding (Wang et al., 2023). Typical methods include collaborative gen-
eration between LLMs and knowledge graphs (Li et al., 2025; Pan et al., 2025; Zhou et al., 2024).
Nevertheless, the output of existing methods is typically limited to a few thousand words, failing to
meet the demands for long-form content such as novels or screenplays, which can range from tens
of thousands to millions of words. Moreover, these approaches often exhibit genre-specificity, typ-
ically focusing on single formats such as novels (Huang et al., 2024), screenplays (Pichlmair et al.,
2024), or poetry (Wang et al., 2025b), thereby limiting their applicability in cross-genre generation.

Multi-Agent System of Story Generation. In recent years, Multi-Agent Systems (MAS) have seen
rapid development in fields like recommender systems, robotics, and social simulation (Zhang et al.,
2024; Wang et al., 2025a; Mandi et al., 2024; Piao et al., 2025), significantly enhancing system
intelligence through task decomposition and interaction (Zhang et al., 2023). Within the domain of
story generation, MAS has demonstrated considerable potential (Xu et al., 2025). Notable systems
include Agents’ Room, StoryWriter, and BookWorld (Huot et al., 2025; Xia et al., 2025; Ran et al.,
2025), with applications extending to drama and scriptwriting (Mirowski et al., 2023). Related
research has also explored role-playing-based generation (Shao et al., 2023; Wang et al., 2024) and
human-computer collaboration (Yuan et al., 2022; Ippolito et al., 2022; Calderwood et al., 2020; Li
et al., 2024; Chakrabarty et al., 2024b; Hwang et al., 2025). However, existing methods still face
challenges in simultaneously ensuring the continuability of long texts and the coherence of extended
narratives.

Evaluation of Story Generation. The evaluation of story generation remains a significant chal-
lenge. Early methods primarily relied on human scoring (Guan & Huang, 2020; Hashimoto et al.,
2019), which later evolved to include automatic metrics such as BLEU, ROUGE, METEOR, and
BERTScore (Papineni et al., 2002; Lin, 2004; Banerjee & Lavie, 2005; Zhang et al., 2019). How-
ever, these metrics struggle to effectively measure narrative logic and creativity (Chhun et al., 2022;
Liu et al., 2024b; Bohnet et al., 2024). More recently, ”LLM-as-a-judge” approaches have been
widely adopted (Gu et al., 2024), showing promise in assessing fluency and coherence. Yet, they
may exhibit bias or inconsistent judgments on creativity (Zhou et al., 2025), and a unified evaluation
framework is still lacking.

3 CREAGENTIVE

To systematically address the challenges in long-form, multi-genre, and complex narrative creation,
we propose CreAgentive, we propose CreAgentive, an agent workflow driven multi-category cre-
ative generation engine. It abstracts "story" into a text-independent Story Prototype that decouples
narrative logic from text generation, enabling cross-genre transfer, long-range coherence, and com-
plex structure modeling. Based on this, CreAgentive designs a three-stage, multi-agent workflow:
"Initialization — Story Generation — Writing", as shown in Figure 1.

3.1 STORY PROTOTYPE

A fundamental challenge in long-form creation is maintaining coherence across extensive texts.
Existing methods often rely on outlines or paragraph-level generation, but these approaches are
too rigid to support cross-genre transfer, complex plot interweaving, or long-text consistency. To
address this, we introduce the Story Prototype as the core of CreAgentive. The Story Prototype is
a genre-agnostic narrative representation that encodes characters, events, and scenes into semantic
triples, forming a structured knowledge graph for precise narrative management and retrieval. It
employs a Dual-Knowledge-Graph Synergy Structure consisting of the Role Graph and Plot Graph,
which together serve as the semantic backbone of the global narrative. This design enables the
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Figure 1: Overview of the CreAgentive. The system consists of three multi-agent workflows: Ini-
tialization, Story Generation, and Writing

joint management of character evolution and complex causal chains, which traditional outlines or
single-graph methods struggle to achieve. The specific structure is shown in Figure 2.

Role Graph. The Role Graph is a character-centric dynamic relationship graph. Each node rep-
resents a character, containing static attributes (e.g., identity, gender, profession). Relationships
between nodes include types like kinship and romantic relationships, and are equipped with prop-
erties such as strength, direction, and chapter labels, allowing relationships to evolve over time and
capturing the subtle changes in character dynamics as the narrative progresses.

Plot Graph. The Plot Graph is a directed knowledge graph with events and scenes as basic units,
tightly linked to roles. Roles are connected to events via ”IN EVENT” relationships, and events are
connected to scenes via ”OCCURRED IN” relationships, collectively building a three-dimensional
narrative structure. It is important to note that the Plot Graph records not only the basic information
of each event and scene but also the consequences triggered by events and the specific emotional
impact on each participant. This granular, individual-level impact tracking provides a basis for
analyzing plot momentum and character changes from the overall story perspective.

This design delivers significant advantages:

• Cross-Genre Versatility: Since the Story Prototype stores abstract, genre-agnostic meta-
data, our system can seamlessly transform the same narrative prototype into multiple text
formats, such as novels and screenplays.

• Precise Narrative Retrieval: The dual-graph joint index allows us to perform efficient
queries to precisely retrieve specific character relationship evolutions or plot developments.
This provides a solid foundation for subsequent agent decision-making and narrative en-
hancement.

• Versioned Narrative Management: We implement a versioned narrative through chapter-
level prototype snapshots. This enables the system to trace back to historical versions
and provides the possibility for creating complex non-linear narrative structures, such as
flashbacks.

• Decoupling and Coherence: The Story Prototype decouples the narrative logic from the
specific text implementation. It uses an intelligent version synchronization mechanism to
ensure that while each chapter prototype evolves independently, the character attributes and
global narrative remain coherent over a long span.
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Figure 2: Illustration of the Story Prototype.

Unlike traditional outlines, the Story Prototype is not a text blueprint for writing but a genre-
independent narrative abstraction layer. Outlines focus on chapter sequence and scene arrangement,
belonging to the ”how to write” category; the Story Prototype captures character motivations, causal
chains, and background constraints, closer to the ”story itself.” This design enables CreAgentive to
truly realize the creative paradigm of ”story first, text later,” providing a more solid foundation for
long-form, multi-genre, and complex narratives.

3.2 THE INITIALIZATION WORKFLOW

This stage marks the starting point of the entire creative process. The Initialization Agent is respon-
sible for converting the user’s natural language input into a structured initial narrative configuration.
This agent uses predefined templates to extract key information from the user’s description, while
also complementing and optimizing missing or incomplete information based on context and inter-
nal rules, thereby constructing a complete initial story setup (Initial Config). This mainly includes
the characters and their relationships, the background setting, the long-term goal of the story, and
the title with initial environment details.

After extraction, completion and optimization, the Initialization Agent writes this information into
the Story Prototype, providing a complete and consistent global narrative framework for the subse-
quent Story Generation stage. This ensures the logical coherence and scalability of long-form text
creation.

3.3 THE STORY GENERATION WORKFLOW

The Story Generation workflow in CreAgentive is designed to plan the global narrative logic and plot
development, generating the Story Prototype. This workflow begins with the Short-term Goal Agent.
Based on the Story Prototype, long-term goals, and overall background, this agent generates a set
of short-term goals specific to the current chapter. Each goal represents a distinct path, designed
to enrich the plot’s development. Subsequently, the system assigns this set of goals to the Role
Agents—automatically created based on the Story Prototype—to guide their subsequent actions.

In the PlotWeave, Role Agents (e.g., Role 1, 2, 3) collaborate to generate the plot around the short-
term goal. Multiple Role Agents work together in a relay-style manner to weave the plot around this
shared goal. This mechanism is fundamentally different from existing approaches like debate (Khan
et al., 2024), competition (Cheng et al., 2024), or simple role-playing (Yu et al., 2025). Our design
emphasizes that each agent, while maintaining its independent perspective, incrementally weaves the
plot based on the contributions of the previous agent. This effectively avoids unnecessary conflicts
and significantly improves generation efficiency. Throughout this process, all roles strictly adhere
to the ”Limited Cognition” principle, meaning each Role Agent can only access information in the
Story Prototype directly related to its own character. This simulates the cognitive limitations of real
individuals, preventing ”omniscient perspectives” or logically inconsistent plots in the narrative.

To ensure the generated plot aligns with the Story Prototype and undergoes continuous optimization,
we introduce the Scorer Agent. This agent quantitatively evaluates the candidate plots produced dur-
ing the PlotWeave phase. Its scoring is based on predefined general rules (such as logical coherence,
dramatic quality) and story-specific rules (such as consistency with character motivations), all of
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which can be flexibly configured as needed. Ultimately, the highest-scoring proposal is adopted and
written back into the Story Prototype for the current chapter.

Finally, the workflow is controlled by an Exit Agent. It checks against preset, verifiable conditions
to determine whether the long-term goal has been achieved. If the condition is true, it terminates
the story generation process; otherwise, the system proceeds to the next chapter’s generation cycle.
This mechanism forms a continuous, iterative, incremental generation loop, enabling it to effectively
handle long-form narratives and fundamentally guarantee plot coherence.

3.4 THE WRITING WORKFLOW

The Writing Workflow aims to transform the Story Prototype into natural language text of a specific
genre. The process can be divided into two stages. First, the system generates a detailed writing
plan based on the current chapter’s Story Prototype. To ensure textual depth and coherence, this
stage involves the collaboration of the Recall Agent and the Thread Agent. The Recall Agent ex-
tracts relevant events and emotional memories from past chapters, providing depth and motivation
for character actions. The Thread Agent analyzes preset key plots and foreshadowing from sub-
sequent chapters, ensuring the current narration is tightly connected to future developments. This
information is then integrated to form a complete Writing Plan. The complete Writing Plan is then
executed by the Writer Agent. This agent, adhering to the user-specified genre and style, transforms
the Story Prototype content into vivid, coherent natural language text, ensuring narrative logic and
overall consistency. This multi-agent collaboration mechanism effectively addresses coherence chal-
lenges in long-form writing, offering a novel methodology for high-quality, multi-genre creative text
generation.

4 EVALUATION

We propose HNES (Hierarchical Narrative Evaluation with State-Tracking), a comprehensive eval-
uation framework that assesses generated stories along two primary dimensions: content quality and
narrative length. These dimensions are quantified through a quality score Sq and a length score Sl

respectively. To provide a balanced overall assessment, we combine these scores into a composite
metric—the Quality–Length Score (QLS)—defined as follows:

QLS =
Sq + Sl

2
(1)

4.1 QUALITY DIMENSION EVALUATION

Drawing from existing research(Yang & Jin, 2024; Chakrabarty et al., 2024a), we evaluate story
quality across seven narrative dimensions: Coherence (CH), Creativity (CR), Relevance (RE), Em-
pathy (EM), Surprise (SU), Complexity (CX), and Immersion (IM)(see Appendix B for detailed
definitions). Each dimension is rated on a scale of 1 to 10. The set of dimensions is denoted as
d ∈ D = {CH,CR,RE,EM,SU,CX, IM}. As per prior studies, the weights for each dimen-
sion, wd are determined by the Analytic Hierarchy Process (AHP):

wd = (wCH , wCR, wRE , wEM , wSU , wCX , wIM ) = (0.2, 0.2, 0.1, 0.15, 0.1, 0.1, 0.15)

Generated stories are scored using both automated and human-based methods. The scoring of gen-
erated stories incorporates both automated and human-based methods. For automated evaluation,
we employ DeepSeek-R1 (Guo et al., 2025) as the base model, with the automated evaluation of
HNES available in the Appendix C. For human evaluation, we engaged 5 literature enthusiasts, each
with a strong literary background—including a TOEFL score exceeding 108 and having read more
than 50 literary works—to independently score each dimension.

For each dimension d, we calculate an automated average score Ād and a human average score H̄d,
then combine them to get the final score for that dimension Vd:

Vd = 0.5Ād + 0.5H̄d (2)

6
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The final quality score, Sq is the weighted sum of all dimension scores:

Sq =
∑
d∈D

wdVd (3)

4.2 LENGTH DIMENSION EVALUATION

The narrative length score, Sl is based on the story’s total word count Lw and chapter count Lc. The
scoring function is defined as:

Sl =
1

2

(
log

(
1 +

Lw

1000

)
+min

(
1,

Lc

Cbaseline

))
(4)

In this formula, the word count term uses a logarithmic form to moderately reward volume and
prevent extremely long texts from dominating the score. The chapter term encourages a reasonable
narrative structure. The final length score Sl is an equal-weighted average of these two components,
ensuring that both volume and structure contribute equally to the evaluation.

5 EXPERIMENT SETUP

5.1 BASELINE

We compare CreAgentive with representative open-source approaches covering three paradigms of
story generation:

1. Direct long-form generation models. These methods generate stories end-to-end without
structural control. We evaluate two representative approaches: Direct, which employs the
base model with straightforward prompting, and LongWriter-ChatGLM4-9B, a pre-trained
long-text generation model evaluated in its original form.

2. Hierarchical generation methods. These methods decompose story writing into multiple
stages. We evaluate DOC v21 (document-level generation) and Dramatron (script genera-
tion from outlines).

3. Multi-agent based generation methods. These methods employ multiple agents to coor-
dinate narrative planning and writing. We evaluate Agents’ Room, which simulates collab-
orative story creation through agent interaction.

In addition, we include the real-world long-form web novel Worm2 for serving as a human-authored
reference.

5.2 IMPLEMENTATION

Framework-based models (Direct, DOC, Dramatron, Agents’ Room) use DeepSeek-V3(Liu et al.,
2024a) as the backbone, a large language model optimized for long-text generation and narrative
understanding, while LongWriter-ChatGLM4-9B are used as pre-trained models. For Dramatron,
which requires an outline for script generation, we first generate the outline using DeepSeek-V3
and then feed it into Dramatron for final story generation. Agents’ Room is re-implemented using
Autogen.CreAgentive is implemented based on the HAWK(Anonymous, 2025) framework using
Autogen(Wu et al., 2024) and Neo4j3 for structured memory and multi-agent coordination. All
models are prompted with identical inputs, with the expected chapter count Cbaseline set to 10 for
this experiment.

7
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Table 2: Performance comparison of CreAgentive and baseline models.

Model Type Quality Assessment Length QLS
RE CH CR EM SU CX IM Sq Words Chap Sl

Direct long-form generation models

Direct Human 9.2 8.0 7.5 6.3 7.2 7.8 6.9 7.50 650 8 0.65 4.16Auto 8.3 7.9 8.7 7.7 7.4 7.1 7.2 7.84

LongWriter-chatglm4-9b Human 8.1 8.6 7.3 8.4 6.6 7.0 7.7 7.76 2396 8 1.01 4.11Auto 7.0 6.3 8.1 6.3 5.7 5.8 6.5 6.65
Hierarchical generation methods

DOC v2 Human 7.3 7.5 6.8 7.7 8.3 7.6 7.0 7.38 7391 4 1.26 3.92Auto 4.5 4.2 8.2 5.5 5.3 5.0 6.5 5.76

Dramatron Human 8.2 7.1 7.1 7.0 7.5 8.2 7.2 7.36 653 8 0.65 3.82Auto 7.2 5.2 8.2 6.1 5.5 5.5 8.0 6.61
Multi-agent based generation methods

Agents’ Room Human 7.5 9.1 8.5 7.3 7.6 8.5 7.3 8.07 3614 5 1.01 4.46Auto 8.0 7.2 8.6 7.7 6.8 6.8 8.5 7.75

CreAgentive(ours) Human 8.7 8.5 8.8 7.8 8.0 8.7 7.4 8.28 4337 2770 1.34 4.78Auto 8.9 8.0 7.3 7.9 8.9 8.4 8.7 8.17
Human Writing

Worm Human 9.0 8.7 8.8 8.2 8.5 8.5 9.2 8.71 5158 105 1.41 4.96Auto 8.5 8.2 8.1 8.1 8.6 8.5 8.9 8.37

6 RESULTS

Our study comprises two complementary experimental components:

1. Free-generation experiment: All models—including CreAgentive and five baseline
approaches spanning two narrative genres (novels and scripts)—receive identical user
prompts and autonomously generate complete stories. Their overall generation quality is
compared in Table 2;

2. Per-chapter quality tracking experiment: We dynamically evaluate narrative quality
throughout the long-form generation process, continuously monitoring scores across seven
core dimensions—Relevance, Coherence, Creativity, Empathy, Surprise, Complexity, and
Immersion. The evolution of the aggregate Story Quality (SQ) score with increasing chap-
ter count is visualized in Figure 3, and full dimension-wise results are provided in Ap-
pendix E.

CreAgentive demonstrates outstanding performance in both human and automated evalua-
tion. As shown in Table 2, our framework achieves the highest quality scores from both assess-
ment methods, with human evaluation yielding Sq = 8.28 and automated evaluation reaching
Sq = 8.17. The strong alignment between these scores reflects remarkable consistency across
evaluation methodologies. Notably, CreAgentive excels in key narrative dimensions, particularly
creativity (CR: 8.8 human / 7.3 auto) and complexity (CX: 8.7 human / 8.4 auto), outperforming
all baseline approaches. This convergence between human and automated assessments not only
validates our evaluation framework but also confirms CreAgentive’s exceptional narrative genera-
tion capabilities (see Appendix D for robustness across different base models as Judge). Moreover,
compared with the human-authored novel Worm, CreAgentive’s generation quality is already highly
comparable and even surpasses it on certain indicators. This suggests that CreAgentive’s narrative
ability is approaching human level, marking a significant step toward automated long-form creative
writing.

1https://github.com/facebookresearch/doc-storygen-v2
2https://parahumans.wordpress.com
3https://neo4j.com/
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Figure 3: Overall quality score Sq across varying text lengths for CreAgentive and baseline models.

CreAgentive maintains exceptional stability across varying narrative scales. As shown in Fig-
ure 3a, the overall quality score Sq , remains consistently high even as the total number of generated
chapters exceeds 2,500. The score fluctuates only minorly around a mean of µ = 8.27, a remarkable
consistency that demonstrates the framework’s robustness in long-form generation. Further evidence
in Appendix E reveals that all seven quality metrics—coherence, creativity, relevance, empathy, sur-
prise, complexity, and immersion—maintain steady performance levels throughout the expansion
process. No dimension exhibits abnormal fluctuations or declining trends, confirming the system’s
stable performance across scales. In contrast, as shown in Figure 3b, all baseline models generate
significantly fewer chapters (at most 8) and exhibit substantially greater volatility in quality scores.
Their average quality (µ = 6.90) is notably lower than that of CreAgentive, and the scores fluctuate
more widely across chapters, reflecting difficulties in maintaining narrative coherence and consis-
tency over even short spans. This stark contrast underscores the limitations of existing approaches
in long-form creative generation.

Ablation Studies. We conducted ablations on three components: short-term goals, PlotWeave,
and Recall/Thread agents. As shown in Table F.1, removing any component lowered the overall
quality score (Sq). In particular, excluding short-term goals reduced Creativity and Surprise, re-
moving PlotWeave impaired Coherence and Complexity, and disabling Recall/Thread caused the
largest drop, especially in Coherence and Empathy. These results demonstrate that all components
contribute to maintaining coherent, high-quality long-form generation.

CreAgentive demonstrates notable efficiency in both time and cost. Additional experiments on base
model preferences and cost efficiency (Appendix G, H) confirm its practicality: generation remains
scalable and high-quality at low cost and moderate time. Furthermore, different base models yield
consistent evaluation patterns, with DeepSeek-R1 closely aligned with other mainstream models,
indicating no significant bias.

7 CONCLUSION

In this work, we introduced CreAgentive, an agent workflow-driven multi-category creative gen-
eration engine. At its core lies the Story Prototype, a genre-agnostic dual-knowledge-graph rep-
resentation that decouples narrative logic from text realization. Through a structured three-stage
agent workflow, CreAgentive guides narrative development from initialization and story genera-
tion to writing, ensuring consistency and coherence across long-form content. Extensive experi-
ments demonstrate that CreAgentive significantly outperforms existing approaches in both quality
and scalability, generating thousands of chapters of high-quality long-form content at minimal cost.
Looking forward, we plan to extend CreAgentive to support more complex narrative structures such
as interactive fiction and branching plots. We will also explore finer-grained control mechanisms
for stylistic variation and emotional tone, and investigate its application in real-time collaborative
human-AI writing scenarios.
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8 ETHICS STATEMENT

Our research presents CreAgentive, a multi-agent system for automated narrative generation. While
this technology enhances creative assistance, we acknowledge potential risks including content au-
thenticity and misuse concerns. We encourage responsible deployment with proper attribution and
transparency safeguards. Our goal is to augment human creativity, not replace it, and we emphasize
the importance of ethical guidelines for positive societal impact.

9 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide source code at: https://anonymous.4open.
science/r/CreAgentive-761D. Complete experimental implementation details are reported
in Sections 5.2, with evaluation methodology detailed in Section 4 and Appendix C. These resources
are provided to enable independent verification and extension of our work by the research commu-
nity.
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A THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were employed solely as an assistive tool for language refinement.
Their usage was limited to improving grammar, readability, and stylistic clarity of the manuscript.
No parts of the research process, including problem formulation, methodological design, experi-
mental implementation, or result interpretation, involved the use of LLMs. All scientific content and
conclusions are entirely the responsibility of the authors.

B QUALITY METRICS

Table B.1: Quality Metrics

Metric Explanation

Story Core & Structure

Relevance(RE) Assesses how well the story fits the initial prompt or theme. Does it
stay focused and not stray from the topic?

Coherence(CO)
Evaluates the logical flow and consistency of the plot. Are the events
smooth, without contradictions or breaks in the narrative, both within
and between chapters?

Complexity(CX) Evaluates the richness and depth of the story’s structure. Are the plot
and character relationships intricate and well-interwoven?

Reader Experience & Emotion

Empathy (EM) Measures the story’s ability to evoke emotional connection with the
reader. Are the characters believable and their struggles relatable?

Immersion (IM) Assesses the level of detail and realism in the setting. Does the world-
building pull the reader in and make them feel a part of the story?

Creativity & Uniqueness

Surprise (SU)
Looks for unexpected plot twists or clever setups that go against the
reader’s expectations. Does the story have moments that genuinely
surprise?

Creativity (CR) Determines the originality of the story. Does it avoid common clichés
and repetitive content, showcasing a unique concept?

C AUTOMATED EVALUATION OF HNES

Conventional automated evaluation methods encounter substantial challenges when applied to long-
form creative texts, primarily due to their high computational cost, limited scalability, and lack of
interpretability. To overcome these limitations, we introduce the automated evaluation of HNES,
which delivers fine-grained and interpretable assessments of long narratives in a cost-efficient and
scalable manner.

AGENT COLLABORATION

Automated evaluation integrates local evaluation and global evaluation through the collaboration of
two specialized agents:

• Chapter Analysis Agent (CAA): Performs fine-grained evaluation of individual chapters
and extracts their essential content.

• Global Evaluation Agent (GEA): Conducts holistic assessment of the narrative by lever-
aging the chapter summaries produced by CAA.
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HIERARCHICAL EVALUATION MECHANISM

To enhance the accuracy of global evaluation, we introduces the notions of Interval and Inter-
val Info:

• Interval: denotes the number of chapters jointly assessed by GEA in a single batch.
• Interval Info: refers to the cumulative narrative summary preserved after each global eval-

uation, which is subsequently utilized as contextual background for future assessments.

This hierarchical design ensures inherent scalability and efficiency, as GEA operates on refined
summaries rather than the entirety of the raw text.

Periodically, when the interval condition is met, the GEA undertakes evaluation at the narrative’s
macro level (GEA.run()). It synthesizes multiple chapter summaries generated by CAA, thereby
circumventing the computational burden of repeatedly analyzing raw text. GEA identifies cross-
chapter thematic developments, character development, and narrative threads, producing a compre-
hensive account of story quality.

FRAMEWORK LOGIC AND KEY FUNCTIONS

The operational logic of the automated evaluation framework is formally detailed in Algorithm1 .
The key functions and variables of this algorithm are defined as follows:

• INIT(start idx, chap dir): This function performs the initial setup of the work-
flow. It prepares the CAA and GEA agents and initializes the central state object, which
serves as the memory for the entire process, holding all scores, extracted features, and
contextual summaries.

• LOAD(chap dir, start idx, end idx): This function is responsible for loading
the dataset. It reads all chapter files from the specified directory, sorts them numerically,
and selects the required range of chapters to be processed.

• UPDATE(state, result): This function is central to the state-tracking mecha-
nism. After either agent runs, this function is called to integrate the new local result or
global result into the central state object. This is how narrative context is built and the
Interval Info is progressively updated.

• REPORT(state, chap dir): This function takes the final, fully populated state ob-
ject and generates the framework’s persistent output: a set of quantitative evaluation scores
derived from the entire process.

• state: This is the core data structure that embodies the “State-Tracking” in HNES. It is
a persistent object passed through the workflow that accumulates all results and context,
including the Interval Info and objective world conditions mentioned previously.

PARAMETERIZATION AND DYNAMIC ADJUSTMENT

Note: Our automated evaluation framework incorporates two key parameters with dynamic default
values to adapt to different stages of narrative development:

• Weight Allocation: When calculating the final composite score, the weights assigned to
local and global evaluation scores are dynamically adjusted. For the initial 10% of the
story’s chapters, this weight ratio is set to 4:1 (local:global) to emphasize the foundational
plot construction. Subsequently, the ratio is adjusted to 1:1, giving equal importance to the
macro-narrative structure and local details.

• Evaluation Interval: The number of chapters assessed by the Global Evaluation Agent
(GEA) in a single batch defaults to 10 chapters. This means the GEA conducts a compre-
hensive evaluation of the story’s macro-level progress at 10-chapter intervals.

Thus, by combining CAA and GEA, automated evaluation of HNES implements a dual-level evalu-
ation framework that provides precise, interpretable, and actionable feedback for long-form creative
writing.
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Algorithm 1 HNES Framework

Require: chap dir, interval, start idx, end idx
▷ 1. Setup Phase

1: state, CAA,GEA← INIT(start idx, chap dir) ▷ Initialize state and agents
2: chaps← LOAD(chap dir, start idx, end idx) ▷ Load chapters to process

▷ 2. Processing Loop
3: for each chapter in chaps do
4: local result← CAA.run(state, chapter) ▷ Always run local analysis
5: UPDATE(state, local result)
6: if interval is met then
7: global result← GEA.run(state) ▷ Periodically run global evaluation
8: UPDATE(state, global result)
9: end if

10: end for
▷ 3. Reporting Phase

11: REPORT(state, chap dir) ▷ Calculate final scores and save files
12: return final scores

[Chapter Analysis Agent] Prompt

[Role]
You are a professional literary analysis and story structure evaluation expert, skilled
in extracting core plot elements from the text and providing precise scoring based on
established literary criteria.

[Your task]:
Based on the provided [surface features of previous chapters] and [full content of this
chapter], first extract the surface features of this chapter, and then give partial scores for the
seven literary indicators focusing on the content of this chapter.

[Definition of Surface Features]:
1.Unembellished plot summary:
Describe the main characters, locations, events, and event outcomes of this chapter in
concise, objective language.
2.Objective conditions at the end of the chapter:
Includes but is not limited to changes in material quantities, character relationship status,
geographical location shifts, and task progress.

[Definition of the Seven Literary Indicators] (0–10 points each):
1.Relevance: Whether the story closely adheres to the given premise and thematic setting.
2.Coherence: Whether the plot in this chapter is logically consistent, flows naturally, and
does not contradict previous chapters.
3.Empathy: Whether the characters are believable and can evoke emotional resonance in the
reader.
4.Surprise: Whether it contains unexpected plot twists or clever setups.
5.Creativity: Whether the plot is original and avoids repetition.
6.Complexity: Whether the plot structure and character relationships are multilayered and
contain narrative depth.
7.Immersion: The degree of detail in the environment and setting, and whether it can
immerse the reader.

[Strict Scoring Rules]:
1.Score Precision and Range:
- The seven indicators allow two decimal places (e.g., 6.25).
- Scores must accurately reflect the chapter’s performance; any "comfort scoring" or
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deliberate inflation is strictly prohibited.

2.Chapter Content as the Core, Previous Features as Supplement:
Scoring should be based mainly on the actual content of this chapter, not the overall story or
earlier chapters. Previous chapters are used only to check logical consistency or relevance,
not to boost scores.

3.Treatment of Plain or Ordinary Chapters:
For chapters lacking significant conflict, twists, emotional portrayal, or novel settings,
strictly assign mid-to-low scores. Chapters with only minor highlights or small details must
not exceed 8.00 in any indicator.

4.Handling of Surprises or Highlights:
High scores for Surprise, Creativity, and Complexity can only be given when the chapter
contains clear and reasonable plot twists, original ideas, or emotional resonance. Minor
changes, generic tropes, or common plot developments should not be mistaken as highlights.

5.Independent and Objective Scoring:
Each indicator must be scored independently; do not increase one score because another
is high. All scores must be based on verifiable facts from the chapter, with no subjective bias.

6.Baseline Scoring:
- All indicators start at 6 points. If an indicator’s performance is mediocre or has obvious
flaws, the score should be below 6.
- A score above 9 indicates world-class mastery in that indicator, with no shortcomings in
other aspects.

[Notes]:
1.The plot summary must be concise, objective, and free of embellishment.
2.Scores must be based on the chapter text and known plot context; do not fabricate content.
3.Do not add extra literary commentary; output only in the specified format.

[Output Format Requirement](you must follow this format strictly, don’t add any extra ex-
planation):
{

"Surface Features": {
"Plot Summary": "...",
"Current Objective Conditions": "..."

},
"Partial Scores": {

"Relevance": score,
"Coherence": score,
"Empathy": score,
"Surprise": score,
"Creativity": score,
"Complexity": score,
"Immersion": score

}
}

[Global Evaluation Agent] Prompt

[Role] You are a professional literary work analysis and overall story quality evaluation
expert, skilled in providing global scoring and structured summaries based on core elements
from multi-chapter plots.
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[Your task]:
Based on [surface features of all chapters], and considering the overall story development,
provide a global score for the seven indicators and generate a structured story summary.

[Definition of the Seven Literary Indicators] (0–10 points each, allowing half points):
1.Relevance: Whether the whole book adheres closely to the given premise and thematic
setting.
2.Coherence: The performance of the whole book in plot connection, character develop-
ment, and logical consistency.
3.Empathy: Whether the overall story can make readers emotionally resonate with the
characters.
4.Surprise: Whether the whole book contains unexpected plot twists or clever setups.
5.Creativity: Whether the whole book demonstrates originality and avoids overused tropes.
6.Complexity: The multilayered and intertwined nature of the story’s plot structure and
character relationships.
7.Immersion: Whether the book’s overall world-building and setting are detailed enough to
create an immersive experience.

[Scoring Standards]:
1.Score Precision and Limitations:
The seven indicators allow two decimal places (e.g., 6.25).
Do not artificially inflate scores; they must reflect the true quality of the work.
If an indicator is plain, ordinary, or lacks highlights, assign mid-to-low scores (usually in
the 3–6 range).
Scores above 7.0 require solid content-based justification.

2.Use Chapter Surface Features Only:
- All scores must be strictly based on the provided chapter surface features.
- Do not assume or reference information not given in the summaries.
- The overall score must not be significantly increased because of a few standout chapters.

3.Indicator Independence:
Each indicator must be scored independently; do not raise one score because another is high.
For example, if Surprise is low, it should not be raised because Immersion or Creativity is
high.

4.Handling Highlights and Flaws:
Give high scores only for genuinely outstanding plot twists, original concepts, or complex
relationships. Penalize for lack of highlights, flat plots. Minor changes, common tropes, or
ordinary developments must not be mistaken as highlights.

5.Global Perspective Requirement:
Consider the work’s overall thematic unity, narrative consistency, character development
continuity, and structural completeness. Deduct points for plot holes, unreasonable character
actions, or contradictions in the setting.

6.Baseline Scoring:
All indicators start at 6 points. If an indicator is mediocre or has obvious flaws, score it
below 6. Scores above 9 indicate exceptional world-class mastery, with no shortcomings in
other aspects.

[Notes]:
1.You must base the scoring strictly on the provided chapter surface features.
2.Consider thematic unity, narrative consistency, and structural completeness.
3.Do not output any extra explanation; output only in the specified format.
4.Do not use any markdown characters in your output; follow the exact format.
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[Story Summary Content and Structure] (with strict constraints):
You must provide the story summary as a nested JSON object with the following three keys.
The content for each key must adhere to the strict constraints described below:

1. Overall Synopsis:
- Constraint: Must be a single, concise sentence. Strictly no more than 40 words.
- Content: Summarize the novel’s core background, the protagonist, and their fundamental
motivations.

2. Main Characters Status Update:
- Constraint: Must list no more than the 3 most critical and currently active characters
(protagonist and up to two others). The description for each character must be extremely
brief. The entire string for this key should not exceed 100 words.
- Content: A string containing the list of these key characters. For each character, include
their name, role, and a very brief summary of their current situation. Use "\n" and "\t"
for formatting. Focus only on their immediate status and goals; do not include past events
or resolved information.

3. Current Plot Status:
- Constraint: Must be a single, concise sentence. Strictly no more than 50 words.
- Content: Summarize the main plot’s immediate state, highlighting the most direct crisis
or cliffhanger at the end of the provided chapters. Do not describe past plot points.

[CRITICAL OUTPUT INSTRUCTIONS]:
- Your entire output MUST be a single, valid, parsable JSON object.
- The value for "Story Summary" MUST be a nested JSON object.
- You MUST strictly adhere to all word count and character count limits specified above.
Your response will be rejected if it violates these constraints.
- Within the "Main Characters Status Update" string, all formatting MUST use escape
characters (’\n’ for newlines, ’\t’ for tabs).
- Do NOT output any extra explanation or markdown (like ‘‘‘json) before or after the
JSON object.

[Output Format Requirement](you must follow this format strictly, don’t add any extra ex-
planation):
{

"Global Scores": {
"Relevance": "score",
"Coherence": "score",
"Empathy": "score",
"Surprise": "score",
"Creativity": "score",
"Complexity": "score",
"Immersion": "score"

},
"Story Summary": {

"Overall Synopsis": "...",
"Main Characters Status Update": "...",
"Current Plot Status": "..."

}
}
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D DIFFERENT MODEL PREFERENCES EXPERIMENTS

Table D.1: Comparison of writing quality across different base models under various generation
frameworks. Each block corresponds to one narrative generation method (Direct prompting, Long-
Writer, DOC v2, Dramatron, Agents’ Room, and CreAgentive). Within each block, we report eval-
uation scores using different base models across seven narrative dimensions—Relevance (RE), Co-
herence (CH), Creativity (CR), Empathy (EM), Surprise (SU), Complexity (CX), and Immersion
(IM)—along with the aggregated score Sq . This table highlights the sensitivity of different frame-
works to the choice of base model.

Model Base Model Quality Assessment
RE CH CR EM SU CX IM Sq

Direct

DeepSeek-R1 8.3 7.9 8.7 7.7 7.4 7.1 7.2 7.84
DeepSeek-V3-0324 8.5 8.2 8.8 7.6 7.8 7.7 8.3 8.18
GPT5-mini 7.7 6.3 8.3 6.8 6.2 6.4 6.3 6.92
Gmini2.5-Flash-Lite 8.0 8.5 9.5 7.2 7.3 6.7 6.8 7.90
Qwen3-30B-A3B 7.6 7.2 7.9 6.8 6.6 7.0 7.3 7.26

LongWriter-chatglm4-9b

DeepSeek-R1 7.0 6.3 8.1 6.3 5.7 5.8 6.5 6.65
DeepSeek-V3-0324 7.8 7.1 7.9 7.2 6.9 6.5 6.8 7.22
GPT5-mini 6.5 5.2 7.8 5.9 4.6 4.9 5.5 5.91
Gmini2.5-Flash-Lite 7.9 6.2 8.7 6.7 4.9 5.5 6.3 6.76
Qwen3-30B-A3B 7.3 6.6 7.0 6.6 6.0 6.3 7.2 6.75

DOC v2

DeepSeek-R1 4.5 4.2 8.2 5.5 5.3 5.0 6.5 5.76
DeepSeek-V3-0324 7.4 7.0 7.9 6.8 6.7 6.6 7.7 7.22
GPT5-mini 5.0 4.3 7.5 5.5 4.5 4.3 5.5 5.39
Gmini2.5-Flash-Lite 6.9 6.3 8.1 5.7 5.8 5.5 6.2 6.48
Qwen3-30B-A3B 6.6 6.0 6.6 5.7 5.7 5.5 6.4 6.12

Dramatron

DeepSeek-R1 7.2 5.2 8.2 6.1 5.5 5.5 8.0 6.61
DeepSeek-V3-0324 7.2 6.6 7.5 6.5 6.3 6.3 7.8 6.94
GPT5-mini 6.3 4.8 7.6 4.8 3.7 3.8 6.9 5.62
Gmini2.5-Flash-Lite 7.8 6.5 8.1 5.9 5.4 4.8 7.1 6.67
Qwen3-30B-A3B 7.0 6.4 7.0 6.3 6.0 6.0 7.1 6.59

Agents’ Room

DeepSeek-R1 8.0 7.2 8.6 7.7 6.8 6.8 8.5 7.75
DeepSeek-V3-0324 8.3 7.7 8.3 8.4 7.5 7.5 8.3 8.04
GPT5-mini 7.4 6.6 7.6 6.6 5.8 6.3 7.0 6.83
Gmini2.5-Flash-Lite 7.6 6.8 9.5 7.0 6.2 6.2 6.3 7.26
Qwen3-30B-A3B 7.5 6.7 7.3 7.0 6.6 7.1 7.6 7.11

CreAgentive(ours)

DeepSeek-R1 7.9 8.5 8.7 7.2 7.5 8.2 8.2 8.11
DeepSeek-V3-0324 8.7 8.6 8.7 7.4 7.9 8.8 8.3 8.35
GPT5-mini 7.5 7.7 8.0 5.5 7.0 7.1 7.9 7.31
Gmini2.5-Flash-Lite 8.1 8.0 9.0 6.4 7.2 7.6 7.2 7.73
Qwen3-30B-A3B 7.2 7.2 7.0 6.3 6.8 6.7 7.3 6.95
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E QUALITY ROBUST

Table E.1: Representative quality scores of CreAgentive across different chapter ranges. The table
reports evaluation results on seven narrative quality dimensions—Relevance (RE), Coherence (CH),
Creativity (CR), Empathy (EM), Surprise (SU), Complexity (CX), and Immersion (IM)—along with
the aggregated score Sq . To illustrate the stability and robustness of the model’s performance, we
present selected chapters as representative checkpoints rather than exhaustively reporting every step.

Chap Quality Assessment

RE CH CR EM SU CX IM Sq

10 - 50

10 8.6 8.0 8.3 8.2 7.1 7.7 8.1 8.7
20 8.8 7.9 8.4 7.3 7.6 8.3 8.7 8.1
30 8.8 8.1 8.3 7.3 7.5 8.4 8.7 8.1
40 8.7 7.9 8.3 7.4 7.7 8.3 8.7 8.1
50 8.7 7.9 8.3 7.4 7.5 8.2 8.6 8.1

100 - 550

100 8.8 7.9 8.7 7.3 7.9 8.4 8.6 8.2
150 8.8 8.0 8.8 7.2 8.1 8.5 8.6 8.3
200 8.8 8.0 8.7 7.3 8.0 8.4 8.6 8.2
250 8.8 7.9 8.7 7.4 8.1 8.5 8.6 8.3
300 8.8 8.0 8.7 7.4 8.1 8.5 8.6 8.3
350 8.8 8.0 8.7 7.4 8.1 8.5 8.6 8.3
400 8.8 8.0 8.8 7.4 8.1 8.5 8.6 8.3
450 8.8 8.0 8.7 7.4 8.0 8.5 8.6 8.3
500 8.8 8.0 8.7 7.5 8.0 8.5 8.6 8.3
550 8.8 8.0 8.7 7.4 8.0 8.4 8.6 8.3

600 - 1000

600 8.8 8.0 8.7 7.4 8.0 8.5 8.6 8.3
700 8.9 8.0 8.7 7.5 8.0 8.5 8.6 8.3
800 8.9 8.0 8.7 7.5 8.0 8.4 8.6 8.3
900 8.9 8.0 8.7 7.5 8.0 8.4 8.6 8.3

1000 8.9 8.0 8.8 7.5 8.0 8.4 8.7 8.3
1500 - 2700

1500 8.9 8.0 8.8 7.5 8.0 8.4 8.7 8.3
2000 8.9 8.0 8.9 7.3 7.9 8.3 8.7 8.3
2500 8.9 7.9 8.9 7.3 7.9 8.4 8.6 8.3
2700 8.9 8.0 8.9 7.3 7.9 8.4 8.6 8.3

F ABLATION STUDY

Table F.1: Performance comparison of CreAgentive and its ablation variants

Model Quality Assessment

RE CH CR EM SU CX IM Sq

CreAgentive 9.02 8.62 8.65 7.21 8.69 8.84 8.59 8.48
(-) Multiple short-term goals 8.65 8.11 8.40 7.22 8.24 8.70 8.16 8.17
(-) Plotweave 9.00 8.08 8.42 7.16 8.42 8.39 8.31 8.20
(-) Recall and Thread 8.55 7.52 8.50 6.67 8.30 7.75 8.46 7.93
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Figure E.1: Evaluation of CreAgentive across seven narrative quality dimensions as the number
of generated chapters increases. Each subplot reports the average score evolution along a specific
dimension: (a) Coherence, (b) Creativity, (c) Relevance, (d) Empathy, (e) Surprise, (f) Complexity,
and (g) Immersion. The results indicate how CreAgentive maintains or improves performance in
different aspects of story generation when scaling to longer narratives.
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G WRITING ABILITY OF DIFFERENT BASE MODEL

Table G.1: Different BaseModel’s Writing Ability. The table shows the quality scores of stories
generated by different base models given the same story prototype.

Model
Quality Assessment

RE CH CR EM SU CX IM Sq

Deepseek-V3-0324 8.0 8.6 8.4 6.4 8.0 8.5 8.2 8.04

GPT-5-mini 8.1 6.7 8.7 7.9 6.9 8.3 8.7 7.90

Gemini-2.5-flash-lite 7.8 7.2 8.4 7.1 6.8 7.6 8.0 7.60

Qwen3-30B-A3B 7.4 7.8 8.2 6.6 8.1 8.2 8.0 7.76

H COST

Table H.1: Cost and time efficiency of CreAgentive across different base models. The table reports
the average monetary cost (USD/Chapter), time consumption (Minutes/Chapter), and output length
(Words/Chapter) for both story generation and writing stages.

Model StorGen Writing All Ave Words/Chapter
USD / Chap Min / Chap USD / Chap Min / Chap USD / Chap Min / Chap

Deepseek-V3-0324 0.1361 6.2 0.0178 0.9 0.1539 7.1 634
GPT-5-mini 1.2078 16.6 0.2450 2.7 1.4528 19.3 5270
Gemini-2.5-flash-lite 0.0131 1.6 0.0013 0.2 0.0152 1.8 1876
Qwen3-30B-A3B 0.0140 8.9 0.0004 1.5 0.0144 10.4 2506
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