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Abstract

For regression tasks one often leverages large datasets for training predictive machine learn-
ing models. However, using large datasets may not be feasible due to computational limi-
tations or high data labelling costs. Therefore, suitably selecting small training sets from
large pools of unlabelled data points is essential to maximize model performance while
maintaining efficiency. In this work, we study Farthest Point Sampling (FPS), a data se-
lection approach that aims to minimize the fill distance of the selected set. We derive an
upper bound for the maximum expected prediction error, conditional to the location of
the unlabelled data points, that linearly depends on the training set fill distance. For em-
pirical validation, we perform experiments using two regression models on three datasets.
We empirically show that selecting a training set by aiming to minimize the fill distance,
thereby minimizing our derived bound, significantly reduces the maximum prediction error
of various regression models, outperforming alternative sampling approaches by a large
margin. Furthermore, we show that selecting training sets with the FPS can also increase
model stability for the specific case of Gaussian kernel regression approaches.

Keywords: fill distance, farthest point sampling, maximum error, dataset selection, core-
sets

1 Introduction

Machine learning (ML) regression models are widely used in applications, where we are in
particular interested in molecular property prediction (Montavon et al., 2013; Hansen et al.,
2015). One of the main goals of ML regression is to label, with continuous values, pools of
unlabelled data points for which the existing labelling methods, e.g., numerical simulations
or laboratory experiments, are too expensive in terms of computation, time, or money. To
achieve this, a subset of the unlabelled pool is labelled and used to train a ML model,
which is then employed to get fast predictions for the labels of points not considered during
training. However, the effectiveness of ML regression models is strongly dependent on the
training data used for learning. Therefore, the selection of a suitable training set is crucial
for the quality of the predictions of the model. Our focus is on selecting data points that
result in a good performance for a variety of regression models. This ansatz ensures that
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the labelling effort is not wasted on subsets that may only be useful for specific learning
models, classes of models, or prediction tasks.

We distinguish between active and passive dataset selection strategies. Active learn-
ing (Settles, 2012) involves learning one or several regression models, predicting uncertain-
ties for unlabelled data, based on which the most uncertain ones are selected for labelling
and the cycle starts anew, until (qualitative) stopping criteria are fulfilled. Unfortunately, it
typically only benefits a specific model or model class and optimizes the performance of the
models for a specific learning task, as it exploits the knowledge of the labels to iteratively
update the parameters of the models during the selection process. Passive sampling (Yu
and Kim, 2010) is based only on the feature space locations. Consequently, it has the poten-
tial to offer advantages when considering multiple learning tasks that pertain to the same
data, as it is independent of the label values associated with the analyzed data points. We
think passive sampling can be further divided into two subclasses: model-dependent and
model-agnostic. Model dependent passive sampling strategies are developed to benefit spe-
cific learning models or model classes, such as linear regression (Yu et al., 2006), k-nearest
neighbors, or naive Bayes (Wei et al., 2015), similar to active learning. Contrarily, model-
agnostic strategies have the potential to benefit multiple classes of regression models rather
than just one. Farthest point sampling (FPS) (Eldar et al., 1994) is a well-established pas-
sive sampling model-agnostic strategy for training set selection already employed in various
application fields, such as image classification (Sener and Savarese, 2018) or chemical and
material science (Deringer et al., 2021). FPS provides suboptimal solutions to the k-center
problem (Har-Peled, 2011), which involves selecting a subset of k points from a given set
by minimizing the fill distance of the selected set, that is, the maximum over the distances
between any point in the remaining set and the selected point nearest to it.

Our study aims to investigate theoretically and empirically the impact of minimizing
the training set fill distance by FPS for ML regression. For classification tasks, it was
shown that minimizing the fill distance of the training set reduces the average prediction
error of Lipschitz-continuous classification models with soft-max output layer and bounded
error function (Sener and Savarese, 2018). Unfortunately, these results do not carry over
to regression tasks, even for simpler Lipschitz-continuous approaches, such as kernel ridge
regression with the Gaussian kernel (KRR) or feed-forward neural networks (FNNs). In
particular, we provide examples where reducing the training set fill distance does not sig-
nificantly lower the average prediction error compared to random selection. The benefits of
using FPS in regression have been studied in various works (Yu and Kim, 2010; Wu et al.,
2019; Deringer et al., 2021), where it was argued that passive sampling strategies such as
FPS are more effective than active learning in terms of data efficiency and prediction accu-
racy. However, these works lack theoretical motivation, relying only on domain knowledge
or heuristics.

In this work, we focus on the maximum prediction error, which can be considered as
a measure of the robustness of the predictions of a trained machine learning model. A
large maximum prediction error signifies that in some regions of the domain of interest,
there is a significant deviation between the predicted and actual target values, that is,
there are regions of the feature space where the predictions of the trained model are not
reliable. The maximum prediction error is a helpful metric in various applications, such
as those related to material science and chemistry, where the average error provides an
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incomplete evaluation of the predictions of a model (Sutton et al., 2020; Gould and Dale,
2022). The authors of Vishwakarma et al. (2021), mention the maximum prediction error
among those metrics that are “key to comparing the performance of different models and
thus for developing guidelines and best practices for the successful application of machine
learning in chemistry”. In Zaverkin et al. (2022) and Huang et al. (2023), the maximum
error is considered to evaluate the prediction quality of machine learning models trained to
study and explore the chemical or conformational spaces. Moreover, the authors of Gerrard
et al. (2020) use the maximum error to evaluate the prediction quality of Nuclear Magnetic
Resonance spectroscopy parameters for 3-dimensional chemical structures.

Consequently, we derive an upper bound for the maximum expected prediction error
of Lipschitz continuous regression models that is linearly dependent on the training set
fill distance. We show that minimizing the training set fill distance significantly decreases
the maximum approximation error of Lipschitz continuous regression models. We com-
pare the FPS approach with other model-agnostic sampling techniques and demonstrate its
superiority for low training set budgets in terms of maximum prediction error reduction.

Our analysis offers theoretical and empirical results, which set it apart from previous
works. Specifically, we extend the theoretical work of Sener and Savarese (2018) from clas-
sification to regression, demonstrating that reducing training set fill distance lowers the
maximum prediction error of the regression model. Moreover, contrary to Yu and Kim
(2010) and Wu et al. (2019), who studied the advantages of using FPS for regression tasks,
our findings are supported by mathematical results providing theoretical motivation for
what we show empirically. We emphasize that, according to our knowledge, prior research
did not detect the relationship between reducing the fill distance of the training set using
FPS and decreasing the maximum prediction error of a regression model, neither theoreti-
cally nor empirically. In addition, we provide further theoretical examinations and empirical
investigations to show supplementary advantages of selecting training sets with the FPS for
kernel regression models, exemplified for a Gaussian kernel. Specifically, our findings indi-
cate that employing FPS for selecting training sets enhances the stability of this particular
category of models.

2 Related work

Existing work concerning model-agnostic passive sampling is mostly related to coresets ap-
proaches. Coresets (Feldman, 2019) aim to identify the most informative training data
subset, according to some principle. The simplest coreset method is uniform sampling,
which randomly selects subsets from the given pool of data points. Importance sampling
approaches, such as the CUR algorithm (Mahoney and Drineas, 2009), assign to samples
relevance-based weights. Cluster-besed methods such as k-medoids and k-medoids++ (Man-
nor et al., 2011), that are adapted version of k-means and k-means++ (Murphy, 2022),
segment the feature space into clusters and select representative points from each cluster.
Greedy algorithms iteratively select the most informative data points based on a predefined
criterion. Well-known greedy approaches for subset selection are the submodular function
optimization algorithms (Fujishige, 2005; Krause and Golovin, 2014), such as facility lo-
cation (Frieze, 1974) and entropy function maximization (Sharma et al., 2015). Various
coresets strategies have also been designed for specific classes of regression models, such

3



Climaco and Garcke

as k-nearest neighbours and naive Bayes (Wei et al., 2015), logistic regression (Guo and
Schuurmans, 2007), linear and kernel regression with Gaussian noise (Yu et al., 2006) and
support vector machines (Tsang et al., 2005). Such approaches have been designed as active
learning strategies and could be developed by exploiting the knowledge of the respective
model classes, but do not rely on the models predictions. Assuming knowledge of the learn-
ing model may even lead to the development of training set selection strategies that are
optimal with respect to some notion of optimality, as in the case of linear regression (John
and Draper, 1975). Unfortunately, these selection strategies theoretically guarantee bene-
fits only for certain classes of models. In this work, we are interested in passive sampling
strategies that are model-agnostic, thus having the potential to benefit multiple classes of
regression models rather than just one.

We investigate the benefits of employing the FPS algorithm (Eldar et al., 1994) for
training dataset selection. The farthest point sampling is a greedy algorithm that selects
elements by attempting to minimize the fill distance of the selected set, which is the maximal
distance between the elements in the set of interest and their closest selected element. The
work most similar to our is Sener and Savarese (2018), where the authors show that selecting
the training set by fill distance minimization can reduce the average classification error
on new points for convolutional neural networks (CNNs) with softmax output layers and
bounded error function. However, these benefits do not necessarily extend to regression
problems, even with simpler Lipschitz algorithms like KRR and FNN, as we illustrate
with our experiments. The advantages of using FPS, thus of selecting training sets with
a small fill distance, have also been investigated in the context of ML regression. For
instance, in Yu and Kim (2010) the authors argue that for regression problems passive
sampling strategies, as FPS, are a better choice than active learning techniques. Moreover,
in Wu et al. (2019) and Cersonsky et al. (2021), the authors have proposed variations of
FPS, and they argue that these can result in more effective training sets. These variations
involve selecting the initial point according to a specific strategy rather than randomly, and
exploiting the knowledge of labels, when these are known in advance, to obtain subsets that
are representative of the whole set in both feature and label spaces. However, these works
only demonstrate the advantages of FPS and its variations empirically and do not provide
any theoretical analysis to motivate the benefits of using these techniques for regression.

3 Problem definition

We now formally define the problem. We consider a supervised regression problem defined
on the feature space X ⊂ Rd and the label space Y ⊂ R. We assume the solution of
the regression problem to be in a function space M := {f : X → Y}, and that for each
set of weights w ∈ Rm there exists a function in M associated with it. M can be inter-
preted as the space of functions that we can learn by training a given regression approach
through the optimization of its weights w ∈ Rm. Additionally, we consider an error function
l : X × Y ×M→ R+. The error function takes as input the features of a data point, its
label, and a trained regression model and outputs a real value that measures the quality of
the prediction of the model for the given data point. The smaller the error, the better the
prediction.
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Furthermore, we consider a dataset D := {(xq, yq)}kq=1 ⊂ X × Y, k ∈ N, consisting of
independent realizations of random variables (X, Y ) taking values in Z := X ×Y with joint
probability measure pZ . We study a scenario in which we have only access to the realizations
{xq}kq=1, while the labels {yq}kq=1 are unknown, and the goal is to use ML techniques to
predict the labels accurately and fast, recovering from data the relation between the random
variables X and Y . In supervised ML, we first label a subset L := {(xqj , yqj )}bj=1 ⊂ D,
b ≪ k, with qj ∈ {1, 2, . . . , k} ∀j. We then train a regression model mL : X → Y using
a learning algorithm A(·) : 2D → Rm that maps a labelled subset L ⊂ D into weights
w ∈ Rm determining the learned function mL ∈ M used to predict the labels of the
remaining unlabelled points in U := D − L. The symbol 2D represents the set of all
possible subsets of D. In the following, we renumber the indices {qj}bj=1 associated with

the selected set L, and denote them as j, that is, L := {(xj , yj)}bj=1. Furthermore, given a

set L := {(xj , yj)}bj=1 ⊂ D we define LX := {xj}bj=1 and LY := {yj}bj=1.

In several applications the labelling process is computationally expensive, therefore,
given a budget b ≪ k of points to label, the goal is to select a subset L ⊂ D with |L| = b
that is most beneficial to the learning process of algorithm A(·). In this work we focus on
promoting robustness of the predictions, that is, we want to minimize the maximum ex-
pected error of the predictions of the labels obtained with the learned function. Specifically,
the problem we want to solve can be expressed as follows:

min
L⊂D,
|L|=b

max
(x,y)∈U

E[l(x, y,mL)|x], (1)

In other words, we aim to select and label a training set L of cardinality b, so that the
maximum expected error associated to a trained regression model mL evaluated on the
unlabelled points is minimized. We focus on model-agnostic training set sampling strategies
that have the potential to benefit various learning algorithms. In particular, we do not
optimize the data selection process to benefit only an a priori chosen class of learning
models.

4 Fill distance minimization by Farthest Point Sampling

Direct computation of the solution to the optimization problem in (1) is not possible as we
do not know the labels for the points. To cope with this issue, we derive an upper bound for
the minimization objective in (1) that depends linearly on the fill distance of the training
set. Afterwards, we describe FPS, which provides a computationally feasible approach to
obtain suboptimal solution for minimizing the fill distance.

4.1 Effects of a training set fill distance minimization approach.

First, let us introduce the fill distance, a quantity we can associate with subsets of the pool
of data points we wish to label. It can be calculated by considering only the features of the
data points.

5



Climaco and Garcke

Definition 1 Given DX := {xq}kq=1 subset of X ⊂ Rd and LX = {xj}bj=1 ⊂ DX , the fill
distance of LX in DX is defined as

hLX,DX := max
x∈DX

min
xj∈LX

∥x− xj∥2, (2)

where ∥ · ∥2 is the L2-norm. Put differently, we have that each point x ∈ DX has a point
xxxj ∈ LX not farther away than hLX,DX .

Notice that the fill distance depends on the distance metric we consider in the feature
space X . In this work, for simplicity, we consider the L2-distance, but the following result
can be generalized to other distances.

Next, we formulate two assumptions that we use in the theoretical result. The first
assumption concerns the data being analyzed and the relationship between features and
labels.

Assumption 2 We assume there exists ϵ ≥ 0 such that for each data point (xq, yq) ∈ D
we have that

E
[
|Y − E[Y |xq]|

∣∣xq

]
:=

∫
Y

∣∣y − E[Y |xq]
∣∣ p(y|xq)dy ≤ ϵ, (3)

where

p(y|xq) :=
pZ(xq, y)

pX(xq)
and pX(xq) :=

∫
Y
pZ(xq, y)dy. (4)

We refer to ‘ϵ’ as the labels uncertainty. Moreover, we assume that∣∣E [Y |x̂]− E [Y |x̃]
∣∣ ≤ λp∥x̂− x̃∥2, (5)

∀ x̂, x̃ ∈ X , where λp ∈ R+.

Formula (3) states that given a realization X = xq, the average absolute difference between
the variable Y and its conditional expectation, taken over the distribution of Y given xq,
is bounded by a positive scalar ϵ. In simpler words, given a data point location xq ∈
X in the feature space, its associated label value is not fixed. Instead, it tends to be
concentrated in a small region of the label space around its conditional expected value,
whose size is determined by the positive scalar ϵ. Formula (3) models those scenarios
where the underlying true mapping between the feature and label spaces is either stochastic
in nature or deterministic with error fluctuations of magnitude parameterized by ϵ. The
Lipschitz continuity in (5) is an assumption on the regularity of the map connecting the
feature space X with the label space Y. It tells us that if two data points have close
representations in the feature space, then the conditional expectations of the associated
labels are also close, that is, elements closer in X are more likely to be associated labels
close in Y.

The second assumption concerns the error function used to evaluate the performance of
the model and the prediction quality of the model on the training set. Firstly, to formalize
the notion that the prediction error of a trained model on the training set is bounded.
Secondly, to limit our analysis to error functions that exhibit a certain degree of regularity,
which also reflects the regularity of the regression model.
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Assumption 3 We assume there exist ϵL ≥ 0, depending on the labelled set L ⊂ D and
the trained regression model mL, such that for each labelled point (xj , yj) ∈ L we have that

E[l(xj , Y,mL)
∣∣xj ] ≤ ϵL. (6)

We consider ϵL as the maximum expected prediction error of the trained model mL on the
labelled data L. Moreover, we assume that for any y ∈ Y and L ⊂ D the error function
l(·, y,mL) is λlX -Lipschitz and that for any x ∈ X and L ⊂ D, l(x, ·,mL) is λlY -Lipschitz
and convex.

With (6) we assume that the expected error on the training set is bounded. Moreover,
with the Lipschitz continuity assumptions we limit our study to error functions that show a
certain regularity. However, these regularity assumptions on the error function are not too
restrictive and are connected with the regularity of the evaluated trained model as we show
in Remark 5. For instance, the λlY -Lipschitz regularity and the convexity in the second
argument are verified by all Lp-norm error functions, with 1 ≤ p <∞.

With that, we formulate the main theoretical result of this work, which is a theorem
that provides an upper bound for the optimization objective in (1), depending linearly on
the fill distance of the selected training set.

Theorem 4 Given D := {(xq, yq)}kq=1 = U⊔L set of independent realizations of the random
variables (X, Y ) taking values in Z := X × Y with joint probability measure pZ , trained
model mL ∈ M and error function l : X × Y ×M → R+. If Assumptions 2 and 3 are
fulfilled, then we have that

max
(x,y)∈U

E [l(x, y,mL)|x] ≤ hLX,DX

(
λlX + λlYλp

)
+ λlY ϵ︸︷︷︸

labels
uncertainty

+ ϵL,︸︷︷︸
max error
training set

(7)

where hLX,DX is the fill distance of LX in DX , ϵ and λp are the labels uncertainty and
Lipschitz constant from assumption 2, respectively, λlX and λlY are the Lipschitz constants
of the error function, and ϵL is the maximum expected error of the trained model predictions
on the labelled set L.

Proof First we want to find an upper bound for E [l(x̃, Y,mL)|x̃] for each x̃ ∈ UX . Fixed
x̃ ∈ UX , by the definition of the fill distance we know there exists xj ∈ LX such that
∥x̃− xj∥2 ≤ hLX,DX .

E [l(x̃, Y,mL)|x̃] =
∫
Y
l(x̃, y,mL)p(y|x̃)dy

≤
∫
Y

∣∣l(x̃, y,mL)− l(xj , y,mL)
∣∣p(y|x̃)dy + ∫

Y
l(xj , y,mL)p(y|x̃)dy

≤ hLX,DXλlX +

∫
Y
l(xj , y,mL)p(y|x̃)dy

(8)
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where λlX is from Assumption 3. The second inequality in (8) follows from the λlX -Lipschitz
continuity of the error function. We can bound the remaining term as follows∫

Y
l(xj , y,mL)p(y|x̃)dy ≤

∫
Y

∣∣l(xj , y,mL)− l(xj ,E [Y |x̃] ,mL)
∣∣p(y|x̃)dy

+

∫
Y

∣∣l(xj ,E [Y |x̃] ,mL)− l(xj ,E [Y |xj ] ,mL)
∣∣p(y|x̃)dy

+

∫
Y
l(xj ,E [Y |xj ] ,mL)p(y|x̃)dy

≤ λlY

∫
Y

∣∣y − E [Y |x̃]
∣∣p(y|x̃)dy

+λlY

∫
Y

∣∣E [Y |x̃]− E [Y |xj ]
∣∣p(y|x̃)dy

+

∫
Y
E[l(xj , Y,mL)

∣∣xj ]p(y|x̃)dy

≤ λlY ϵ+ λlY

∫
Y
(λphLX,DX ) p(y|x̃)dy +

∫
Y
ϵL p(y|x̃)dy

≤ λlY ϵ+ λlYλphLX,DX + ϵL.

(9)

The second inequality follows from the λlY -Lipschitz continuity of the error function and
Jensen’s inequality, which is used to obtain the conditional expectation in the integrand
of the last term. The third inequality follows from the definition of labels uncertainty,
the λp-Lipschitz continuity of the conditional expectation of the random variable Y and
the assumption that the expected error on the training set is bounded by ϵL. The fourth
inequality is obtained by taking out the constants from the integrals in the second and third
terms and noticing that, from the definition of p(y|x̃) in (4), we have

∫
Y p(y|x̃)dy = 1. Since

the above inequality holds for each x̃ ∈ UX , we have that

max
(x,y)∈U

E [l(x, y,mL)|x] ≤ hLX,DX

(
λlX + λlYλp

)
+ λlY ϵ+ ϵL. (10)

Formula (7) provides an upper bound for the minimization objective in (1) that is
linearly dependent on the fill distance of the training set. Note that our derived bound also
depends on the labels uncertainty ‘ϵ’. In particular, the larger the labels uncertainty, the
larger the bound for a fixed training set fill distance. Assuming that the maximum error on
the labelled data (ϵL) is negligible, the smaller the fill distance, the smaller the bound for the
maximum expected approximation error on the unlabelled set, conditional to the unlabelled
data locations. Although ϵL is typically considered to be small, its presence in the formula
suggests that the maximum expected error on the unlabelled set is also dependent on the
maximum error of the predictions on the labelled set used for training, thus, on how well
the trained model fits the training data. Additionally, the connection between the bound
and the regularity of the map connecting the features and the labels, and the chosen error
function are highlighted by the presence of the Lipschitz constants λp, λlX and λlY on the
right-hand side of (7).
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Algorithm 1 Farthest Point Sampling (FPS)

Input Dataset DX = {xq}kq=1 ⊂ X and data budget b ∈ N, b≪ k.

Output Subset LFPS
X ⊂ DX with |LFPS

X | = b.

1: Choose x̂ ∈ DX randomly and set LFPS
X = x̂.

2: while |LFPS
X | < b do

3: x̄ = arg max
xq∈DX

min
xj∈LFPS

X

∥xq − xj∥2.

4: LFPS
X ← LFPS

X ∪ x̄.
5: end while

We remark that if we consider the error function to be the absolute value of the difference
between true and predicted labels, Theorem 4 holds for all Lipschitz continuous learning
algorithms, such as kernel ridge regression with the Gaussian kernel and feed forward neural
networks.

Remark 5 If the trained model mL ∈M is λlX -Lipschitz continuous, then also the absolute
value error function is λlX -Lipschitz continuous. To see this, fix y ∈ Y, L ⊂ D and
x, x̃ ∈ X . Then we have

|l(x, y,mL)− l(x̃, y,mL)| =
∣∣|mL(x)− y| − |mL(x̃)− y|

∣∣ ≤ |mL(x)−mL(x̃)|.

Moreover, the absolute value error function is always λlY -Lipschitz with λlY = 1. As a
matter of fact, fixed x ∈ X , mL ∈M and y, ỹ ∈ Y we have

|l(x, y,mL)− l(x, ỹ,mL)| =
∣∣|mL(x)− y| − |mL(x)− ỹ|

∣∣ ≤ |y − ỹ|.

4.2 Selecting training sets with farthest point sampling

Theorem 4 provides an upper bound for the maximum expected value of the error function
on the unlabelled data, conditional to the knowledge of the data features. Our aim is to
select a training set by minimizing such a bound. Assuming that the value of the maximum
prediction error of the trained regression model on the training set is negligible, we can
attempt the minimization of the upper bound in (7) by solving the following minimization
problem

min
L⊂D,
|L|=b

hLX,DX , (11)

where D := {(xq, yq)}kq=1 ⊂ X × Y is the pool of data points we want to label, and

L := {(xj , yj)}bj=1 is the set of labelled points we use for training. The minimization
problem in (11) is equivalent to the k-center clustering problem (Har-Peled, 2011). Given a
set of points in a metric space, the k-center clustering problem consists of selecting k points,
or centers, from the given set so that the maximum distance between a point in the set and
its closest center is minimized, i.e., the fill distance of the k centers in the set is minimized.
Unfortunately, the k-center clustering problem is NP-Hard (Hochbaum, 1984). However,
using farthest point sampling (FPS), described in Algorithm 1, it is possible to obtain
sets with fill distance at most a factor of 2 from the minimal fill distance in polynomial
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Figure 1: Results for regression tasks on the illustrative example with a linear regression
model trained on sets of various sizes selected randomly and with the FPS. The maximum
absolute error (MAXAE) of the trained linear regression model and the theoretical bound
(TB) for the expected maximum error of the linear model, computed as in (7), are shown
for each training set size. The amount of data used for training is expressed as a percentage
of the available data points.

time (Har-Peled, 2011). It is worth to note that reducing the factor of approximation below
2 would require solving an NP-hard problem (Hochbaum and Shmoys, 1985).

The FPS can be implemented using O(|D|) space and takes O(|D||LFPS |) time (Har-
Peled, 2011). Thus, FPS provides a suboptimal solution, but obtaining a better approx-
imation with theoretical guarantees would not be feasible in polynomial time. To give a
qualitative understanding of the data efficiency of FPS, with our implementation of the
FPS algorithm, it takes approximately 70 seconds 1 to select 1000 points from the training
dataset provided within the selection-for-vision DataPerf challenge (Mazumder et al., 2022),
consisting of circa 3.3 millions points in R256.

4.3 An illustrative numerical example

To provide a more empirical understanding of our theoretical result and the effects of min-
imizing the training set fill distance using FPS, we provide an illustrative example where
we empirically compute the theoretical bound provided in Theorem 4 and compare it with
the computed maximum error achieved by a given regression model.

We analyze a set of data points D̂ := {xi}1000i=1 ⊂ [−1, 1]2, the function f(xi) = xi,1×xi,2,
which is the function we aim to predict from data, where xi = [xi,1, xi,2], and a linear
regression model. We consider the absolute error as error function, which is the absolute
value of the difference between the actual and predicted function evaluated on a specific data
point. We note that f(x) is Lipschitz continuous with respect to the absolute error function
in [−1, 1]2 with Lipschitz constant λp =

√
2. Moreover, the Lipschitz constant associated

with the absolute error of the predictions of a linear regression model are λlX = ∥aL∥2
and λlY = 1, where a ∈ R2 is the vector of the weights learned by the linear model

1. We used a 48-cores CPU with 384 GB RAM.
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trained on a set L ⊂ D. λlX coincides with the Lipschitz constant of the regression model
as we know from Remark 5. We also consider a noisy version of the dataset, by adding
random noise ϵi ∈ R with mean zero and variance 0.1 to each of the data point labels,
i.e., yi = f(xi) + ϵi. To quantify the amount of noise in the data we compute the data to

noise ratio DTNS := 1
1000

∑1000
i=1 y2i

/
1

1000

∑1000
i=1 ϵ2i , which in this illustrative experiment is

equal to 12.5. Moreover, we approximate the labels’ uncertainty with the maximal noise
magnitude ϵ̄ := max1≤i≤1000 |ϵi|.

We train the linear model independently on subsets Lj ⊂ D̂, j = 1, 2, 3, consisting of 1%,
3% and 5% of the available data points, that is, 10, 30 and 50 points, respectively. Next, we
compute the maximal error of the predictions on the training sets,{ϵLj}3j=1, and compute
the theoretical bounds (TB) related to each of the selected training sets and respective
trained models as follows

TB(Lj ,aLj ) := hLj ,D̂

(
∥aLj∥2 +

√
2
)
+ ϵLj + ϵ̄.

We consider both, training sets selected randomly and with FPS. Fig. 1 illustrate the maxi-
mum error of the predictions of the linear model trained on randomly selected training sets
(in orange) and sets selected with FPS (in blue), for the noiseless and noisy data scenarios,
respectively. Moreover, Fig. 1 illustrate the related TB (dashed lines) for each training set
size and selection strategy considered. The figure suggests that the theoretical bound cap-
tures the behavior of the true maximum error as expected from the theory, independently
of the selection strategy, the training set size, and whether the data is noisy or not. Fur-
thermore, Fig. 1 indicates that selecting the training set by fill distance minimization with
the FPS reduces the theoretical bound calculated according to (7) in Theorem 4 and the
maximum error of predictions, with respect to the randomly selected training sets. Com-
paring Fig. 1a and Fig. 1b, we can see that including noise in data increases the maximum
prediction error and the theoretical error bound, independently of the selection strategy em-
ployed. This can be expected as noise can distort the true underlying relationship between
the input features and the target variable, making the regression task more challenging. It
is also important to note that including noise does not only affect the bound in terms of
the labels uncertainty, but it also has an effect on other quantities such as the maximum
error on the training set or the Lipschitz constant of the trained regression model, which is
determined by the learned weights. This is because both the maximum error on the training
set and the learned weights depend on the label values considered in the regression task.

Additionally, it is worth highlighting that, with FPS, the maximum prediction error is
flat, that is, it converges fast to a plateau value. This is particularly evident in Fig. 1a
where noise is not included in the data and where it can be clearly seen that such a phe-
nomenon may not be reflected in our proposed bound, indicating that it may be further
improved. In the second paragraph of the empirical section 6.5.2, we empirically investigate
on three different datasets why there can be a fast decay of the maximum expected error
when using the FPS and how this is related to the data points distribution in the feature
space. Nonetheless, Fig 1 suggests that our proposed bound provides an effective qualita-
tive estimate of the expected maximum error and that reducing the training set fill distance
benefits the robustness of the trained model.
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5 Kernel ridge regression with the Gaussian kernel (KRR)

Our theoretical analysis suggests that selecting training sets by fill distance minimization
with the FPS leads to a reduction of the maximum expected prediction error of Lipschitz
continuous models. We note that our analysis relies on the Lipschitz continuity assumption
of the loss function, which is related to the regularity of the trained model under considera-
tion, as suggested by Remark 5. A natural question is whether we can highlight additional
benefits of using the FPS for selecting the training set by tightening the assumption on
the regularity of the regression model through the consideration of specific regression mod-
els. In this work, we investigate the additional benefit of selecting the training set using
FPS for kernel regression models with the Gaussian kernel, a class of regression approaches
successfully employed in various applications such as molecular and material sciences (De-
ringer et al., 2021), or robotics (Deisenroth et al., 2015). Besides considering the Lipschitz
continuity of the (absolute) error function with this regression model, we also study how
selecting the training set with the FPS increases the model stability for this specific class
of regression approaches.

Kernel ridge regression is a machine learning technique that combines the concepts of
kernel methods and ridge regression to perform non-parametric, regularized regression (De-
ringer et al., 2021). In this work, we use a Gaussian kernel function. Given two data points
xq,xr ∈ X , the Gaussian kernel is defined as follows:

k(xq,xr) := e−γ∥xq−xr∥22 , (12)

where γ ∈ R+ is a kernel hyperparameter to be selected through an optimization process.
Provided a training set L = {(xj , yj)}bj=1, the weights ααα = [α1, α2, . . . , αb]

T ∈ Rb of a KRR
model are given by the solution of the following minimization problem

ααα = arg min
ᾱαα

b∑
j=1

(mL(xj)− yj)
2 + λᾱααTKKKL ᾱαα. (13)

Here, KKKL ∈ Rb,b is the kernel matrix, i.e., KKKL(q, r) = k(xq,xr), and the parameter λ ∈ R+

is the so-called regularization parameter that addresses eventual ill-conditioning problems of
the matrixKKKL. The scalars {mL(xj)}bj=1 are the labels predicted by the KRR method asso-

ciated with the training data locations {xj}bj=1. The analytic solution to the minimization
problem in (13) is given by

ααα = (KKKL + λIII)−1y (14)

where y = [y1, y2, . . . , yb]
T .

Given the location x ∈ X of a new data point, its associated predicted label y(x) is
defined as follows

y(x) := mL(x) =
b∑

j=1

αjk(x,xj). (15)

5.1 Kernel ridge regression with data selected by FPS

To address the question of the Lipschitz continuity of the KRR with the Gaussian kernel in
view of Theorem 4 and Remark 5, we give the following lemma to express this established
fact in our context:

12
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Lemma 6 If the error function is the absolute difference between the true and predicted
labels, then the regression function provided by the kernel ridge regression algorithm with
the Gaussian kernel is Lipschitz continuous.

Proof Consider the training set features LX = {xj}bj=1 and set of learned weights αααL :=

[α1, α2, . . . , αb]
T ∈ Rb obtained by training the KRR on L. Then, given x ∈ X the predicted

label y(x) provided the KRR approximation function can be computed as follows:

y(x) =

b∑
j=1

αjk(x,xj) = αααT
Lkx, (16)

where k(x,xj) := e−γ∥x−xj∥22 , and kx := [k(x,x1), k(x,x2), . . . , k(x,xb)]
T ∈ Rb. Next,

considering x̃, x̂ ∈ X , we have

|y(x̃)− y(x̂)| ≤ |αααT
Lkx̃ −αααT

Lkx̂|
≤ ∥αααL∥2∥kx̃ − kx̂∥2

= ∥αααL∥2

√√√√ b∑
j=1

(
e−γ∥x̃−xj∥22 − e−γ∥x̂−xj∥22

)2

≤ ∥αααL∥2
√
bλk∥x̃− x̂∥2,

where λk is the Lipschitz constant of the function e−γr2 , r ∈ R+.

5.2 Increased numerical stability of Gaussian kernel regression with FPS

Numerical stability in a regression approach is a key factor in ensuring the robustness of the
learning algorithm with respect to noise and therefore its reliability. A standard criterion
for measuring the numerical stability in case of kernel regression is the condition number of
the kernel matrix, KL ∈ Rb,b. The condition number of a matrix is defined as

cond(KL) := ∥KL∥2∥K−1
L ∥2 =

λmax(KL)

λmin(KL)
, (17)

where λmax(KL) and λmin(KL) are the largest and smallest eigenvalues of KL, respectively.
The smaller the condition number, the more numerically stable the algorithm. For high
condition numbers, the numerical computations involving the kernel matrix can suffer from
amplification of rounding errors and loss of precision that can lead to numerical instability
when performing operations like matrix inversion or solving linear systems involving the
kernel matrix. Such phenomena may also lead to instability of the predictions as small
variations in the input may lead to significant variations in the output.

To increase the model stability we aim to select a training set that leads to a kernel
matrix with a small condition number (17). In the following, we recapture results related
to the stability of the kernel matrix that have been collected in Wendland (2004) in the
context of numerical mathematics. Our goal is to connect these results with the FPS
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and show that FPS can be used to increase the stability of KRR models by reducing the
condition number of the kernel matrix. For further information and analysis on the stability
of kernel matrices, we direct the reader to Wendland (2004), Chapter 12. From the cited
literature, we know that the largest eigenvalue of a kernel matrix is mainly dependent on
the number of points we consider and not on how we choose them. In particular, the value
of the largest eigenvalue can be bounded as follows

λmax(KL) ≤ b max
q,r=1,...,b

|KL(q, r)|. (18)

Thus, the maximum eigenvalue is bounded by a quantity that depends linearly on the
number of training samples times the maximal entry of the kernel matrix. Since we are
considering Gaussian kernels, the maximal entry of the kernel is bounded. Consequently,
the value of the maximal eigenvalue grows at most as fast as the number of points we select,
independently of how we choose them.

On the contrary, the value of the smallest eigenvalue is strongly dependent on how we
choose the training points. To study that, we use the separation distance, a quantity we
can associate to subsets of our pool of unlabelled data points.

Definition 7 Given set LX := {xj}bj=1 ∈ Rd, the separation distance of the points in LX
defined as

sLX :=
1

2
min

xq ,xr∈LX
q ̸=r

∥xq − xr∥2.

In words, the separation distance is half the minimal distance between two points in LX .
Given a training set L ⊂ D we define sLX to be its separation distance.

With the concept of separation distance in mind, we observe that the value of the
smallest eigenvalue of the Gaussian kernel matrix can be bounded from below as (Wendland,
2004)

λmin(KL) ≥ Cd

(√
2γ

)−d
e

−40.71d2

(s2LX
γ)

s−d
LX

, (19)

where d ∈ N is the training data dimension, which is fixed, γ ∈ R+ is the Gaussian kernel
hyperparameter, representing the width of the Gaussian, and sLX ∈ R+ is the training
set separation distance. It is important to notice that the lower bound of the smallest
eigenvalue decreases exponentially as the separation distance of the selected set decreases.
Consequently, given two training sets of the same size, a small difference in their separation
distance may lead to a large difference between the smallest eigenvalue of their corresponding
kernel matrices, thus also in condition number and model stability. Note that Theorem 12.3
from Wendland (2004) provides a general lower bound for the minimum eigenvalue for all
kernels that are, slightly simplified, a positive definite function that possesses a positive
Fourier transform, where the bound depends on the separation distance and properties of
the Fourier transform. This result holds, besides for the Gaussian kernel, for example also for
kernels from the Matérn class under some conditions on the kernel parameters (Rasmussen
and Williams, 2006). Given Formula (19), in order to increase the model stability of the
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kernel regression approach with Gaussian kernel, we aim to select a training set that solves
the following NP optimization problem

max
L⊂D
|L|=b

sLX . (20)

Interestingly, the FPS provides sets with separation distance at most a factor of 2 from
the maximal separation distance (Eldar et al., 1994). Moreover, to obtain an approximation
factor better than 2, an NP problem must be solved. Thus, the FPS provides in polynomial
time a solution with an optimal approximation factor to both the problems (11) and (20).
Consequently, when we consider kernel regression approaches with the Gaussian kernel,
selecting the training set with the FPS leads to more robust and stable models.

6 Experimental results

The main focus of this section is to investigate the effects of minimizing the training set
fill distance on regression tasks from quantum chemistry, where molecular properties are
predicted on the QM7, QM8 and QM9 datasets. In particular, we study the performance of
FPS in comparison to several sampling baselines while using two machine learning models for
prediction, KRR and FNN. Additionally, we empirically investigate the potential benefit of
minimizing the training set fill distance for multivariate regression tasks, that is, regression
tasks where the label value to predict is multidimensional. More precisely, we focus on the
force-field prediction task on molecular trajectories from the rMD17 dataset. The molecular
force-field consists of the per-atom forces in a molecule.

Note that our GitHub repository2 contains all the code necessary to reproduce the results
we present. The repository includes code for downloading, reading, and preprocessing the
datasets, our implementation of the FPS, regression models, and evaluation procedures.
Furthermore, we have included a Jupyter notebook that reproduces the experiments on
QM7, with a runtime of only a few minutes.

6.1 Datasets

QM7 (Blum and Reymond, 2009; Rupp et al., 2012) is a benchmark dataset in quantum
chemistry, consisting of 7165 small organic molecules with up to 23 atoms including 7 heavy
atoms: C, N, O and S. It includes information such as the Cartesian coordinates and the
atomization energy of the molecules. We use QM7 for a regression task, where the feature
vector for a molecule is the Coulomb matrix (Rupp et al., 2012). The Coulomb matrix is
defined as

Ci,j =

{
1
2z

2.4
i if i = j
zizj

∥ri−rj∥2 if i ̸= j
(21)

where zi is the nuclear charge of the i-th atom and ri is its position. In the case of QM7
each molecule is thereby represented as an element in R529, and the label value to predict
is the atomization energy, a scalar value describing amount of energy in electronvolt (eV)
required to completely separate all the atoms in a molecule into individual gas-phase atoms.

2. at https://github.com/Fraunhofer-SCAI/Fill_Distance_Regression
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QM8 (Ruddigkeit et al., 2012; Ramakrishnan et al., 2015) is a curated collection of
21,786 organic molecules with up to 8 heavy atoms (C, N, O, and F). For each of the
molecules it provides the SMILES representation (Weininger, 1988) together with various
molecular properties, such as the lowest two singlet transition energies and their oscillator
strength. These molecular properties have been computed considering different approaches.
In this study we consider those values computed with hybrid exchange correlation functional
PBE0. To generate the molecular descriptors we employ Mordred (Moriwaki et al., 2018),
a publicly available library that exploits the molecules’ topological information encoded in
the SMILES strings to provide 1826 physical and chemical features. To work with a more
compact representation, we remove 530 features for which the values across the dataset
have zero variance. Thus, each molecule in QM8 is represented by a vector in R1296.
Furthermore, we normalize the features provided by the Mordred library, to scale them
independently in the interval (0, 1). The label value to predict in the regression task is
the lowest singlet transition energy (E1), measured in eV, describing the energy difference
between the ground state and the lowest excited state in a molecule when both states
have singlet spin multiplicity. It is an important property in understanding the electronic
behavior of molecules.

QM9 (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) is a publicly available quantum
chemistry dataset containing the properties of 133,885 small organic molecules with up
to nine heavy atoms (C, N, O, F). QM9 is frequently used for developing and testing
machine learning models for predicting molecular properties and for exploring the chemical
space (Faber et al., 2017; Ramakrishnan and von Lilienfeld, 2017; Pronobis et al., 2018).
QM9 contains the SMILES representation (Weininger, 1988) of the relaxed molecules, as
well as their geometric configurations and 19 physical and chemical properties. In order
to ensure the integrity of the dataset, we have excluded all 3054 molecules that did not
pass the consistency test proposed by Ramakrishnan et al. (2014). Additionally, we have
removed the 612 compounds that could not be interpreted by the RDKit package (Landrum,
2012). Furthermore, in order to ensure the uniqueness of data points, we have excluded 17
molecules that had SMILES representations that were identical to those of other molecules
in the dataset. Following this preprocessing procedure, we obtained a smaller version of
the QM9 dataset comprising 130,202 molecules. The molecular representation we employ
is based on the Mordred (Moriwaki et al., 2018) library, as for the QM8 dataset, with
the difference that in this case we do not normalize the features, to show that our results
are independent of the normalization. To work with a more compact representation, we
remove 519 features for which the values across the dataset have zero variance. Thus, each
molecule in QM9 dataset is represented by a vector in R1307. The label value to predict is
the HOMO-LUMO energy, measured in eV, describing the difference between the highest
occupied (HOMO) and the lowest unoccupied (LUMO) molecular orbital energies. It is a
useful quantity for examining the molecules kinetic stability.

The revised MD17 (Christensen and von Lilienfeld, 2020b) (rMD17) is an updated
version of the molecular dynamics dataset (MD17) (Unke et al., 2021) commonly used
for developing and testing machine learning models for force-field prediction (Schütt et al.,
2017; Gasteiger et al., 2022; Liu et al., 2022). The rMD17 consists of temporal trajectories
of various small organic molecules of varying sizes and complexity. The dataset provides
information on the Cartesian coordinates, atomic charges, and per atom forces, that is,
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the force-field, of each molecule at each time step of the molecules’ trajectories. The per
atom forces are provided in kcal

mol×̊angstrong . We use the rMD17 for a multivariate regression
task, in which, using the atoms coordinates we aim at predicting the per atom forces of the
molecules over the course of their trajectories. The molecular representation we use for the
regression task is the one proposed by Chmiela et al. (2017), consisting, for each molecule,
of a matrix D ∈ R3na×3na defined as follows

Dij =

{
∥ri − rj∥−1

2 if i > j

0 if i ≤ j

where ri ∈ R3 is the geometrical position of the i-th atom and na is the number of atoms
in the analyzed molecule. In this work, we study the trajectories of the Benzene with 9
atoms, Uracil and Malonaldehyde each consisting of 12 atoms. The trajectories of each of
the considered molecules consists of 100,000 time steps.

6.2 Baseline sampling strategies

We compare the effects of minimizing the training set fill distance through the FPS algorithm
with three coresets benchmark sampling strategies. Specifically, we consider random sam-
pling (RDM), the facility location algorithm and k-medoids++. Random sampling (RDM)
is considered the natural benchmark for all the other coreset sampling strategies (Feldman,
2019), and consists of choosing the points to label and use for training uniformly at ran-
dom from the available pool of data points. Facility location (Frieze, 1974) is a greedy
algorithm that aims at minimizing the sum of the distances between the points in the pool
and their closest selected element. k-medoids++ (Mannor et al., 2011) is a variant of k-
means++ (Arthur and Vassilvitskii, 2007), it partitions the data points into k clusters and,
for each cluster, selects one data point as the cluster center by minimizing the distance be-
tween points labelled to be in a cluster and the point designated as the center of that cluster.
Both, facility location and k-medoids++, attempt to minimize a sum of pairwise distances.
However, the fundamental difference is that facility location is a greedy technique, while
k-medoids++ is based on a segmentation of the data points into clusters.

6.3 Regression models

In this work we use ML regression models that have been utilized in previous works for
molecular property prediction tasks. Specifically, we consider kernel ridge regression with
the Gaussian kernel (KRR) (Stuke et al., 2019; Deringer et al., 2021) and feed forward neural
networks (FNNs) (Pinheiro et al., 2020). KRR and FNN are of interest to us because of
their Lipschitz continuity, which, from Remark 5, we know is a required property to validate
our theoretical analysis.

We already described KRR in Section 5 and showed the Lipschitz continuity. The
hyperparameters γ and λ are optimized through the following process: first we perform
a cross-validation grid search to find the best hyperparameter for each training set size
using subsets obtained by random sampling. Next, the average of the best parameter pair
for each training set size is used to build the final model. The KRR hyperparameters are
varied on a grid of 12 points between 10−14 and 10−2. Note that, we do not use an optimal
set of hyperparameters for each selection strategy and training set size. This decision is
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made because we aim to analyze the qualitative behaviour of a fixed model, where the only
variable affecting the quality of the predictions is the selected training set.

Feed-forward neural networks (Goodfellow et al., 2016) (FNNs) are probably the simplest
deep neural networks. Given x ∈ X the predicted label, y(x), provided by a FNN, with
l ∈ N layers, can be expressed as the output of a composition of functions, that is,

y(x) := ϕl ◦ σl ◦ ϕl−1 ◦ σl−1 ◦ · · · ◦ ϕ1(x), (22)

where the ϕi are affine linear functions or pooling operations and the σi are nonlinear
activation functions. Following along (Pinheiro et al., 2020), we set l = 3, consider only
ReLu activation functions and define

ϕi(x) = W ix+ bi (23)

where the weight matricesW i and the biases bi are learned by minimizing the mean absolute
error between the true and predicted labels of the data points in the training set. The
Lipschitz continuity of FNN and other more advanced neural networks has been shown in
the literature (Scaman and Virmaux, 2018; Gouk et al., 2020).

For the multivariate regression task we use the gradient-domain machine learning (GDML)
method developed in Chmiela et al. (2017), which we follow to introduce the main idea be-
hind GDML, briefly. See Chmiela et al. (2017) for further information on this regression
technique. GDML aims to learn the functional relationship

f̂F : xi → F i

between the coordinates xi ∈ R3na of the atoms in a given molecule and the per-atom forces
F i ∈ R3na . The GDML method relies on a kernel ridge regression technique with Matérn
kernel functions to learn such function relationships from data. Given a training dataset
L = {xj}bi=1, the estimation of the function f̂F on a data point x representing the per atom
location in the cartesian space takes the form

f̂F (x) :=

b∑
j=1

3na∑
i=1

(αj,i)
∂

∂xj,i
∇k(x,xj),

where xj = [xj,1, . . . , xj,3na ], the parameters ααα ∈ Rb×3na are learned by solving a ridge
regression type optimization problem, and the function k : R3na×R3na → R is the employed
Matérn kernel function. Given that GDML is based on a differentiable Matérn kernels
we expect its predictions to exhibit some regularity. However, analyzing the Lipschitz
continuity of this regression model is beyond the scope of this work.

6.4 Evaluation metrics

This section introduces and defines the metrics we consider to evaluate the performances
of the studied regression models. We consider evaluation metrics for univariate and multi-
variate tasks, that is, for regression tasks with scalar and vector-valued labels, respectively.
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Univariate regression

We consider two metrics to evaluate the performance of the ML methods used for the
regression tasks with scalar label values: Maximum Absolute Error (MAXAE) and Mean
Absolute Error (MAE). The MAXAE is the maximum absolute difference between the true
target values {yi}ni=1 and the predicted values {ỹi}ni=1, that is,

MAXAE := max
1≤i≤n

|yi − ỹi|, (24)

where n is the number of unlabelled data points in the analyzed data pool. The MAE is
calculated by averaging the absolute differences between the predicted values and the true
target values, that is,

MAE :=
1

n

n∑
i=1

|yi − ỹi|. (25)

Furthermore, to evaluate the stability of the KRR approach we also consider the condition
number of the kernel obtained from the training data defined as in (17).

Multivariate regression

We consider three metrics to evaluate the performance of the ML method used for the force-
field regression tasks with vector-valued label values: the atom-wise maximum error over
the predicted forces (MAXAEF ), the molecule-wise maximum MAE (MAXMAEF ) and the
mean absolute error (MAEF ). The MAXAEF is the maximum absolute difference between
the entries of the true target values {F i}ni=1 ⊂ R3na , describing the per-atom forces of the
analyzed molecule with na atoms, and those of the predicted values {F̃ i}ni=1 ⊂ R3na , that
is,

MAXAEF := max
1≤i≤n

max
1≤j≤3na

|Fi,j − F̃i,j |, (26)

where F i = [Fi,1, Fi,2, . . . , Fi,3na ] and the 3na is due to the fact that for each of the na atoms
in the molecule we consider the forces along the three Cartesian axes. The MAXMAEF is
defined as follows:

MAXMAEF := max
1≤i≤n

 1

3na

3na∑
j=1

|Fi,j − F̃i,j |

 . (27)

Both, the MAXAEF and the MAXMAEF , are quantities we introduce to evaluate the
robustness of the predictions of a given regression model for the force-field prediction task.
The MAXAEF provides an atom-wise information on the worst case prediction error while
the MAXMAEF focuses on the molecule-wise worst case error. To evaluate the average
performance of a multivariate regression model we consider the MAEF , that is, the average
absolute differences between the predicted values and the true target values:

MAEF :=
1

3nna

n∑
i=1

3na∑
j=1

|Fi,j − F̃i,j |. (28)
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(a) KRR on QM7
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(b) KRR on QM8
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(c) KRR on QM9

Figure 2: Results for regression tasks on QM7, QM8 and QM9 using KRR trained on sets
of various sizes, expressed as a percentage of the available data points, and selected with
different sampling strategies. MAXAE (top row) and MAE (bottom row) are shown for
each training set size and sampling approach.

6.5 Numerical Results

The experiments we perform involve testing the predictive accuracy of each trained model
on all data points not used for training, in terms of the MAXAE and MAE for the molecular
property prediction task and of the MAXAEF , MAXMAEF and MAEF for the force-field
prediction task. For each sampling strategy, we construct multiple training sets consisting
of different amounts of samples. For each sampling strategy and training set size, the
training set selection process is independently run five times. In the case of RDM, points are
independently and uniformly selected at each run, while for the other sampling techniques,
the initial point to initialize is randomly selected at each run. Therefore, for each selection
strategy and training set size, each analyzed model is independently trained and tested
five times. The reported test results are the average of the five runs. We also plot error
bands, which, unless otherwise specified, represent the standard deviation of the results.
We remark that the final goal of our experiments is to empirically show the benefits of
using FPS compared to other model-agnostic state-of-the-art sampling approaches. We do
not make any claims on the general prediction quality of the employed models on any of
the studied datasets.

6.5.1 Molecular property prediction on QM7, QM8 and QM9 datasets

Fig. 2 and Fig. 3 show the results for the regression tasks on the QM7, QM8 and QM9
datasets using KRR and FNN, respectively. The graphs on the top rows of Fig. 2 and Fig. 3
illustrate the maximum error of the predictions on the unlabelled points. The results suggest
that, independently of the dataset and the regression model employed for the regression task,
selecting the training set by fill distance minimization using FPS, we can perform better
than the other baselines in terms of the maximum error of the predictions.
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(a) FNN on QM7
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(b) FNN on QM8
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(c) FNN on QM9

Figure 3: Results regression tasks on QM7, QM8 and QM9 using FNN trained on sets
of various sizes, expressed as a percentage of the available data points, and selected with
different sampling strategies. MAXAE (top row) and MAE (bottom row) of the predictions
are shown for each training set size and sampling approach.

The graphs on the bottom row of Fig. 2 and Fig. 3 show the MAE of the predictions on
the QM7, QM8 and QM9 datasets for KRR and FNN, respectively. These graphs indicate
that selecting training sets with FPS doesn’t drastically reduce the MAE of the predictions
on the unlabelled points with respect to the baselines, independently of the dataset and
regression model. On the contrary, we observe examples where FPS performs worse than
one of the baselines, e.g., with the FNN on QM7, QM8 and QM9 when trained with 5% of the
available data points. These experiments suggest that, contrary to what has been shown for
classification (Sener and Savarese, 2018), selecting training sets by fill distance minimization
does not provide any significant advantage compared to the baselines in terms of the average
error. This marks a fundamental difference between regression and classification tasks
regarding the benefits of reducing the training set fill distance. The graphs on the top row
of Fig. 4 show the condition number of the regularized kernel matrices generated during
training of the KRR approach and used to calculate the regression parameters as shown in
(14). For QM9, the condition number appears not to be affected by the training dataset
choice, while for QM7 and QM8, choosing training sets with FPS reduces the condition
number of the regularized kernel, particularly in the low data regime, leading to improved
stability of the learned model as discussed in Section 5.2. We remark that the graphs in the
top row of Fig. 4 depict the condition number of the regularized kernel matrixKKKL+λIII, where
KKKL is the Gaussian kernel matrix built from the training data and λIII is the regularization
term, introduced in (13), used to address ill-conditioning problems. The hyperparameter
λ has been chosen following a procedure based on cross-validation on randomly selected
subsets of the available data pool, as explained in Section 6.3. The values of λ we employed
are 1.9 · 10−4, 2.2 · 10−3 and 1.5 · 10−11 for QM7, QM8 and QM9, respectively. The bottom
row of Fig. 4 illustrates the condition numbers of the non-regularized kernels. From the
figure it can be clearly seen that, if no regularization is applied, for QM7 and QM8 the
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Figure 4: Condition number of the regularized (top row) and non-regularized (bottom row)
Gaussian kernels are shown for each dataset, training set size and sampling approach. The
graphs are on log-log scale and the error bands represent the confidence interval over five
independent runs of the experiments.

difference between the condition numbers of the matrices obtained with the FPS and those
obtained using the benchmark strategies is close to an order of magnitude, as expected from
(19). As for QM9, we still see a lower condition number when using the FPS in the low data
limit, until 7% of the data is employed for training. Notice that for QM9, the magnitude of
the condition number is significantly higher than for the other datasets due to the larger size
of the kernel matrix. It is also important to mention that, in our experiments differences in
the conditions numbers are mainly due to differences in the minimum eigenvalues, in line
with the theory reported in Section 5.2.

6.5.2 Empirical analysis and discussion

This section further examines the empirical results presented in Section 6.5.1. Specifically,
we identify the overall trends of the MAXAE and relate them to our theoretical study,
focusing on their connection with the concept of fill distance of the training set. We em-
phasize what we think should be the practical application of our theoretical result. Next,
we analyze the benefit of employing the FPS from a more empirical perspective, focusing
on understanding how the FPS selection process works, that is, what points are prioritized
during the selection process, how they are distributed, and what consequence this has on
the learning process of a given regression model. Next, based on the observations of our
empirical study, we discuss the limitations of the FPS.

Interestingly, with FPS, the MAXAE converges fast to a plateau value for all datasets
and regression models (Figs. 2 and 3). Differently, with the baseline approaches, the
MAXAE has much larger values in the low data regime and tends to decrease gradually
as the size of the training sets increases. It is important to notice that these trends of the
MAXAE of the predictions are directly correlated with the fill distances of the respective
labelled sets used for training, illustrated in Fig. 5a. From Fig. 5a it can be clearly seen
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Figure 5: (a) Fill distances of the selected training sets. (b) Euclidean distances to the
nearest neighbour and (c) density of such distances for molecules in QM7 (top row), QM8
(middle row) and QM9 (bottom row). In (b) the red lines are the average distances between
the molecules in the datasets and their nearest neighbour and the molecules are sequentially
numbered such that the distances decrease in magnitude as the associated molecule numbers
increase.

that independently of the dataset considered, with FPS, the fill distances are consistently
lower even for small data budgets, while with the benchmarks, the fill distances are much
larger in the low data regime and gradually decrease as the size of the training set increases.
These observations indicate that the training set fill distance is directly correlated with the
maximum error of the predictions on the unlabelled set. Consequently, by minimizing the
training set fill distance, we can drastically reduce the MAXAE of the predictions. Nev-
ertheless, our theoretical analysis shows that the training set fill distance is only linked
to the maximum expected value of the error function computed on the unlabelled points.
Moreover, this bound also depends on other quantities we may not know or that we cannot
compute a priori. Namely, the labels uncertainty and the maximum prediction error on the
training set, quantifying how well the trained regression model fits the training data. Thus,
we believe that the training set fill distance should not be considered as the only parame-
ter to obtain an a priori quantitative evaluation of the MAXAE of the predictions, but as
a qualitative indicator of the model robustness that, if minimized, leads to a substantial
reduction of the MAXAE.
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As we mentioned, the bound provided in Theorem 4 also depends on the label’s uncer-
tainty and the maximum error on the training set. Thus, it is worth to provide additional
insight on these two quantities. Unfortunately, the labels uncertainty is an intrinsic prop-
erty of the dataset that we cannot compute or estimate unless we know the true solution
of the regression problem or we have an estimate of the error performed by the numerical
procedure used to create the dataset. Nonetheless, we can perform a-posteriori computation
of the maximum error on the training sets and evaluate its behaviors with respect to the
different selection strategies and the regression models we consider. Thus, in what follows
we analyze the maximum error on the training sets selected for the experiments in Sec-
tion 6.5.1 related to the best and worst performing selection strategies, that is, we consider
FPS and random sampling, respectively.

Fig. 6 shows the maximum absolute prediction error on the training sets for QM7, QM8
and QM9 using KRR (top row) and FNN (bottom row). The training sets we consider
are the same we used for the experiments in Figs. 2 and 3. It can be clearly seen that
the maximum error tends to increase as the size of the training set increases, which is an
expected result since the more data samples we have, the more difficult it becomes for the
model to accurately fit all the data points. Moreover, it is worth noticing that the behavior
of the maximum error on the training set for the KRR is consistent across different datasets
and training set sizes, independently of the selection strategy we consider. In particular
Fig. 6 suggests that, for the KRR, maximum errors on the training sets selected with the
FPS and randomly are comparable. This observation also holds for the FNN on QM7. This
fact indicates that differences in the maximum error on the relative test sets are mainly due
to the other quantities appearing in the bound provided in Theorem 4, such as the training
set fill distance. However, when comparing the FPS and random sampling (RDM) on QM8
and QM9 with FNN, we notice more pronounced differences. Notably, on the training sets
selected with RDM the maximum error tends to be smaller than on those selected with
FPS. This may be motivated by the fact that FPS tends to select points that are farther
apart and potentially isolated, as we later see, making it more difficult to reach local minima
in the nonlinear optimization problem we are required to solve for the optimization of the
weights of the FNN. It is also interesting to compare Fig. 6, which illustrates the error on
the training sets, with Figs. 2 and 3, which illustrates the error on the relative test sets.
From this comparison, we notice that for KRR, the maximum error on the training set is
negligible or much smaller compared to the maximum error on the test set, particularly for
QM8 and QM9. This is not the case for the FNN regression model. Specifically, with FNN
on QM8 and QM9, the maximum error on the training sets selected with FPS is larger than
on the test set. We relate this to the presence of isolated points in the training set that are
difficult to learn when solving a nonlinear optimization problem.

As a matter of fact, we think that the effectiveness of FPS is also due to its ability
to sample, even for small training sets sizes, those points that are at the tails of the data
distribution and that are convenient to label, as the predictive accuracy of the learning
methods on those points would be limited due to the lack of data information in the portions
of the feature space where data points are more sparsely distributed. To see this empirically,
let us first consider Fig. 5b and Fig. 5c, showing for each molecule the Euclidean distance
to the respective closest molecule and the density of such distances, respectively, for the
QM7, QM8 and QM9 datasets. Fig. 5b shows that, in all the analyzed datasets, there are
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Figure 6: MAXAE on training set for QM7, QM8 and QM9 using KRR (top row) and FNN
(bottowm row) trained on sets of various sizes, expressed as a percentage of the available
data points, and selected randomly (RDM) or with FPS.

“isolated” molecules for which the Euclidean distance to the nearest molecule is more than
twice the average distance between the molecules in the dataset and their nearest neighbor,
represented by the red line in the graphs. Fig. 5c, representing the density distribution
of the distances of the molecules to their closest data point, tells us that the “isolated”
molecules are only a very small portion of the dataset and, therefore, represent the tail of
the data distribution. We now see that FPS, contrary to the other baselines, can effectively
sample the isolated molecules even for a low training data budget. Fig. 7 highlights the
Euclidean distances to the closest neighbour for molecules selected with FPS, and the other
baseline strategies, from all the analyzed datasets. The size of the selected sets is 1% of
the available data points. Specifically, we are analyzing the same elements selected in the
lowest training data budget we considered for the regression tasks in Figs. 2 and 3. Fig. 7
clearly illustrates that, independently of the dataset, FPS selects points across the whole
density spectrum. On the contrary, the baseline methods mainly sample points that have a
closer nearest neighbour and that are nearer to the center of the data distribution (Fig. 5c).

The observation that selecting isolated molecules is beneficial in terms of the MAXAE
reduction is also in line with Theorem 4. We know that a sampling strategy that aims
to reduce the maximum error of the predictions should minimize the fill distance of the
training set. Thus, it should include the isolated molecules in the training set, as their
distance to the nearest neighbour is much larger than the average.

Our empirical analysis indicates that using FPS can be advantageous in the low training
data budget, as it allows including early in the sampling process the “isolated” molecules.
But, once the data points at the tails of the data distribution have been included, we believe
that there may be more convenient sampling strategies than FPS to select points at the
center of the distribution, where more information is available. To empirically support the
hypothesis that the FPS is mostly beneficial in the low data limit, Fig. 8 illustrates the
MAXAE of the predictions on QM7, QM8 and QM9, for the KRR and FNN trained on
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Figure 7: In blue, the Euclidean distances to the nearest neighbour for molecules in QM7
(top row), QM8 (middle row) and QM9 (bottom row). In orange are highlighted the
molecules selected with FPS and the other baselines. For each dataset we selected 1% of
available data points.

sets selected with the FPS and on sets selected initially with the FPS, the first 2%, and
then selected randomly. The figure clearly illustrates that after the FPS has been employed
to sample the first 2% of the dataset, the MAXAE of the predictions does not tend to
decrease or increase dramatically for larger training set sizes, even if the later samples are
selected randomly, independently of the datasets and regression model considered. This
fact further suggests that the FPS is mainly beneficial in the low data limit and is strongly
connected with the ability of this sampling strategy to select samples at the tail of the data
distribution.

6.5.3 Importance of the data assumptions

We now highlight the importance of the data assumptions in ensuring that a fill distance
minimization strategy leads to a significant reduction of the MAXAE, in correspondence to
the theoretical result proposed in Theorem 4. The focus is on Assumption 2, Formula (5),
indicating that if two data points have close representations in the feature space, then the
conditional expectations of the associated labels are also close. Simply put, this assumption
states that if two data points have similar features, their labels are more likely to be similar
as well. Therefore, we expect the pairwise distances in the feature and label space to be
directly correlated for the experiments to ensure consistency with the theory.

One approach to test this hypothesis on a given dataset is to calculate the Euclidean
distance in the feature and label spaces for each pair of points and then calculate Pearson’s
(ρp) or Spearman’s (ρs) correlation coefficient (Boslaugh, 2008) to assess the strength and
direction of the correlation between the pairwise distances. These coefficients measure how
closely correlated two quantities are, with values ranging from -1 to 1. Pearson’s coefficient,
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Figure 8: Results for regression tasks on QM7, QM8 and QM9 using KRR (top row) and
FNN (bottom row) trained on sets of various sizes and selected with the FPS and with the
FPS combined with random sampling after 2% of the available data have been selected.
The graphs illustrate the MAXAE of the predictions for each training set size and sampling
approach.

captures linear relationships between variables, whereas Spearman’s coefficient, measures
monotonic relationships regardless of linearity. A positive value indicates a positive cor-
relation, while a negative value indicates a negative correlation. Following along Schober
et al. (2018), we define the correlation between the two analyzed quantities to be negligible
if the considered correlation coefficient ρ is such that |ρ| ≤ 0.1, otherwise we consider the
correlation positive or negative, depending on the sign of ρ.

We test our hypothesis on the data assumption for the experiments analyzed in Sec-
tion 6.5.1 and illustrated in Figs. 2 and 3. For completeness, we consider both Pearson’s
(ρp) and Spearman’s (ρs) coefficient. The computed coefficients are 0.149, 0.216, and 0.272
for ρp, and 0.281, 0.189, and 0.216 for ρs, for QM7, QM8, and QM9, respectively. These
numbers indicate that in all experiments where the fill distance minimization approach is
successful in significantly reducing the maximum prediction error, there is a positive corre-
lation between the pairwise distances of the data features and labels.

Moreover, we also want to show that if the correlation between the pairwise distances
in the feature and label space is negligible, the fill distance minimization approach may
not lead to a significant reduction in the maximum prediction error. To illustrate this, we
perform additional experiments on the QM8 dataset. In these experiments, we examine
various labels not yet considered in this work while considering the same data features
we previously used. The labels we now consider are the second singlet transition energy
(E2), measured in eV, and the first and second oscillator strengths (f1 and f2), measured
in atomic units (a.u.). Our computations reveal a Pearson’s and Spearman’s correlation
coefficient of 0.278 and 0.236 for E2, respectively. As for correlations with f1 and f2,
Pearson’s coefficients are 0.065 and -0.034, respectively, while Spearman’s coefficients are
0.098 and -0.036, accordingly. These results suggest a positive correlation between pairwise
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Figure 9: Results for regression tasks on QM8 considering three different labels: (a) second
singlet transition energy, (b) first oscillator strength, (c) second oscillator strength. Re-
gression performed using KRR trained on sets of various sizes and selected with different
sampling strategies. The graphs illustrate the MAXAE of the predictions and the legend
in (a) applies to (b) and (c) as well. ρp and ρs are Pearson’s and Spearman’s correlation
coefficients of the data points pairwise distance in the feature and label space.

distances in the feature and label space when considering E2 as the label value, but negligible
correlations for f1 and f2. This rejection of our hypothesis for f1 and f2 indicates that our
initial assumptions about the data properties may not hold true when considering these
two labels. Fig. 9 shows the results for the regression tasks on the QM8 dataset considering
E2, f1 and f2 as labels, and using the KRR as regression model. Specifically, Fig. 9b
and 9c illustrate the MAXAE of the predictions for the regression tasks with f1 and f2,
respectively, and suggest that selecting the training set by fill distance minimization using
FPS, does not lead to a significant reduction in the maximum prediction error when the
correlation between the pairwise distances in the feature and label space is negligible. On
the contrary, Fig. 9a, illustrating the results on the E2 regression task, provides further
evidence that the fill distance minimization approach is effective when the correlation is
positive, in correspondence to our hypothesis on the data assumption. It is important to
note that for the case of the QM8 dataset with f1 or f2 as labels, where the correlation
between pairwise distances in the features and label space is negligible, selecting training
sets by fill distance minimization approach with the FPS is either comparable or better
than randomly choosing the points in terms of the MAXAE of the predictions. Moreover, it
is also important to mention that, no benchmark approach can consistently perform better
than FPS. For instance, the facility location approach performs best on the f2 regression
task for training set sizes of 7% and 10%, but is the worst performing on the f1 regression
task for all training set sizes other than 1%.

6.5.4 Force-field prediction on the rMD17 dataset

In this section, we empirically investigate the effects of minimizing the training set fill
distance for multivariate regression tasks on the rMD17 dataset. The label value to predict
is the molecular force-field along a molecule’s trajectory. We note that for the experiments
on the rMD17 we analyze a different range for the size of the training sets, from 0.1% to 1% of
the available points, instead of the range 1%- 10%. This change was made because the data
points associated with each molecule in the rMD17 are taken from time series and may have
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(b) Malonaldehyde
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(c) Uracil

Figure 10: Results for multivariate regression tasks on trajectories of Benzene, Uracil and
Malonaldehyde using GDML trained on sets of various sizes, expressed as a percentage of
the available data points for each trajectory, and selected with different sampling strategies.
MAXAEF (top row), MAXMAEF (middle row) and MAEF (bottom row) are shown for
each training set size and sampling approach.

a high degree of correlation. For this reason the authors of the rMD17 suggest “DO NOT
train a model on more than 1000 samples from this dataset” (Christensen and von Lilienfeld,
2020a). Since each trajectory in our analysis consists of 100000 points, limiting ourselves to
at most 1% of the available data ensures that we respect the constraint set by the authors.
Fig. 10 shows the results for the force-field regression tasks on the trajectories of Benzene,
Malonaldehyde and Uracil using GDML. The graphs on the top and middle rows of Fig. 10
illustrate the MAXAEF and MAXMAEF of the predictions on the unlabelled points. The
results suggest that, independently of the trajectory considered, selecting the training set
by fill distance minimization using FPS we can perform better than the baselines in terms
of these two metrics quantifying the robustness of the model predictions. The graphs on
the bottom row of Fig. 10 show the MAEF of the predictions. These graphs indicate that
selecting training sets with FPS does not drastically reduce the MAEF of the predictions
on the unlabelled points with respect to the baselines, independently of the trajectory
considered, similarly to the experiments with scalar labels. On the contrary, we observe
examples where FPS performs worse than one of the baselines, e.g., on the trajectory of
Malonaldehyde the FPS performs consistently worse than random sampling. Nonetheless,
these experiments suggest that selecting training set by fill distance minimization with
the FPS can be beneficial for multivariate regression tasks, increasing models robustness by
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reducing of the entry-wise maximum error of the predictions. We remark that the theoretical
analysis we propose in Section 4 is limited to regression tasks with scalar label values,
and Lipschitz continuous models. Therefore, while the results illustrated in Fig. 10 show
promising potential for the FPS in increasing model robustness in multivariate regression
tasks, they are not supported by a solid theoretical result.

7 Conclusion and Future work

We study the effects of minimizing the training set fill distance for Lipschitz continuous
regression models. Our numerical results have shown that, under the given data assumption,
using FPS to select training sets by fill distance minimization increases the robustness of
the models by significantly reducing the prediction maximum error, in correspondence to
our theoretical motivation. Furthermore, we have shown theoretically and empirically that,
if we consider kernel regression models, selecting training sets with the FPS also leads to
increased model stability. Additionally, we have seen that FPS is particularly advantageous
with low training data budgets and argued that there may be more convenient sampling
strategies than FPS to select larger amounts of points and improve the average quality of
the predictions of a regression model as well.

Based on these remarks, two questions naturally arise: Firstly, how to determine a priori
the minimal amount of points to be selected with the FPS? Secondly, how can we modify the
FPS to select training sets that can also reduce the average prediction error of a regression
model on the data distribution? One possible solution to address the second question is to
modify FPS by considering weighted distances. We propose to thereby take the distribution
of the data during the sampling process into account, giving higher importance to points in
regions of the feature space with higher data density.

Broader Impact Statement

Minimizing the training set fill distance can be highly beneficial in applications where tra-
ditional labelling methods, such as numerical simulations or laboratory experiments, are
computationally intensive, time-consuming, or costly, such as in the field of molecular prop-
erty computations. In such applications, ML regression models are used to predict the
unknown labels of data points quickly. However, their accuracy is highly dependent on
the quality of the training data. Therefore, careful selection of the training set is crucial
to ensure accurate and robust predictions for new points. Our research on minimizing the
training set fill distance can be used to identify training sets that have the potential to
improve prediction robustness across a wide range of regression models and tasks. This
approach prevents the wastage of expensive labelling resources on subsets that may only
benefit a particular learning model or task.
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