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ABSTRACT

Estimating uncertainty in Large Language Models (LLMs) is important for properly
evaluating LLMs, and ensuring safety for users. However, prior approaches to
uncertainty estimation focus on the final answer in generated text, ignoring inter-
mediate steps that might dramatically impact the outcome. We hypothesize that
there exist key forking tokens, such that re-sampling the system at those specific
tokens, but not others, leads to very different outcomes. To test this empirically, we
develop a novel approach to representing uncertainty dynamics across individual
tokens of text generation, and applying statistical models to test our hypothesis.
Our approach is highly flexible: it can be applied to any dataset and any LLM,
without fine tuning or accessing model weights. We use our method to analyze
LLM responses on 7 different tasks across 4 domains, spanning a wide range of
typical use cases. We find many examples of forking tokens, including surprising
ones such as punctuation marks, suggesting that LLMs are often just a single token
away from saying something very different.

1 INTRODUCTION

Large Language Models (LLMs) demonstrate impressive yet opaque capabilities that emerge during
next-word prediction (Brown et al., 2020; Kaplan et al., 2020; Bubeck et al., 2023), and a good deal
of current research is devoted to understanding and interpreting LLM behavior (Chang et al., 2024;
Anwar et al., 2024; Bricken et al., 2023; Holtzman et al., 2023; Akyürek et al., 2022). LLMs are
often treated as black boxes due to the sheer complexity of their internal workings, and because many
state-of-the-art models are only accessible at the level of inputs and outputs. One way to assess any
dynamic system is to consider what possible things it could have done, but didn’t. In text generation,
we can liken a text sequence to a path the system took through the semantic space of all possible paths,
and ask: what other paths could the system have taken? Are there key points where re-sampling the
system at that specific point, but not others, would lead to very different paths?

Work on uncertainty estimation in LLMs tackles the related problem of assessing how likely an LLM
is to respond with different final answers, e.g. the probability of responding “A” or “B” to a multiple
choice question (Kadavath et al., 2022; Tian et al., 2023; Guo et al., 2017; Ye et al., 2024). Previous
approaches to black-box uncertainty estimation have yielded important insights by analyzing data
such as the logit probabilities of the final tokens in an LLM’s output, or the fraction of text responses
that end in the correct answer (Geng et al., 2024; Xiong et al., 2024). However, in our analogy, these
approaches consider only the final destination, and not the paths leading to them.

A major limitation of prior work on uncertainty estimation is that the last few tokens of an LLM’s
output are largely determined by previous tokens. For example, a single wrong step when solving a
multi-step reasoning problem (e.g. “The current year is 2021 . . . ”) can cascade into a wrong final
answer (e.g. “. . . The current British head of state is Queen Elizabeth.”), or other undesired responses
(Zhang et al., 2023). Uncertainty over intermediate tokens or reasoning steps will not be reflected
in the final tokens of the LLM’s response, since these tokens will be nearly deterministic (100%
confidence) given the rest of the text preceding them. A similar assumption is made in process-level
supervision (Lightman et al., 2023), which gives an LLM feedback for the correctness of each step of
its solutions, in addition to its final answer (i.e. outcome-level supervision). Perhaps, then, we might
gleam valuable insights by analyzing uncertainty in paths and not just outcomes.

Our approach is to study uncertainty dynamics, or how an LLM’s likelihood of producing different
responses changes as each new token is generated (Fig. 1). Specifically, we propose the Forking
Tokens Hypothesis: that in LLM text generation, there will be individual forking tokens which, if

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

�����
�������

�����
������������

���������

���������������
��������������

������

����������������������������������������������

���������������������������������������������
���	��������������������	�������������������

���

������� ��������������������������������������������

���������
����������������������������������������
����������
����	�������	�

�������

�����

���
�����������

Figure 1: Forking paths in text generation: can a single token alter the outcome? At each step
of next-word text generation, an LLM has some probability of sampling a variety of possible next
tokens. This raises the question: are there specific forking tokens, where choosing a certain token
over other probable alternatives results in a distinct outcome? To test this hypothesis, we estimate
uncertainty in text generation by systematically re-sampling alternate completions at each token in a
single base path, such as a greedily decoded sequence, to identify if there are forking tokens where
two paths diverge into different outcomes. We find forking tokens where expected content words
(2021/2024 in this example) lead to a different final answers (Queen Elizabeth or King Charles), but
we also find forking tokens in unexpected places (e.g. that/who).

generated, lead to dramatic differences in subsequent text (Fig. 1). Uncertainty dynamics and forking
tokens are unseen by prior approaches to ‘static’ uncertainty estimation such as taking the logits of
the final answer token, or re-sampling many full responses. This inspires a new ‘dynamical’ way of
thinking about uncertainty in text generation, where we study the influence that individual tokens
have on the eventual outcome. We develop a methodology called Forking Paths Analysis (Sec. 2)
in order to shed light on uncertainty dynamics and to empirically test for forking tokens. We find
dramatic uncertainty dynamics in GPT-3.5 in many tasks commonly used for evaluation, including
single tokens that cause the model to suddenly flip from low confidence to high confidence in a final
answer. This supports the Forking Tokens Hypothesis, and suggests that uncertainty dynamics in
GPT-3.5 are considerably more chaotic than high confidence final answers might suggest.

Put briefly, our primary contributions are:

1. A novel hypothesis regarding the existence of ‘forking tokens’ that greatly impact the
outcome of text generation. We propose the Forking Tokens Hypothesis, that there exist
individual tokens which, if sampled during decoding instead of an alternative token, lead to
dramatic differences in subsequent text generation (Fig. 1).

2. A novel approach to representing uncertainty at each token in next-word prediction.
Our method aggregates text samples into time series and conditional distributions, revealing
uncertainty dynamics invisible to prior work (Sec. 2.1, 2.2). We use change point detection
models and survival analysis to empirically test our hypothesis and efficiently scale across
hundreds of individual analyses (Sec. 2.3, 2.4).

3. Our analysis shows striking text generation dynamics, including change points in many
sequences and unexpected forking tokens such as space characters We examined text
generation dynamics in GPT-3.5 using 7 different LLM evaluation tasks (Sec. 4). Our results
support the Forking Tokens Hypothesis.

2 FORKING PATHS ANALYSIS

In text generation, exchanging a single token may drastically alter subsequent text. This is clearly true
in reasoning. For example, if we ask “Who is the current British head of state?”, the intermediate
reasoning step “The current year is (2021/2024) . . . ” can lead to different final answers. This could
also occur in open-ended text generation, when a single token distinguishes topics. For example

“Billy woke up in a hotel . . . ” and “Billy woke up in a spaceship . . . ” leads to very different stories.
LLMs generate text one token at a time, and sampling a word such as “hotel” instead of “spaceship”
could steer autoregressive text generation towards one path over another. Many possible tokens could
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Figure 2: (Top) Systematically sampling alternate paths in text generation. Our data collection
proceeds in three stages. First, we decode a base path text completion x∗ from an LLM given
some prompt and record the most probable alternate tokens w at each step t. Next, we re-sample S

completions x(s)
>t by appending x∗

<t to the original prompt, along with each alternate token xt = w.
Finally, we extract outcome vector representations R(·) for each sample. In our experiments, for
R we use a different LLM to extract the final answer from a path. (Bottom) Probability-weighted
outcome distributions We aggregate outcome representations R(·) into outcome distributions ot and
ot,w by weighting each outcome with next-token probabilities for the forking token p(xt = w | x∗

<t)

and for the sampled path completion p(x
(s)
>t | x∗

<t, xt = w). Also see Eq. 1.

cause forking if exchanged, e.g. if we manually set the token in the previous example to “coconut”.
However, we aim study the forking tokens that are most likely to be sampled during text generation.

We expect text generation to be relatively stable, in that most tokens an LLM is likely to sample
would only change surface features and would not affect the outcome or overall meaning. However,
LLMs also show significant biases in producing certain words and phrases over others (McCoy et al.,
2023), and adapting their semantic priors on the fly (Wei et al., 2023). We also might expect, then, to
find unexpected forking tokens with LLMs, for example if “Billy woke up in a . . . ” leads to a story
about a summer vacation and “Billy woke up in the . . . ” leads to a science fiction story. This could
occur if an LLM were considering two different outcomes to a story (e.g. a summer vacation or a
sci-fi story), but these outcomes were biased towards specific words or phrases such as “Billy woke
and “Billy awoke. If we find unexpected forking tokens such as this, it might suggest that LLMs are
not planning their final responses before generating text, and instead they are effectively deciding
what the outcome will be as each new token is sampled.

We predict that in text generation with LLMs, there will be individual tokens where text generation
‘forks’ into multiple distinct outputs. More formally, we propose the Forking Tokens Hypothesis:
that a single token being exchanged for a probable alternate token can significantly impact the
outcome of subsequent text generation in LLMs. To test this, we develop a method that includes
a multi-stage sampling pipeline (Section 2.1), aggregating text samples into outcome distributions
(2.2), and applying statistical models to test our hypothesis (2.3, 2.4).

2.1 LANGUAGE MODEL SAMPLING PIPELINE

For our analysis, we collect a large number of output texts from an LLM for each individual question
prompt using a 3-stage sampling pipeline (Fig. 2, Top). We begin by decoding a single base path
response x∗ to a given prompt. This sample includes, for each token xt in sequence, the logit
probabilities p(xt = w|x<t) for the top K tokens w at index t. Next, for each index t and each
alternate token w with sufficiently high probability p(xt = w | x∗

<t), we re-sample a batch of
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samples {x(1)
>t . . . x

(S)
>t } by prompting the LLM with the original input text appended to the base path

response x∗
<t up to time t, with the last token being xt = w. In the third step, we extract an outcome

representation for each sample R(x∗
<t, xt = w, x

(s)
>t ). Described in the following section, R is a

semantic vector representation such as a one-hot encoding of the final answer.

These stages rely on token logit probabilities from the evaluated LLM, which are available in black-
box LLM APIs such as OpenAI and TogetherAI and can also be inferred for APIs without this feature
(Morris et al., 2023). In our experiments, the third stage R uses a second LLM, which may be the
same or different from the main LLM being evaluated, and does not require logit probabilities. We
prompt this model to extract the final answer from x∗, and convert its response into a categorical
value, such as “A” or “B”.

2.2 REPRESENTING TEXT GENERATION OUTCOMES

We construct outcome distributions for individual token indexes ot and for token values ot,w. We
define an outcome distribution o as the expected value of a semantic vector representation R, which
varies depending on the task and takes as input both the question prompt and model-generated
response. In the case of a multiple-choice task, R is a one-hot encoding of the final answer in the
response string (e.g. ‘A’, ‘B’, ‘C’, or ‘D’). For open-ended tasks without final answers, R can be any
arbitrary semantic vector embedding.

ot,w(x
∗) = Es

[
R(x∗

<t, xt = w, x
(s)
>t )

]
(1)

=
∑
s

p(x
(s)
>t | x∗

<t, xt = w) R(x∗
<t, xt = w, x

(s)
>t )

ot(x
∗) = Ew

[
ot,w(x

∗)
]

(2)

=
∑
w

p(xt = w | x∗
<t)

∑
s

p(x
(s)
>t | x∗

<t, xt = w) R(x∗
<t, xt = w, x

(s)
>t )

Outcome Distr. Next-Word Prediction Sample Probability Outcome Representation

In our experiments, ot and ot,w are histograms over categorical outcome representations R, weighted
by the sample probability p(x>t|x≤t) =

∏t
t′=1 p(xt′ |x1:t′). In the case of ot, outcome represen-

tations are also weighted by the forking token probability p(xt = w|x<t). All such weighting
probabilities are derived from next-token prediction probabilities p(xt|x1:t−1). For brevity, we refer
to x1:t−1 as x<t and xt+1:T as x>t. Our approach is Bayesian, in that we weight samples according
to a graph of conditional probabilities and we interpret output certainty as the degree of an LLM’s
belief. This stands in contrast to frequentist calibration methods, which interpret certainty as the
fraction of problems which are answered correctly (Guo et al., 2017; Kadavath et al., 2022; Geng
et al., 2024), ot and ot,w have the advantages of being easy to visualize, and suitable for statistical
analysis. ot can be represented as a multivariate time series (Figs. 4, 5), and ot,w can be plotted
with parallel sets diagrams (Fig. 7). These visualizations reveal uncertainty dynamics across tokens,
showing how the outcome distribution can dramatically change over the course of text generation.

Next, in the following sections we describe methods for analyzing outcome distributions ot and ot,w
to test for forking tokens. We define a forking token xt as a token index t or value xt = w which,
if exchanged, leads to a very different outcome (or ‘path’). In the case of ot, a forking token index
t corresponds to an abrupt change in the time series ot, i.e. where o>t ̸≈ o<t. To identify these
changes, we use Bayesian change point detection models, a class of statistical models that empirically
test whether there are abrupt changes in a time series, and if so to identify the times t when those
changes occur. For ot,w, a forking token value xt = w occurs when the outcome distribution for an
alternate token w deviates from the distribution for the base path token w∗ by at least ϵ. To identify
forking tokens in ot,w, we use a discrete-time survival analysis where a hazard (i.e. non-survival)
occurs when

[
ot,w ̸≈ ot,w∗

]
for some token w.

2.3 BAYESIAN CHANGE POINT DETECTION

We now present a method for automatically identifying tokens where ot changes suddenly, and for
statistically testing the hypothesis that such tokens exist. In simple terms, our goal is to test for
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Figure 3: Uncertainty dynamics time series (Top) The outcome distribution ot is equivalent to a
multivariate time series, where each possible outcome (e.g. King Charles or Queen Elizabeth) can be
plotted as a separate line. To simplify our modeling, we convert ot into a univariate time series using
a semantic drift transformation yt. Bayesian Change Point Detection model. (Bottom, Left) We
use a Bayesian Change Point Detection (CPD) model to identify sudden shifts in yt. This model fits
yt by splitting it into m segments at times τi, and fitting separate linear models with parameters βi, δi
to each segment i. (Bottom, Right) Our CPD model uses Monte Carlo sampling to infer posterior
distributions that help us interpret analysis results: p(τ = t | y), or how likely it is that a change τ
happened at time t, and p(m | y), or how many change points, if any, occurred in the time series.

whether there are indexes t such that the outcome distribution changes substantially before and after
t, i.e. o>t ̸≈ o<t. Change Point Detection (CPD) is an area of statistics that models time series
data with abrupt changes to the line’s intercept and/or slope. CPD models jointly infer what time
t a change occurs at, as well as trend parameters β for time segments before and after the change.
We suppose that there may be multiple forking tokens, or change points, in the outcome distribution
ot(x

∗) for a single sequence x∗. This leads us to use multiple CPD models, which assume there
may be multiple change points. However, inference with multiple CPD models can be exponentially
more expensive than with single CPD (Fearnhead, 2006). One solution to this complexity is using
Bayesian models for efficient approximate inference. Since multiple CPD with multivariate time
series (as in ot) is a relatively young area of research (Cabrieto et al., 2017) with limited available
tooling, we convert ot into a univariate time series yt using a semantic drift metric (Fig. 3, Top), as in
Kulkarni et al. (2015). Each time point in the univariate time series yt = d(o0, ot) is the distance
between the initial outcome distribution o0 and outcome distributions for subsequent time steps ot,
given an arbitrary distance metric d. In our experiments, we use L2 distance for d.

More specifically, a CPD model decomposes a time series y into a set of m segments. Each segment
i ∈ {0 . . .m} is fit by a regression model with intercept (i.e. abrupt change) δi and slope βi, applied
to time steps t between τi−1 and τi. In a Bayesian CPD model, p(τ = t|y) describes how likely it is
that a change point τ occurred at each time t in time series data y, and p(m|y) describes belief in
the number of change points m in a series. The beginning and end of a sequence are treated as fixed
change points (i.e. τ0 = 0 and τm+1 = T ) which are excluded from analysis of p(τ = t | m) and
p(m | y). We test for statistically significant change points by comparing the hypothesis that there is
no change point (m = 0) with the hypothesis that there is at least one (m ≥ 1) (Aminikhanghahi
& Cook, 2017). In Bayesian CPD, this entails model comparison between a model with no change
points and a model with at least one change point. We take a Bayes factor p(m ≥ 1|y) / p(m = 0|y)
greater than 9 as supporting the hypothesis that there is at least 1 change point (Kass & Raftery,
1995) *. We use an extremely efficient open-source implementation of Bayesian CPD which utilizes
Monte Carlo Gibbs sampling to infer posterior distributions p(m | y) and p(τ = t|y) given a sequence
y (Zhao, 2019). Further details of CPD model are provided in App. B.

*9 is a typical threshold for Bayes factor significance testing, analogous to α = .05 in frequentist statistics
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actress in question is Mia Sara. the 2. Next, we need to ......

Question:
What American actress born June 19, 1972, was is the
film The In-Laws?

Answer:
Let's think step by step.

1. First, we need to identify the American actress born on
June 19, 1972. A quick Google search reveals that the
actress in question is Mia Sara.

2. Next, we need to find out if Mia Sara was in the film
The In-Laws. Another Google search shows that she did
indeed star in the 2003 remake of The In-Laws, alongside
Michael Douglas and Albert Brooks.

3. Therefore, the answer to the question is Mia Sara.

Figure 4: The outcome distribution can collapse after a single step in chain-of-thought reasoning.
(Left, Top) The outcome distribution ot and (Left, Bottom) change point probabilities p(τ = t|y)
for a single question from HotpotQA and a greedily decoded base path x∗. (Right) Tokens in x∗,
highlighted according to p(τ = t|y), where yellow indicates low probability of a change point, red
indicates high probability; the initial prompt is shown above x∗ with no coloring. We see striking
uncertainty dynamics in ot: the outcome distribution remains stable with the top single answer being
Robin Tunney (the correct answer) until the forking token t = 34, when the distribution suddenly
collapses to Mia Sara (a hallucinated wrong answer).

2.4 SURVIVAL ANALYSIS

We perform a survival analysis to estimate on how likely it is that text generation would be greatly
impacted if a token in a base path x∗

t = w∗ were instead sampled as w. This describes cases where
an alternate token w leads an LLM down a very different path from x∗, as in Fig 7 (Right). This
forking may not appear as a stable change in ot(x

∗) (Sec 2.3) since w was not actually sampled and
therefore does not impact o>t(x

∗). We define the survival function S(t) as the probability that the
base path “survives” sampling alternate tokens w that would change the outcome distribution:

S(t) = 1−
t∏

t′=1

Ew

[
ot′,w ̸≈ ot′,w∗

]
(3)

= 1−
t∏

t′=1

∑
w

p(xt′ = w|x∗
<t′) 1

[
d(ot′,w, ot′,w∗) > ϵ

]
S(t) is a discrete time survival function S(t) = 1−

∏t
t′=1 h(t

′) where h(t) is the probability that
a failure (or hazard h) occurs at time t. In our case, a failure is when an alternate token causes the
outcome distribution to shift significantly from the greedy, i.e. ot,w ̸≈ ot,w∗ , which we estimate
by testing whether the distance between outcome distributions d(ot,w, ot,w∗) is greater than some
threshold ϵ. d is an arbitrary distance metric and we use L2 distance as d in our experiments. For
each t, we compute the hazard rate h(t) as the sum of token logit probabilities p(xt = w|x∗

<t) for all
forking tokens w (i.e. tokens where d(ot,w, ot,w∗) > ϵ).

3 EXPERIMENTS

We analyzed 7 unique tasks, across 4 different categories representative of typical LLM use and
evaluation: Symbolic Reasoning, Mathematical Reasoning, Complex Question Answering, and Story
Generation. These categories demonstrate the broad utility of our approach for various applications of
text generation. The first three categories typically benefit from Chain-of-Thought (CoT) reasoning,
where an LLM explicitly lists each step of its reasoning before giving a final answer (Kojima et al.,
2022; Wei et al., 2022). This is appealing for our analysis since output text in CoT is more complex
than a simple one-word answer, and so we may expect to see uncertainty dynamics in reasoning text.
The category of Story Generation demonstrates the applicability of our methods to open-ended LLM
use cases, such as creative writing, where there is no ground truth ‘correct’ answer. We have two
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Figure 5: Further examples of forking tokens Two examples of outcome distributions ot(x
∗)

with forking tokens: a physics question from MMLU (Top; Correct Answer: B) and a mathematical
reasoning question from GSM8k (Bottom; Answer: 21). In MMLU-12, we see a similar pattern
to Fig. 4, where ot remains stable for most of the base path, before suddenly collapsing when the
answer token is first specified “a = 9.8 m/s ˆ 2”. In GSM8k-59 we see multiple forking tokens, both
occurring at unexpected places. E.g. for the second change point, o>t changes depending on whether
the token ‘ ( ’ or ‘by’ is sampled. We also note that, similar to Fig. 4, at t = 0 the most probable
outcome is the correct answer (21) but this answer disappears from ot part-way through.

tasks for each of the three CoT categories: one multiple choice dataset with a limited set of answers,
and one dataset with free-text response answers. E.g. for Symbolic Reasoning, CoinFlip has two
options for the answer (“Yes” or “No”), whereas LastLetter has no such constraint.

We use a zero-shot CoT prompt as in Kojima et al. (2022) for the first 6 tasks. CoinFlip (Wei et al.,
2022) is a very simple symbolic reasoning task with two responses: Yes or No. LastLetter (Wei et al.,
2022) is more complex symbolic reasoning task, prompting models to take the last letter of each
of four names (e.g. ‘Forrest Juanito Allan Candice’) and concatenate them (‘tone’). AQuA (Ling
et al., 2017) and GSM8k (Cobbe et al., 2021) test mathematical reasoning with relatively simple
math word problems. AQuA is 4-option multiple choice format, whereas GSM8k is open ended.
MMLU (Hendrycks et al., 2020) complex question answering dataset of multiple choice questions
spanning many domains and is used to test LM question-answering across a wide range of subjects.
HotpotQA (Yang et al., 2018) is a complex question answering dataset of multi-hop reasoning
questions which cannot be answered by a single memorized fact, but instead require chaining facts
together. For our story generation task, we use the StoryCloze (Mostafazadeh et al., 2017) dataset,
which was originally used for story understanding, and consists of short stories each with a valid
ending sentence as well as an invalid ending. We modify StoryCloze for open-ended story generation,
by prompting a model to generate a short story given only the first sentence of a scenario, with the
constraint that the story must end with one of two provided endings.

For our Forking Paths Analysis, we sample the k ≤ 10 most probable alternate tokens xt = w such
that the probability of each token w is at least 5%. When sampling batches at each token index and
alternate token, we collect S = 30 text samples. For (1), we collect N = 300 full text responses x
from the starting index t = 0 and aggregating outcome responses R into a histogram. For (2) we
append a final answer prompt to x∗: “. . . Therefore, the answer is: _” and query the evaluated LLM,
taking the logit probability of the first response token. (3) appends another prompt to the result of (2):

“. . . Percent confidence in final answer: _”.

We evaluated OpenAI’s GPT-3.5 completion model (gpt-3.5-turbo-instruct-0914; ~$2 per 1M tokens).
For cost efficiency, we used Google’s Gemini Flash (gemini-1.5-flash-001; ~$.075 per 1M tokens) to
extract final answer outcome representations R. We used slightly different prompts for R for each
task, for example with MMLU we requested the answer choice A/B/C/D if it’s provided. Additionally,
we used simple answer cleansing functions written in Python (as in Kojima et al. (2022)) to extract
minimal categorical answers from the R model’s responses. See App. G prompts and further details.
Our Forking Paths Analysis pipeline (Fig. 2) is very costly in terms of the number of tokens required
for inference (~1 million tokens per x∗, or ~$2 USD for GPT-3.5). For this reason we analyzed a
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Figure 6: Change points occur closer to the beginning of sequences for some tasks, and near the
middle of sequences for others Each point represents the fraction of question-answer examples
in a task where our change point model predicts one or more change points approximately at t, i.e.
where p(τ = t|y) is above a threshold of .7. In three tasks (AQuA, MMLU, and LastLetter) we find a
large number of change points close to the end of responses, which may suggest patterns similar to
MMLU-12 in Fig. 5.

subset of 30 data points for each task, ~$500 in total. We randomly sampled question-answer pairs
for all datasets. For GSM8k and MMLU, we used tinyBenchmarks (Polo et al., 2024), which are a
subset of 100 examples where LLM performance on this subset is highly correlated with performance
on the full dataset. For HotpotQA and AQuA we excluded questions and answers with string length
outside the [.1, .9] quantile range, and for HotpotQA we sampled ~18 data points for each difficulty
level (easy, medium, hard).

4 RESULTS

4.1 CHANGE POINT DETECTION

In Fig. 4 we observe striking uncertainty dynamics in ot for HotpotQA (question 8076). The outcome
distribution remains stable with the top single answer being Robin Tunney (the correct answer) until
the forking token t = 34, when the distribution suddenly collapses to Mia Sara (a wrong answer).
This is precisely when the LLM answers the first question in its chain-of-thought: “First, we need
to identify the American actress born on June 19, 1972 . . . is Mia Sara.”. In reality, Mia Sara is
an actress born on June 19 of a different year, 1967. Apparently the LLM was uncertain until it
hallucinated a falsehood in its first reasoning step, and then it suddenly became certain that Mia Sara
was the answer. We also see another hallucinated falsehood in the second reasoning step (Mia was
not in this film), except by this point the LLM has already decided what its final answer will be.

In MMLU-12 we see a similar pattern (Fig. 5, Top), where ot remains stable in relative uncertainty
for a long period, before suddenly collapsing when the answer token is first specified “a = 9.8
m/s ˆ 2”. Note that the equation in the prior sentence “a = 6.67 . . . ” evaluates to a different answer
B) 8.9 m/s ˆ 2. Examining token logits we see that 9 had 54% probability of being generated and 8
had 29%. With GSM8k-59 we observe more complex uncertainty dynamics (Fig. 5, Bottom) with
multiple change points. These forking tokens occur at unexpected, seemingly innocuous tokens: both
are open parenthesis tokens which provide extra information not required for the final answer (i.e.
non-essential clauses such as ‘(kWh)’). For the second forking token, ‘ . . . weekly consumption (
. . . ’, the top answer in o>t is ‘$3,528’ if the token sampled is ‘ ( ’, but changes to ‘$504’ if the token
sampled is ‘by’. We also note that, similar to Fig. 4, at t = 0 the top probability answer is the correct
answer (‘21’) but this answer disappears from ot part-way through x∗. Finally, in most cases where
our model detects no change points, we observe time series where the LLM remains confident in a
single outcome, with no notable uncertainty dynamics throughout text generation. Visualizations for
all examples x∗ and analyses in our dataset are available through an interactive dashboard online. †

Additional analyses are provided in App. E.

We find additional patterns when aggregating CPD model inference results across tasks (Fig. 6,
Tab. 1). Different tasks have different numbers of change points m, as well as different patterns in
common change times τ . We find more change points in some tasks, such as GSM8k and LastLetter,
than others, with the fewest change points in CoinFlip. In order to compare change point times τ ,

†Anonymized interactive dashboard: https://forking-paths.streamlit.app/
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Figure 7: Text generation has a low probability of surviving decoding without a major distribu-
tion shift (Top Left) The hazard function h(t) is the probability that ot,w will change significantly
if a different token w is sampled, and (Bottom Left) S(t) measures the cumulative survival rate after
many hazards. We see that in most cases, hazards slowly accumulate as S(t) gradually decreases, but
a few key tokens in GSM8k-59 and HotpotQA-8076 have large hazards corresponding to sharp drops
in S(t). We also see that the final survival rates S(T ) for all three examples are below 30%. (Right)
ot,w visualized as parallel sets plots. We show distributions for two subsequent tokens ot=34,w and
ot=35,w, where different colors indicate different final answers. In this example, t = 34 and t = 35
are a step in a reasoning solution which eventually is used in the final answer (also see Fig. 4). For
t = 34, we see that the next token being Robin instead of Mia will lead to completely different
outcome distributions o34,w=‘Mia’ and o34,w=‘Robin’.

we first normalize token index t to the range [0, 1]. Then, for each bucket across t, we compute the
fraction of question-answer examples ot(x∗) with change point probability p(τ = t|y) above some
threshold. Under this analysis (Fig. 6, Left), we find change points at different times for different
tasks. In three tasks (AQuA, MMLU, and LastLetter) we find a large number of change points close
to the end of responses, which may suggest patterns similar to MMLU-12 (Fig. 5, Top). In LastLetter
we find the most change points early in sequences, and in HotpotQA, GSM8k, and AQuA we find the
majority of change points in the middle of sequences. These points may correspond to individual
CoT reasoning steps, similar to the change point in HotpotQA-8076 (Fig. 4).

4.2 SURVIVAL ANALYSIS

Our survival analysis shows low survival rates for many sequences x∗, even with a large distance
threshold ϵ = .6 (Fig. 7), using L2 as the distance metric d. To give an intuition for ϵ = .5 with
d = L2: a change from ot,w∗ = [.5, .5] to ot,w = [.85, .15] will have a distance of < .5. The hazard
probability h(t) for the sequence with ϵ = .6, with sharper spikes (and corresponding drops in
survival rate S(t)) at some tokens more than others. This shows that even though even when forking
tokens w, which radically change the outcome distribution, have a relatively low probability, these
chances can accumulate over the course of generating a sequence. Aggregating results across all
experimental data x∗ (Fig. 7, Right), we find that a majority of examples in our data have low survival
rates at the end of the sequence (S(T ) < .2) for all ϵ < .9. This suggests that text generation may
have a low probability of surviving decoding without a major distribution shift, which would imply
that single sample LLM uncertainty estimates may be highly unstable.

5 DISCUSSION

Text generation with LLMs can be viewed as a branching tree of possible paths, where each word
choice determines what text will follow, akin to Borges’ Garden of Forking Paths and other choose-
your-own-adventure stories (Borges, 1941; Bottou & Schölkopf, 2023; janus, 2021). Many of
these paths will follow similar trajectories and end in similar places, but some of them will hit
forks which bifurcate into multiple distinct meanings. Our results support the Forking Tokens
Hypothesis by empirically demonstrating forking tokens in a state-of-the-art LLM applied to various
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Domain Task m ≥ 1 Changes Mean S(T )
Symbolic Reasoning CoinFlip 0% .20

LastLetter 63% .30
Mathematical Reasoning AQuA 30% .33

GSM8k 27% .18
Complex Question Answering MMLU 43% .13

HotpotQA 32% .26
Story Generation StoryCloze∗ 7% .27

Table 1: Summary of results across all tasks We used 7 tasks spanning 4 domains commonly used
for LLM evaluation. For each task, we list results for both our Change Point Detection model and our
Survival Analysis. For change points, we list the fraction of question/answer pairs in each dataset for
which our model predicts at least 1 change point with 90% confidence (i.e. the .1 quantile of p(m|y)).
We then list the average survival rate at the end of each sequence S(T ), using a threshold ϵ = .6. We
find lower survival rates in GSM8k and MMLU.

real world benchmarks, suggesting that LLMs are often just a single token away from producing
a very different answer. Forking Paths Analysis reveals dynamics unseen by prior approaches to
uncertainty estimation, for example patterns where uncertainty is stable until a forking token is
reached, at which point the outcome distribution collapses into certainty in a single answer. Our
results show how static estimates of uncertainty can be misleading, e.g. estimating ~100% confidence
at the last token and ~40% confidence at the first token of the same sequence (Fig. 4).

Forking tokens might also have important implications for LLM evaluation and safety. If LLM
behavior can change suddenly when even one token is sampled differently, this could impact user
safety, e.g. if an LLM suddenly shifts to the wrong distribution such as producing hallucinations or
harmful language (Anil et al., 2024). Static safety evaluations may prove brittle when, in real world
user interactions, users might accidentally or intentionally guide LLMs down dangerous paths. Static
evaluations might be misleading measures of performance and alignment if LLMs have capabilities
that emerge and then disappear over a single context window, or capabilities that remain dormant
until a single token (or ‘path’) triggers them (Cleo Nardo, 2023; Li et al., 2024).

We see a number of promising avenues for future work. The most immediate directions would be
further Forking Paths Analyses with different LLMs, including open-source, and new tasks. Our
experiments use a second LLM as a one-hot feature extractor R(·), but more open-ended tasks could
be analyzed using R as a semantic vector embedding. A limitation of our approach is that it is very
costly in the number of tokens sampled. More efficient sampling (Banga & Balsa-Canto, 2008) might
be able to reduce the number of tokens needed, and it might even be possible to avoid sampling
altogether if hidden activations can be used to predict forking. We also hope to further explore
applications of Forking Paths Analysis, for example to improve process-level RL feedback (Lightman
et al., 2023) or to guide branching in inference-time tree search (Yao et al., 2024). By studying the
mechanisms of forking tokens, we might be able to better understand how LLMs represent uncertainty,
or to steer models more effectively by patching activations at forking tokens (Fei et al., 2024).

The Forking Tokens Hypothesis raises a number of important questions, including: why do forking
tokens occur in LLM text generation? One way to answer this question is with theories of In-Context
Learning as Bayesian model selection (Xie et al., 2021). If this is the case, then we might expect
sharp transitions in overall behavior when new data changes which latent model (i.e. ‘capability’
or ‘concept’) is the maximum a posteriori (Bigelow et al., 2024). Studying forking tokens may
provide valuable insights into how model selection surfaces in LLMs operating in real-world domains.
Another perspective on forking tokens is to consider whether humans might have similar phenomena.
We might expect forking in human language comprehension, e.g. when you read the sentence “Billy
woke up in a _”, the next word being either hotel or hole should change your expectations of the
following words. In language production, however, a person who accidentally says the word “hole”
instead of “hotel” is unlikely to then change their story to match “hole”. An LLM, on the other
hand, might do just that. One interpretation might be that people typically holding intents and plan
responses to some degree before they speak, whereas LLMs truly decide what to say next on the
fly. This may be a fundamental property of next-word prediction models, unless the model has a
hidden state such as a hidden chain-of-thought (OpenAI, 2024). Forking in human speech may be
more common during certain kinds of creative dialog, e.g. when a person makes up a fictional story
one sentence at a time, or when people think ‘out loud’ or ‘step-by-step’ (Lombrozo, 2024).
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Appendices
A RELATED WORK

• Uncertainty estimation and calibration in LLMs Previous approaches to uncertainty
estimation with LLMs have provided valuable insights (Geng et al., 2024; Xiong et al., 2024;
Kadavath et al., 2022; Tian et al., 2023; Guo et al., 2017; Ye et al., 2024). However, prior
re-sampling based uncertainty estimation does not effectively capture the space of forking
paths, for example paths that are very likely to branch off of the highest probability (i.e.
greedily decoded) branch. Final token probabilities or text-based uncertainty estimates (e.g.

“70%”) likely do not capture the full picture. It may be possible to develop approaches to
more effectively sample the space of possible paths that are simpler and/or cheaper than
Forking Paths Analysis .

• Semantic diversity in text generation Semantic diversity (Tevet & Berant, 2021; Han
et al., 2022; Kirk et al., 2023) measures the degree to which a language model generates
meaningfully distinct responses to the same input. We believe semantic diversity may be a
key cause of forking tokens, in that semantic diversity demands some degree of uncertainty
in text generation. For example, diversity in CoT reasoning requires producing multiple
distinct proofs.

• Chain of thought and similar reasoning techniques Chain-of-Thought (CoT) reasoning
(Kojima et al., 2022; Wei et al., 2022) and related techniques prompt an autoregressive
language model to reason across the intermediate tokens it generates. One challenge in CoT
reasoning is backtracking (Gandhi et al., 2024), where LLMs struggle to ‘undo’ a missed
step. The Forking Tokens Hypothesis describes this phenomenon more broadly, where a
single token can trigger distribution shift such as one reasoning path over another. On the
other hand, LLMs are not always faithful to their chains of reasoning in the token stream
(Turpin et al., 2024). Forking Paths Analysis may be able to shed further light on these
cases.
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B CHANGE POINT DETECTION MODEL DETAILS

We use an extremely efficient implementation of Bayesian multiple CPD, the Bayesian Estimator
for Abrupt changes in Seasonality and Trends (BEAST). BEAST is described in Zhao (2019) and
available as an R package at https://cran.r-project.org/web/packages/Rbeast/
index.html. BEAST is implemented in C/C++, and we found it to be between 1− 10 thousand
times faster than comparable packages for multiple CPD, most of which also did not support inference
of p(m|y).
We use BEAST to infer the posterior probability of a change point at each time p(τ = t|y) as well
as posterior of the number of change points in a time series p(m|y). To estimate these posteriors,
BEAST iteratively draws Monte Carlo samples j for each of the following variables, in order: the
number of change points m ∼ p(m(j)|σ(j−1), y), change times τ ∼ p(τ (j)|m(j), σ(j−1), y), segment
parameters pβ, δ ∼ (β(j), δ(j)|τ (j), σ(j−1), y), and noise parameter σ ∼ p(σ(j)|β(j), δ(j), τ (j), y).
We show plate notation for the structure of the BEAST CPD model in Fig. 8.

yt

βi, δiτimπ

σ

Timestep t

Segment i ∈ 0 . . .m

α

Figure 8: Plate diagram for change point model y is a univariate time series, m is an integer
number of change points, τi ∈ {1 . . . |y|} is the time index when a change point occurs, θi includes
model parameters such as abrupt change magnitude and polynomial trend model coefficients for
segment ŷ = fβi,δi(yτi−1:τi) (note: there are m+ 1 segments given m change points), σ is controls
the variance of yt ∼ Normal(ŷ, σ), π(m) is a hyper-prior over number of change points m, and α
is hyper-prior for noise σ.

As described in Sec. 2.3, a CPD model decomposes a time series y into a set of m segments, and each
segment i ∈ {0 . . .m} is fit by a regression model with intercept (i.e. abrupt change) δi and slope βi,
applied to time steps t between τi−1 and τi. In our case, we assume linear models for each segment
yt = βi t+ δi , t ∈ {τi−1, . . . , τi}, to match our assumption and qualitative observation that in ot
there are stable regimes of uncertainty which continue for many tokens, until ot abruptly changes
to a new distribution. We also observe ‘drift’ in some cases, where ot slowly changes from one
distribution to another, which in our model corresponds to different values of βi. To our knowledge,
our work is the first apply CPD to analyze neural network learning dynamics, either in-context (as
in our case) or in-weights. (Hu et al., 2023) uses Hidden Markov Models to analyze in-weights
learning dynamics, which achieves a similar purpose as CPD ‡, but with less interpretable parameters.
We see an exciting direction for future work being to further understand which statistical modeling
assumptions are most appropriate for describing uncertainty dynamics in text generation.

One challenge we found with using BEAST for CPD is a high false positive rate in cases where ot
has fewer changes. In these cases, the drift yt has a low magnitude overall, and so very small changes
in yt can show up as false positive change points when BEAST re-normalizes yt. To address this, we
manually tuned noise hyper-parameter α and slightly perturb yt with Gaussian noise of variance .03.

In our CPD and survival analysis models, we used L2 distance. We also tested with L1 distance
and K-L divergence, but found that results with d = L2 most reliably corresponded to qualitative
judgments of change points in ot and ot,w.

‡HMMs can be used for change point detection, as in Luong et al. (2012)
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C COMPARING UNCERTAINTY ESTIMATION METHODS

C.1 STATIC UNCERTAINTY ESTIMATES

We now compare out outcome distribution representation ot to three static uncertainty estimation
baselines, inspired by work such as Xiong et al. (2024). (1) We estimate the outcome distribution
by re-sampling N = 300 completions from the first token t = 0 and on. (2) We take the base path
x∗, append a brief string to the end Therefore, the answer is: ___, and we take the logit probabilities
for the next token as the answer certainty estimate. (3) Given the model’s output (greedily decoded
tokens) in (2), we then prompt the model for its confidence by appending an additional prompt
Percent confidence in final answer: ___. For (3), we take the numeric % confidence estimate and
assign that confidence to the greedy token output in (2), and all other confidence to a generic ‘Other’
outcome.

We see in Figs. 9, 10 that in these cases with complex uncertainty dynamics and change points, the
static confidence estimate (1) is significantly different from (2) and (3). This is easily explained by
looking at ot, since the outcome distribution at the beginning of the sequence o0 matches the first
baseline (1), and the outcome at the end of the sequence oT approximately matches (2) and (3). We
also find that confidence estimates (2) and (3) assign very high certainty to a final answer, despite
there being substantial fluctuations in uncertainty over the course of text generation.
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Mia Maestro
Mia Sara
Michelle Monaghan
Poppy Montgomery
Robin Tunney

Resample (t = 0)

Last To
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% Confidence

Uncertainty Baselines

Figure 9: Comparing static uncertainty baselines to Forking Paths analysis (HotpotQA-8076;
Fig. 4) The uncertainty dynamics we observe in ot (Left) are invisible to static uncertainty estimate
baselines (1) - (3) (Right). We also observe that baseline (1) is different from (2) and (3), with the
top answer in (1) being Robin Tunney (the correct answer), whereas (2) and (3) assign near-100%
certainty to Mia Sara.
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Figure 10: Comparing static uncertainty baselines to Forking Paths analysis (GSM8k-59; Fig. 5)
We see similar patterns here as in Fig. 9, with uncertainty dynamics in ot (Left) that are hidden behind
static uncertainty estimates (Right). In this case, (1) assigns the majority of certainty to the correct
answer 21, where as (2) and (3) are near-100% certainty in a different answer 3,528.

C.2 TOKEN LOGIT PROBABILITIES

A simple question one might ask about forking tokens, is whether these can simply be explained as
low-probability tokens which were unlikely, and when sampled caused the model to go off course.
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For this reason we ran a correlation between the change point probability at a given token p(τ = t | y)
and the token logit probability p(xt = w∗) for the greedy token w∗. As shown in Fig. 11, we
find minimal correlation between (log) change point probability and (log) token probability. The
slight correlation we find is positive, contrary to the question above, and we note that many of the
highest-probability forking tokens also have high logit probabilities.

3 2 1 0
Token t Logit Probability

12

10

8

6

4

2

0

Ch
an

ge
 P

oi
nt

 P
ro

b.
 

lo
g

p(
=

t
|y

)

StoryCloze_2Choice
HotpotQA
GSM8k
AQuA
LastLetter
MMLU
CoinFlip

Figure 11: Correlation between change point probability and token logit probability We find
that token logit probability p(xt = w∗) is not strongly predictive of the probability that a token is
labeled a change point by our model p(τ = t | y). In fact we find a slight positive correlation, and
that the highest probability change points also have high token logit probabilities.

C.3 COMPARING CPD AND SURVIVAL ANALYSIS

Another simple question is how our two analysis methods, change point detection (Sec 2.3) and
survival analysis (Sec 2.4), compare to one another. If our methods make similar predictions about
which sequences have forking tokens, they might be redundant. In Sec. 2.4 we explain why survival
analysis of ot,w may provide different results from change point detection. We test this by running
a correlation between the estimated number of change points predicted by out change point model
(i.e. the .1 quantile of p(m | y)) and the final survival rate S(T ) of a sequence. As shown in Fig. 12,
we find ≈ 0 correlation between which samples have low survival rates with which samples have
more change points. This suggests that our two methods are identifying different forking tokens in
the outcome distributions ot and ot,w. Though ot and our change point detection models are given
emphasis in the present work, further analysis of ot,w may also be a promising direction for future
work.
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Figure 12: Correlation between change point model and survival analysis. We find no
correlation between the number of change points estimated by our CPD model (the .1 quantile of
p(m | y)) and the final survival rate S(T ) of a sequence. Each point represents a single prompt and
base path x∗.
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D IMPROVING COMPUTATIONAL EFFICIENCY

As mentioned in Sec. 3, the main limitation of Forking Paths Analysis is that it is very costly in terms
of number of tokens sampled. The approach we used has the token complexity: O

(
(|xin|+ |x∗|+

|x(s)|) ∗ |xt = w| ∗ |x∗| ∗ S
)
, where |xin| is the input prompt, |x∗| is the length of the base path,

|x(s)| is the length of output completions, |xt = w| is the number of alternate tokens at an index t,
and S is the number of completions sampled for each of these.

For our experiments, we used S = 30 and sampled on the order of millions of tokens for each input
and base path. However, one question we asked was whether a smaller number of samples might
serve nearly as well to identify forking tokens. As shown in Fig. 13, we find that with 10-20 samples,
the number of change points our CPD model predicts is very similar to when we use S = 30. In other
words, our experiments could be run at half the cost and with similar results.
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Figure 13: Correlation between number of change points estimated with our full dataset
(S = 30) and estimated with smaller sample sizes S = N For each panel, we sub-sampled N
completion texts for each token t and w, where N < 30. Given this smaller dataset and estimated
outcome distribution ot, we predict the number of change points (.1 quantile of p(m | y)). In red, we
plot Spearman’s ρ correlation coefficient.

Additionally, we see a number of avenues for future work to improve the efficiency of Forking Paths
Analysis. By using prompt caching with open-source models §, the token sample complexity may
be reduced to O

(
(|x∗|+ |x(s)|) ∗ |xt = w| ∗ |x∗| ∗ S

)
(i.e. samples will not scale by xin). Next, it

may be possible to use statistical models to determine optimal tokens t and w to draw samples for.
This is very similar to the problem of Optimal Experiment Design (Banga & Balsa-Canto, 2008),
which uses statistical models to determine which data should be collected to most efficiently test a
hypothesis. More ambitiously, with open-source models we may be able to use hidden activations to
predict forking tokens. Specifically, we can test whether hidden activations can predict token model
predictions p(τ = t | y), p(m | y) (for our CPD model), and S(T ) (for our survival analysis). If this
is possible, it may be possible to avoid the costly token sampling altogether, simply by analyzing
model activations.

§e.g. https://huggingface.co/docs/transformers/en/kv_cache
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E ADDITIONAL ANALYSES

Visualizations for all examples x∗ in our dataset and their respective analyses are available on-
line through an anonymized interactive dashboard: https://forking-paths.streamlit.
app/.

Below, we include a subset of examples, and show ot, p(τ = t|y), and highlighted text for each
example x∗. Refer to Fig. 4 for how to interpret figures. Examples are hand-selected to demonstrate
interesting uncertainty dynamics, including change points. However, we also found many other
interesting examples not shown here.
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COINFLIP

In the CoinFlip task (Fig. 15), most outcome distributions are static over the course of text generation.
This task is particularly easy for GPT-3.5, and from ot we conclude that, from the beginning of text
generation, the LLM ‘decides’ for certain what its final response will be.
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Question:
A coin is heads up. Deshon flips the coin over. Jamariea does not flip
the coin over. Is the coin still heads up?

Answer:
Let's think step by step. Initially, the coin is heads up. Then, Deshon
flips the coin over, which means he turns the coin to the other side. So
now, the coin is tails up. However, Jamariea does not flip the coin
over, which means she does not change the position of the coin.
Therefore, the coin is still tails up. It is no longer heads up because
Deshon flipped it over, but it is not heads up either because Jamariea
did not flip it back. So, the coin is not heads up anymore.

Figure 14: CoinFlip-1035
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Question:
A coin is heads up. Aalisha flips the coin over. Cleotha does not flip
the coin over. Is the coin still heads up?

Answer:
Let's think step by step. Initially, the coin is heads up. Aalisha flips
the coin over, which means she turns the coin over so that the other
side is facing up. This means that the coin is now tails up. However,
Cleotha does not flip the coin over, so the coin remains in the same
position as Aalisha left it - tails up. Therefore, the coin is no longer
heads up, it is now tails up.

Figure 15: CoinFlip-15426
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LASTLETTER

In the LastLetter task (Figs. 16, 17), we observe more change points than any other tasks. Many of
these follow a very consistent pattern: the outcome distribution ot(x

∗) remains uncertain until the
final answer tokens, at which point it collapses to a single outcome.
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Question:
Take the last letter of each word in "Roberta Mauro Clint Marcela"
and concatenate them.

Answer:
Let's think step by step. First, we need to separate the words in the
given string. We can do this by using the split() method, which will
create a list of words.\n\n```\nwords = "Roberta Mauro Clint
Marcela".split()\nprint(words)\n```\n\nOutput:\n```\n['Roberta',
'Mauro', 'Clint', 'Marcela']\n```\n\nNext, we need to access the last
letter of each word. We can do this by using the index -1, which will
give us the last element of the list.\n\n```\nlast_letters = [word[-1] for
word in words]\nprint(last_letters)\n```\n\nOutput:\n```\n['a', 'o', 't', 'a']
\n```\n\nFinally, we can concatenate these letters using the join()
method.\n\n```\nconcatenated_letters = "".join(last_letters)
\nprint(concatenated_letters)\n```\n\nOutput:
\n```\naotaa\n```\n\nTherefore, the final answer is "aotaa".

Figure 16: LastLetter-103 – Correct answer: aota
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Question:
Take the last letter of each word in "Sue Cassandra Cody Cali" and
concatenate them.

Answer:
Let's think step by step. \n\n1. First, we need to split the given string
into individual words. We can use the split() method to do this, which
will return an array of words.\n2. Next, we need to access the last
letter of each word. We can do this by using the charAt() method and
passing in the index of the last letter, which will be the length of the
word minus 1.\n3. We can then concatenate these letters together
using the + operator.\n4. Finally, we can print out the concatenated
string.\n\nHere's the code:\n\n```\n// Given string\nvar str = "Sue
Cassandra Cody Cali";\n\n// Split the string into individual
words\nvar words = str.split(" ");\n\n// Initialize an empty string to
store the concatenated letters\nvar result = "";\n\n// Loop through
each word\nfor (var i = 0; i < words.length; i++) {\n // Get the last
letter of the word\n var lastLetter = words[i].charAt(words[i].length -
1);\n // Concatenate it to the result string\n result += lastLetter;\n}

Figure 17: LastLetter-220 – Correct answer: eayi
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AQUA

We find the most complex uncertainty dynamics in the Mathematical Reasoning domains, AQuA
(Figs. 18, 19) and GSM8k (Figs. 20, 21).

For the AQuA examples shown here, we observe multiple changes, including changes at relatively
unexpected tokens. In these examples, we also observe sharp changes which occur over the course of
a few tokens instead of a single token, e.g. the second change in AQuA-62 and the first change in
AQuA-160.
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Question:
The H.C.F and L.C.M. of two numbers are 50 and 100 respectively. If
the first number is divided by 2, the quotient is 50, the second number
is:

Choices:
A) 50
B) 100
C) 125
D) 250
E) none of these

Answer:
Let's think step by step. \nFirst, we know that the H.C.F and L.C.M of
two numbers are 50 and 100 respectively. This means that the two
numbers have a common factor of 50 and their product is 100. \nSo,
we can write the two numbers as 50x and 50y, where x and y are the
other factors. \nNext, we are given that the first number (50x) is
divided by 2 and the quotient is 50. This means that x = 2.
\nTherefore, the first number is 50(2) = 100. \nNow, we can find the
second number by dividing the L.C.M (100) by the first number
(100). \nSo, the second number is 100/100 = 1. \nBut wait, this
doesn't make sense because the second number should also be a
multiple of 50 (since it has a common factor of 50 with the first
number). \nSo, we need to multiply 1 by 50 to get a multiple of 50.
\nTherefore, the second number is 50. \nHence, the correct answer is
A) 50.

Figure 18: AQuA-62 – Correct answer: A
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Question:
A cheerleading squad practices 1 hour a day from Monday through
Thursday for a competition on Saturday. How many hours would they
need to practice on Friday in order to have practiced an average of 2
hours a day over the 5 days from Monday through Friday?

Choices:
A) 4
B) 5
C) 6
D) 7
E) 8

Answer:
Let's think step by step. \n1. The squad practices 1 hour a day from
Monday through Thursday, which is a total of 4 hours (1 hour x 4
days = 4 hours).\n2. They need to practice for an average of 2 hours a
day over 5 days. This means they need a total of 10 hours (2 hours x 5
days = 10 hours).\n3. They have already practiced for 4 hours from
Monday through Thursday, so they need to practice for 6 more hours
(10 hours - 4 hours = 6 hours).\n4. Since they have already practiced
for 4 hours, they only need to practice for 2 more hours on Friday (6
hours - 4 hours = 2 hours).\nTherefore, the answer is A) 4. They need
to practice for 2 hours on Friday to have an average of 2 hours a day
over the 5 days from Monday through Friday.

Figure 19: AQuA-160 – Correct answer: C
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GSM8K

For GSM8k (Figs. 20, 21), we similarly find complex uncertainty dynamics over text generation.

For the AQuA examples shown here, we observe multiple changes, including changes at relatively
unexpected tokens. In these examples, we also observe sharp changes which occur over the course of
a few tokens instead of a single token, e.g. the second change in AQuA-62 and the first change in
AQuA-160.
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Question:
Mr. Smith has two farms, Farm X and Farm Y. He has 55 goats in
Farm X and 45 goats in Farm Y. He sold 10 goats from Farm X and
twice as many goats from Farm Y. How many goats are left in the two
farms altogether?

Answer:
Let's think step by step. \n\n1. Mr. Smith has 55 goats in Farm X and
45 goats in Farm Y. \n2. He sold 10 goats from Farm X, so now he
has 55 - 10 = 45 goats left in Farm X. \n3. He also sold twice as many
goats from Farm Y, which means he sold 2 * 45 = 90 goats from
Farm Y. \n4. Therefore, he now has 45 - 90 = -45 goats left in Farm
Y. \n5. However, we cannot have negative goats, so we can assume
that Mr. Smith actually sold all the goats in Farm Y. \n6. This means
that there are 0 goats left in Farm Y. \n7. Now, we can add the
number of goats left in Farm X (45) and Farm Y (0) to find the total
number of goats left in the two farms altogether. \n8. Therefore, there
are 45 + 0 = 45 goats left in the two farms altogether.

Figure 20: GSM8k-1 – Correct answer: 70
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Question:
Chase and Rider can ride their bikes thrice a day for 5 days; but on
two other days, they ride twice the times they do on usual days. How
many times do they ride their bikes a week?

Answer:
Let's think step by step. \n\nFirst, we know that Chase and Rider can
ride their bikes thrice a day for 5 days. This means that for 5 days,
they ride their bikes 3 times a day. So, the total number of times they
ride their bikes in those 5 days is 5 x 3 = 15 times.\n\nNext, we know
that on two other days, they ride twice the times they do on usual
days. This means that on these two days, they ride their bikes 3 x 2 =
6 times a day. So, the total number of times they ride their bikes on
these two days is 2 x 6 = 12 times.\n\nTherefore, the total number of
times they ride their bikes in a week is 15 + 12 = 27 times. So, Chase
and Rider ride their bikes 27 times a week.

Figure 21: GSM8k-78 – Correct answer: 54
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HOTPOTQA

We find dramatic uncertainty dynamics with change points in the HotpotQA examples shown in
Figs. 4, 22. However, in HotpotQA we also observe a cases where different nearly identical outcomes
are expressed with different words, as in Fig 23. While we tried to control for semantic variation
by using a powerful LLM for R(·), gemini-1.5-flash-001, we see this as a general challenge with
properly evaluating LLM performance on open-ended benchmarks. Curiously, in some of these cases
such as Fig 23 we nonetheless observe stable and interesting uncertainty dynamics across outcomes
that are only superficially distinct.
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Question:
Which famous musician also became an actor, Eddie Vedder or Peter
Noone?

Answer:
Let's think step by step. First, let's look at the two options: Eddie
Vedder and Peter Noone. Eddie Vedder is best known as the lead
vocalist and guitarist of the rock band Pearl Jam. Peter Noone is best
known as the lead singer of the 1960s pop group Herman's Hermits.
Both musicians have had successful careers in the music industry, but
which one also became an actor?\n\nThe answer is Eddie Vedder.
While Peter Noone has made occasional appearances in TV shows
and films, Eddie Vedder has had a more prominent acting career. He
has appeared in several films, including "Singles" and "Into the
Wild," and has also provided voice work for animated films such as
"Coraline" and "The Simpsons Movie." He has also made guest
appearances on TV shows like "Twin Peaks" and "Portlandia."\n\nIn
addition to his acting career, Eddie Vedder has also composed music
for films and has won a Golden Globe for his song "Guaranteed"
from the film "Into the Wild." So while both musicians have dabbled

Figure 22: HotpotQA-79442 – Correct answer: Peter Noone
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Question:
The artist who released the album "Al Despertar" is sometimes
known as what?

Answer:
Let's think step by step.

1. The first step is to find out who released the album "Al Despertar".
A quick search on the internet reveals that the album was released by
the Mexican singer-songwriter Natalia Lafourcade.

2. Now, we need to find out if Natalia Lafourcade has any other
names or aliases that she is known by. Another search on the internet
shows that she is sometimes referred to as "Nati Lafourcade" or
simply "Natalia".

3. However, there is no mention of any other name or alias that she is
known by in relation to the album "Al Despertar".

4. Therefore, the answer to the question is that Natalia Lafourcade is
sometimes known as "Nati Lafourcade" or "Natalia", but there is no
specific name or alias that she is known by in relation to the album
"Al Despertar".

Figure 23: HotpotQA-30010 – Correct answer: La Negra
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MMLU

Sequences in the MMLU have the second most change points (Figs 24, 25, 26), with LastLetter
having the most.
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Question:
Doses of substances used in animal toxicity studies are usually many times greater than those experienced by
people because:

Choices:
A) Animals are generally much less sensitive than people
B) Such tests can detect only very large risks because of the fact that only small numbers of animals can be
used
C) It is difficult in such studies to determine whether the observed toxic effects were caused by the substance
D) It is the only way to ensure results are applicable to people

Answer:
Let's think step by step.

First, we need to understand why animal toxicity studies are conducted. These studies are done to determine
the potential harmful effects of a substance on living organisms. This information is then used to assess the
potential risks to humans who may be exposed to the substance.

Now, let's look at the choices:

A) Animals are generally much less sensitive than people - This is not a valid reason for using higher doses
in animal toxicity studies. In fact, animals can be more sensitive to certain substances than humans, and
using higher doses could potentially harm them.

B) Such tests can detect only very large risks because of the fact that only small numbers of animals can be
used - This is a valid reason. In animal toxicity studies, only a small number of animals can be used due to
ethical and practical reasons. Therefore, using higher doses can help detect potential risks more easily.

C) It is difficult in such studies to determine whether the observed toxic effects were caused by the substance
- This is not a valid reason. Animal toxicity studies are designed to specifically determine the toxic effects of
a substance, and using higher doses can actually make it more difficult to determine the cause of the
observed effects.

D) It is the only way to ensure results are applicable to people - This is not a valid reason. Using higher
doses in animal toxicity studies does not necessarily ensure that the results will be applicable to people. In
fact, using doses that are too high can lead to inaccurate or misleading results.

Therefore, the correct answer is B) Such tests can detect only very large risks because of the fact that only
small numbers of animals can be used.

Figure 24: MMLU-3 – Correct answer: B
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Question:
A national association brought suit in federal court against a city. The
suit charged the city with violating several federal statutes. During the
trial, the association's attorney called the city attorney as an adverse
witness. The city attorney asserted the attorney-client privilege and
objected that the matters communicated to him were intended to be
confidential. The issues raised by the objections of the city attorney
should be resolved under

Choices:
A) federal privilege law.
B) the privilege law of the forum state.
C) either federal privilege law or the privilege law of the forum state
as determined by the court.
D) either federal privilege law or the privilege law of the forum state,
whichever the court determines is more likely to admit the evidence.

Answer:
Let's think step by step. \n\nFirst, we need to determine which law
applies in this situation. Since the case is being heard in federal court,
federal law will apply. \n\nNext, we need to determine which specific
federal law applies to the issue of attorney-client privilege. The
Federal Rules of Evidence (FRE) govern the admissibility of
evidence in federal court. \n\nTherefore, the correct answer is A)
federal privilege law. The issues raised by the objections of the city
attorney should be resolved under federal privilege law, specifically
the Federal Rules of Evidence.

Figure 25: MMLU-58 – Correct answer: A
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Question:
Current estimates of how many people exercise on a regular basis suggest that _____ do

Choices:
A) Less than 50%
B) More than 75%
C) Less than 25%
D) More than 50%

Answer:
Let's think step by step.

First, we know that the question is asking about the percentage of people who exercise on a regular
basis. This means that we are looking for a number between 0% and 100%.

Next, we are given four options to choose from: less than 50%, more than 75%, less than 25%, and
more than 50%.

We can eliminate option C) Less than 25% because it is the only option that is less than 25%, which
is a very small percentage.

We can also eliminate option B) More than 75% because it is the only option that is more than 75%,
which is a very high percentage.

This leaves us with options A) Less than 50% and D) More than 50%.

Based on current estimates, it is more likely that the percentage of people who exercise on a regular
basis is less than 50%. Therefore, the correct answer is A) Less than 50%.

Figure 26: MMLU-72 – Correct answer: A

STORYCLOZE

For StoryCloze, in some cases we observe change points, such as in Fig. 27. However, we also
observe many cases (such as Fig. 28) of a different pattern, where ot gradually drifts from one
distribution to another. This pattern is significantly more prevalent in StoryCloze than the other tasks
we evaluated, which is also noteworthy since this is the only open-ended task which has no ground
truth answer.
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Question:
Write a story with the following constraints:
1. The story must be exactly five sentences long.
2. The story must start with the sentence: "Terry loves to swim but he
never learned how to dive."
3. The story must end with one of the following two sentences:
- "Terry hope to improve." 
- "Terry has given up swimming."
4. The last sentence must be exactly one of these sentences, not a
rephrasing.

Answer:
Terry loves to swim but he never learned how to dive. He would
watch his friends gracefully dive into the pool while he awkwardly
jumped in. One day, his friends convinced him to try diving and he
belly flopped, causing everyone to laugh. Embarrassed, Terry decided
to give up swimming altogether. He realized that diving was not for
him and he was content with just swimming. Terry has given up
swimming.

Figure 27: StoryCloze-1197
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Question:
Write a story with the following constraints:
1. The story must be exactly five sentences long.
2. The story must start with the sentence: "Holly asked her brother to
put suntan lotion on her back."
3. The story must end with one of the following two sentences:
- "Holly yelled at her brother to get back at him." 
- "Holly gave her brother money as compensation."
4. The last sentence must be exactly one of these sentences, not a
rephrasing.

Answer:
Holly asked her brother to put suntan lotion on her back. He
reluctantly agreed, but as he was rubbing it in, he accidentally
squirted some in her hair. Holly yelled at her brother to get back at
him.

Figure 28: StoryCloze-1482

AGGREGATED ANALYSIS FOR NUM. CHANGE POINTS
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Figure 29: Estimated number of change points m aggregated over each task We estimate the
number of change points in each task by taking the .1 quantile of p(m|y) (rounded to the nearest
integer) for each prompt and base path x∗. We then compute the fraction of all examples in a task
with each estimated number of change points.

In Fig 29, we show aggregate results for each task, estimating the number of change points. Intuitively,
this serves as aggregating the posterior p(m|y) over all data points y in a single task. These results
are computed by taking a single point estimate for the number of change points m, which in Fig 29
is the .1 quantile of p(m|y). Note that the .1 quantile is equivalent to a Bayes factor of 9 between
p(m ≥ m′|y)/(m < m′|y), where m′ is the estimate for m, similar to our hypothesis testing method
described in Sec. 2.3.
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F ANALYSES WITH VARYING THRESHOLDS

In Fig. 30, we show results for Figs. 6, 29 with varying threshold parameters. In the case of the
change point time (Left plots), the threshold is used to convert p(τ = t|m) into a binary indicator
for whether the change point probability is above some threshold. For the number of change points
(Right plts), the threshold we vary is the quantile of p(m|y) used to compute a single point estimate
for the number of change points in a sequence y.
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Figure 30: Task-level estimates of CPD model results, varying threshold levels Here we show
the results of Figs. 6, 29 while varying the thresholds we use for each. (Left) Varying the change
point probability threshold for p(τ = t|m), and (Right) varying the quantile used to estimate m
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G EXPERIMENT DETAILS

This sections lists the specific prompts used for completions, prompts for collecting outcome rep-
resentations R(·), and finally answer cleansing functions used to parse outcomes into minimal
answers.

COMPLETION PROMPTS

Below are prompts used for sampling the base path x∗ as well as completions x(s)
t ∀t, s used to for

Forking Paths Analysis.

Standard CoT Prompt (LastLetter, GSM8k, HotpotQA)

Question: {question}

Answer: Let’s think step by step.

Multiple Choice CoT Prompt (AQuA [5 choice], MMLU [4 choice]

Question: {question}

Choices:
A) {A}
B) {B}
C) {C}
D) {D}
E) {E}

Answer: Let’s think step by step.

StoryCloze 2-Choice Prompt

Question:
Write a story with the following constraints:
1. The story must be exactly five sentences long.
2. The story must start with the sentence: "{ first sentence } "
3. The story must end with one of the following two sentences:
- "{ last sentence 1 } "
- "{ last sentence 2 } "
4. The last sentence must be exactly one of these sentences, not a rephrasing.

Answer: { first sentence }

OUTCOME REPRESENTATION PROMPTS

The following prompts are used for extracting outcome representations R(·) from a second LLM.
In our case, for cost efficiency the second LLM uses the ChatCompletions API format (messages
dictionaries) instead of Completions (single text string).
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1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Yes/No Outcome Prompt (CoinFlip)

[{
'role': 'user',
'content': < full_qa_text >

}, {
'role': 'user',
'content': 'What is the final choice (Yes or No) in the

Answer in the previous message?'↪→

}, {
'role': 'system',
'content': 'Respond with a single-word Yes or No if

possible.'↪→

}]

Generic QA Outcome Prompt (LastLetter, HotPotQA)

[{
'role': 'user',
'content': < full_qa_text >

}, {
'role': 'user',
'content': 'What is the final answer to the Question

given in the Answer in the previous message? Be
brief.'

↪→

↪→

}, {
'role': 'system',
'content': 'Respond with only the final answer, if

possible. Be brief in your response, do not include
unnecessary text.'

↪→

↪→

}]

Multiple Choice Outcome Prompt (AQuA, MMLU)

[{
'role': 'user',
'content': full_qa_text

}, {
'role': 'user',
'content': 'What is the final choice (A, B, C, or D) at

the end of the Answer in the previous message?'↪→

}, {
'role': 'system',
'content': 'Respond with a single-word multiple choice

answer if possible: A, B, C or D.'↪→

}]

* Note: AQuA prompts instead specify A,B,C,D,E
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1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Numeric Outcome Prompt (GSM8k)

[{
'role': 'user',
'content': < full_qa_text >

}, {
'role': 'user',
'content': 'What is the final answer given in the Answer

in the previous message?'↪→

}, {
'role': 'system',
'content': 'Respond only with a number if possible. Do

not include units such as "$".'↪→

}]

Story Ending Outcome Prompt ( StoryCloze∗ )

[{
'role': 'user',
'content': < full_qa_text >

}, {
'role': 'user',
'content': 'Which of the following two sentences matches

the ending of this story?' \↪→

f'\n1. " < last sentence 1 > "' \
f'\n2. " < last sentence 2 > "'

}, {
'role': 'system',
'content': 'Respond with a single word, either 1 or 2.'

}]

ANSWER CLEANSING FUNCTIONS

Here we list the ‘answer cleansing’ functions that we used to parse final answers from the extracted
outcome representations R(·). Even with the structured outcome prompts listed in the prior section,
the LLMs we used for R(·) have a tendency to occasionally respond verbosely even when instructed
otherwise. For this reason, we design simple functions to extract, e.g. numeric values from GSM8k
responses are parsed so that equal values are represented equivalently (e.g. R(x1) =“1.0” and
R(x2) =“1”). This method is adopted from Kojima et al. (2022) (Appendix A.6), and the numeric
and multiple choice answer cleansing functions we used are modified versions of their functions.

Also note that we label all outcomes which cannot be parsed, or which are outside top 6 most probable
in ot, as the value ‘Other’.

Standard Answer Cleansing Function

def base_ans_fn(s):
s = (s.split('answer is ')[1].replace('$', '')

if 'answer is ' in s else s)
s = s.strip()
if len(s) <= 1:

return s
if s[-1] == '.':

s = s[:-1]
return s
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1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Multiple Choice Answer Cleansing Functions

def abcd_fn(s, other_tok='*Other'):
s = s.strip()
return s if s in ('A', 'B', 'C', 'D') else other_tok

def abcde_fn(s, other_tok='*Other'):
s = s.strip()
return s if s in ('A', 'B', 'C', 'D', 'E') else other_tok

Numeric Answer Cleansing Function

import re

def numeric_fn(s):
pred = s
pred = pred.replace(",", "")
pred = [s for s in re.findall(r'-?\d+\.?\d*', pred)]

if len(pred) > 0:
return str(float(pred[0]))

return s

Answer Cleansing Function for LastLetter Task

def last_letter_ans_fn(s):
s = s.lower()
s = s.replace('"', '')
s = s.replace("'", '')
s = s.replace('.', '')
if 'answer is' in s:

s = s.split('answer is')[1]
if 'message is' in s:

s = s.split('message is')[1]

s = s.replace(' ', '')
return s.lower().strip()
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