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Abstract

CommonsenseQA (CQA) (Talmor et al.,
2019) dataset was recently released to advance
the research on common-sense question an-
swering (QA) task. Whereas the prior work
has mostly focused on proposing QA mod-
els for this dataset, our aim is to retrieve as
well as generate explanation for a given (ques-
tion, correct answer choice, incorrect answer
choices) tuple from this dataset. Our expla-
nation definition is based on certain desider-
ata, and translates an explanation into a set
of positive and negative common-sense prop-
erties (aka facts) which not only explain the
correct answer choice but also refute the in-
correct ones. We human-annotate a first-of-
its-kind dataset (called ECQA) of positive and
negative properties, as well as free-flow ex-
planations, for 11K QA pairs taken from the
CQA dataset. We propose a latent representa-
tion based property retrieval model as well as
a GPT-2 based property generation model with
a novel two step fine-tuning procedure. We
also propose a free-flow explanation genera-
tion model. Extensive experiments show that
our retrieval model beats BM25 baseline by
a relative gain of 100% in F1 score, property
generation model achieves a respectable F1

score of 36.4, and free-flow generation model
achieves a similarity score of 61.9, where last
two scores are based on a human correlated se-
mantic similarity metric.

1 Introduction

The field of automated question answering (QA)
has witnessed a rapid progress in the past few
years, sometimes beating even human perfor-
mance (Zhang et al., 2020). The reasons
behind this trend include (i) emergence of
large-sized QA datasets such as SQuAD (Ra-
jpurkar et al., 2016), HotpotQA (Yang et al.,
2018), CommonsenseQA (Talmor et al., 2019),
NaturalQA (Kwiatkowski et al., 2019), etc.,
and (ii) emergence of powerful, large scale, pre-

Question:
Where is a frisbee in play likely to be?
Answer Choices:
outside park roof tree air

Our Explanation:
Positives Properties

1) A frisbee is a concave plastic disc designed
for skimming through the air as an outdoor
game.
Negative Properties

1) A frisbee can be outside anytime, even while
not in play.
2) A frisbee can be in a park anytime, even while
not in play.
3) A frisbee can be on a roof after play.
4) A frisbee can be in a tree after play.
Free-Flow (FF) Explanation

A frisbee is a concave plastic disc designed for
skimming through the air as an outdoor game,
so while in play it is most likely to be in the air.
A frisbee can be outside or in a park anytime,
and other options are possible only after play.

CoS Explanation (Rajani et al., 2019):
A frisbee floats on air.

Table 1: An example from CQA dataset along with
our human-annotated explanation, containing positive
properties to support correct answer choice (in green),
negative properties to refute the incorrect choices (in
red), and free-flow natural language explanation (in
blue). The CoS explanation shown above from a prior
work (Rajani et al., 2019) is less informative than ours.

trained, neural language models such as Trans-
former (Vaswani et al., 2017), BERT (Devlin et al.,
2019), GPT (Brown et al., 2020), etc.

Much of the prior work in QA has focused
on building models for only predicting the cor-
rect answer. In this paper, we tackle the problem
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of generating an explanation for the answer of a
question. While existing work has looked at ex-
plaining the answer predicted by a model (Amini
et al., 2019), we take up the task of explaining
the given gold (correct) answer in a model obliv-
ious fashion (Jansen et al., 2018). We do this in
the context of common-sense QA task and work
with CommonsenseQA dataset. Explaining the
known gold answers for common-sense QA is an
important research problem and is far from being
solved (Rajani et al., 2019). Two major hurdles in
solving this problem include (i) lack of any desider-
ata for what constitutes an explanation (Horacek,
2017) and (ii) unavailability of QA datasets com-
prising high quality human-annotated explanations.

In this work, we address the entire stack
of automatically generating explanations for the
CommonsenseQA task. This includes setting up a
desiderata for the explanation, curation of a dataset
in accordance with the desiderata, proposing base-
lines models, and careful experimentation. Our
overall contributions can be summarized as:

1. We present a set of characteristics (refutation
complete, comprehensive, minimal, and coher-
ent) for what constitutes an explanation. For
any given (question, correct answer choice, in-
correct answer choices) tuple, our explanation
constitutes a set of positive properties to justify
the correct answer choice and a set of negative
properties to refute the incorrect ones.

2. We human annotate positive and negative prop-
erties for 11K QA pairs from the recently re-
leased CommonsenseQA (CQA) dataset (Tal-
mor et al., 2019). We also curate a free-flow
explanation for each QA pair. An example of
our human annotated explanation is shown in
Table 11. We call our dataset as ECQA (Ex-
planations for CommonsenseQA) and publicly
release2 it for future research.

3. We propose a set of models for the task of re-
trieval as well as generation of explanations.
Our retrieval system, called as eXplanation
Retriever (XR), represents properties in a la-
tent space, and retrieves the facts against a CQA
example from a given common-sense knowl-
edge corpus. Our generation system, called

1An additional example is given in Appendix A.1.
2https://github.com/dair-iitd/

ECQA-Dataset

as eXplanation Generator (XG), com-
prises a novel two step fine-tuned property gen-
eration model (XGP) to generate common-sense
properties and a free-flow explanation genera-
tion model (XGF).

4. We perform extensive experiments to demon-
strate the effectiveness of XR and XG systems.
We use an F1 based evaluation, calculated via
exact property match when retrieving using gold
corpus of facts. For property generation, and
retrieval using a silver corpus in the absence
of gold facts, F1 is computed using a semantic
similarity metric carefully picked to have a high
correlation with human judgment. XR outper-
forms BM25 by a relative gain of 100% for the
gold corpus, and 70% for the sliver corpus. XGP
achieves a F1 score of 36.4, while XGF achieves
a semantic similarity score of 61.9. We publicly
release our code and trained models 3.

2 Related Work

Bulk of the recent literature on automated QA
is focused on either (i) proposing a new kind
of dataset (Unger et al., 2014; Rajpurkar et al.,
2016; Ling et al., 2017; Joshi et al., 2017; Trivedi
et al., 2017; Welbl et al., 2017; Yang et al., 2018;
Kwiatkowski et al., 2019; Talmor et al., 2019; Miao
et al., 2020), or (ii) proposing a model with im-
proved answer accuracy (Amini et al., 2019; Bhar-
gav et al., 2020; Chen et al., 2020). As far as ex-
planation in QA is concerned, we can either (i) ex-
plain the model’s predicted answer, or (ii) explain
the given gold answer without worrying about the
model. For certain QA tasks (e.g. KBQA, MathQA,
VQA), former explanation task is more meaning-
ful. For other QA tasks (e.g. Common-sense QA,
ScienceQA), the later form of explanation may be
more meaningful. In both, one of the key challenge
is to ground the definition of explanation.

Knowledge-Base QA task (Berant et al., 2013)
requires the QA model to output a logical query
(e.g. SPARQL or SQL) which is then executed
over the underlying KB to get the answer. This
logical query itself serves as an explanation. The
MathQA task (Ling et al., 2017; Amini et al., 2019)
requires the model to output a theorem-like proof,
program, or algebraic construct which is executed
to get the answer. Again, such a theorem serves
as an explanation. For ScienceQA task, an expla-

3https://github.com/dair-iitd/ECQA

https://github.com/dair-iitd/ECQA-Dataset
https://github.com/dair-iitd/ECQA-Dataset
https://github.com/dair-iitd/ECQA
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Datasets Reasoning Type Reasoning Steps Refutation Knowledge Base
of Facts

Free Flow
Explanation

WorldTree V2 Scientific Multi-hop N Y N
COS-E Common-sense Single-hop N N Y
QASC Scientific Two-hop N Y N
OpenBookQA Scientific Multi-hop N Y N
ECQA Common-sense Multi-hop Y Y Y

Table 2: Comparison of various properties of the different multi-choice QA explanation datasets. 4th, 5th, and
6th columns refer to whether the dataset (i) provides refutation for incorrect choices, (ii) comes with a knowledge
corpus of facts, (iii) provides a free-flow natural language explanation, respectively.

nation naturally comprises relevant scientific facts
coming from a given corpus. WorldTree (Jansen
et al., 2018) and WorldTree V2 (Xie et al., 2020)
are corpora of elementary multiple-choice science
questions with gold explanations for correct answer
choice. OpenBookQA (Mihaylov et al., 2018) is a
ScienceQA dataset built over the WorldTree corpus.
QASC (Khot et al., 2020) is a middle school level
multiple-choice ScienceQA dataset.

For other QA tasks, such as common-sense QA,
reading comprehension QA (RCQA), visual QA
(VQA), grounding the definition of explanation is
not so obvious (Horacek, 2017) and hence, they
lack labeled data as well. In the case of RCQA
and VQA (Ghosh et al., 2018), there have been
attempts to explain the predicted answers. Clark
et al. (2020) studied the logical reasoning capac-
ity of transformer based language models on var-
ious RCQA tasks. Bhagavatula et al. (2019) have
proposed an NLI dataset for abductive reasoning.
Wang et al. (2019) introduced the task of sense-
making where given a pair of natural language
statements, the goal is to pick the more sensible
statement in the pair. Kotonya and Toni (2020) have
proposed a dataset of explainable fact-checking in
the public health domain and defined coherence
properties to evaluate explanation quality.

As far as common-sense QA is concerned, we
are not aware of much prior work on generating hu-
man understandable natural language explanations
either for the predicted answer or for the given gold
answer. CQA (Talmor et al., 2019) is a popular,
multiple choice, common-sense QA dataset. The
goal behind original CQA task is confined only till
answering the questions and hence almost all the
submissions (Ma et al., 2019; Khashabi et al., 2020;
Zhu et al., 2020; Yang et al., 2020) to the leader-
board of the CQA dataset focus just on answering
the question and not generating explanations. As

far as explaining the gold answers of CQA questions
are concerned, except for the works by Rajani et al.
(2019), the literature is quite slim – both from the
perspective of the explanation annotated datasets
and models. Rajani et al. (2019) recently anno-
tated explanations for the CQA dataset and called
those explanations as CoS explanation (CoS-E for
short). CoS-E are much shorter than our ECQA
explanations (refer Table 1) and their aim was to
leverage them in training a QA model so as to boost
its answering accuracy. Their QA model first pre-
dicts CoS-E followed by leveraging the same to
answer the question. Also, it is designed to gen-
erate only single-hop explanation which justifies
only the correct answer choice and does not refute
any incorrect answer choice. Table 2 compares
our ECQA dataset with other relevant explanation
datasets. To the best of our knowledge, both our
ECQA annotation and XR,XG systems for explain-
ing the CQA dataset are first-of-a-kind.

3 Explanations for CommonsenseQA

The broad idea behind explaining common-sense
QA is to capture how humans would justify if a QA
pair is presented to them. However, grounding a
precise definition for this human justification is still
hard due to subjectivity (Horacek, 2017). Further-
more, depending on the type of reasoning involved
in the QA task, form and shape of an explanation
may vary. Though, it is hard to give a single defini-
tion of the explanation for QA pairs coming from
the CQA dataset, we believe one can still approach
this by means of putting forward desiderata or de-
sired characteristics of a well-formed explanation:
Comprehensive: Any information or reasoning,
which is necessary to explain the answer should be
present. This requires writing common-sense facts
that are not present in the question but are essential
for explanation.
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Refutation Complete: While it should explain
why an answer choice is correct, it should also ex-
plain why rest of the choices are incorrect or not
best suited as answer.
Minimal: It should not contain any irrelevant or
redundant information, especially the ones which
are already present in the question.
Coherent: All the facts and statements should be
written in a coherent and free-flow form to get a
meaningful and natural explanation.

3.1 Formatting of the Explanation
The next question is how to translate above desider-
ata into a right format of the explanation for the
purpose of machine generation. A naı̈ve approach
would be to consider it as a sequence of tokens
or words, but it is unclear how to define metrics
for deciding whether such a sequence satisfies the
desiderata or not. So, we alternatively suggest two
different formats for the explanations.

1. Property Set Format: Given a CQA tuple
(q, a, I) where, q is the question, a is the correct
answer choice, I is the list of incorrect choices,
this format suggests compiling a set S of common-
sense atomic facts (aka properties) such that each
property in S is required to either justify the cor-
rect answer choice or refute an incorrect answer
choice. Furthermore, this format also requires the
set S to be minimal in the sense that dropping any
property from S may fail to either justify correct
answer choice or refute one or more incorrect an-
swer choices. Also, it’s good to ensure that each
property statement in S is atomic in the sense that
it is confined to a single fact and can’t be further
broken down into two independent facts. In sum-
mary, S contains all those atomic properties that
are needed for the explanation and nothing more.

Conceptually, we further partition this set S into
S+ and S− and call the respective properties as
positive and negative, respectively. Positive proper-
ties justify the correct answer choice and negative
properties refute the incorrect answer choices. Our
ECQA dataset has precisely annotated these sets for
the QA pairs in CQA dataset. An example of such
S+ and S− sets is given in the Table 1.

2. Free Flow (FF) Format: This format essen-
tially converts the question, the answer choices,
and the knowledge fact statements from the sets
S+ and S− into a well-formed, coherent, free-flow
style paragraph. This is important since this is how
a human might perceive an explanation to be.

4 ECQA Dataset

We partnered with a private firm to crowdsource the
annotations in property set (S) format for the CQA
dataset. The firm utilized their in-house annotation
and quality control teams for this purpose. For
each question in the CQA dataset, an annotator was
shown the question, its target concept (as given
in CQA), all five answer choices, and the correct
answer choice. As described earlier, the annotators
were then asked to write the following: A set S+

of positive properties, another set S− of negative
properties and a free-flowing English explanation
using the facts encapsulated in sets S+ and S−.

Each question in the CQA dataset comes with
a label called target concept. We sorted all the
questions according to their target concepts and
provided questions of the same target concept to a
single annotator. This prevented from conflicting
statements appearing in positive and negative prop-
erties, and also helped speed up the annotation. An
outcome of this exercise is shown in Table 1.

While it is difficult to guarantee that annotated
property set is comprehensive, we tried to ensure
it by asking annotators writing at least one prop-
erty for each answer choice. We also asked them
to write simple sentences by breaking down the
complex sentences into two or more so that it helps
in maintaining minimality. For the comprehensive-
ness and minimality of the final free-flow expla-
nation, we explicitly asked them to include every-
thing that appear in properties and avoid introduc-
ing anything from question and answer choices.
The dataset quality at the ground level was ensured
by a separate team of the partner firm, and random
checks were performed by the authors as well.

4.1 Dataset Analysis

In this section, we highlight various insights regard-
ing our ECQA dataset. There are a total of 10962
questions in the train and validation sets of CQA,
and we get annotations for all of them. Top 3 rows
of Table 3 gives the average count and the word
length of properties per question. We also give the
average word length of ECQA free-flow (FF) and
CoS-E free-flow explanation for comparison.

In order to measure how much information
ECQA free-flow annotations provide, we calculated
number of distinct words (nouns, verbs, adjectives,
and adverbs based on POS tagging) and report their
average numbers in Table 4. The first three rows
compare the information content in CQA, CoS-E
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Statistic Avg. # per ques. Avg. # words
S+ 2.05 9.94
S− 4.26 10.42
S 6.32 10.27
FF 1 49.52
CoS-E 1 6.82

Table 3: ECQA dataset statistics

and ECQA, while fourth and fifth rows tell what ex-
tra is present in a single annotation of the two expla-
nation datasets w.r.t to CQA. This gives us a rough
idea that the annotation introduces new entities and
relations required for the explanation. Compari-
son using word-overlap metrics and additional data
insights are presented in the Appendix A.9.

Dataset NN* VB* JJ* RB*

CQA 7.92 3.75 1.39 0.60
CoS-E 3.42 2.67 1.01 0.49
ECQA 10.22 7.83 3.12 2.20
CoS-E \ CQA 1.15 0.88 0.41 0.21
ECQA \ CQA 4.75 5.22 1.85 1.82

Table 4: Comparing information content through im-
portant words in CQA, CoS-E and ECQA.

4.2 Human Validation Experiments
We performed two human validation experiments
to assess the absolute (and relative to CoS-E)
quality of our ECQA dataset. In the first exper-
iment, we asked three human judges to validate
100 samples each from our ECQA dataset. Out
of 100 samples, 50 samples were common across
judges (for normalization and correlation analysis)
and 50 were different. Both S+ and S− property
sets were judged on a 3-points4 scale to capture
how well (negative)positive properties are justify-
ing (in)correctness of (in)correct answer choice(s).
Table 5 lists down the mean (µ), standard devia-
tion (σ), standard error (e), and average Pearson’s
correlation coefficient (ρ) for both positive and
negative properties. 83.33% of the samples were
rated a perfect 2 score for positive properties and
66.67% were rated perfect 2 for negative proper-
ties. We computed Pearson’s correlation coeffi-
cient as follows. For each of the 50 commonly
labeled samples, we first computed the average
score across all the judges. Then, we computed

40: complete garbage, 1: partial but incomplete reasoning,
2: satisfactory reasoning.

Pearson’s coefficient between scores of an individ-
ual judge and the corresponding average scores.
Finally, we took the average of these individual
coefficients across all judges (Gaona, 2014; Agirre
et al., 2012). In the second experiment, we asked
a set of three different human judges to compare
the ECQA explanations with CoS explanations for
the same 100 samples as in previous validation ex-
periment. For each question, both explanations
were randomly shuffled and resulting pair of ex-
planations was called as (E1, E2). The judges
were asked to compare E1 with E2 on each of
the following aspects: comprehensiveness, refu-
tation completeness, minimality/non-redundancy,
and overall quality. The comparison was logged on
a 4-point scale5. Column 2 of Table 6 lists down the
% times our explanation stood better than CoS-E.
In all the four aspects, ECQA is judged to be out-
performing CoS-E by a huge margin. Pearson’s
coefficient can be computed for each quality mea-
sure (column) and property (row) in Table 6, giving
a 4× 4 matrix of coefficient values with an average
value of 0.774. The detailed coefficient matrix is
given in Appendix A.7.

Aspect µ σ e ρ

S+ 1.799 0.566 0.057 0.765
S− 1.588 0.604 0.060 0.748

Table 5: Absolute Dataset Quality Experiment: Posi-
tive and Negative properties as rated by human judges

Aspect ECQA
better

CoS-E
better

Both
Good

Both
Bad

Comprehensive 79.00 1.33 12.67 7.00

RC 84.33 0.33 1.67 13.67

M/NR 76.00 5.33 9.67 9.00

Overall 92.33 0.33 0.33 7.00

Table 6: Human Judgements for Relative Dataset Qual-
ity Experiment: ECQA and CoS-E. Numbers are av-
eraged over 3 judges. RC: Refutation Complete and
M/NR: Minimality/Non-redundancy

We do not report Cohen’s Kappa score since
it can have problems when dealing with skewed
preferential distributions, i.e., when one choice is
overwhelmingly preferred over the other (Feinstein
and Cicchetti, 1990). In such scenarios, Kappa

51: E1 better than E2, 2: E2 better than E1, 3: Both
good, 4: Both bad
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score can be low (and misleading) despite very high
inter-annotator agreement due to the high chances
of random agreement between the annotators. This
is true in our case since ECQA explanations are
highly preferred over CoS-E ones, by the judges.

5 Explanation Retrieval

This section describes our proposed
eXplanation Retriever (XR) system
to retrieve S+ and S− property sets from a given
property corpus for a given question. XR consists
of two modules - (i) property ranker, and (ii)
property selector. The experimentation code and
trained models for this and the following section
are publicly released. 6

5.1 Property Ranker
Input to property ranker is a tuple (q, a, c), where
q is a question (in natural language), a is one of
the answer choices (natural language) for the ques-
tion q, and c is token ’not’ if the answer choice
a is incorrect and empty string otherwise. Prop-
erty ranker ranks the properties in the given cor-
pus based on the given tuple (q, a, c). The archi-
tecture of property ranker comprises two parame-
ter shared sub-modules, namely QA Encoder (E1)
and Property Encoder (E2). Module E1 takes a
tuple (q, a, c) as input and outputs a vector zqac

in a 512-dimensional latent space Z . Design of
module E1 is inspired by sentence transformers
(SBERT) (Reimers and Gurevych, 2019) and com-
prises a BERT layer followed by single mean-
pooling and a fully connected layer. We picked
dimensions of the latent space through hyperpa-
rameter tuning on validation set. Module E2 takes
a property statement p∗ (in natural language) as
input and returns a vector zp∗ in the same latent
space Z . E2’s architecture is identical to the E1,
with parameter shared at every layer level.

Training: For training property ranker, we use
SBERT library.7 We initialize the BERT with pre-
trained bert-base-uncased (Devlin et al., 2019).
Weights of the fully connected layer are initialized
randomly. In ECQA dataset, multiple properties
from the corresponding sets S+ or S− could form
the relevant properties (each referred as p∗) for a
given (q, a, c). For the correct answer choice, all
properties from the corresponding S+ set are valid
p∗. In case of incorrect choice, we first match the

6https://github.com/dair-iitd/ECQA
7https://www.sbert.net/

stemmed answer choice with the annotated prop-
erties from the set S− and pick all the matches
as valid properties p∗, and remove all those tu-
ples from the dataset where we cannot map to any
property. Approximately 2% (q, a, c) tuples get
dropped from our experiments in this manner. Ad-
ditionally, 32 questions in the original CQA dataset
were marked as ambiguous by our annotators, and
hence, we drop them from all our experiments. So
there are multiple training examples for a query
(q, a, c) corresponding to each matched relevant
property (p∗). Input part of each training example
comprises a pair of (q, a, c) and a relevant common-
sense property p∗. Output part of each training ex-
ample comprises vector representations zqac and
zp∗ . The model is trained using a loss function,
which forces zqac and zp∗ to come closer in the
latent space Z . We use multiple negatives ranking
(MNR) (Henderson et al., 2017) as the loss, which
is negative log-softmax over similarity of zqac and
zp∗ .8

Inference: For inference, we first start with a
given property corpus S and encode all of them in
the latent space using property encoder E2. Now,
we pass any given tuple (q, a, c) through E1 and
obtain its latent vector representation zqac. Finally,
we output a ranked list of the properties in the set
S w.r.t to their cosine similarity with vector zqac.

5.2 Property Selector
The candidate properties retrieved by the property
ranker are passed to this property selection module
along with the query (q, a, c). This property selec-
tor module then filters out a smaller size relevant
properties set from the given larger size retrieved
properties set . We experiment with two variants of
this module - (i) Top-k, and (ii) Alignment-based
Iterative Retriever (AIR) (Yadav et al., 2020).

Top-k module picks top-k properties from the
ranked list returned by property ranker module.
Top-k is a naı̈ve yet effective property selection
module. We use ECQA dataset statistics to decide
value for k. Based on Table 3, we select top-3
properties for the correct answer choice and top-1
property for an incorrect answer choice.

AIR (Yadav et al., 2020) is a state-of-the-art un-
supervised explanation retrieval algorithm. It it-
eratively subselects multi-hop explanations from
a given set by measuring the alignment between
question, answer, and explanation sentences using

8Cosine similarity and MSE losses did not perform well.

https://github.com/dair-iitd/ECQA
https://www.sbert.net/
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GloVe embeddings (Pennington et al., 2014). We
use AIR to select the relevant set of properties from
the top 50 properties given by the property ranker.

5.3 Experiments and Results for XR System

Dataset: We first randomly split our annotated
ECQA dataset into a 70 : 10 : 20 partition to form
train, val, and test sets, respectively. For all our
experiments, we train the proposed property ranker
using the ECQA train set and validate it using the
ECQA val set. We experiment with both gold and
silver corpus of properties during inference. The
gold corpus consists of properties in the ECQA
dataset (including training, val, and test sets). Simi-
larly, the silver corpus is the set of train and val set
of ECQA dataset and an additional large size cor-
pus of common-sense facts, called as Open Mind
Common Sense (OMCS) corpus (SINGH, 2002)9.
The sizes of gold and silver corpus are 63975 and
901202, respectively.

Metrics: We use F1 score between the sets of
gold and retrieved properties to compare the per-
formance for retrieval from the gold corpus. Re-
trieval from the silver corpus can never fetch us the
ground-truth properties for a tuple (q, a, c), since
they are not contained in that corpus. One way to
overcome this is to align the retrieved properties set
to the ground truth properties set. We propose using
a maximum unweighted bipartite matching based
metric to find such an alignment score. For this, we
first create a complete bipartite graph between the
ground truth and the retrieved set of properties. To
each edge in the graph, we assign a score based on
the semantic similarity of the corresponding prop-
erty sentences. For this we use lexical and seman-
tic similarity metrics such as STS-BERT score10,
SPICE (Anderson et al., 2016), CIDEr (Vedantam
et al., 2015), METEOR (Banerjee and Lavie, 2005),
and ROUGE (Lin, 2004). We prune the edges in
bipartite graph that have semantic similarity score
less than some threshold value (τ ). We then apply
a maximum unweighted bipartite matching algo-
rithm (Kuhn, 1955) on the pruned graph to ob-
tain a matching of predicted silver properties with
ground-truth gold properties. We then calculate
usual F1 score assuming the matched properties as
the correctly retrieved ones. In Table 8 we report
STS-BERT and SPICE based F1 scores as these

9The OMCS corpus has around 800,000 common-sense
facts and was used to build ConceptNet.

10https://pypi.org/project/semantic-text-similarity/

two metrics are the most correlated with human
judgment. Results on other metrics are reported in
Appendix A.8. Details regarding our experiment
to discover correlation between the five semantic
similarity metrics and the human judgment, and the
procedure to obtain metric-specific thresholds (τ)
is given in the Appendix A.6.

Hyperparameters: We tune hyperparameters of
property ranker by maximizing the average cosine
similarity over the validation set. Table 7 shows
the best hyperparameters for our proposed property
ranker obtained using grid search over validation
set, where the parameters were searched in the
given range. We use the model which achieves the
best results on validation set in 5 epochs. We set
warm-up steps and BERT hidden layer dimension
to default values of 10011 and 768, respectively.

Parameter Value Range
Learning rate 2×10−5 [10−5, 10−3]
Dimension of Z 512 {128, 256, 512}
Max training epochs 5 −
BERT sequence length 30 {20, 30}
k for positive properties 3 {3, 5, 10}
k for negative properties 1 {1, 2, 3}

Table 7: Best hyperparameters for property ranker. Z
denote the latent space.

Results: We have also considered the popular in-
formation retrieval method BM25 (Robertson and
Zaragoza, 2009) as another choice for the property
ranker module. We have used the publicly avail-
able implementation of BM2512. Table 8 shows
the performance comparison of XR system on gold
and silver corpus for different choices of the prop-
erty ranker and property selector modules. Our
proposed property ranker with top-k as property
selector outperforms all other combinations with
a significant margin. In Appendix A.3, we report
some anecdotal examples of retrieved properties.

6 Explanation Generation

In this section we will describe our proposed GPT-
2 (Radford et al., 2019) based explanation genera-
tion system called eXplanation Generator
(XG). Note that XG does not use any corpus of
common-sense properties at the inference time to
generate explanations. XG has two variants – (i)

11Default value taken from SBERT documentation
12https://pypi.org/project/rank-bm25/

https://pypi.org/project/rank-bm25/
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F1 Score (%)

XR System Gold Corpus Silver Corpus

Exact STS-BERT SPICE

BM25 + AIR 22.2 15.1 18.4

BM25 + top-k 25.6 16.2 19.8

Ours + AIR 33.0 25.0 25.4

Ours + top-k 49.7 27.6 28.5

Table 8: Explanation retrieval results over gold and
silver corpus for different choices of property ranker
and property selector modules in the XR system.“Ours”
stands for our proposed property ranker.

XGP to generate common-sense properties, and (ii)
XGF to generate the free-flow explanations across
all the answer choices. In all our experiments, we
use random sampling to generate the output tokens
using GPT-2 and report average numbers over 3
different runs.

6.1 Property Generation (XGP)
Input to the XGP is a tuple (q, a, c) and it generates
a set of properties to justify/refute the given answer
choice for the given question. The architecture for
XGP is the same as GPT-2 but we fine-tune it in a
customized manner as described below.

Training: We do a novel two-step fine-tuning
of GPT-2 and refer to this model as XGP. In the
first step, we fine-tune GPT-2 to ensure that it can
generate sentences that resemble common-sense
properties. For this, we fine-tune GPT-2 on lan-
guage modeling task using a corpus of common-
sense properties: ECQA train set plus OMCS cor-
pus. We use perplexity to evaluate the quality of
language model on the val set and save the model
which achieves the lowest perplexity in 5 epochs.
The input to our model is: 〈BOP〉 property 〈EOP〉,
where property is word-pieces tokens of property
and 〈BOP〉 and 〈EOP〉 are special tokens to mark
the beginning and end of a property.

In the second step, we fine-tune it to learn how
to generate a set of properties. Given a query tu-
ple (q, a, c) and a sequence of gold properties, say
(p∗1, ..., p

∗
k), we create input to GPT-2 as: 〈BOS〉

question: q a is c the answer because
〈BOP〉 p∗1 〈EOP〉 ... 〈BOP〉 p∗k 〈EOP〉 〈EOS〉

In this input template, the following set of strings
are always constant: question:, is, and the
answer because. Tokens 〈BOS〉 and 〈EOS〉
denotes the beginning and end of the sequence. We

use train set of ECQA, preserving the ordering of
properties from the annotation, so as to generate the
fine-tuning data in the above template for the sec-
ond fine-tuning step. We fine-tune for 5 epochs and
save the model that achieves the lowest perplexity
on the ECQA val set.

In order to establish the novelty of this 2 step
fine-tuning, we create another model (XGP-W) by
performing only 2nd step fine-tuning on pre-trained
GPT-2 and compare it with XGP.

Inference: We use test set of ECQA to test XGP.
The input to model is: 〈BOS〉 question: q a is
c the answer because 〈BOP〉. The model
generates tokens until it generates 〈EOS〉 token. We
parse output and collect a set of multiple properties
between consecutive 〈BOP〉 and 〈EOP〉 tokens.

Experiments: Table 9 shows the comparison of
XGP and XGP-W using the bipartite graph based
metric discussed in section 5. Note that we have
also included the best retrieval model on the silver
corpus from Table 8 to show that our generation
models perform significantly better than it. The
maximum output token limit of GPT-2 in both the
models is set to 150. We report some anecdotal
examples of generated properties in Appendix A.4.

Model F1 Score (%)

STS-BERT SPICE

Ours + top-k (Silver Corpus) 27.6 28.5
XGP-W 33.0 30.1
XGP 36.4 32.2

Table 9: Comparison of XGP, XGP-W, and the best XR
model using silver corpus.

6.2 Free-Flow Explanation Generation (XGF)

We now discuss models to generate the free-flow
natural language explanations, given a question,
all answer choices, and the correct answer choice.
There are two different variants of XGF with differ-
ent training strategies and inference prompts.

6.2.1 XGF-I

We use GPT-2 to directly output the free-flow ex-
planation f given an input tuple (q, o, ca), where q
is question, o is sequence of all the answer choices
for the question q, and ca is the correct answer.
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Training: We fine-tune GPT-2 for 5 epochs on
train set of ECQA using standard language model-
ing objective. The input to GPT-2 during train-
ing is: 〈BOS〉 question: q The options
are o. The best answer is ca because
f 〈EOS〉. Validation is done on val set of ECQA
using perplexity measure.

Inference: During inference on ECQA test set,
the prompt is given till because token and gener-
ation is done until 〈EOS〉 token.

6.2.2 XGF-II

Here we generate the free-flow explanations in a
two-step manner. In the first step, we generate the
properties for each answer choice of a question
using the trained XGP (section 6.1) model. After
generating all the properties, we feed them in con-
junction with question, all the choices, and correct
answer to our GPT-2 based system XGF-II so as
to generate the free-flow explanation.

Training: The fine-tuning of pre-trained GPT-2
proceeds in two-steps. First, we fine-tune on gold
properties from the ECQA dataset. We take the
model that achieves lowest perplexity on val set
in 5 epochs. After fine-tuning on gold properties,
we now fine-tune XGF-II for 5 epochs on the
properties generated by XGP.

Inference: At inference time, we first generate
the properties for each answer choice using XGP.
Using these properties, XGF-II generate the free-
flow explanation.

Experiments: Table 10 shows STS-BERT and
SPICE scores between ground-truth and generated
explanations by XGF. Both XGF variants give simi-
lar results. Note that we set the maximum output
token limit of GPT-2 to 25013. We also tried free-
flow generation with bare pre-trained GPT-2 but it
resulted in complete garbage output. We report an
anecdotal example of generated free-flow explana-
tions in Appendix A.5.

Model STS-BERT SPICE

XGF-I 62.5 32.1

XGF-II 61.9 31.3

Table 10: Semantic Similarity Scores of XGF models.

13As free-flow explanations are longer than properties, we
set the maximum output token limit of GPT-2 to 250 for XGF
models compared to 150 used for XGP models.

7 Conclusion and Future Work

We have presented desiderata of what constitutes
an explanation in the case of common-sense QA.
Based on it, we generated a human-annotated expla-
nation dataset ECQA for CommonsenseQA. We
have also proposed models to retrieve and gener-
ate common-sense facts required to justify the an-
swer choice. We have publicly released our crowd-
sourced ECQA dataset and code/models. In future
work, we plan to explore directions to design RL-
based schemes for joint training of property ranker
and property selector components in the XR system
and joint training of XGP and XGF-II to gener-
ate free-flow explanation. Another direction is to
improve the accuracy and interpretability of the
existing models for CommonsenseQA using the
ECQA dataset.
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Hsuan Sung, László Lukács, Ruiqi Guo, Sanjiv Ku-
mar, Balint Miklos, and Ray Kurzweil. 2017. Effi-
cient natural language response suggestion for smart
reply. arXiv preprint arXiv:1705.00652.

Helmut Horacek. 2017. Requirements for Conceptual
Representations of Explanations and How Reason-
ing Systems Can Serve Them. In Proceedings of the
1st Workshop on Explainable Computational Intelli-
gence (XCI 2017).

Peter Jansen, Elizabeth Wainwright, Steven Mar-
morstein, and Clayton Morrison. 2018. WorldTree:
A Corpus of Explanation Graphs for Elementary Sci-
ence Questions supporting Multi-hop Inference. In
Proceedings of LREC.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A Large Scale Dis-
tantly Supervised Challenge Dataset for Reading
Comprehension. In Proceedings of ACL, pages
1601–1611.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish
Sabharwal, Oyvind Tafjord, Peter Clark, and Han-
naneh Hajishirzi. 2020. UNIFIEDQA: Crossing For-
mat Boundaries with a Single QA System. In Find-
ings of ACL: EMNLP 2020, pages 1896–1907.

Tushar Khot, Peter Clark, Michal Guerquin, Peter
Jansen, and Ashish Sabharwal. 2020. QASC: A
Dataset for Question Answering via Sentence Com-
position. In Proceedings of AAAI, pages 8082–8090.

Neema Kotonya and Francesca Toni. 2020. Explain-
able Automated Fact-Checking for Public Health
Claims. In Proceedings of EMNLP, pages 7740–
7754.

Harold W Kuhn. 1955. The Hungarian method for the
assignment problem. Naval research logistics quar-
terly, 2(1-2):83–97.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Al-
berti, Danielle Epstein, Illia Polosukhin, Jacob De-
vlin, Kenton Lee, Kristina Toutanova, Llion Jones,
Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai,
Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019.
Natural Questions: A Benchmark for Question An-
swering Research. Transactions of the Association
for Computational Linguistics (TACL), 7:452–466.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out, pages 74–81.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program Induction by Rationale Genera-
tion: Learning to Solve and Explain Algebraic Word
Problems. In Proceedings of ACL, pages 158–167.

Kaixin Ma, Jonathan Francis, Quanyang Lu, Eric Ny-
berg, and Alessandro Oltramari. 2019. Towards

Generalizable Neuro-Symbolic Systems for Com-
monsense Question Answering. In Proceedings of
the First Workshop on Commonsense Inference in
Natural Language Processing, pages 22–32.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A Diverse Corpus for Evaluating and Devel-
oping English Math Word Problem Solvers. In Pro-
ceedings of ACL, pages 975–984.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a Suit of Armor Conduct
Electricity? A New Dataset for Open Book Ques-
tion Answering. In Proceedings of EMNLP, pages
2381–2391.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In Proceedings of EMNLP, pages 1532–
1543.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Explain Your-
self! Leveraging Language Models for Common-
sense Reasoning. In Proceedings of ACL, pages
4932–4942.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions
for Machine Comprehension of Text. In Proceed-
ings of EMNLP, pages 2383–2392.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of EMNLP, pages 3973–
3983.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Now Publishers Inc.

P SINGH. 2002. The public acquisition of com-
mon sense knowledge. In Proceedings of AAAI
Spring Symposium on Acquiring (and Using) Lin-
guistic (and World) Knowledge for Information Ac-
cess, 2002. AAAI.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A Ques-
tion Answering Challenge Targeting Commonsense
Knowledge. In Proceedings of NAACL-HLT, pages
4149–4158.

Priyansh Trivedi, Gaurav Maheshwari, Mohnish
Dubey, and Jens Lehmann. 2017. LC-QuAD: A cor-
pus for complex question answering over knowledge
graphs. In Proceedings of ISWC, pages 210–218.

Christina Unger, Corina Forascu, Vanessa López, Axel
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A Appendices

A.1 Additional Example of ECQA
Annotations

Table 11 shows an additional example of
CommonsenseQA, along with our human-
annotated explanations, containing positive proper-
ties to support the correct answer choice (in green),
negative properties to refute the incorrect choices
(in red), and free-flow natural language explanation
(in blue).

Question:
What is something that people do early in the
day?
Answer Choices:
believe in god make tools skydive

smoke pot eat eggs

Our Explanation:
Positives Properties

1) People generally eat breakfast early morning.
2) People most often eat eggs as breakfast.
Negative Properties

1) Believing in god is not restricted to a specific
part of a day.
2) People generally do not make tools early in
the day.
3) Skydive is an irrelevant answer.
4) People usually do not smoke pot early in the
day.
Free-Flow Explanation (FF)

People generally eat breakfast early morning
which most often consists eggs. People gener-
ally do not make tools or smoke pot early in the
day. Skydive is an irrelevant answer.

Table 11: Example of CommonsenseQA with our an-
notated explanation

A.2 Experimental Details

Computing Infrastructure: We run all our
experiments on a machine with a single Tesla P100
GPU (16 GiB) and 8 Intel(R) Xeon(R) E5-2690
v4 @ 2.60GHz CPUs with 59 GiB of physical
memory. Training times for all our different
models within the proposed XR and XG systems
were within 4 hours.

Implementation Details: All our models are
implemented in PyTorch14. We used SBERT15 to
implement our property retriever system XR. For
our proposed property ranker module, we used a
BERT-base-uncased, followed by a mean pooling
layer, and then a dense layer of size 512. We use
Huggingface transformer package16 to fine-tune
GPT-2 for all our generation models.

A.3 Anecdotal Examples: Property Retrieval

Table 12 shows some hand-picked examples where
our proposed XR system retrieves a set of properties
to either support or refute the given option.

Query (q, a, c): (the person used a candle to
navigate up the spiral staircase, where were they
likely?, Light house, True)
Gold set (p∗): {’light house has a spiral stair-
case’, ’light house is a structure’, ’a candle can
be used inside a light house’}
Ours+top-k: {’light house has a spiral stair-
case’, ’a candle can be used inside a light house’,
’light house is a structure’}
BM25+top-k: {’a candle can be used inside a
light house’, ’light house has a spiral staircase’,
’candle is used to counter insufficient lighting’}

Query (q, a, c): (sally took her medicine and
experienced strong side effects. what did doctors
say about the side effects?, Distinguished, False)
Gold set (p∗): {’distinguished means important
or respected’}
Ours+top-k: {’distinguished means important
or respected’}
BM25+top-k: {’sally belong to the house and
her neighbour’}

Query (q, a, c): (two friends wanted to spend
a quiet evening together, what did they go see?,
Restaurant, False)
Gold set (p∗): {’restaurant will not be quiet’}
Ours+top-k: {’restaurant is where people go
and eat’}
BM25+top-k: {’restaurant will not be quiet’}

Table 12: Anecdotal examples of retrieved properties
by our proposed XR system.

14https://pytorch.org/
15https://www.sbert.net/
16https://huggingface.co/transformers/

https://pytorch.org/
https://www.sbert.net/
https://huggingface.co/transformers/
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A.4 Anecdotal Examples: Property
Generation

Table 13 shows some hand-picked examples of
generated properties by XGP model and retrieved
properties by XR system from the silver corpus.

Query (q, a, c): (where do people go to pray?,
Church, True)
Gold set (p∗): {’prayer is done at church’, ’peo-
ple go to church for praying’}
Ours+top-k: {’people go to church to worship
and pray’, ’some people go to church to pray to
their god’, ’if you want to pray then you should
go to church’}
XGP: {’people go to a church to pray’, ’church
is a place of worship’}

Query (q, a, c): (how would someone feel after
going for run?, Falling down, False)
Gold set (p∗): {’going for a run generally won’t
make one fall down’}
Ours+top-k: {’something that might happen
as a consequence of going for a run is falling
down’}
XGP: {’person doesn’t fall down after going for
run always’, ’falling down is not a feeling’}

Query (q, a, c): (what is the best course of ac-
tion for a person to take if they want to get up
early?, Dawn, False)
Gold set (p∗): {’dawn is not an action’}
Ours+top-k: {’something that might happen
when you get up early is you see the dawn’}
XGP: {’dawn is not the best action for a person
to take if he wants to get up early’}

Table 13: Anecdotal examples of generated properties
by XGP model and retrieved properties by the best XR
system using silver corpus.

A.5 Anecdotal Examples: Free-Flow
Explanation Generation

Table 14 gives an example of free-flow explanation
generation by the two variants of XGF system.

A.6 Human-Metric Correlation Experiment
The semantic textual similarity (STS) task aims
to measure semantic similarity between two sen-
tences quantitatively. N -gram matching based met-
rics (CIDEr, METEOR, and ROUGE)17 only cap-

17BLEU was least correlated with human judgment, there-
fore it was not included in further experiments.

Input: question: sally went to a store and spent
money. most of her purchases were fresh but
some were frozen. what did she do? The options
are made a mistake, control people, get things,
buy food, pay bills. The best answer is buy food
because
Gold free-flow: buying food is an activity done
at store which requires money. it can be both
fresh and frozen. all the other options are incor-
rect as they are not related to spending money to
buy something.
Pre-trained GPT-2: they have a good idea of
where you want to buy. if they don’t know, buy
food. If you are going to buy food, it should be
on the menu. if you are going to buy a food item
that is going to get you a lot of attention and
attention is not being paid to you, buy it. buy
the food. (“buy the food” repeated 33 times)
XGF-I: food is sold in store so sally bought
fresh food from a store and bought it from a
store. all the other options are not fesiable as
they are not a place where sally spent money.
XGF-II: buying food is done by sally. she
went to a store to buy food. controlling people
is not done by buying food. getting things is
not done by sally. paying bills is not related to
spending money.

Table 14: Anecdotal example of free-flow explanation
generation by 2 variants of XGF system and pre-trained
GPT-2.

ture the lexical and syntactic similarity and are
not suitable for capturing the semantic similarity
between two sentences. SPICE uses a semantic
representation known as scene graphs to overcome
the problem with n-gram matching. STS-BERT18

is an implementation interface for a pre-trained
BERT model followed by a linear regression head,
fine-tuned over STS-B dataset (Wang et al., 2018)
to compute semantic similarity between English
sentences. It can also be used to provide a sim-
ilarity score in our case. We designed an exper-
iment to find which metric correlates better with
human judgments. We took 100 random samples of
queries (q, a, c), picked a valid gold, and one of the
XGP generated properties. We human-annotated
whether the picked gold and XGP generated prop-
erty are semantically similar or not. We also cal-

18https://pypi.org/project/
semantic-text-similarity/

https://pypi.org/project/semantic-text-similarity/
https://pypi.org/project/semantic-text-similarity/
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culate all the metrics scores between both sets of
properties. If the score is greater than a threshold
τ , we say the properties are semantic similar, oth-
erwise not. Threshold τ for each metric is selected
by maximizing the F1 score for these 100 selected
samples. We also calculated Pearson’s Correlation
coefficient between metric scores and human an-
notations. We compared the F1 scores of different
metrics and found STS-BERT score and SPICE
to be having the highest F1 scores and maximum
human correlation.

Thresholds verification: We designed another
experiment to verify these thresholds. We took 200
random queries (q, a, c) along with one of their
gold properties from ECQA dataset. We asked a
different annotator to write semantically similar
property to gold property for each of the first 100
queries and semantically dissimilar property for the
other 100 queries. We used the thresholds calcu-
lated in the previous experiment to calculate the
F1 scores using different metrics on these two sets
of properties. STS-BERT score and SPICE metric
have the highest F1 scores in this experiment also.
Table 15 shows the thresholds (τ ), corresponding
F1 scores, and Pearson’s correlation coefficients
with human annotation for different metrics in Ex-
periment 2. We used the same thresholds (τ ) for
retrieval using silver corpus and property genera-
tion results reported in the Table 8 and 9 of the
main paper using our proposed unweighted bipar-
tite matching based metric.

Measure ST SP C M R

Threshold 0.6 0.4 0.3 0.3 0.3
F1 Score (%) 78.1 64.7 35.3 54.3 36.5
PC (%) 59.6 35.0 31.0 47.7 21.8

Table 15: Human correlation with different metrics.
PC:Pearson’s Coefficient, ST: STS-BERT, SP: SPICE,
C:CIDEr, M:METEOR, R:ROUGE

A.7 Human Validation Experiment

Table 16 lists the Pearson’s correlation coefficients
for human judgements in Relative Dataset Quality
Experiment, for each quality measure (column) and
property (row) combination in Table 6. Pearson’s
coefficient is computed as follows: for each judge,
we calculate the correlation coefficient between the
scores given by the judge, and the average of the
scores across all the judges, for commonly labeled
50 samples. This is followed by computation of

the average of this coefficient across all the judges
for each entry in the table.

Aspect ECQA
better

CoS-E
better

Both
Good

Both
Bad

Comprehensive 78.0 92.0 84.9 75.7

RC 68.7 - 92.0 79.8

M/NR 65.1 86.9 61.7 73.5

Overall 74.0 - - 74.5

Table 16: Pearson’s correlation coefficient for Rela-
tive Dataset Quality Experiment: ECQA and CoS-E.
RC: Refutation Complete, M/NR: Minimality/Non-
redundancy, - means 1 or more annotators never picked
this option.

A.8 More Retrieval and Generation Results
Table 17 shows F1 scores for retrieval from silver
corpus and property generation using different met-
rics. Table 18 compares the free-flow explanation
generated by XGF-I and XGF-II.

System
F1 Score (%)

ST SP C M R

Retrieval
BM25+AIR 15.1 18.4 3.2 4.3 13.1

BM25+top-k 16.2 19.8 4.1 4.5 10.1

Ours+AIR 25.0 25.4 3.3 5.4 14.7
Ours+top-k 27.6 28.5 4.0 5.5 14.1

Generation
XGP-W 33.0 30.1 9.8 12.3 22.6

XGP 36.4 32.2 11.1 13.7 25.7

Table 17: Explanation retrieval results over silver cor-
pus for different XR systems and property generation
results by the XGP models for all 5 metrics. ST: STS-
BERT, SP: SPICE, C:CIDEr, M:METEOR, R:ROUGE

System ST SP C M R

XGF-I 62.5 32.1 20.3 17.5 12.2

XGF-II 61.9 31.3 18.7 17.2 12.5

Table 18: Semantic similarity scores for free-flow gen-
eration on all 5 metrics. ST: STS-BERT, SP: SPICE,
C:CIDEr, M:METEOR, R:ROUGE

A.9 Data Insights
This section provides some more insights about
the ECQA dataset. Table 19 gives the word-overlap
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(a) (b)
Figure 1: (a) Distribution of number of properties per question. (b) Distribution of properties length in words.

(a) (b)
Figure 2: Distribution of number of distinct nouns (a) and verbs (b) in CQA vs ECQA. For each n on x axis, the
plot gives the fraction of questions which have n distinct nouns/verb.

metric scores like BLEU-4 and ROUGE between
the explanation and the corresponding question text
for both CoS-E and ECQA. The scores are low for
both CoS-E and ECQA. We note these scores may
not be reflective of the true picture about overlap of
information content between the explanation and
the question text because of two reasons: (a) expla-
nations may paraphrase the content in the original
question text artificially resulting in a low score,
(b) the score may be low due to difference in the
length of the explanation and question. Thus, we
have focused on the number of (distinct) important
words present only in the explanation, as a metric
for information content in the main paper (Table 4).

Dataset BLEU-4 ROUGE

CoS-E \ CQA 18.0 16.2
ECQA \ CQA 18.3 24.5

Table 19: Comparing information content through
word-overlap metrics in CQA, CoS-E and ECQA.

We give distribution of number of properties in
Figure 1a and length of properties in Figure 1b.
The green curve corresponds to positive properties,
red curve corresponds to negative properties and

the blue curve corresponds to total properties. The
distribution of extra number of nouns and verbs
in the ECQA dataset are given in Figure 2a and 2b
respectively. Here, the green curve corresponds to
CQA dataset (number of distinct words in question
and answer choices). The red curve corresponds
to ECQA dataset (number of distinct words in prop-
erties and free-flow explanation). Finally, the blue
curve represents the ECQA \ CQA plot correspond-
ing to the number of novel words (present in the
properties and free-flow explanation but not in the
question and answer choices). This, in turn, gives
a rough idea of the extra information present in our
annotations.

We analyzed the rare novel words present in
our annotations and found that on average, every
annotation has 0.23 words which do not appear
anywhere else in the corpus, 0.7 words which ap-
pear less than 10 times and 2.4 words appearing
less than 100 times in the whole corpus of about
1.5 million words. This gives an idea about the
diversity of extra information in our annotations,
indicating the inherent hardness for any machine
to generate it without access to external relevant
common-sense facts.


