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ABSTRACT

Despite their success on large datasets, GANs have been difficult to apply in the
few-shot setting, where only a limited number of training examples are provided.
Due to mode collapse, GANs tend to ignore some training examples, causing
overfitting to a subset of the training dataset, which is small to begin with. A recent
method called Implicit Maximum Likelihood Estimation (IMLE) is an alternative
to GAN that tries to address this issue. It uses the same kind of generators as GANs
but trains it with a different objective that encourages mode coverage. However,
the theoretical guarantees of IMLE hold under restrictive conditions, such as the
requirement for the optimal likelihood at all data points to be the same. In this
paper, we present a more generalized formulation of IMLE which includes the
original formulation as a special case, and we prove that the theoretical guarantees
hold under weaker conditions. Using this generalized formulation, we further
derive a new algorithm, which we dub Adaptive IMLE, which can adapt to the
varying difficulty of different training examples. We demonstrate on multiple few-
shot image synthesis datasets that our method significantly outperforms existing
methods.

1 INTRODUCTION

Image synthesis has achieved significant progress over the past decade with the emergence of deep
learning. Deep generative models such as GANs (Goodfellow et al., 2014; Brock et al., 2019; Karras
et al., 2019; 2020; 2021), VAEs (Kingma & Welling, 2013; Vahdat & Kautz, 2020; Child, 2021;
Razavi et al., 2019), diffusion models (Dhariwal & Nichol, 2021; Ho et al., 2020), score-based
models (Song et al., 2021; Song & Ermon, 2019), normalizing flows (Dinh et al., 2017; Kobyzev
et al., 2021; Kingma & Dhariwal, 2018), and autoregressive models (Salimans et al., 2017; van den
Oord et al., 2016b;a) have made incredible improvements in generated image quality, which makes it
possible to generate photorealistic images using these models.

Many of these deep generative models require training on a large-scale datasets to produce high-
quality images. However, there are many real-life scenarios in that only a limited number of training
examples are available, such as orphan diseases in the medical domain and rare events for training
autonomous driving agents. One way to address this issue is by fine-tuning a model pre-trained on
large auxiliary dataset from similar domains (Wang et al., 2020; Zhao et al., 2020a; Mo et al., 2020).
Nonetheless, a large auxiliary dataset with a sufficient degree of similarity to the task at hand may not
be available in all domains. If an insufficient similar auxiliary dataset were used regardless, image
quality may be adversely impacted, as shown in (Zhao et al., 2020b). In this paper, we focus on the
challenging setting of few-shot unconditional image synthesis without auxiliary pre-training.

The scarcity of training data in this setting makes it especially important for generative models to
make full use of all training examples. This requirement sets it apart from the many-shot setting with
abundant training data, where ignoring some training examples does not cause as big an issue. As a
result, despite achieving impressive performance in the many-shot setting, GANs are challenging to
apply to the few-shot setting due to the well-known problem of mode collapse, where the generator
only learns from a subset of the training images and ignores the rest. A recent work (Li & Malik,
2018) proposed an alternative technique called Implicit Maximum Likelihood Estimation (IMLE) for
unconditional image synthesis. Similar to GAN, IMLE uses a generator, but rather than adopting
an adversarial objective which encourages each generated image to be similar to some training
images, IMLE encourages each training image to have some similar generated images. Therefore,
the generated images could cover all training examples without collapsing to a subset of the modes.
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Figure 1: Schematic illustration that compares vanilla IMLE (Li & Malik, 2018) (top row) with the
proposed algorithm, Adaptive IMLE (bottom row). While IMLE treats all training examples (denoted
by the squares on the left) equally and pulls the generated samples (denoted by the circles on the
left) towards them at a uniform pace, Adaptive IMLE adapts to the varying difficulty of each training
example and pulls the generated samples towards them at an individualized pace that depends on
the training example. The dashed line on the left figure illustrates the progression towards three
data points at four comparable epochs with the starting positions highlighted. The corresponding
generated samples are shown on the right. As shown, Adaptive IMLE can converge to the various
data points faster and closer than IMLE.

However, the theoretical guarantees of IMLE hold under restrictive conditions, one of which is that
all data points should have an identical optimal likelihood. The IMLE algorithm, therefore, treats all
training examples equally when optimizing the model parameters and ignores the varying difficulty in
learning from different training examples. As shown in the top row of Fig. 1, the generated samples
make uneven progress toward different training examples using IMLE, leading to overfitting to some
examples and underfitting to others. While this may not cause a major issue in the many-shot setting
because many data points are expected to have similar optimal likelihoods, it can be quite problematic
in the few-shot setting, since incorrectly weighting even a few training examples can impact the
model quality substantially due to the small total number of training examples that the model is
trained on.

In this paper, we introduce a generalized formulation of IMLE, which in turn enables the derivation
of a new algorithm that requires fewer conditions and gets around the aforementioned issue. In
particular, we mathematically prove that the theoretical guarantees of the generalized formulation
hold under weaker conditions and subsumes the IMLE formulation as a special case. Furthermore,
we derive an algorithm called Adaptive IMLE using this generalized formulation, which could adapt
to points with different difficulties, as illustrated in the bottom row of Fig. 1. We compare our method
to existing few-shot image synthesis baselines over six datasets and show significant improvements
over the baselines in terms of mode modelling accuracy and coverage.

2 RELATED WORK

There are two broad families of work on few-shot learning, one that focuses on discriminative tasks
such as classification (O’ Mahony et al., 2019; Finn et al., 2017; Snell et al., 2017) and another that
focuses on generative tasks. In this paper, we focus on the latter. Similar to many-shot generation
tasks, few-shot generation tasks take a limited number of training examples as input and aim to
generate samples that are similar to those training examples. What is different from the many-shot
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setting is that it is crucial for the generative model to utilize all the training examples in the few-shot
setting. Due to the scarcity of available data for training, ignoring even just a few data points would
cause a more serious issue in the few-shot setting than in the many-shot setting. One line of work
focuses on pre-training on large-scale auxiliary datasets from similar domains and adapting the
pre-trained models for the few-shot task. This has been applied to unconditional image generation (Li
et al., 2020; Zhao et al., 2020a; Mo et al., 2020; Ojha et al., 2021; Wang et al., 2020), conditional
image generation (Sinha et al., 2021; Liu et al., 2019) and video generation (Wang et al., 2019).
However, there are no guarantees on the existence of such large-scale auxiliary datasets for all
domains, and recent studies (Zhao et al., 2020b; Kong et al., 2022) also showed that fine-tuning from
a dissimilar domain could even lead to the degradation of generated image quality.

In this paper, we focus on the setting without fine-tuning pre-trained models from auxiliary datasets.
Most prior work considered applying GANs to this setting and developed methods for alleviating the
well-known mode collapse problem of GANs. FastGAN (Liu et al., 2021) introduced a skip-layer
excitation module for faster training and used self-supervision for the discriminator to learn more
descriptive features, which aids better mode coverage of the generator. MixDL (Kong et al., 2022)
introduced a two-sided distance regularization to facilitate learning smooth and mode-preserving
latent space. Despite these improvements, some degree of mode collapse still remains. A recent
method called Implicit Maximum Likelihood Estimation (IMLE) (Li & Malik, 2018) adopted a
different objective function and showed promising results towards alleviating mode collapse on
unconditional image synthesis tasks. Prior IMLE-based methods mainly focused on conditional
image synthesis (Li* et al., 2020; Peng et al., 2022). In this work, we build on (Li & Malik, 2018)
and introduce a novel and more generalized formulation of IMLE to make it more suitable for the
unconditional few-shot setting.

3 BACKGROUND: IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION (IMLE)

In unconditional image synthesis, the goal is to learn the unconditional probability distribution of
images p(x), from which samples can be drawn to yield new synthesized images. It is common to
use an implicit generative model – one example of such a model is the generator in GANs, which
takes the form of a function Tθ parameterized as a neural network with parameters θ, which maps
latent codes z drawn from a standard Gaussian N (0, I) to images x. One way to learn this model is
with the GAN objective, which introduces a discriminator that aims to distinguish between generated
images Tθ(z) and real images x. The generator is trained to produce more realistic images that
would fool the discriminator. However, the output Tθ(z) tends to recover only a subset of the training
examples even when varying all values of z. This issue is known as mode collapse, and the intuitive
reason behind it is that the adversarial objective of GAN only encourages each generated sample to be
similar to some training examples, but there is no guarantee that all training examples will have some
similar generated samples. In the few-shot image synthesis setting, the issue of mode collapse is even
more significant given the limited number of training examples that are available in the first place.

A more recent method known as Implicit Maximum Likelihood Estimation (IMLE) (Li & Malik,
2018) proposed an alternative objective to address this issue. Instead of making each generated
sample similar to some training examples, IMLE tries to ensure that samples can be generated around
each training example xi. The generator Tθ is encouraged to pull some samples Tθ(zj) towards each
xi, thereby rewarding coverage of the modes associated with all training examples.

More precisely, the IMLE objective takes the following form:

min
θ

Ez1,...,zm∼N (0,I)

[
n∑

i=1

min
j∈[m]

d (xi, Tθ(zj))

]
(1)

where d(., .) is a distance metric, m is a hyperparameter, and xi is the ith training example. The
training procedure involves finding the nearest generated sample index σ(i) to each training example
xi, and optimizing the model parameter θ by minimizing the distance from the selected sample
Tθ

(
zσ(i)

)
to the target data xi. Detailed pseudocode of the algorithm can be found in the appendix.

Despite the algorithm’s simplicity, restrictive conditions need to be satisfied for the theoretical
guarantees of IMLE to hold, such as requiring a uniform optimal likelihood for all data points. As
an example, consider a dataset with two clusters with the same number of points where one cluster
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has large variance and the other has small variance. In this case, the training examples from the
high-variance cluster are more difficult to learn than the training examples from the low-variance
cluster, because of sparser coverage of the space in the former cluster. If we consider what the ground
truth data distribution looks like, it is a bimodal distribution, with the mode corresponding to the
low-variance cluster having higher likelihood than the other. So requiring uniform optimal likelihood
for all data points, as IMLE does, will result in overfitting to the low-variance cluster and underfitting
to the high-variance cluster, which is not optimal. We refer readers to the IMLE paper (Li & Malik,
2018) for more details.

4 METHOD

In this paper, we devise a generalized formulation of IMLE, whose theoretical guarantees hold under
more general conditions than vanilla IMLE (Sec 4.1). This formulation subsumes vanilla IMLE as a
special case and also gives rise to a new algorithm which we call Adaptive IMLE. It turns out that
Adaptive IMLE offers theoretical and practical advantages over IMLE, which we will demonstrate
(Sec 4.2).

4.1 GENERALIZED FORMULATION

Since Tθ is an implicit generative model, the likelihood induced by the model pθ cannot in general be
expressed in closed form, and so evaluating it numerically is typically computationally intractable. In
order to train the generative model, we would like to maximize the likelihood of the training examples
without actually needing to evaluate the likelihood. Below we will consider the generalized objective
we propose and show that optimizing the objective is equivalent to maximizing the sum of likelihoods
at the training examples, without requiring the evaluation of likelihood.

Consider the following optimization problem:

max
θ
L{τi}i

(θ) := max
θ

Ez1,...,zm∼N (0,I)

 1

n

n∑
i=1

1

wi

τi −
1

m

m∑
j=1

Φτi(d(xi, Tθ(zj)))

 (2)

where Tθ, d(·, ·) and m are as defined in Eqn 1. We will choose w, τ and Φτ (·) later based on the
insight revealed by lemmas below.

We will present the high-level sketches of our key lemmas (omitting some technicalities) and delineate
their interpretations and significance. The precise statements of the lemmas and their proofs are left
to the appendix.

We will first present a lemma that relates an expectation of a random variable to the weighted integral
of one minus its cumulative density function (CDF) evaluated at different points, which we will refer
to as cumulative densities.

Lemma 1. Let X be a non-negative random variable and Φ be a continuous function on [0,∞). If
Φ′ is integrable on all closed intervals in [0,∞),

E [Φ(X)] = Φ(0) +

∫ ∞

0

Φ′(t)Pr(X ≥ t)dt

This lemma is useful because the left-hand side (LHS) is easy to approximate with Monte Carlo
estimates of expectations, and the right-hand side (RHS) is a weighted integral of one minus cumula-
tive densities, which are intractable to compute in general. It enables us to control the weighting of
different cumulative densities by choosing the function Φ.

Recall that our goal is to maximize the likelihood at each training example without actually computing
the likelihood. We can leverage Lemma 1 for this purpose, by choosing the non-negative random
variable X appropriately. We choose X to be the distance between a training example and a generated
sample d(xi, Tθ(zj)). With this choice, Lemma 1 gives us a way to relate a weighted integral of the
average likelihoods within differently sized neighbourhoods around the training example xi (RHS) to
the expectation of a function of the distance d(xi, Tθ(zj)) (LHS).
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Moreover, we’d like to restrict the average likelihoods we integrate over to only those within
neighbourhoods of certain sizes rather than from 0 to∞. Specifically, we’d like to integrate from δτ
to τ , where τ > 0 is the radius of the largest neighbourhood and 0 ≤ δ < 1 is a tightening threshold.
To this end, we can choose the weighting function Φ′

τ (·) to be 1 when δτ ≤ t ≤ τ and 0 otherwise.
One choice of such Φτ (·) that satisfies this condition and its associated Φ′

τ (·) are:

Φτ (t) =


δτ t < δτ

t δτ ≤ t ≤ τ

τ t > τ

Φ′
τ (t) =


0 t < δτ

1 δτ ≤ t ≤ τ

0 t > τ

Using this choice of Φτ (·), we obtain the following lemma for a particular training example xi.

Lemma 2. Under the choice of Φτ (·) above and its associated Φ′
τ (·),

Ez1,...,zm∼N (0,I) [Φτi(d(xi, Tθ(zj)))] = τi −
∫ τi

δτi

Pr(d(xi, Tθ(zj)) < t)dt.

This lemma shows that, for one training example xi, the expectation on the LHS reduces to τi minus
the integral of the average likelihoods within balls whose radii lie between δτi and τi. Applying
Lemma 2 to all training examples x1, . . . ,xn, we obtain the following lemma that reveals what the
overall objective in Eqn 2 optimizes.

Lemma 3. Under the choice of Φτ (·) above and its associated Φ′
τ (·),

L{τi}i
(θ) =

1

n

n∑
i=1

1

mwi

m∑
j=1

∫ τi

δτi

Pr(d(xi, Tθ(zj)) < t)dt.

Lemma 3 shows that L{τi}i
(θ) implicitly computes the average likelihood that the generative model

assigns to the neighbourhood of each data point. The choice of τi controls the radius. Since we would
like to maximize probability in the immediate neighbourhood of each data point, we would like τi to
be small.

So should we choose an arbitrarily small value for τi? Recall that by definition of Φτi(·), if
d(xi, Tθ(zj)) > τi, Φτi(d(xi, Tθ(zj))) = τi. So, for a very small τi, it may well be the case
that d(xi, Tθ(zj)) > τi ∀j, which would make the Monte Carlo estimate of L{τi}i

(θ), i.e.,
1
n

∑n
i=1

1
wi

(
τi − 1

m

∑m
j=1 Φτi(d(xi, Tθ(zj)))

)
, zero. Since this is a constant, the gradient w.r.t. the

parameters is zero, which makes gradient-based learning impossible. This would happen whenever
τi < minj∈[m] d(xi, Tθ(zj)), and so the smallest τi that can be chosen is minj∈[m] d(xi, Tθ(zj))
(which is treated as a constant rather than a function of θ).

With this choice of τi, assuming that there is a unique j∗ such that d(xi, Tθ(zj∗)) =
minj∈[m] d(xi, Tθ(zj)) (which happens almost surely), the objective can be simplified to:

L{τi}i
(θ) = Ez1,...,zm∼N (0,I)

[
1

nm

n∑
i=1

1

wi

(
τi −max( min

j∈[m]
d(xi, Tθ(zj)), δτi)

)]
(3)

If we minimize the objective in Eqn. 3, we get a novel objective known as the Adaptive IMLE
objective. The solution to the Adaptive IMLE objective can be expressed as:

argmax
θ
L{τi}i

(θ) = argmin
θ

Ez1,...,zm∼N (0,I)

[
n∑

i=1

1

wi
max( min

j∈[m]
d(xi, Tθ(zj)), δτi)

]
(4)
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It turns out that the vanilla IMLE objective can be recovered as a special case, by choosing δ = 0 and
w1 = w2 = · · · = wn.

argmax
θ
L{τi}i

(θ) = argmin
θ

Ez1,...,zm∼N (0,I)

[
n∑

i=1

1

wi
max( min

j∈[m]
d (xi, Tθ(zj)) , 0)

]

= argmin
θ

Ez1,...,zm∼N (0,I)

[
n∑

i=1

1

wi
min
j∈[m]

d (xi, Tθ(zj))

]

= argmin
θ

Ez1,...,zm∼N (0,I)

[
n∑

i=1

min
j∈[m]

d (xi, Tθ(zj))

]

4.1.1 CURRICULUM LEARNING

Recall that our goal is to maximize the likelihood of the immediate neighbourhood around each
data point, and the size of this neighbourhood is controlled by τi. Therefore, we want to make τi
small. In order to make τi small without impeding learning, we need to make Ez1,...,zm∼N (0,I) [τi] =

Ez1,...,zm∼N (0,I)

[
minj∈[m] d(xi, Tθ(zj))

]
small. To this end, we can either increase m, the number

of samples, or train Tθ so that the samples it produces are close to the data point xi. The former is
computationally expensive, and so we will devise a method to achieve the latter.

We propose a curriculum learning strategy, which solves a sequence of optimization problems with
different τi’s, such that τi’s get smaller for optimization problems later in the sequence. The earlier
optimization problems in the sequence help train Tθ to produce samples close to the data points.
After each optimization problem is solved to convergence, we start solving the next optimization
problem with θ initialized to the solution found previously.

This will make τi’s smaller and smaller. If they eventually converge to zero, then it turns out that we
would have equivalently maximized the sum of likelihoods pθ(xi) of the training examples under the
probability distribution induced the generative model, as shown in the lemma below.
Lemma 4. Suppose pθ is continuous at all data points x1, . . . ,xn, under the choice of wi =∫ τi
δτi

vol(Bt(xi))dt :=
∫ τi
δτi

∫
Bt(xi)

dxdt, where Br(x) = {y|d(y,x) < r} is an open ball of radius
r centred at x,

lim
{τi→0+}i

L{τi}i
(θ) =

1

n

n∑
i=1

pθ(xi)

This lemma shows the theoretical guarantees of Adaptive IMLE hold under more general conditions
that those required by vanilla IMLE.

4.2 ADAPTIVE IMLE

The key difference from the objective in Eqn. 4 to the original IMLE formulation in Eqn. 1 is the
individualized neighbourhood radius τi around each data point xi. This change in the objective is
crucial, as it allows the model to adapt to the varying difficulty in learning different training examples,
hence the algorithm name, Adaptive IMLE.

As mentioned in Sect. 4.1.1, we need to gradually decrease τi in order to make the learning feasible.
This could be achieved by decreasing the tightening threshold δτi. To this end, the algorithm
optimizes the model’s parameter until the distance between the generated sample and the target data
d(xi, Tθ(zj)) decreases to δτi. Once the threshold is reached, the algorithm decreases the threshold
by multiplying it by δ as 0 ≤ δ < 1. This updated threshold then serves as the new target for learning
xi. Intuitively, the tightening coefficient δ determines the amount of progress required for the selected
sample towards each training example.

Now let’s turn our attention to the optimization problem we solve in each stage of the curriculum.
Consider the following unweighted variant to the objective in Eqn. 4 without the 1

wi
factor:

argmin
θ

Ez1,...,zm∼N (0,I)

[
n∑

i=1

max( min
j∈[m]

d(xi, Tθ(zj)), δτi)

]
(5)
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Algorithm 1 Adaptive IMLE Procedure

Require: The set of inputs {xi}ni=1, tightening coefficient δ ∈ [0, 1)
1: Initialize the parameters θ of the generator Tθ

2: Draw latent codes Z ← z1, ..., zm fromN (0, I)
3: σ(i)← argminj∈[m] d(xi, Tθ(zj)) ∀i ∈ [n]

4: τi ← d
(
xi, Tθ

(
zσ(i)

))
∀i ∈ [n] ▷ Initialize the threshold for each data point

5: for k = 1 to K do
6: Pick a random batch S ⊆ [n]
7: θ ← θ − η∇θ

(∑
i∈S d

(
xi, Tθ

(
zσ(i)

)))
/|S|

8: Draw latent codes Z ← z1, ..., zm fromN (0, I)
9: for i ∈ S do

10: if d
(
xi, Tθ

(
zσ(i)

))
≤ δτi then ▷ Only update σ(i) when getting into the threshold

11: τi ← τiδ ▷ Tightening the threshold
12: σ(i)← argminj∈[m] d(xi, Tθ(zj))
13: end if
14: end for
15: end for
16: return θ

If we were to run stochastic gradient descent (SGD) without replacement on the weighted objective
(Eqn. 4) and the unweighted objective (Eqn. 5) and consider the updates made by each, we will
find that updates induced by the weighted objective are just scalar multiples of those induced by
the unweighted objective, since τi and therefore wi is fixed during each stage of the curriculum.
So, optimizing the weighted objective is equivalent to optimizing the unweighted objective, with a
different step size chosen for each update. We consider optimizing the unweighted objective with a
constant step size that is smaller than these per-iteration step sizes. Then, if SGD on the weighted
objective converges to a solution 1 where minj∈[m] d(xi, Tθ(zj)) falls below δτi (which is a global
minimum), SGD on the unweighted objective with such a step size will do the same, because the
latter is just choosing more conservative step sizes than implied by the weighted objective.

Now, if we putting everything together, we obtain the Adaptive IMLE algorithm. The details are
shown in Algorithm 1.

5 EXPERIMENTS

Baselines We compare our method to recent few-shot unconditional image synthesis methods that
operate in the same setting we consider, namely without needing to pre-train on auxiliary datasets.
Two of such recent methods are FastGAN (Liu et al., 2021) and MixDL (Kong et al., 2022).
Training Details Our network architecture is modified from Child (2021), where we keep the
decoder architecture and replace the encoder with a fully-connected mapping network inspired by
Karras et al. (2019). We choose an input latent dimension of 1024 and a tightening coefficient δ = 0.9.
We train our model for 500k iterations with a mini-batch size of 4 using the Adam optimizer (Kingma
& Ba, 2015) with a learning rate of 2× 10−6 on a single NVIDIA V100 GPU.

Datasets We evaluate our method and the baselines on a wide range of natural image datasets at
256× 256 resolution, which includes Animal-Face Dog and Cat (Si & Zhu, 2012), Obama, Panda,
and Grumpy-cat (Zhao et al., 2020b) and Flickr-FaceHQ (FFHQ) subset (Karras et al., 2019). All
datasets contain 100 images except for Dog and Cat which contain 389 and 160 images respectively.
The FFHQ subset consists of 100 FFHQ images with similar backgrounds, in order to highlight
diversity in the generation of foregrounds.

Evaluation Metrics We use the Fréchet Inception Distance (FID) (Heusel et al., 2017) to measure
the perceptual quality of the generated images, where we randomly generate 5000 images and
compute FID between the generated samples and real images in each dataset. To evaluate the mode
modelling accuracy (precision) and coverage (recall), we use the precision metric of Kynkäänniemi
et al. (2019) to measure the former, and use the recall metric of Kynkäänniemi et al. (2019) and

1The weighted objective will always converge to such a solution since we can choose δ to be close to 1.

7



Under review as a conference paper at ICLR 2023

MixDL FastGAN Adaptive IMLE (Ours)

Cat

Dog

FFHQ subset

Panda

Grumpy Cat

Obama

Figure 2: Qualitative comparison of images generated by our method and those generated by the
baselines, FastGAN (Liu et al., 2021) and MixDL (Kong et al., 2022). As shown, our samples are of
higher quality and have greater diversity. On the other hand, the samples generated by the baselines
show more limited diversity, which is validated by the recall results in Table. 2, which suggest that
the baselines exhibit mode collapse.

Grumpy Cat Obama Panda Cat Dog FFHQ subset

FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓
FastGAN (Liu et al., 2021)26.6 0.357 41.1 0.370 10.0 0.339 35.1 0.467 50.7 0.430 54.2 0.357
MixDL(Kong et al., 2022) 24.5 0.296 45.4 0.276 10.6 0.264 26.5 0.305 81.2 0.274 62.3 0.221
Adaptive IMLE (Ours) 23.4 0.058 30.7 0.036 8.5 0.039 29.9 0.074 50.6 0.072 43.9 0.014

Table 1: We compute FID (Heusel et al., 2017) between the real data and 5000 randomly generated
samples in all cases. LPIPS above represents LPIPS backtracking score (Liu et al., 2021). For this
metric, each model is trained on 90% of the dataset. The resulting model is used to backtrack in the
latent space and reconstruct the remaining 10%. Lower LPIPS backtracking score shows better mode
coverage of the training data.

LPIPS backtracking score (Liu et al., 2021) to measure the latter. For LPIPS backtracking, we use
90% of the full dataset for training and evaluate the metric using the remaining 10% of the dataset.

5.1 QUANTITATIVE RESULTS

We compare the FID and LPIPS backtracking scores across all methods in Tab. 1. As shown, our
method outperforms the baselines in terms of both metrics on all datasets except for Cat, where our
FID is the second best and LPIPS backtracking score is the best. We compare the mode accuracy
and coverage in Tab. 2. As shown, our method achieves better precision than the baselines and
significantly outperforms the baselines in terms of recall. These results show that our method could
produce high-quality images while obtaining better mode coverage compared to the baselines.
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Grumpy Cat Obama Panda Cat Dog FFHQ subset

Prec.↑ Rec.↑ Prec.↑ Rec.↑ Prec.↑ Rec.↑ Prec.↑ Rec.↑ Prec.↑ Rec.↑ Prec.↑ Rec.↑
FastGAN (Liu et al., 2021) 0.909 0.13 0.918 0.09 0.957 0.16 0.971 0.08 0.961 0.19 0.913 0.13
MixDL(Kong et al., 2022) 0.931 0.35 0.910 0.47 0.933 0.30 0.910 0.50 0.857 0.15 0.770 0.30
Adaptive IMLE (Ours) 0.987 0.73 0.967 0.85 0.990 0.87 0.972 0.71 0.972 0.48 0.998 0.76

Table 2: Precision and recall (Kynkäänniemi et al., 2019) is computed across 1000 randomly generated
samples and the target dataset. Our method performs better for both precision and recall in all cases.
Higher precision shows better fitting to the target dataset and higher recall corresponds to better mode
coverage.

5.2 QUALITATIVE RESULTS

We show the qualitative comparison of our method to the baselines in Fig. 2. As shown, our method
generates higher quality samples which better preserve the semantic structures compared to the
baselines, such as the eyes in Cat, the facial structure in Dog and the mouth and hair in the FFHQ
subset. In addition, our method generates more diverse results while the baselines suffer from mode
collapse and generate similar samples, such as in Panda, Grumpy Cat and Obama. Additional samples
from our model can be found in the appendix.

We show the final reconstruction of the target image found using LPIPS backtracking (Liu et al.,
2021) on the models trained with different methods in Fig. 3. As shown, our method is the only one
where the reconstruction is structurally similar to the target image, demonstrating that our model
successfully covers the mode that the target image belongs to.

We also compare our method to the baselines on the quality of interpolations between two samples in
the latent space. As shown in Fig. 4, our method interpolates more smoothly and naturally than the
baselines, thereby indicating that our model is less overfitted to the training examples.

Target image MixDL FastGAN Ours Target image MixDL FastGAN Ours

Figure 3: Visualizations of the reconstructions of an unseen target image from LPIPS backtracking.
While the reconstructions of MixDL and FastGAN are structurally dissimilar from the target images,
the reconstructions of our method are structurally similar to the target images.

Obama FFHQ subset

MixDL

FastGAN

Ours

Figure 4: Latent space interpolation results. Our results show smooth and meaningful transitions and
higher quality images generated from intermediate points along the interpolation line in the latent
space. Start and end of interpolations are nearest neighbours of the same data examples among 200
samples generated by each method.

5.3 ABLATION STUDY

We compare the FID, precision, and recall between the proposed method, Adaptive IMLE, and vanilla
IMLE on the more challenging datasets, Obama and FFHQ subset. As shown in Tab. 3, Adaptive
IMLE significantly improves upon vanilla IMLE in terms of FID and recall while achieving similar
precision, validating the effectiveness of the proposed method under the few-shot setting.
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Obama FFHQ subset

FID↓ Prec.↑ Rec.↑ FID↓ Prec.↑ Rec.↑
Vanilla IMLE (Li & Malik, 2018)37.4 0.973 0.61 54.1 0.999 0.51
Adaptive IMLE (Ours) 30.7 0.967 0.85 43.9 0.998 0.76

Table 3: Adaptive IMLE significantly improves perceptual quality (FID) and recall compared to
vanilla IMLE, while maintaining similarly high levels of precision.

6 CONCLUSION

We developed a method for the challenging few-shot image synthesis setting that does not depend
on pre-training on auxiliary datasets. We presented a more generalized formulation of IMLE and
proved that the theoretical guarantees of this generalized formulation hold under weaker conditions.
We further derived a novel algorithm based on this formulation which can adapt to different training
examples of varying difficulty. We showed that our method significantly outperforms existing
baselines in terms of mode modelling accuracy and coverage on six few-shot benchmark datasets.
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A PROOFS

Lemma 1. Let X be a non-negative random variable and Φ be a continuous function on [0,∞). If
Φ′ is integrable on all closed intervals in [0,∞),

E [Φ(X)] = Φ(0) +

∫ ∞

0

Φ′(t)Pr(X ≥ t)dt

Proof.

Φ(0) +

∫ ∞

0

Φ′(t)Pr(X ≥ t)dt = Φ(0) +

∫ ∞

0

∫ ∞

t

Φ′(t)p(x)dxdt

= Φ(0) +

∫
{x≥t,t≥0}

Φ′(t)p(x)d

(
x
t

)
= Φ(0) +

∫
{t≤x,t≥0}

Φ′(t)p(x)d

(
x
t

)
= Φ(0) +

∫ ∞

0

∫ x

0

Φ′(t)p(x)dtdx

= Φ(0) +

∫ ∞

0

(∫ x

0

Φ′(t)dt

)
p(x)dx

= Φ(0) +

∫ ∞

0

(Φ(x)− Φ(0)) p(x)dx (2nd FTC)

= Φ(0) +

∫ ∞

0

Φ(x)p(x)dx−
∫ ∞

0

Φ(0)p(x)dx

= Φ(0) +

∫ ∞

0

Φ(x)p(x)dx− Φ(0)

∫ ∞

0

p(x)dx

= Φ(0) + E [Φ(X)]− Φ(0)

= E [Φ(X)]

Lemma 2. Under the choice of Φτ (·) above and its associated Φ′
τ (·),

Ez1,...,zm∼N (0,I) [Φτi(d(xi, Tθ(zj)))] = τi −
∫ τi

δτi

Pr(d(xi, Tθ(z)) < t)dt.

Proof. By definition, Φτi(0) = δτi.

Ez1,...,zm∼N (0,I) [Φτi(d(xi, Tθ(zj)))] = Φτi(0) +

∫ ∞

0

Φ′
τi(t)Pr(d(xi, Tθ(z)) ≥ t)dt (Lemma 1)

= δτi +

∫ τi

δτi

Pr(d(xi, Tθ(z)) ≥ t)dt

= δτi +

∫ τi

δτi

(1− Pr(d(xi, Tθ(z)) < t)) dt

= δτi + (τi − δτi)−
∫ τi

δτi

Pr(d(xi, Tθ(z)) < t)dt

= τi −
∫ τi

δτi

Pr(d(xi, Tθ(z)) < t)dt
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Lemma 3. Under the choice of Φτ (·) above and its associated Φ′
τ (·),

L{τi}i
(θ) =

1

n

n∑
i=1

1

mwi

m∑
j=1

∫ τi

δτi

Pr(d(xi, Tθ(zj)) < t)dt.

Proof.

L{τi}i
(θ) = Ez1,...,zm∼N (0,I)

 1

n

n∑
i=1

1

wi

τi −
1

m

m∑
j=1

Φτi(d(xi, Tθ(zj)))


=

1

n

n∑
i=1

1

wi

τi −
1

m

m∑
j=1

Ez1,...,zm∼N (0,I) [Φτi(d(xi, Tθ(zj)))]


=

1

n

n∑
i=1

1

wi

τi −
1

m

m∑
j=1

(
τi −

∫ τi

δτi

Pr(d(xi, Tθ(zj)) < t)dt

) (Lemma 2)

=
1

n

n∑
i=1

1

mwi

m∑
j=1

∫ τi

δτi

Pr(d(xi, Tθ(zj)) < t)dt

Equation 3.

Proof.

L{τi}i
(θ) = Ez1,...,zm∼N (0,I)

[
1

n

n∑
i=1

1

wi

(
τi −

m− 1

m
τi −

1

m
max( min

j∈[m]
d(xi, Tθ(zj)), δτi)

)]

= Ez1,...,zm∼N (0,I)

[
1

n

n∑
i=1

1

wi

(
1

m
τi −

1

m
max( min

j∈[m]
d(xi, Tθ(zj)), δτi)

)]

= Ez1,...,zm∼N (0,I)

[
1

nm

n∑
i=1

1

wi

(
τi −max( min

j∈[m]
d(xi, Tθ(zj)), δτi)

)]

Equation 4.

Proof.

argmax
θ
L{τi}i

(θ) = argmax
θ

Ez1,...,zm∼N (0,I)

[
1

nm

n∑
i=1

1

wi

(
τi −max( min

j∈[m]
d(xi, Tθ(zj)), δτi)

)]

= argmax
θ

Ez1,...,zm∼N (0,I)

[
n∑

i=1

1

wi

(
τi −max( min

j∈[m]
d(xi, Tθ(zj)), δτi)

)]

= argmax
θ

Ez1,...,zm∼N (0,I)

[
n∑

i=1

τi
wi
−

n∑
i=1

1

wi
max( min

j∈[m]
d(xi, Tθ(zj)), δτi)

]

= argmax
θ

Ez1,...,zm∼N (0,I)

[
−

n∑
i=1

1

wi
max( min

j∈[m]
d(xi, Tθ(zj)), δτi)

]

= argmin
θ

Ez1,...,zm∼N (0,I)

[
n∑

i=1

1

wi
max( min

j∈[m]
d(xi, Tθ(zj)), δτi)

]
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Lemma 4. Suppose pθ is continuous at all data points x1, . . . ,xn, under the choice of wi =∫ τi
δτi

vol(Bt(xi))dt :=
∫ τi
δτi

∫
Bt(xi)

dxdt, where Br(x) = {y|d(y,x) < r} is an open ball of radius
r centred at x,

lim
{τi→0+}i

L{τi}i
(θ) =

1

n

n∑
i=1

pθ(xi)

Proof.

L{τi}i
(θ) =

1

n

n∑
i=1

1

mwi

m∑
j=1

∫ τi

δτi

Pr(d(xi, Tθ(zj)) < t)dt (Lemma 3)

=
1

n

n∑
i=1

1

mwi

m∑
j=1

∫ τi

δτi

∫
Bt(xi)

pθ(x)dxdt

=
1

nm

n∑
i=1

m∑
j=1

1

wi

∫ τi

δτi

∫
Bt(xi)

pθ(x)dxdt

=
1

nm

n∑
i=1

m∑
j=1

∫ τi
δτi

∫
Bt(xi)

pθ(x)dxdt∫ τi
δτi

∫
Bt(xi)

dxdt

lim
{τi→0+}i

L{τi}i
(θ) =

1

nm

n∑
i=1

 lim
τi→0+

 m∑
j=1

∫ τi
δτi

∫
Bt(xi)

pθ(x)dxdt∫ τi
δτi

∫
Bt(xi)

dxdt


=

1

nm

n∑
i=1

m∑
j=1

(
lim

τi→0+

∫ τi
δτi

∫
Bt(xi)

pθ(x)dxdt∫ τi
δτi

∫
Bt(xi)

dxdt

)

=
1

nm

n∑
i=1

m∑
j=1

(
lim

τi→0+

∫
Bτi

(xi)
pθ(x)dx− δ

∫
Bδτi

(xi)
pθ(x)dx∫

Bτi
(xi)

dx− δ
∫
Bδτi

(xi)
dx

)
(L’Hôpital and 2nd FTC)

=
1

nm

n∑
i=1

m∑
j=1

(
lim

τi→0+

∫
Bτi

(xi)
pθ(x)(1− δ1Bδτi

(xi)(x))dx∫
Bτi

(xi)
1− δ1Bδτi

(xi)(x)dx

)

=
1

nm

n∑
i=1

m∑
j=1

(
lim

τi→0+

∫ τi
0
(1− δ1{r<δτi}(r))

∫
{x|d(x,xi)=r} pθ(x)dxdr∫ τi

0
(1− δ1{r<δτi}(r))

∫
{x|d(x,xi)=r} dxdr

)

=
1

nm

n∑
i=1

m∑
j=1

(
lim

τi→0+

∫
{x|d(x,xi)=τi} pθ(x)dx∫

{x|d(x,xi)=τi} dx

)
(L’Hôpital and 2nd FTC)

=
1

nm

n∑
i=1

m∑
j=1

pθ(xi) (Continuity of pθ)

=
1

n

n∑
i=1

pθ(xi)

Note that under common metrics like ℓp distances, wi can be found in closed form, i.e.,

vol(Bt(xi)) = (2t)d Γ(1+1/p)d

Γ(1+d/p) , and so wi =
∫ τi
δτi

vol(Bt(xi))dt =
∫ τi
δτi

(2t)d Γ(1+1/p)d

Γ(1+d/p) dt =

(2(1−δ)τi)
d+1

2(d+1) · Γ(1+1/p)d

Γ(1+d/p) , where Γ(·) denotes the gamma function.
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B PSEUDO CODE FOR IMLE

Algorithm 2 Implicit maximum likelihood estimation (IMLE) procedure

Require: The set of inputs {xi}ni=1
1: Initialize the parameters θ of the generator Tθ

2: for k = 1 to K do
3: Pick a random batch S ⊆ [n]
4: Draw latent codes Z ← z1, ..., zm from N (0, I)
5: σ(i)← argminj∈[m d(xi, Tθ(zj)) ∀i ∈ S
6: for l = 1 to L do
7: Pick a random mini batch S̃ ⊆ S
8: θ ← θ − η∇θ

(∑
i∈S̃ d

(
xi, Tθ

(
zσ(i)

)))
/|S̃|

9: end for
10: end for
11: return θ

17


	Introduction
	Related Work
	Background: Implicit Maximum Likelihood Estimation (IMLE)
	Method
	Generalized Formulation
	Curriculum Learning

	Adaptive IMLE

	Experiments
	Quantitative Results
	Qualitative Results
	Ablation Study

	Conclusion
	Proofs
	Pseudo Code for IMLE

