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ABSTRACT

In generative modeling, tokenization simplifies complex data into compact, struc-
tured representations, creating a more efficient, learnable space. For high-
dimensional visual data, it reduces redundancy and emphasizes key features for
high-quality generation. Current visual tokenization methods rely on a traditional
autoencoder framework, where the encoder compresses data into latent representa-
tions, and the decoder reconstructs the original input. In this work, we offer a new
perspective by proposing denoising as decoding, shifting from single-step recon-
struction to iterative refinement. Specifically, we replace the decoder with a diffu-
sion process that iteratively refines noise to recover the original image, guided by
the latents provided by the encoder. We evaluate our approach by assessing both
reconstruction (rFID) and generation quality (FID), comparing it to state-of-the-
art autoencoding approach. We hope this work offers new insights into integrating
iterative generation and autoencoding for improved compression and generation.

1 INTRODUCTION

Generative modeling aims to capture the underlying distribution of training data, enabling realistic
sample generation during inference. A key preprocessing step is tokenization, which converts raw
data into discrete tokens or continuous latent representations. In vision tasks, continuous latents are
typically produced by an encoder, whereas discrete tokens are commonly derived from embeddings
in language tasks. These compact representations allow models to efficiently learn complex patterns,
enhancing the quality of generated outputs.

Two dominant paradigms in modern generative modeling are autoregression (Radford et al., 2018)
and diffusion (Ho et al., 2020). Tokenization is an essential in both: discrete tokens direct step-
by-step conditional generation in autoregressive models, while continuous latents streamline the
denoising process in diffusion models. Empirical results across language (Achiam et al., 2023;
Anil et al., 2023; Dubey et al., 2024) and vision (Baldridge et al., 2024; Esser et al., 2024; Brooks
et al., 2024) tasks show that tokenization—whether discrete or continuous—improves generative
performance. We focus on tokenization for latent diffusion models, which excel at generating high-
dimensional visual data.

Given its central role in both paradigms, understanding how tokenization works is essential. In
language processing, tokenization is relatively straightforward, involving segmenting text into dis-
crete units such as words, subwords, or characters (Sennrich et al., 2015; Kudo & Richardson,
2018; Kudo, 2018). However, tokenization in visual domains poses greater challenges due to the
continuous, high-dimensional, and redundant nature. Instead of direct segmentation, compact rep-
resentations are typically learned using an autoencoding (Hinton & Salakhutdinov, 2006). Despite
rapid advancements in visual generation techniques, the design of tokenizers has received relatively
little attention. This is evident in the minimal evolution of tokenizers used in state-of-the-art models,
which have remained largely unchanged since their initial introduction (Van Den Oord et al., 2017).

In this paper, we address this gap by revisiting the widely adopted visual autoencoding formula-
tion (Esser et al., 2021), aiming to achieve higher compression rates and improved reconstruction
quality, thereby enhancing generation quality of downstream generative models. Our key idea is to
rethink the traditional autoencoding pipeline, which typically involves an encoder that compresses
the input into a latent representation, followed by a decoder that reconstructs the original data in a
single step. In our approach, we replace the deterministic decoder with a diffusion process. Here,
the encoder still compresses the input into a latent representation, but instead of a one-step recon-
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struction, the diffusion model iteratively denoises the data to recover the original. This reframing
turns the reconstruction phase into a step-by-step refinement, where the diffusion model, guided by
the latent representation, progressively restores the original data.

To implement our approach effectively, several key design factors must be carefully considered.
First, the architectural design must ensure effective conditioning of the diffusion decoder on the
latent representations provided by the encoder. Second, the objectives for training the diffu-
sion decoder should also explore potential synergies with traditional autoencoding losses, such as
LPIPS (Zhang et al., 2018) and GAN (Esser et al., 2021). Finally, diffusion-specific design choices
are crucial, including: (1) the model parameterization, which defines the prediction target for the
diffusion decoder; (2) the noise schedule, which dictates the optimization trajectory; and (3) the dis-
tribution of time steps during training and testing, which balances noise levels during learning and
generation. Our study systematically explores all these components under controlled experiments.

In summary, our contributions are as follows: (1) introducing a novel approach that fully leverages
the capabilities of diffusion decoders for more practical diffusion-based autoencoding, achieving
strong rFID, high sampling efficiency (within 1 to 3 steps), and robust resolution generalization; (2)
presenting key design choices to optimize performance; and (3) conducting extensive controlled ex-
periments that demonstrate our method achieves high-quality reconstruction and generation results,
outperforming leading visual auto-encoding paradigms.

2 BACKGROUND

We start by briefly reviewing the basic concepts required to understand the proposed method. A
more detailed summary of related work is deferred to Appendix A.

Visual tokenization. To achieve efficient and scalable high-resolution image synthesis, common
generative models, including autoregressive models (Razavi et al., 2019; Esser et al., 2021; Chang
et al., 2022) and diffusion models (Rombach et al., 2022), are typically trained in a low-resolution
latent space by first downsampling the input image using a tokenizer. The tokenizer is generally
implemented as a convolutional autoencoder consisting of an encoder, E , and a decoder, G. Specif-
ically, the encoder, E , compresses an input image x ∈ RH×W×3 into a set of latent codes (i.e.,
tokens), E(x) = z ∈ RH/f×W/f×nz , where f is the downsampling factor and nz is the latent
channel dimensions. The decoder, G, then reconstructs the input from z, such that G(z) = x.

Training an autoencoder primarily involves several losses: reconstruction loss Lrec, perceptual loss
(LPIPS) LLPIPS, and adversarial loss Ladv. The reconstruction loss minimizes pixel differences (i.e.,
typically measured by the `1 or `2 distance) between x and G(z). The LPIPS loss (Zhang et al.,
2018) enforces high-level structural similarities between inputs and reconstructions by minimizing
differences in their intermediate features extracted from a pre-trained VGG network (Simonyan &
Zisserman, 2015). The adversarial loss (Esser et al., 2021) introduces a discriminator, D, which
encourages more photorealistic outputs by distinguishing between real images, D(x), and recon-
structions, D(G(z)). The final training objective is a weighted combination of these losses:

LVAE = Lrec + λLPIPS · LLPIPS + λadv · Ladv, (1)

where the λ values are weighting coefficients. In this paper, we consider the autoencoder optimized
by Eq. 1 as our main competing baseline (Esser et al., 2021), as it has become a standard tokenizer
training scheme widely adopted in state-of-the-art image and video generative models (Chang et al.,
2022; Rombach et al., 2022; Yu et al., 2022; 2023; Kondratyuk et al., 2024; Esser et al., 2024).

Diffusion. Given a data distribution px and a noise distribution pε, a diffusion process progressively
corrupts clean data x0 ∼ px by adding noise ε ∼ pε and then reverses this corruption to recover the
original data (Song & Ermon, 2019; Ho et al., 2020), represented as:

xt = αt · x0 + σt · ε, (2)

where t ∈ [0,T] and ε is drawn from a standard Gaussian distribution, pε = N (0, I). The functions
αt and σt govern the trajectory between clean data and noise, affecting both training and sampling.

The basic parameterization in Ho et al. (2020) defines σt =
√

1− α2
t with αt =

(∏t
s=0(1− βs)

) 1
2

for discrete timesteps. The diffusion coefficients βt are linearly interpolated values between β0 and
βT−1 as βt = β0 + t

T−1 (βT−1 − β0), with start and end values are set empirically.
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The forward and reverse diffusion processes are described by the following factorizations:

q(x∆t:T|x0) =

T∏
i=1

q(xi·∆t|x(i−1)·∆t) and p(x0:T) = p(xT)

T∏
i=1

p(x(i−1)·∆t|xi·∆t), (3)

where the forward process q(x∆t:T|x0) transitions clean data x0 to noise xT = ε, while the reverse
process p(x0:T) recovers clean data from noise. ∆t denotes the time step interval or step size.

During training, the model learns the score function ∇ log pt(x) ∝ − ε
σt

, which represents gradi-
ent pointing toward the data distribution along the noise-to-data trajectory. In practice, the model
sΘ(xt, t) is optimized by minimizing the score-matching objective:

Lscore = min
Θ

Et∼π(t),ε∼N (0,I)

[
wt‖σtsΘ(xt, t) + ε‖2

]
, (4)

where π(t) defines the time-step sampling distribution and wt is a time-dependent weight. These
elements together influence which time steps or noise levels are prioritized during training.

Conceptually, the diffusion model learns the tangent of the trajectory at each point along the path.
During sampling, it progressively recovers clean data from noise based on its predictions.

Rectified flow. Rectified flow provides a specific parametrization of αt and σt such that the trajec-
tory between data and noise follows a “straight” path (Liu et al., 2023; Albergo & Vanden-Eijnden,
2023; Lipman et al., 2022). This trajectory is represented as:

xt = (1− t) · x0 + t · ε, (5)

where t ∈ [0, 1]. In this formulation, the gradient along the trajectory, ε−x0, is deterministic, often
referred to as the velocity. The model vΘ(xt, t) is parameterized to predict velocity by minimizing:

min
Θ

Et∼π(t),ε∼N (0,I)

[
‖vΘ(xt, t)− (ε− x)‖2

]
. (6)

We note that this objective is equivalent to a score matching form (Eq. 4), with the weight wt =
( 1

1−t )
2. This equivalence highlights that alternative model parameterizations reduce to a standard

denoising objective, where the primary difference lies in the time-dependent weighting functions
and the corresponding optimization trajectory (Kingma & Gao, 2024).

During sampling, the model follows a simple probability flow ODE:

dxt = vΘ(xt, t) · dt. (7)

Although a perfect straight path could theoretically be solved in a single step, the independent cou-
pling between data and noise often results in curved trajectories, necessitating multiple steps to
generate high-quality samples (Liu et al., 2023; Lee et al., 2024). In practice, we iteratively apply
the standard Euler solver (Euler, 1845) to sample data from noise.

3 METHOD

We introduce ε-VAE, with an overview provided in Figure 1. The core idea is to replace single-step,
deterministic decoding with an iterative, stochastic denoising process. By reframing autoencoding as
a conditional denoising problem, we anticipate two key improvements: (1) more effective generation
of latent representations, allowing the downstream latent diffusion model to learn more efficiently,
and (2) enhanced decoding quality due to the iterative and stochastic nature of the diffusion process.

We systematically explore the design space of model architecture, objectives, and diffusion training
configurations, including noise and time scheduling. While this work primarily focuses on gener-
ating continuous latents for latent diffusion models, the concept of iterative decoding could also be
extended to discrete tokens, which we leave for future exploration.

3.1 MODELING

ε-VAE retains the encoder E while enhancing the decoder G by incorporating a diffusion model,
transforming the standard decoding process into an iterative denoising task.

3
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Inference Pipeline
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Encoder

Latents

Resize & Concat
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Score Matching

Perception & Trajectory 
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Diffusion
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Resize & Concat Step #1 Step #2 Step #N

Training Pipeline

Latents

Figure 1: An overview of ε-VAE. We frame visual decoding as an iterative denoising problem
by replacing the autoencoder decoder with a diffusion model, optimized using a combination of
score, perception, and trajectory matching losses. During inference, images are reconstructed (or
generated) from encoded (or sampled) latents through an iterative denoising process. The number
of sampling stepsN can be flexibly adjusted within small NFE regimes (from 1 to 3). We empirically
confirm that ε-VAE significantly outperforms the standard VAE schema, even with just a few steps.

Conditional denoising. Specifically, the input x ∼ px is encoded by the encoder as z = E(x), and
this encoding serves as a condition to guide the subsequent denoising process. This reformulates the
reverse process in Eq. 3 into a conditional form (Nichol & Dhariwal, 2021; Saharia et al., 2022b):

p(x0:T|z) = p(xT)

T∏
i=1

p(x(i−1)·∆t|xi·∆t, z), (8)

where the denoising process from the noise xT = ε to the input x0 = x, is additionally conditioned
on z over time. Here, the decoder is no longer deterministic, as the process starts from random
noise. For a more detailed discussion on this autoencoding formulation, we refer readers to Sec. 5.

Architecture and conditioning. We adopt the standard U-Net architecture from Dhariwal & Nichol
(2021) for our diffusion decoder G, while also exploring Transformer-based models (Peebles & Xie,
2023). For conditional denoising, we concatenate the conditioning signal with the input channel-
wise, following the approach of diffusion-based super-resolution models (Ho et al., 2022; Saharia
et al., 2022b). Specifically, low-resolution latents are upsampled using nearest-neighbor interpola-
tion to match the resolution of xt, then concatenated along the channel dimension. In Appendix C.1,
although we experimented with conditioning via AdaGN (Nichol & Dhariwal, 2021), it did not yield
significant improvement and introduced additional overhead, so we adopt channel concatenation.

3.2 OBJECTIVES

We adopt the standard autoencoding objective from Eq. 1 to train ε-VAE, with a key modification:
replacing the reconstruction loss Lrec used for the standard decoder with the score-matching loss
Lscore for training the diffusion decoder. Additionally, we introduce a strategy to adjust the percep-
tual LLPIPS and adversarial Ladv losses to better align with the diffusion decoder training.

Velocity prediction. We adopt the rectified flow parameterization, utilizing a linear optimization
trajectory between data and noise, combined with velocity-matching objective (Eq. 6):

Et∼π(t),ε∼N (0,I)

[
‖G(xt, t,z)− (ε− x)‖2

]
. (9)

Perceptual matching. The LPIPS loss (Zhang et al., 2018) minimizes the perceptual distance be-
tween the reconstructions and real images using pre-trained models, typically VGG network (Esser
et al., 2021; Yu et al., 2023; 2022). We apply this feature-matching objective to train ε-VAE. How-
ever, unlike traditional autoencoders, ε-VAE predicts velocity instead of directly reconstructing the
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image during training, making it infeasible to compute the LPIPS loss directly between the pre-
diction and the target image. To address this, we leverage the simple reversing step from Eq. 6 to
estimate x0 from the prediction and xt as follows:

x̂t0 = xt − t · G(xt, t,z), (10)

where x̂t0 represents the reconstructed image estimated by the model at time t. We then compute the
LPIPS loss between x̂t0 and the target real image x.

Denoising trajectory matching. The adversarial loss encourages photorealistic outputs by compar-
ing the reconstructions to real images. We modify this to better align with a diffusion decoder.
Specifically, our approach adapts the standard adversarial loss to enforce trajectory consistency
rather than solely on realism. In practice, we achieve this by minimizing the following divergence,
Dadv:

min
Θ

Et∼pt
[
Dadv

(
q(x0|xt)||pΘ(x̂t0|xt)

)]
, (11)

where Dadv is a probability distance metric (Goodfellow et al., 2014; Arjovsky et al., 2017), and we
adopt the basic non-saturating GAN (Goodfellow et al., 2014).

For adversarial training, we design a time-dependent discriminator that takes time as input using
AdaGN approach (Dhariwal & Nichol, 2021). To simulate the trajectory, we concatenate x0 and xt
along the channel dimension. The generator parameterized by Θ, and the discriminator, parameter-
ized by Φ, are then optimized through a minimax game as:

min
Θ

max
Φ
Ladv = Eq(x0|xt) [logDΦ(x0,xt, t)] + EpΘ(x̂t

0|xt)

[
log
(
1−DΦ(x̂t0,xt, t)

)]
, (12)

where fake trajectories pΘ(x̂t0|xt) are contrasted with real trajectories q(x0|xt). To further stabilize
training, we apply the R1 gradient penalty to the discriminator parameters (Mescheder et al., 2018).
In Appendix C.1, we explore alternative matching approaches, including the standard adversarial
method of comparing individual reconstructions x̂t0 with real images x0, matching the trajectory
steps xt → xt−∆t (Xiao et al., 2022; Wang et al., 2024a), and our start-to-end trajectory matching
xt → x0, with the latter showing the best performance.

Final training objective combines Lscore, LLPIPS, and Ladv, with empirically adjusted weights.

3.3 NOISE AND TIME SCHEDULING

Noise scheduling. In diffusion models, noise scheduling involves progressively adding noise to
the data over time by defining specific functions for αt and σt in Eq. 2. This process is crucial
as it determines the signal-to-noise ratio, λt =

α2
t

σ2
t

, which directly influences training dynamics.
Noise scheduling can also be adjusted by scaling the intermediate states xt with a constant factor
γ ∈ (0, 1], which shifts the signal-to-noise ratio downward. This makes training more challenging
over time while preserving the shape of the trajectory (Chen, 2023).

In this work, we define αt and σt according to rectified flow formulation, while also scaling xt by
γ, with the value chosen empirically. However, when γ 6= 1, the variance of xt changes, which can
degrade performance (Karras et al., 2022). To address this, we normalize the denoising input xt by
its variance after scaling, ensuring it preserves unit variance over time (Chen, 2023).

Time scheduling. Another important aspect in diffusion models is time scheduling for both training
and sampling, controlled by π(t) during training and ∆t during sampling, as outlined in Eq. 3 and
Eq. 4. A common choice for π(t) is the uniform distribution U(0, T ), which applies equal weight
to each time step during training. Similarly, uniform time steps ∆t = 1

T are typically used for
sampling. However, to improve model performance on more challenging time steps and focus on
noisy regimes during sampling, the time scheduling strategy should be adjusted accordingly.

In this work, we sample t from a logit-normal distribution (Atchison & Shen, 1980), which empha-
sizes intermediate timesteps (Esser et al., 2024). During sampling, we apply a reversed logarithm
mapping function ρlog, defined as:

ρlog(t;m,n) =
log(m)− log (t · (m− n) + n)

log(m)− log(n)
, (13)

where we set m = 1 and n = 100, resulting in denser sampling steps early in the inference process.
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4 EXPERIMENTS

We evaluate the effectiveness of ε-VAE on image reconstruction and generation tasks using the Im-
ageNet (Deng et al., 2009). The VAE formulation by Esser et al. (2021) serves as a strong baseline
due to its widespread use in modern image generative models (Rombach et al., 2022; Peebles & Xie,
2023; Esser et al., 2024). We perform controlled experiments to compare reconstruction and gener-
ation quality by varying model scale, latent dimension, downsampling rates, and input resolution.

Model configurations. We use the encoder and discriminator architectures from VQGAN (Esser
et al., 2021) and keep consistent across all models. The decoder design follows BigGAN (Brock
et al., 2019) for VAE and from ADM (Dhariwal & Nichol, 2021) for ε-VAE. Additionally, we
experiment with the DiT architecture (Peebles & Xie, 2023) for ε-VAE. To evaluate model scaling,
we test five decoder variants: base (B), medium (M), large (L), extra-large (XL), and huge (H), by
adjusting width and depth accordingly. Further model specifications are provided in Appendix B.1.

We experiment with two encoder configurations: (1) a light-weight version with 6M parameters, a
downsampling rate of 16, and 8 latent channels; (2) a standard version based on Stable Diffusion
with 34M parameters, a downsampling rate of 8, and 4 latent channels. Configuration (1) is in-
tentionally designed as a more challenging setup and serves as the primary focus of analysis in the
paper. For this configuration, we further explore downsampling rates of 4, 8, and 32, as well as latent
dimensions of 4, 16, and 32 channels. Both VAE and ε-VAE are trained to reconstruct 128×128 im-
ages under these controlled conditions. Additionally, we validate our method in the standard setup
of Configuration (2) (detailed in Appendix C.2), where we compare it against state-of-the-art VAEs.

Evaluation. We evaluate the autoencoder on both reconstruction and generation quality using
Fréchet Inception Distance (FID) (Heusel et al., 2017) as the primary metric, computed on 10,000
validation images. For reconstruction quality (rFID), FID is computed at both training and higher
resolutions to assess generalization across resolutions. For generation quality (FID), we generate la-
tents from the trained autoencoders and use them to train the DiT-XL/2 latent generative model (Pee-
bles & Xie, 2023). This latent model remains fixed across all generation experiments, meaning im-
proved autoencoder latents directly enhance generation quality. We also report Inception Score (IS)
(Salimans et al., 2016) and Precision/Recall (Kynkäänniemi et al., 2019) as secondary metrics.

4.1 RECONSTRUCTION QUALITY

Decoder architecture. We explore two major architectural designs: the UNet-based architecture
from ADM (Dhariwal & Nichol, 2021) and the Transformer-based DiT (Peebles & Xie, 2023). We
compare various model sizes–ADM:{B, M, L, XL, H} and DiT:{S, B, L, XL} with patch sizes of
{4, 8}. The results are summarized in Figure 2 (left). ADM consistently outperforms DiT across
the board. While we observe rFID improvements in DiT when increasing the number of tokens
by reducing patch size, this comes with significant computational overhead. The overall result
aligns with the original design intentions: ADM for pixel-level generation and DiT for latent-level
generation. For the following experiments, we use the ADM architecture for our diffusion decoder.

Compression rate. Compression can be achieved by adjusting either the channel dimensions of the
latents or the downsampling factor of the encoder. In Figure 2 (middle and right), we compare VAE
and ε-VAE across these two aspects. The results show that ε-VAE consistently outperforms VAE in
terms of rFID, particularly as the compression ratio increases. Specifically, as shown on the middle
graph, ε-VAE achieves lower rFIDs than VAE across all channel dimensions, with a notable gap
at lower dimensions (4 and 8). On the right graph, ε-VAE maintains lower rFIDs than VAE even
as the downsampling factor increases, with the gap widening significantly at larger factors (16 and
32). Furthermore, ε-VAE delivers comparable or superior rFIDs even when the compression ratio is
doubled, demonstrating its robustness and effectiveness in high-compression scenarios.

Model scaling. We investigate the impact of model scaling by comparing VAE and ε-VAE across
five model variants, all trained and evaluated at a resolution of 128×128, as summarized in Table 1.
The results demonstrate that ε-VAE consistently achieves significantly better rFID scores than VAE,
with an average relative improvement of over 40%, and even the smallest ε-VAE model outperforms
VAE at largest scale. While the U-Net-based decoder of ε-VAE has about twice as many parameters
as standard decoder of VAE, grouping models by similar sizes, highlighted in blue, red, and green,
shows that performance gains are not simply due to increased model parameters.
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Table 1: Model scaling and resolution generalization analysis. Five model variants are trained
and evaluated. ∆rFID represents the absolute differences (or relative ratio) in rFID between the cor-
responding model size variants of VAE and ε-VAE. † denotes resolution generalization experiments.
To fairly evaluate the impact of ε-VAE under controlled model parameters, we highlight three groups
of model variants with comparable parameters, using blue, red, and green.

Models G params (M)
ImageNet ×128 ImageNet ×256 † ImageNet ×512 †

rFID ↓ ∆rFID rFID ↓ ∆rFID rFID ↓ ∆rFID

VAE (B) 10.14 11.15 - 5.74 - 3.69 -
VAE (M) 22.79 9.26 - 4.63 - 2.69 -
VAE (L) 40.48 8.49 - 4.78 - 2.78 -
VAE (XL) 65.27 7.58 - 4.42 - 2.41 -
VAE (H) 161.81 7.12 - 4.29 - 2.37 -

ε-VAE (B) 20.63 6.24 4.91 (44.0%) 3.90 1.84 (32.0%) 2.06 1.63 (44.2%)
ε-VAE (M) 49.33 5.42 3.84 (41.5%) 2.79 1.84 (39.7%) 2.02 0.67 (24.9%)
ε-VAE (L) 88.98 4.71 3.78 (44.5%) 2.60 2.03 (43.8%) 1.92 0.86 (30.9%)
ε-VAE (XL) 140.63 4.18 3.40 (44.9%) 2.38 2.04 (46.2%) 1.82 0.59 (24.5%)
ε-VAE (H) 355.62 4.04 3.08 (43.3%) 2.31 1.98 (46.2%) 1.78 0.59 (24.9%)

50 200 350 500 650
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Figure 2: Architecture and compression analysis. The ε-VAE decoder uses either a UNet-based
ADM or Transformer-based DiT (left). ε-VAE and VAE under different compression rates by vary-
ing latent channel dimensions (middle) or encoder downsampling factors (right).

Resolution generalization. A notable feature of conventional autocencoders is their capacity to
generalize and reconstruct images at higher resolutions during inference (Rombach et al., 2022). To
assess this, we conduct inference on images with resolutions of 256 × 256 and 512 × 512, using
ε-VAE and VAE models trained at 128 × 128. As shown in Table 1, ε-VAE effectively generalizes
to higher resolutions, consistently preserving its performance advantage over VAE.

Runtime efficiency. On a Tesla V100 GPU, VAE (M) achieves 114.13 images/sec throughput, while
the throughput of ε-VAE (B) is 20.68 images/sec when the sampling step is three and increased to
62.94 images/sec if we sample by one step. ε-VAE requires more compute costs than VAE due to
its U-Net design. We discuss potential directions to improve our runtime efficiency in Sec. 5.

4.2 GENERATION QUALITY

Given the trained VAE and ε-VAE models, we now evaluate their autoencoding performance. In
practice, we first generate latents using the trained autoencoders, then train a new latent generative
model based on these representations. The compact, learnable latent space produced by the en-
coder enhances the learning efficiency of latent generative model, while effective decoding of the
sampled latents ensures high-quality outputs. Thus, both the encoding and decoding capabilities
of autoencoder contribute to the overall generative performance. For this evaluation, we perform
standard unconditional image generation tasks using the DiT-XL/2 model as our latent generative
model (Peebles & Xie, 2023). Further details on the training setup are provided in Appendix B.3.

Table 2 presents the image generation results of VAE and ε-VAE at resolutions of 128 × 128 and
256 × 256. The results show that ε-VAE consistently outperforms VAE across all model scales.
Notably, ε-VAE (B) surpasses VAE (H), consistent with our earlier findings in Sec. 4.1. These
results confirm that the performance gains from the reconstruction task successfully transfer to the
generation task, further validating the effectiveness of ε-VAE.

It is important to note that the primary focus of this experiment is not to achieve state-of-the-art
generation results, but to provide a fair comparison of ε-VAE’s autoencoding capabilities under
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Table 2: Image generation quality. The DiT-XL/2 is trained on latents provided by the trained
autoencoders, VAE and ε-VAE, with varying model sizes using ImageNet. We evaluate the gener-
ation quality at resolutions of 128 × 128 and 256 × 256 using four standard metrics. Additionally,
we report rFID to determine if the improvement trend observed in reconstruction task extends to the
generation task. We highlight three groups of model variants with comparable parameters.

Models
ImageNet ×128 ImageNet ×256

rFID ↓ FID ↓ IS ↑ Prec. ↑ Rec. ↑ rFID ↓ FID ↓ IS ↑ Prec. ↑ Rec. ↑
VAE (B) 11.15 36.8 17.9 0.48 0.53 5.74 46.6 23.4 0.45 0.56
VAE (M) 9.26 34.6 18.2 0.49 0.55 4.63 44.7 23.8 0.47 0.58
VAE (L) 8.49 33.9 18.4 0.50 0.56 4.78 44.3 24.7 0.47 0.59
VAE (XL) 7.58 31.7 19.3 0.51 0.57 4.42 43.1 24.9 0.47 0.59
VAE (H) 7.12 30.9 19.8 0.52 0.57 4.29 41.6 25.9 0.48 0.59

ε-VAE (B) 6.24 29.5 20.7 0.53 0.59 3.90 39.5 25.2 0.46 0.61
ε-VAE (M) 5.42 27.6 21.2 0.55 0.59 2.79 35.4 26.2 0.51 0.62
ε-VAE (L) 4.71 27.3 22.1 0.55 0.59 2.60 34.8 26.5 0.51 0.63
ε-VAE (XL) 4.18 25.3 22.7 0.55 0.59 2.38 34.0 27.4 0.53 0.63
ε-VAE (H) 4.04 24.9 23.0 0.56 0.60 2.31 33.2 27.5 0.54 0.64

a controlled experimental setup. We demonstrate that our approach consistently outperforms the
leading autoencoding method (Esser et al., 2021) across varying model scales and input resolutions.

4.3 ABLATION STUDIES

We conduct a component-wise analysis to validate our key design choices. We evaluate the recon-
struction quality (rFID) and sampling efficiency (NFE). The results are summarized in Table 3.

Baseline. Our evaluation begins with a baseline model: an autoencoder with a diffusion decoder,
trained solely using the score matching objective. This baseline follows the vanilla diffusion setup
from Ho et al. (2020), including their UNet architecture, parameterization, and training configura-
tions, while extending to a conditional form as described in Eq. 8. Building on this baseline, we
progressively introduce updates and evaluate the impact of our proposed method.

Impact of proposals. In (a), transitioning from standard diffusion to rectified flow (Liu et al.,
2023) straightens the optimization path, resulting in significant gains in rFID scores and NFE. In
(b), adopting a logit-normal time step distribution optimizes rectified flow training (Esser et al.,
2024), further improving both rFID scores and NFE. In (c), updates to the UNet architecture (Nichol
& Dhariwal, 2021) contribute to enhanced rFID scores. In (d), LPIPS loss is applied to match
reconstructions x̂t0 with real images x0. In (e), adversarial trajectory matching loss aligns (x̂t0,xt)
with (x0,xt), the target transition in rectified flow. Both objectives improve model understanding
of the underlying optimization trajectory, significantly enhancing rFID scores and NFE.

Up to this point, with the full implementation of Eq. 1, we can compare our proposal with the
VAE (B) model, which achieves an rFID score of 11.15. Our model, with a score of 8.24, already
surpasses this baseline. We further improve performance by optimizing noise and time scheduling
within our framework, as described next.

In (f), scaling xt reduces the signal-to-noise ratio (Chen, 2023), presenting challenges for more ef-
fective learning during training. Figure 3 (middle) demonstrates that a scaling factor of 0.6 produces
the best results. Finally, in (g), reversed logarithmic time step spacing during inference allows for
denser evaluations in noisier regions. Figure 3 (right) demonstrates that this method provides more
stable sampling in the lower NFE regime compared to the original uniform spacing.

5 DISCUSSION

Distribution-aware compression. Traditional image compression methods optimize the rate-
distortion trade-off (Shannon et al., 1959), prioritizing compactness over input fidelity. Building
on this, we also aim to capture the broader input distribution during compression, generating com-
pact representations suitable for latent generative models. This approach introduces an additional
dimension to the trade-off, perception or distribution fidelity (Blau & Michaeli, 2018), which aligns
more closely with the rate-distortion-perception framework (Blau & Michaeli, 2019).
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Table 3: Ablation study on key design choices for the ε-VAE diffusion decoder. A systematic
evaluation of the architecture (?), objectives (†), and noise & time scheduling (§). Each row pro-
gressively modifies or builds upon the baseline decoder, showing improvements in performance.

Ablation NFE rFID
Baseline: DDPM-based diffusion decoder 1,000 28.22
† (a) Diffusion→ Rectified flow parameterization 100 24.11
§ (b) Uniform→ Logit-normal time step sampling during training 50 23.44
? (c) DDPM UNet→ ADM UNet 50 22.04
† (d) Perceptual matching on x̂t0 and x0 10 11.76
† (e) Adversarial denoising trajectory matching on (x̂t0,xt) and (x0,xt) 5 8.24
§ (f) Scale xt by γ = 0.6 5 7.08
§ (g) Uniform→ Reversed logarithm time spacing during inference 3 6.24
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Figure 3: Impact of our major diffusion decoder designs. Improved training objectives, par-
ticularly perceptual matching loss and adversarial denoising trajectory matching loss, significantly
contribute to better rFID scores and NFE (left). Effective noise scheduling by modulating the scaling
factor γ further enhances rFID, with an optimum value of 0.6 in our experiments (middle). Lastly,
adjusting time step spacing during inference ensures stable sampling in low NFE regimes (right).

Iterative and stochastic decoding. A key question within the rate-distortion-perception trade-off
is whether the iterative, stochastic nature of diffusion decoding offers advantages over traditional
single-step, deterministic methods (Kingma, 2013). The strengths of diffusion (Ho et al., 2020) lie
in its iterative process, which progressively refines the latent space for more accurate reconstructions,
while stochasticity allows for capturing complex variations within the distribution. Although itera-
tive methods may appear less efficient, our formulation is optimized to achieve optimal results in just
three steps and also supports single-step decoding, ensuring decoding efficiency remains practical
(see Figure 3 (left)). While stochasticity might suggest the risk of “hallucination” in reconstructions,
the outputs remain faithful to the underlying distribution by design, producing perceptually plausible
results. This advantage is particularly evident under extreme compression scenarios (see Figure 4),
with the degree of stochasticity adapting based on compression levels (see Figure 5).

Scalability. As discussed in Section 4.1, our diffusion-based decoding method maintains the reso-
lution generalizability typically found in standard autoencoders. This feature is highly practical: the
autoencoder is trained on lower-resolution images, while the subsequent latent generative model is
trained on latents derived from higher-resolution inputs. However, we acknowledge that memory
overhead and throughput become concerns with our UNet-based diffusion decoder, especially for
high-resolution inputs. This challenge becomes more pronounced as models, datasets, or resolu-
tions scale up. A promising future direction is patch-based diffusion (Ding et al., 2024; Wang et al.,
2024b), which partitions the input into smaller, independently processed patches. This approach has
the potential to reduce memory usage and enable faster parallel decoding.

6 CONCLUSION

We present ε-VAE, an effective visual tokenization framework that introduces a diffusion decoder
into standard autoencoders, turning single-step decoding into a multi-step probabilistic process. By
exploring key design choices in modeling, objectives, and diffusion training, we demonstrate signif-
icant performance improvements. Our approach outperforms traditional visual autoencoders in both
reconstruction and generation quality, particularly in high-compression scenarios. We hope our con-
cept of iterative generation during decoding inspires further advancements in visual autoencoding.
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Ground Truth
Increasing downsample factor (VAE)

8x 16x 32x

Increasing downsample factor (∈-VAE)

8x 16x 32x

Figure 4: Reconstruction results with varying downsampling ratios. ε-VAE maintains both high
fidelity and perceptual quality, even under extreme downsampling conditions, whereas VAE fails to
preserve semantic integrity. Best viewed when zoomed-in and in color.

Ground Truth Downsample factor 8x Downsample factor 16x Downsample factor 32x

Figure 5: ε-VAE reconstruction results with varying random seeds and downsampling ratios.
At lower compression levels, the reconstruction behaves more deterministically, whereas higher
compression introduces stochasticity, enabling more flexible reconstruction of plausible inputs. Best
viewed when zoomed-in and in color.
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A RELATED WORK

Image tokenization. Image tokenization is crucial for effective generative modeling, transform-
ing images into compact, structured representations. A common approach employs an autoen-
coder framework (Hinton & Salakhutdinov, 2006), where the encoder compresses images into low-
dimensional latent representations, and the decoder reconstructs the original input. These latent
representations can be either discrete commonly used in autoregressive models (Van den Oord et al.,
2016; Van Den Oord et al., 2017; Chen et al., 2020; Chang et al., 2022; Yu et al., 2023; Kondratyuk
et al., 2024), or continuous, as found in diffusion models (Ho et al., 2020; Dhariwal & Nichol,
2021; Rombach et al., 2022; Peebles & Xie, 2023; Gupta et al., 2023; Brooks et al., 2024). The
foundational form of visual autoencoding today originates from Van Den Oord et al. (2017). While
advancements have been made in modeling (Yu et al., 2022; 2024b), objectives (Zhang et al., 2018;
Karras et al., 2019; Esser et al., 2021), and quantization methods (Yu et al., 2024a; Zhao et al., 2024),
the core encoding-and-decoding scheme remains largely the same.

In this work, we propose a new perspective by replacing the traditional decoder with a diffusion
process. Specifically, our new formulation retains the encoder but introduces a conditional diffusion
decoder. Within this framework, we systematically study various design choices, resulting in a
significantly enhanced autoencoding setup.

Additionally, we refer to the recent work MAR (Li et al., 2024), which leverages diffusion to model
per-token distribution in autoregressive frameworks. In contrast, our approach models the overall
input distribution in autoencoders using diffusion. This difference leads to distinct applications of
diffusion during generation. For instance, MAR generates samples autoregressively, decoding each
token iteratively using diffusion, token by token. In our method, we first sample all tokens from the
downstream generative model and then decode them iteratively using diffusion as a whole.

Image compression. Our work shares similarities with recent image compression approaches that
leverage diffusion models. For example, Hoogeboom et al. (2023a); Birodkar et al. (2024) use dif-
fusion to refine autoencoder residuals, enhancing high-frequency details. Yang & Mandt (2024)
employs a diffusion decoder conditioned on quantized discrete codes and omits the GAN loss.
However, these methods primarily focus on the traditional rate-distortion tradeoff, balancing rate
(compactness) and distortion (input fidelity) (Shannon et al., 1959), with the goal of storing and
transmitting data efficiently without significant loss of information.

In this work, we emphasize perception (distribution fidelity) alongside the rate-distortion tradeoff,
ensuring that reconstructions more closely align with the overall data distribution (Heusel et al.,
2017; Zhang et al., 2018; Blau & Michaeli, 2019), thereby enhancing the decoded results from the
sampled latents of downstream generative models. We achieve this by directly integrating the diffu-
sion process into the decoder, unlike Hoogeboom et al. (2023a); Birodkar et al. (2024). Moreover,
unlike Yang & Mandt (2024), we do not impose strict rate-distortion regularization in the latent
space and allow the GAN loss to synergize with our approach.

Diffusion decoder. Several studies (Preechakul et al., 2022; Shi et al., 2022; Pernias et al., 2024;
Nguyen & Tran, 2024; Sauer et al., 2024; Luo et al., 2023) have explored diffusion decoders con-
ditioned on compressed latents of the input, which are relevant to our work. We outline the key
differences between these works and ε-VAE: First, prior works have not fully leveraged the synergy
between diffusion decoders and standard VAE training objectives. In this work, we enhance state-of-
the-art VAE objectives by replacing the reconstruction loss with a score matching loss and adapting
LPIPS and GAN losses to ensure compatibility with diffusion decoders. These changes yield signif-
icant improvements in autoencoding performance, as evidenced by lower rFID scores and faster in-
ference. Second, we are the first to investigate various parameterizations (e.g., epsilon and velocity)
and demonstrate that modern velocity parameterization, coupled with optimized train and test-time
noise scheduling, provides substantial benefits. These enhancements improve both reconstruction
performance and sampling efficiency. Third, previous diffusion-based decoders (Preechakul et al.,
2022; Shi et al., 2022; Pernias et al., 2024), which often rely on ad-hoc techniques like distillation
or consistency regularization to speed up inference (Nguyen & Tran, 2024; Sauer et al., 2024; Luo
et al., 2023), our approach achieves fast decoding (1 to 3 steps) without such techniques. This is
made possible by integrating our proposed objectives and parameterizations. Last but not least,
ε-VAE exhibits strong resolution generalization capabilities, a key property of standard VAEs. In
contrast, models like DiffusionAE (Preechakul et al., 2022) and DiVAE (Shi et al., 2022) either lack
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this ability or are inherently limited. For example, DiVAE’s bottleneck add/concat design restricts
its capacity to generalize across resolutions.

Another closely related work, SWYCC (Birodkar et al., 2024), also explores joint learning of con-
tinuous encoders and decoders using a diffusion model. However, SWYCC differs fundamentally
from our approach: it replaces the GAN loss with a diffusion-based loss, while we focus on identify-
ing optimal synergies between traditional autoencoding losses (including GAN loss) and diffusion-
based decoding. Our goal is to identify an optimal strategy for combining these elements, rather
than simply substituting one for another.

Image generation. Recent advances in image generation span a wide range of approaches, including
VAEs (Kingma, 2013), GANs (Goodfellow et al., 2014), autoregressive models (Chen et al., 2020)
and diffusion models (Song et al., 2021; Ho et al., 2020). Among these, diffusion models have
emerged as the leading approach for generating high-dimensional data such as images (Saharia
et al., 2022a; Baldridge et al., 2024; Esser et al., 2024) and videos (Brooks et al., 2024; Gupta et al.,
2023), where the gradual refinement of global structure is crucial. The current focus in diffusion-
based generative models lies in advancing architectures (Rombach et al., 2022; Peebles & Xie, 2023;
Hoogeboom et al., 2023b), parameterizations (Karras et al., 2022; Kingma & Gao, 2024; Ma et al.,
2024; Esser et al., 2024), or better training dynamics (Nichol & Dhariwal, 2021; Chen, 2023; Chen
et al., 2023). However, tokenization, an essential component in modern diffusion models, often
receives less attention.

In this work, we focus on providing compact continuous latents without applying quantization dur-
ing autoencoder training (Rombach et al., 2022), as they have been shown to be effective in state-
of-the-art latent diffusion models (Rombach et al., 2022; Saharia et al., 2022a; Peebles & Xie, 2023;
Esser et al., 2024; Baldridge et al., 2024). We compare our autoencoding performance against the
baseline approach (Esser et al., 2021) using the DiT framework (Peebles & Xie, 2023) as the down-
stream generative model.

B EXPERIMENT SETUPS

In this section, we provide additional details on our experiment configurations for reproducibility.

B.1 MODEL SPECIFICATIONS

Table 4 summarizes the primary architecture details for each decoder variant. The channel dimen-
sion is the number of channels of the first U-Net layer, while the depth multipliers are the multipliers
for subsequent resolutions. The number of residual blocks denotes the number of residual stacks
contained in each resolution.

Table 4: Hyper-parameters for decoder variants.

Models Channel dim. Depth multipliers # Residual blocks

Base (B) 64 {1, 1, 2, 2, 4} 2
Medium (M) 96 {1, 1, 2, 2, 4} 2
Large (L) 128 {1, 1, 2, 2, 4} 2
Extra-large (XL) 128 {1, 1, 2, 2, 4} 4
Huge (H) 256 {1, 1, 2, 2, 4} 2

B.2 ADDITIONAL IMPLEMENTATION DETAILS

During the training of discriminators, Esser et al. (2021) introduced an adaptive weighting strategy
for λadv. However, we notice that this adaptive weighting does not introduce any benefit which
is consistent with the observation made by Sadat et al. (2024). Thus, we set λadv = 0.5 in the
experiments for more stable model training across different configurations.

Training. The autoencoder loss follows Eq. 1, with weights set to λLPIPS = 0.5 and λadv = 0.5.
We use the Adam optimizer (Kingma & Ba, 2015) with β1 = 0 and β2 = 0.999, applying a linear

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Additional image reconstruction results on ImageNet 128× 128.

Configurations NFE rFID

Baseline (c) in Table 3:
Inject conditioning by channel-wise concatenation 50 22.04
Inject conditioning by AdaGN 50 22.01

Baseline (e) in Table 3:
Matching the distribution of x̂t

0 and x0 - N/A
Matching the trajectory of xt → x0 5 8.24
Matching the trajectory of xt → xt−∆t 5 10.53

learning rate warmup over the first 5,000 steps, followed by a constant rate of 0.0001 for a total of
one million steps. The batch size is 256, with data augmentations including random cropping and
horizontal flipping. An exponential moving average of model weights is maintained with a decay
rate of 0.999. All models are implemented in JAX/Flax (Bradbury et al., 2018; Heek et al., 2024)
and trained on TPU-v5lite pods.

B.3 LATENT DIFFUSION MODEL

We follow the setting in Peebles & Xie (2023) to train the latent diffusion models for unconditional
image generation on the ImageNet dataset. The DiT-XL/2 architecture is used for all experiments.
The diffusion hyperparameters from ADM (Dhariwal & Nichol, 2021) are kept. To be specific, we
use a tmax = 1000 linear variance schedule ranging from 0.0001 to 0.02, and results are generated
using 250 DDPM sampling steps. All models are trained with Adam (Kingma & Ba, 2015) with no
weight decay. We use a constant learning rate of 0.0001 and a batch size of 256. Horizontal flipping
and random cropping are used for data augmentation. We maintain an exponential moving average of
DiT weights over training with a decay of 0.9999. We use identical training hyperparameters across
all experiments and train models for one million steps in total. No classifier-free guidance (Ho &
Salimans, 2022) is employed since we target unconditional generation.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 RESULTS UNDER ENCODER CONFIGURATION (1)

Conditioning. In addition to injecting conditioning via channel-wise concatenation, we explore
providing conditioning to the diffusion model by adaptive group normalization (AdaGN) (Nichol
& Dhariwal, 2021; Dhariwal & Nichol, 2021). To achieve this, we resize the conditioning (i.e.,
encoded latents) via bilinear sampling to the desired resolution of each stage in the U-Net model, and
incorporates it into each residual block after a group normalization operation (Wu & He, 2018). This
is similar to adaptive instance norm (Karras et al., 2019) and FiLM (Perez et al., 2018). We report the
results in Table 5 (top), where we find that channel-wise concatenation and AdaGN obtain similar
reconstruction quality in terms of rFID. Because of the additional computational cost required by
AdaGN, we thus apply channel-wise concatenation in our model by default.

Trajectory matching. The proposed denoising trajectory matching objective matches the start-to-
end trajectory xt → x0 by default. One alternative choice is to directly matching the distribution
of x̂t0 and x0 without coupling on xt. However, we find this formulation leads to unstable training
and could not produce reasonable results. Here, we present the results when matching the trajectory
of xt → xt−∆t, which is commonly used in previous work (Xiao et al., 2022; Wang et al., 2024a).
Specifically, for each timestep t during training, we randomly sample a step ∆t from (0, t). Then,
we construct the real trajectory by computing xt−∆t via Eq. 5 and concatenating it with xt, while
the fake trajectory is obtained in a similar way but using Eq. 10 instead. Table 5 (bottom) shows the
comparison. We observe that matching trajectory xt → x0 yields better performance than matching
trajectory xt → xt−∆t, confirming the effectiveness of the proposed objective which is designed
for the rectified flow formulation.
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Table 6: Comparisons with state-of-the-art image autoencoders. The results are computed on
256× 256 ImageNet 50K validation set and COCO-2017 5K validation set.

Models G params (M) Latent dim. ImageNet (rFID) COCO (rFID)
VQGAN (Esser et al., 2021) 49.49 4 1.44 6.58
ViT-VQGAN (Yu et al., 2022) 32 32 1.28 -
LlamaGen (Sun et al., 2024) 49.49 8 0.59 4.19

SD-VAE 49.49 4 0.74 4.45
SDXL-VAE (Podell et al., 2024) 49.49 4 0.68 4.07
OAI-VAE (Betker et al., 2023) 49.49 4 0.81 4.59

ε-VAE (B) 20.63 4 0.52 4.24
ε-VAE (M) 49.33 4 0.47 3.98
ε-VAE (L) 88.98 4 0.45 3.92
ε-VAE (XL) 140.63 4 0.43 3.80
ε-VAE (H) 355.62 4 0.38 3.65

Table 7: Benchmarking class-conditional image generation on ImageNet 256× 256.

VAE used in LDM VAE downsampling rate LDM token length ImageNet FID-50K

SD-VAE 8 32× 32 9.42

ε-VAE (M) 8 32× 32 9.39
ε-VAE (M) 16 16× 16 10.68

Comparison with plain diffusion ADM. Under the same training setup of Table 3, we directly
trained a plain diffusion model (ADM) for comparison, which resulted in rFID score of 38.26.
Its conditional form is already provided as a baseline in Table 3, achieving 28.22. This demon-
strates that our conditional form p(xt−1|xt, z) offers a better approximation of the true posterior
q(xt−1|xt,x0) compared to the standard form p(xt−1|xt). By further combining LPIPS and GAN
loss, we achieve rFID of 8.24, outperforming its VAE counterpart, which achieves 11.15. With bet-
ter training configurations, our final rFID improves to 6.24. This progression, from plain diffusion
ADM to ε-VAE, underscores the significance of our proposals and their impact.

C.2 RESULTS UNDER ENCODER CONFIGURATION (2)

We provide additional image reconstruction results under the same configuration as VAEs in Stable
Diffusion (SD-VAE): a standard encoder with 34M parameters, a downsample rate of 8, and a chan-
nel dimension of 4 for 256× 256 image reconstruction. We evaluate rFID on the full validation sets
of ImageNet and COCO-2017 (Lin et al., 2014), with the results summarized in Table 6.

Our finds reveal that ε-VAE outperforms state-of-the-art VAEs when the decoder sizes are compa-
rable (highlighted in red), and its performance can be further improved by scaling up the decoder.
This demonstrates the strong model scalability of our framework.

Class-conditional image generation. In addition, we emphasize that when combined with La-
tent Diffusion Models (LDMs) for class-conditional image generation, ε-VAE achieves comparable
generation quality while using only 25% of the token length typically required by SD-VAE. To
demonstrate this, we train an additional ε-VAE (M) under the same configuration as SD-VAE but
with double the downsampling rate. We then compare our model to SD-VAE by training DiT/2
in a class-conditional image generation setup (without classifier-free guidance) on ImageNet at
256 × 256. Following the experimental setup outlined in the DiT paper (Peebles & Xie, 2023),
all DiTs are trained for one million steps. The results, presented in Table 7, show that this token
length reduction significantly accelerates latent diffusion model generation, reducing overall infer-
ence time while maintaining competitive generation quality.

LPIPS, PSNR, and SSIM. We also report additional evaluation metrics: ε-VAE achieves 0.152
LPIPS, 25.11 PSNR, and 0.71 SSIM on ImageNet, performing comparably to the standard SD-VAE,
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which achieves 0.160 LPIPS, 25.83 PSNR, and 0.73 SSIM. As highlighted in Section 5 of the main
paper, our approach prioritizes preserving the overall perceptual distribution of images rather than
achieving pixel-perfect reconstruction. This aligns with our focus on perception-based compression
under high compression rates. Consequently, ε-VAE excels in metrics such as rFID, which reflect
differences in perceived image distributions, rather than in pixel-level metrics like PSNR and SSIM.

D ADDITIONAL VISUAL RESULTS

Qualitative reconstructions under encoder configuration (1). Figure 8 provides qualitative re-
construction results where we vary the decoder scales. We see that increasing the scale of the model
yields significant improvements in visual fidelity, and ε-VAE outperforms VAE at corresponding
decoder scales. Figure 9 and Figure 10 show additional qualitative results when we vary the down-
sampling ratios and random seeds.

Qualitative reconstructions under encoder configuration (2). We provide additional visual com-
parisons between ε-VAE and SD-VAE at resolutions of 512 × 512 (Figure 6) and 256 × 256 (Fig-
ure 7). Our observations indicate that ε-VAE delivers significantly better visual quality than SD-
VAE, particularly when reconstructing local regions with complex textures or structures, such as
human faces and small text.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 6: Image reconstruction results under the SD-VAE (f8-c4) configuration at 512 × 512
resolution. ε-VAE produces more accurate visual details than SD-VAE in the highlighted regions
with text or human face. Best viewed when zoomed-in and in color.
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Figure 7: Image reconstruction results under the SD-VAE (f8-c4) configuration at 256 × 256
resolution. ε-VAE produces significantly better visual details than SD-VAE when reconstructing
local regions with complex textures or structures, such as human faces and small texts. Best viewed
when zoomed-in and in color.
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Ground Truth
Increasing decoder scale (VAE)

B M X

Increasing decoder scale (∈-VAE)

B M XXL XL

Figure 8: Reconstruction results with varying decoder size.. ε-VAE produces better perceptual
quality than VAE at corresponding decoder scales, especially when input images contain complex
textures or structure. Best viewed when zoomed-in and in color.
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Ground Truth
Increasing downsample factor (VAE)

8x 16x 32x

Increasing downsample factor (∈-VAE)

8x 16x 32x

Figure 9: Reconstruction results with varying downsampling ratios. ε-VAE achieve higher
fidelity and better perceptual quality than VAE, especially under extreme downsampling factors.
Best viewed when zoomed-in and in color.
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Ground Truth Downsample factor 8x Downsample factor 16x Downsample factor 32x

Figure 10: ε-VAE reconstruction results with varying random seeds and downsampling ratios.
We can see greater diversity in the reconstruction results along with the increased downsampling
factors. Best viewed when zoomed-in and in color.
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