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ABSTRACT

The Mixture-of-Experts (MoE) architecture has become a predominant paradigm
for scaling large language models (LLMs). Despite offering strong performance
and computational efficiency, large MoE-based LLMs like DeepSeek-V3-0324
and Kimi-K2-Instruct present serious challenges due to substantial memory re-
quirements in deployment. While recent works have explored MoE compression
to address this issue, existing methods often suffer from considerable accuracy
drops (e.g., 7-14% relatively) even at modest compression rates. This paper in-
troduces a novel Mixture-of-Basis-Experts (MoBE) method that achieves model
compression while incurring minimal accuracy drops. Specifically, each up/gate
matrix in an expert is decomposed via a rank decomposition as W = AB, where
matrix A is unique to each expert. The relatively larger matrix B is further re-
parameterized as a linear combination of basis matrices {Bi} shared across all
experts within a given MoE layer. The factorization is learned by minimizing
the reconstruction error relative to the original weight matrices. Experiments
demonstrate that MoBE achieves notably lower accuracy drops compared to prior
works. For instance, MoBE can reduce the parameter counts of Qwen3-235B-
A22B-2507, DeepSeek-V3-0324 (671B) and Kimi-K2-Instruct (1T) by 24%-30%
with only 1%-2% accuracy drop (about 2% drops when measured relatively).
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Figure 1: Relative performance comparison of different MoE compression methods. Relative ac-
curacy is the ratio of the compressed model’s performance to that of the original model. The ac-
curacy are averaged over 15 benchmarks as shown in Table 3. Applying D2-MoE to large models
like Qwen3-235B-A22B-2507, DeepSeek-V3-0324 and Kimi-K2-Instruct is computationally pro-
hibitive on an 8x H100 GPU machine; therefore, it is excluded from these comparisons. MoBE is
evaluated at compression rates similar to or higher than the baseline methods (MoLAE, D2-MoE).
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1 INTRODUCTION

Transformer-based large language models (LLMs) (Vaswani et al., 2017) have revolutionized natural
language processing, achieving state-of-the-art performance in domains such as creative writing,
code generation, and mathematical reasoning. This progress has been largely guided by scaling
laws (Kaplan et al., 2020; Hoffmann et al., 2022), which posit that model performance improves with
increases in parameter count and training data size. However, scaling dense architectures beyond a
certain threshold—typically hundreds of billions of parameters (>100B)—has proven challenging
and prohibitive. Therefore, the Mixture-of-Experts (MoE) (Jacobs et al., 1991; Jordan & Jacobs,
1994; Cai et al., 2024) architecture has become popular since the sparse activation makes MoEs
much easier and more efficient to scale to more than several hundreds of billions of parameters (Liu
et al., 2024; Yang et al., 2025; Team et al., 2025a) since last year.

Despite the computational advantages of sparse activation, the large total parameter counts of MoE-
based LLMs present a significant bottleneck for practical deployment. For instance, leading open-
source LLMs such as DeepSeek-V3-0324 (671B parameters) (Liu et al., 2024) exhibit performance
comparable to top closed-source models. However, their scale imposes prohibitive demands on GPU
memory; even high-end infrastructure, such as a machine with 8x H100 GPUs, may be insufficient
for efficient inference.

To address this challenge, much research have been proposed for MoE-based LLM compression,
which could be generally categorized into two major categories. First, pruning techniques reduce
total parameter counts by either removing entire experts (Xie et al., 2024; Lu et al., 2024; Yang et al.,
2024) or merging similar ones (hao Liu et al., 2024; Li et al., 2023b; Chen et al., 2024). However,
this approach often leads to a permanent loss of specialized knowledge and significant performance
degradation (Gu et al., 2025). Second, decomposition techniques employ matrix factorization to
compress each expert’s weight matrices (Gu et al., 2025; Liu et al., 2025; Li et al., 2025b). Typical
works include D2-MoE (Gu et al., 2025), which extracts shared weights and applies singular value
decomposition (SVD) to the residual delta weights, and MoLAE (Liu et al., 2025), which uses SVD
to represent each expert weight as a product of its unique transformation matrix and a shared latent
matrix. Although these SVD-based methods generally outperform expert pruning, they can still in-
cur substantial information loss. This is evidenced by the high Mean Squared Error (MSE) between
the original and reconstructed matrices, as shown in our reconstruction error analysis (Figure 2).

In this paper, we introduce the Mixture-of-Basis-Experts (MoBE), a novel method for efficient,
performance-preserving parameter compression for MoE-based LLMs. MoBE factorizes weight
matrix W in an expert with rank decomposition W = AB, where A is unique for each expert and
B is re-parameterized as a linear combination of a set of basis matrices {Bi} that are shared across
all experts within each MoE layer. This formulation achieves parameter reduction for two reasons.
First, the number of basis matrices m is much smaller than the number of experts n, i.e. m ≪ n,
and basis {Bi} is shared across all experts within each layer so that we could save considerable
parameters for B. Second, the unique transformation matrix A is smaller than W, so that the
whole MoBE factorization achieves parameter savings. The MoBE factorization is optimized by
minimizing the reconstruction error between the factorized representation and the original pretrained
weight matrices, typically using the gradient descent method.

We conduct comprehensive experiments on a diverse set of MoE-based LLMs, including Ling-Lite-
Chat (Team et al., 2025b), DeepSeek-V2-Lite-Chat (Shao et al., 2024), DeepSeek-V3-0324 (Liu
et al., 2024), Qwen3-30B-A3B-2507, Qwen3-235B-A22B-2507 (Yang et al., 2025) and Kimi-K2-
Instruct (Team et al., 2025a). A direct comparison of reconstruction error on Qwen3-30B-A3B-2507
demonstrates that MoBE achieves a consistently lower MSE than both MoLAE and D2-MoE, often
with reductions of over 50%, across all layers (Figure 2). Similar results for more models are pre-
sented in Appendix C. To assess downstream task performance, we evaluate the compressed models
on a wide range of benchmarks. As shown in Figure 1, MoBE exhibits a superior performance
advance compared to MoLAE and D2-MoE at similar or even higher compression rates.

In summary, our contributions can be summarized as follows:

• We introduce the Mixture-of-Basis-Experts (MoBE), a parameter-efficient architecture for
MoE model compression. Our analysis shows that this design yields significantly lower
reconstruction error compared to existing decomposition techniques.
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(a) Gate matrices
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(b) Up matrices

Figure 2: Comparison of per-layer MSE loss for compressing the gate (a) and up (b) matrices of
Qwen3-30B-A3B-2507 using MoBE, D2-MoE and MoLAE.

• We demonstrate through extensive experiments on leading MoE models, including Qwen3-
235B-A22B-2507, DeepSeek-V3-0324 and Kimi-K2-Instruct, that MoBE can reduce total
parameter counts by 24%-30% while retaining up to 98% of the original performance,
outperforming state-of-the-art MoE counterparts by a large margin.

2 RELATED WORKS

Research on MoE compression can be categorized into expert pruning-based (Xie et al., 2024; Lu
et al., 2024; Yang et al., 2024) and decomposition-based (Li et al., 2025b; Liu et al., 2025; Gu et al.,
2025). Below we elaborate on related works under these two categories.

2.1 EXPERT PRUNING-BASED MOE COMPRESSION METHODS

Expert pruning-based methods aim to reduce the total parameter counts of MoE-based LLMs by
either directly removing entire experts or merging them. For instance, NAEE (Lu et al., 2024)
removes unimportant experts by evaluating expert combinations on a calibration dataset to minimize
model loss, while STUN (Lee et al., 2024) groups experts based on co-activation frequency and
routing weight similarity, retaining only one expert per group. Other approaches focus on merging
similar experts. DEK (Zhang et al., 2024), for example, identifies and groups similar experts in the
feature space and then merges them in the weight space to reduce redundancy. MC-SMoE (Li et al.,
2023b) organizes experts into distinct groups according to routing strategies and merges each group
into a single expert. Because these methods remove entire expert modules, they risk a permanent
loss of specialized knowledge, often leading to notable accuracy degradation on certain tasks.

2.2 EXPERT MATRIX DECOMPOSITION-BASED MOE COMPRESSION METHODS

In contrast to expert pruning, expert matrix decomposition-based methods compress MoE-based
LLMs by factorizing each expert’s weight matrices into relatively smaller representations. D2-
MoE (Gu et al., 2025) and MoLAE (Liu et al., 2025) are two state-of-the-art examples of this cat-
egory. D2-MoE approximates each expert matrix with a shared matrix and a residual delta matrix,
in which the shared weight is obtained via a Fisher-weighted average of the original weights, and
the residual delta weights (the difference between original and shared weights) are decomposed into
low-rank matrices using SVD. MoLAE first groups a set of up/gate matrices in each MoE layer,
and then approximates each matrix in a group by an expert-specific transformation matrix and the
product of a group-shared latent matrix. The approximation is achieved using SVD on the stacked
up/gate matrices within the group.

Although these methods are effective in reducing parameter counts, their reliance on low-rank as-
sumptions can be a limitation. The resulting matrix factorization does not always capture the full
information of the original weights, which can introduce substantial reconstruction errors and lead
to notable performance drops in downstream tasks. In Appendix B, we analyze the effective rank
of expert weight matrices in several leading open-source MoE models. Our results show that this
rank consistently exceeds the compression threshold of SVD—meaning that to achieve parameter
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Figure 3: The Mixture-of-Basis-Experts (MoBE) architecture. For clarity of explanation, we omit
the activation function following the gate matrix.

reduction, the number of retained singular values must fall below this threshold. Eliminating this
excess rank reduces the matrix’s expressive power, likely explaining the performance degradation
observed in these SVD-based compression methods.

3 METHODOLOGY

In this section, we first briefly review the standard Mixture-of-Experts (MoE) architecture (Sec-
tion 3.1). Then, we elaborate our proposed Mixture-of-Basis-Experts (MoBE) architecture and detail
the algorithm for converting a pretrained MoE model to MoBE architecture (Section 3.2). Finally,
we describe the activation functions in MoBE (Section 3.3) and a specific Z-score normalization
technique applied to the expert weight matrices during the conversion process (Section 3.4).

3.1 STANDARD MIXTURE-OF-EXPERTS ARCHITECTURE

A standard MoE layer replaces the dense Feed-Forward Network (FFN) in the Transformer with
a sparsely activated structure comprising a router and multiple experts. For each input token, the
router dynamically selects a small subset of these experts for processing, which yields significant
computation cost reduction. In a typical MoE layer with n experts, the i-th expert (Ei) often employs
a SwiGLU formulation (Shazeer, 2020) to process an input token embedding x ∈ Rd as

Ei(x) = W i
down · (W i

upx⊙ SiLU(W i
gatex)), (1)

where W i
up/gate ∈ Rp×d and W i

down ∈ Rd×p denote the up, gate, and down projection matrices of
Ei, p is the intermediate dimension of MoE experts, and d is the hidden dimension of the model. It
is observed in most open-source MoE models that p < 1

2d. The router G calculates a gating score
for each expert and selects the top-K experts for the token:

G(x) = TopK(Softmax(Wgx)) (2)

where Wg ∈ Rn×d denotes the weight matrix of the router G. The final output y of the MoE layer
is a weighted sum of the outputs from the selected experts:

y =

K∑
i=1

Gi(x)Ei(x), (3)

where Gi(x) denotes the gating value (i.e., the router score) of the i-th expert Ei. This operation is
applied independently to every token in the input sequence.

3.2 MIXTURE-OF-BASIS-EXPERTS ARCHITECTURE

While large MoE models are much more efficient in inference than dense models of a similar size,
they are also constrained by higher memory and storage requirements during deployment. To allevi-
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ate this, we introduce the Mixture-of-Basis-Experts (MoBE) architecture, as illustrated in Figure 3.
The MoBE formulation begins by factorizing the up/gate matrix W i ∈ Rp×d of the i-th expert from
the perspective of rank decomposition (Golub & Van Loan, 2013) as

W i = AiBi,

where Ai ∈ Rp×r, Bi ∈ Rr×d, and r is the rank of Wi with r ≤ min{p, d} = p. MoBE further
considers re-parameterizing Bi with a set of shared basis matrices as

Bi =

m∑
j=1

αi,jBj ,

with αi,j ≥ 0,

m∑
j=1

αi,j = 1,

where {Bj ∈ Rr×d}mj=1 is a set of basis matrices shared in one MoE layer, and {αi,j}mj=1 are
learnable, expert-specific weighted coefficients. Combining these components and introducing a
non-linear activation function f (e.g., SiLU (Ramachandran et al., 2018)) to enhance representa-
tional power, we define the final MoBE factorization as:

Ŵ i = Aif(

m∑
j=1

αi,jBj), (4)

where Ŵ i is the reconstructed version of W i.

This factorization allows the shared basis matrices {Bj} to capture common information across all
experts in one layer, while the expert-specific transformation matrices Ai encode specialized infor-
mation. We demonstrate in the Appendix D that this factorization is more powerful than the simple
SVD approach. We apply this factorization to both the gate and up projection matrices. However, we
do not decompose the down projection matrices, as prior research indicates they store critical knowl-
edge (Geva et al., 2020; Meng et al., 2022) and are less amenable to effective compression (Liu et al.,
2025).

We convert a pretrained MoE-based LLM into our proposed MoBE formulation by learning the
factorized components. This is achieved by minimizing the reconstruction error between the original
expert weight matrix W i and the reconstruction matrix Ŵ i as

min
Ai,Bj ,αi,j

n∑
i=1

∥∥∥W i − Ŵ i
∥∥∥2 =

n∑
i=1

∥∥∥W i −Aif(

m∑
j=1

αi,jBj)
∥∥∥2 (5)

This optimization problem can be solved using various algorithms, such as gradient-based optimiz-
ers like Adam (Kingma & Ba, 2014) or the Alternating Optimization (AO) method (Wu & Lange,
2008). In our practice, we find that the Adam optimizer performs sufficiently well across layers
and various models, while AO suffers from unstable behavior during its alternating optimization
steps. Algorithm 1 details the full procedure for converting a standard MoE model to the MoBE
formulation.

We further analyze the parameter complexity of MoBE compared to standard MoE as illustrated in
Table 1. Note that this analysis considers only the total and activation parameter count for a single
MoE layer, excluding other components such as the embedding and attention layers. The total
parameter counts for one MoBE layer is ndp + 2npr + 2mrd, where the first term is for the down
matrices Wdown, the second term is for the transformation matrices A in the up and gate projection,
and the third term is for the basis matrices {Bj}. The parameter count ratio (γ) from MoE to MoBE
can be computed as

γ =
ndp+ 2npr + 2mrd

3ndp
=

1

3
+

2r

3d
+

2mr

3np
.

Since r ≤ p < 1
2d, the second term 2r

3d < 1
3 . For the last term, m ≪ n, for an MoE with

n = 128 experts, even if we set m = 16, we could have the last term 2mr
3np < 1

12 . Therefore,
γ < 1

3 + 1
3 + 1

12 < 1. When using MoBE to replace MoE, the compression ratio by MoBE is

5
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Algorithm 1 Converting standard MoE into MoBE

1: Require: L-layers model MMoE with n experts per layer; target basis count m ≪ n; activation
function f .

2: Ensure: Parameter-efficient MoBE model MMoBE.

3: Initialize non-MoE parts in MMoBE with parameters directly from MMoE.
4: for each MoE layer l ≤ L in MMoE do
5: for type t ∈ {gate, up} do
6: Let {W i

t }ni=1 be the expert matrices of the l-th layer
7: Solve Eq(5) with Adam optimizer
8: Obtain the factorized components {Ai

t}, {B
j
t }, {α

i,j
t }

9: end for
10: Copy the l-th layer down projection matrices {W i

down}ni=1 from MMoBE

11: Assemble the l-th MoBE layer with {At, Bt, αt} and {Wdown}.
12: end for
13: return MMoBE

Table 1: Comparison of total and activation parameter count for one standard MoE and MoBE layer.
MoBE† is a MoBE variant with further activation expert number reduction.

Standard MoE MoBE MoBE†

#Total Parameters 3ndp ndp+ 2npr + 2mrd ndp+ 2npr + 2mrd

#Activation Parameters 3kdp kdp+ 2kpr + 2krd k′dp+ 2k′pr + 2k′rd

1−γ. From the analysis, we can draw the conclusion that the MoBE architecture could substantially
compress the standard MoE models.

Notably, while MoBE reduces the total parameters quite a lot, its activation parameter count requires
closer examination. The matrices B and the down matrices Wdown contribute 2krd+ kdp ≤ 3kdp
(since r ≤ p) to the activation parameter count, while the transformation matrices A introduce an
additional 2kpr. This may lead to an increase in the number of activation parameters. To compensate
for this increase, inspired by previous work (Chaudhari et al., 2025), we propose a variant MoBE†,
which reduces the number of activated experts during inference from k to a smaller value k′. In
many modern MoE models, the number of activated experts k is typically set to 8. In MoBE†, we
reduce this to 6 (i.e., k′ = 6). 1

3.3 ACTIVATION FUNCTION IN MOBE

In Eq(4), we employ an activation function f to enhance representational power. However, not all
activation functions are equally suitable. For instance, we posit that the commonly used ReLU (Glo-
rot et al., 2011) activation function is suboptimal for this task. ReLU can induce excessive sparsity
in the matrix Bi = f(

∑m
j=1 w

i,jBj), which may cause notable information loss. As the transfor-
mation matrix Ai ∈ Rp×r is smaller than Bi ∈ Rr×d, it may struggle to compensate for this loss
with such a limited representation capacity. Therefore, a bipolar activation function (i.e., one that
outputs both positive and negative values like tanh) is highly desirable.

Consequently, activation functions such as Tanh (LeCun et al., 1989), SiLU (Ramachandran et al.,
2018), and GeLU (Hendrycks & Gimpel, 2016) are more suited for this task, while Sigmoid (Rumel-
hart et al., 1986) and ReLU are expected to yield inferior results. Our ablation study in Section 4.4
provide evidence supporting this hypothesis.

1The method (Chaudhari et al., 2025) reduces only activation parameters, not total parameters. Therefore,
we consider it a complementary approach and did not include it in our experimental comparisons.
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Table 2: Means and stds of the gate matrices and up matrices in various MoE-based LLMs.

Ling-Lite-Chat DeepSeek-V2-Lite-Chat DeepSeek-V3-0324 Qwen3-30B-A3B-2507 Qwen3-235B-A22B-2507 Kimi-K2-Instruct

Gate Matrices Mean 2.2e-5 1.0e-6 -4.2e-6 -2.8e-5 -1.4e-5 -1.3e-6
Std 2.8e-2 2.9e-2 1.2e-2 2.3e-2 1.6e-2 2.6e-2

Up Matrices Mean 2.3e-7 -1.6e-7 -5.3e-9 5.3e-7 1.8e-8 4.2e-8
Std 2.8e-2 3.0e-2 1.2e-2 2.3e-2 1.6e-2 2.6e-2

3.4 Z-SCORE NORMALIZATION IN MOBE

To address the impact of a wide range of weight values and obtain stable results in seeking the
basis, we consider normalizing all expert weight matrices in each MoE layer. We introduce a Z-
score normalization by subtracting the mean and dividing by the standard deviation (std) across all
experts’ weights:

µW = mean(W 1,W 2, ...,Wn), (6)

σW = std(W 1,W 2, ...,Wn), (7)

W i
Z =

W i − µW

σW
. (8)

This normalization introduces additional inference overhead. After factorization, the σW term can
be folded into the transformation matrix Ai, and the µW term will require an extra bias operation
during inference compared to the original form Eq(4).

Ŵ i = σW Ŵ i
Z + µW = (σWAi)f(

m∑
j=1

αi,jBj) + µW . (9)

However, we empirically study different off-the-shelf MoE models and find that µW is typically
negligibly small as shown in Table 2. We can therefore omit the term µW in Eq(9). That means, we
only require absorbing σW into Ai without introducing extra parameters and computing overhead
during inference.

4 EXPERIMENTS

In this section, we evaluate the proposed MoBE approach on popular open-source MoE models
and compare to state-of-the-art MoE compression methods (Section 4.3). We then conduct a set of
ablation studies on activation functions (Section 4.4) and normalization schemes (Section 4.5).

4.1 SETUP

Models. We evaluate our method, MoBE, on a suite of popular open-source MoE-based LLMs:
Ling-Lite-Chat (Team et al., 2025b), DeepSeek-V2-Lite-Chat (Shao et al., 2024), DeepSeek-V3-
0324 (Liu et al., 2024), Qwen3-30B-A3B-2507, Qwen3-235B-A22B-2507 (Yang et al., 2025) and
Kimi-K2-Instruct (Team et al., 2025a).

Baseline. We compare our approach against two state-of-the-art MoE compression baselines, D2-
MoE (Gu et al., 2025) and MoLAE (Liu et al., 2025). Both MoBE and MoLAE are data-free
compression methods, whereas D2-MoE requires a calibration dataset, for which we use tulu-v3-sft-
mixture (Lambert et al., 2024). Due to the high computational cost of its backward pass, applying
D2-MoE to very large models like Qwen3-235B-A22B-2507, DeepSeek-V3-0324 and Kimi-K2-
Instruct is infeasible on a single 8xH100 GPU machine. Therefore, comparisons involving D2-MoE
are excluded from these three larger models. In addition, we compared two additional baseline
methods, MoNE Zhang et al. (2025) and Sub-MoE Li et al. (2025a), on Qwen3-30B-A3B-2507 and
Qwen3-235B-A22B-2507, with the results presented in the Appendix F.

Hyper-parameters. Hyper-parameters are configured per case (models or methods). We provide a
more detailed explanation in the Appendix E regarding the impact of the values of the number of
basis matrices m and the rank r.

• For Ling-Lite-Chat and DeepSeek-V2-Lite-Chat, MoBE uses m = 4 basis matrices and
MoLAE uses 8 latent matrices. To compensate extra computing cost introduced by extra

7
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Table 3: Performance comparison of different compression methods on various MoE-based LLMs,
where “†” indicates that this model activates fewer experts than the original model to compensate
for the increase in activation parameters. The column Ratio refers to the proportion of compressed
parameters to the total parameters in the LLMs.

LLM Method Ratio General Reasoning General Knowledge Mathematics Coding AvgARC-C IFEval GPQA BBH MMLU CEval CMMLU Math GSM8k AIME24 AIME25 MBPP HumanEval Multipl-E LCB

Ling-Lite-Chat

MoE 0% 89.2 81.5 33.0 58.7 72.6 65.4 70.6 72.6 88.1 8.3 10.0 77.3 81.2 65.0 21.6 59.7
D2-MoE 14% 82.4 78.3 31.2 51.3 64.5 56.5 56.0 64.9 85.7 8.3 10.0 70.3 72.6 50.2 14.4 53.1
MoLAE 12% 85.4 75.1 29.7 51.9 69.5 61.9 62.3 66.3 83.9 10.0 4.2 71.4 82.9 60.3 15.0 55.3
MoBE 16% 87.1 79.2 29.4 61.5 71.5 66.6 66.2 70.4 88.0 11.7 9.2 77.5 82.9 64.0 14.4 58.6
MoBE† 16% 85.8 79.2 29.9 53.8 70.3 64.3 66.9 69.1 83.6 11.7 12.5 77.3 82.6 62.4 17.4 57.8

DeepSeek-V2-Lite-Chat

MoE 0% 65.1 49.7 25.9 36.0 53.7 55.4 58.6 27.6 61.4 0 0 59.0 40.2 34.6 2.4 38.0
D2-MoE 13% 62.7 49.0 29.7 30.1 50.4 48.1 51.0 23.2 60.0 0 0 50.1 39.2 25.8 1.8 34.7
MoLAE 11% 65.8 43.9 26.9 34.0 53.0 47.9 52.8 18.6 59.2 0.8 0 46.6 41.5 26.9 1.8 34.6
MoBE 15% 67.5 46.0 30.3 33.9 53.7 53.0 56.3 23.5 58.6 0.8 0 51.5 43.3 31.7 3.6 36.9
MoBE† 15% 63.1 45.1 26.6 32.5 50.9 53.0 55.3 23.0 60.0 2.5 0 51.5 50.6 29.0 3.0 36.4

Qwen3-30B-A3B-2507

MoE 0% 95.6 86.6 56.8 85.4 87.6 88.2 86.6 93.3 96.4 59.4 51.3 86.4 93.1 70.6 41.5 78.6
D2-MoE 24% 93.1 83.5 45.2 69.9 83.3 71.2 68.6 86.1 93.0 38.3 29.1 79.5 84.0 44.0 26.9 66.4
MoLAE 24% 92.5 79.2 46.3 76.5 80.3 76.0 74.9 85.4 91.4 35.2 33.1 81.7 82.9 50.8 25.6 67.5
MoBE 24% 96.6 86.9 52.1 83.5 85.6 85.1 83.5 92.5 95.2 55.0 45.2 87.4 91.8 61.9 35.6 75.8
MoBE† 24% 95.9 85.1 51.0 83.3 86.0 85.9 83.9 92.6 96.1 54.0 45.6 85.3 92.2 61.2 38.0 75.7

DeepSeek-V3-0324

MoE 0% 97.0 84.8 66.7 85.4 90.3 90.4 88.6 92.0 94.9 56.9 47.3 89.7 93.4 68.2 44.6 79.3
MoLAE 30% 97.3 83.2 54.0 82.9 87.3 84.4 83.2 87.6 95.5 38.5 29.6 87.4 89.5 61.0 34.4 73.1
MoBE 30% 98.0 84.5 63.6 85.2 89.5 87.8 87.2 90.3 93.7 52.3 40.6 89.9 93.6 73.1 40.9 78.0
MoBE† 30% 96.6 84.3 62.6 85.4 87.2 87.9 89.4 91.0 94.8 49.8 41.9 89.0 93.8 73.0 42.1 77.9

Qwen3-235B-A22B-2507

MoE 0% 97.0 90.0 60.7 89.5 90.9 90.9 90.0 94.4 96.7 61.9 51.7 93.0 96.3 70.5 48.4 81.5
MoLAE 24% 95.6 85.5 66.2 87.5 88.9 87.3 86.9 90.5 95.5 54.2 44.6 70.7 81.0 30.0 33.5 73.2
MoBE 24% 96.3 89.9 58.6 89.0 90.4 90.6 89.7 94.2 96.3 64.8 54.8 89.2 93.8 71.9 43.7 80.9
MoBE† 24% 95.6 88.7 58.1 88.8 90.3 90.4 89.6 93.6 96.0 62.9 50.8 87.4 93.1 65.5 45.2 79.7

Kimi-K2-Instruct

MoE 0% 95.9 90.8 77.4 88.8 90.8 92.4 89.9 95.7 96.7 64.8 50.2 90.9 95.4 66.7 50.3 82.4
MoLAE 24% 96.6 88.2 66.4 86.0 89.2 89.4 87.8 90.9 93.0 44.8 35.0 88.8 91.9 60.6 40.3 76.6
MoBE 24% 97.0 91.4 73.2 87.2 90.3 90.2 89.2 94.9 96.3 62.5 44.4 89.9 94.0 68.8 47.2 81.1
MoBE† 24% 96.3 91.7 74.6 88.1 90.2 90.3 89.3 95.1 96.6 61.7 44.2 90.4 94.1 65.0 44.6 80.8

activation parameters in MoBE (Section 3.2), we reduce vctivated experts from k = 6 to
k′ = 4 in MoBE†.

• For Qwen3-30B-A3B-2507 and Qwen3-235B-A22B-2507, both MoBE and MoLAE use
32 basis/latent matrices. MoBE reduces activated experts from k = 8 to k′ = 6 in MoBE†.

• For DeepSeek-V3-0324, both MoBE and MoLAE use 64 basis/latent matrices, with MoBE
reducing k from 8 to 6 in MoBE†.

• For Kimi-K2-Instruct, both MoBE and MoLAE use 128 basis/latent matrices, and MoBE
similarly reduces k from 8 to 6. Due to optimization challenges with 384 experts per layer,
we split them into two groups, each trained with 64 basis matrices.

• For D2-MoE, the rank of delta weights is set to 700 for Ling-Lite-Chat and DeepSeek-V2-
Lite-Chat, and 420 for Qwen3-30B-A3B-2507.

• For simplicity, we set the rank r = p in all our studies. It gets more compression ratio when
setting r < p while may increasing the accuracy drops.

Implementation Details. All experiments are conduct on H100 or H20 GPUs using the Adam
optimizer (Loshchilov & Hutter, 2017) with a 0.07 learning rate. We set the batch size equal to the
number of experts n and train for a maximum of 50,000 epochs, employing early stopping with a
patience of 2,000 epochs based on the training loss.

4.2 EVALUATION BENCHMARK

We perform a comprehensive evaluation across a wide spectrum of benchmark. The evaluation
suite covers four primary domains: (1) General Knowledge: BBH (Srivastava et al., 2022),
MMLU (Hendrycks et al., 2020), CEval (Huang et al., 2023), and CMMLU (Li et al., 2023a);
(2) General Reasoning: ARC-Challenge (Clark et al., 2018), IFEval (Zhou et al., 2023), and
GPQA (Rein et al., 2023); (3) Mathematics: Math (Hendrycks et al., 2021), GSM8k (Cobbe et al.,
2021), AIME24, and AIME25; and (4) Coding: MBPP (Austin et al., 2021), HumanEval (Chen
et al., 2021), LCB (LiveCodeBench-v5) (Jain et al., 2024), and MultiPL-E (Cassano et al., 2022).
For AIME24 and AIME25, we run 16 inference trials per question and report average accuracy; for
IFEval, the final score is the mean of strict accuracies at both the prompt and instruction levels.

4.3 MAIN RESULTS

All the compared results of the origin model (MoE) and different compression methods (MoBE,
MoBE†, D2-MoE, and MoLAE) are shown in Tables 3. It shows that our proposed MoBE method
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Figure 4: Comparison of per-layer MSE loss for
compressing the gate matrices of Qwen3-30B-
A3B when using different activation functions.
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Figure 5: Comparison of per-layer MSE loss for
compressing the gate matrices of Qwen3-30B-
A3B with/without Z-score normalization.

generally outperforms all the compared compression methods across various benchmarks. For in-
stance, for the Ling-Lite-Chat and DeepSeek-V2-Lite-Chat models, MoBE improves performance
by 2-3% accuracy over the baseline. The performance gains are even more notable for Qwen3-30B-
A3B-2507, Qwen3-235B-A22B-2507, DeepSeek-V3-0324 and Kimi-K2-Instruct, reaching 4-8%
accuracy advantages over compared compression methods.

We note that converting MoE models into MoBE architecture results in an average performance
degradation of 1.4% accuracy compared to the original MoE models. For comparison, MoBE† that
only reduces the number of activated experts from k to k′, leads to a smaller degradation of 0.5%
accuracy. It suggests that it is more challenging to compress the total parameters than activation
parameters for an MoE model. As the sparsity ratio (#activated-parameters/#total-parameters) of
recent MoE models becomes larger and larger so that the total parameter counts reach trillion-level
(≥1T), it is more useful and practical to compression the total parameters.

4.4 ABLATION STUDY ON ACTIVATION FUNCTIONS

In Eq(4), we apply a non-linear activation function to enhance representational capacity. We conduct
experiments on the Qwen3-30B-A3B model’s gate matrices to select the optimal activation function.
As shown in Figure 4, Sigmoid demonstrates inferior performance to the case without activation in
terms of the reconstruction MSE, while ReLU has an order-of-magnitude higher MSE loss. This
result is consistent with our analysis in Section 3.3. GELU, SiLU, and Tanh achieve similar results
and outperform the case without activation, while we finally choose SiLU and Tanh as our activation
function as they offer a favorable trade-off between performance and computational efficiency.

4.5 ABLATION STUDY ON Z-SCORE NORMALIZATION

To evaluate the impact of the Z-score normalization introduced in Section 3.4, we conduct an abla-
tion study using the Qwen3-30B-A3B’s gate matrices. All experiments use identical hyperparameter
and optimization settings, varying only the application of normalization. Figure 5 shows a notable
reduction in MSE loss when Z-score normalization is applied. We hypothesize that the normaliza-
tion can rescale the weight values from wide and wild ranges to a normal distribution with a mean
of 0 and a std of 1, so that the optimization becomes more stable and effective.

5 CONCLUSION

In this paper, we propose the Mixture-of-Basis-Experts (MoBE), a parameter-efficient architecture
that addresses memory challenges in deploying large-scale MoE-based LLMs. MoBE effectively
combines shared basis matrices with expert-specific transformation matrices via rank decomposition
to overcome limitations of prior work. Extensive experiments demonstrate that MoBE outperforms
existing counterpart methods like MoLAE and D2-MoE with a large margin in preserving higher
performance and a better model compression rate. MoBE can compress leading models such as
Qwen3-235B-A22B-2507, DeepSeek-V3-0324 and Kimi-K2-Instruct by up to 24%-30% while re-
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taining up to 98% of their original performance across diverse benchmarks. Such a practical and
effective method may help enable large MoE models for more scalable and efficient applications.

STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, Large Language Models were used exclusively for refining language,
grammar, and clarity. The core ideas and content remain entirely the author(s)’ own, who bear full
responsibility for all information presented herein.

LIMITATIONS

While our method performs well in compressing MoE models, it still causes a slight drop in accuracy
compared to the original model. To fix this gap, one potential direction is to employ full network
knowledge distillation (KD) between the original and our compressed models. This requires mod-
ifying existing training frameworks to support KD training for large LLMs. Another limitation is
that MoBE requires multiple times calling of current optimized kernel fused-MoE to mimic the fac-
torization, which is relatively inefficient. Hence, it requires implementing a specific mega-kernel for
the whole factorization to unleash the power of the MoBE architecture. Future work will address
these two limitations.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Do-
han, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program
synthesis with large language models. ArXiv, abs/2108.07732, 2021. URL https://api.
semanticscholar.org/CorpusID:237142385.

Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on
mixture of experts. arXiv preprint arXiv:2407.06204, 2024.

Federico Cassano, John Gouwar, Daniel Nguyen, Sy Duy Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q. Feldman, Arjun Guha,
Michael Greenberg, and Abhinav Jangda. Multipl-e: A scalable and extensible approach to bench-
marking neural code generation. 2022. URL https://api.semanticscholar.org/
CorpusID:254854172.

Marmik Chaudhari, Idhant Gulati, Nishkal Hundia, Pranav Karra, and Shivam Raval. Moe lens
- an expert is all you need. In Sparsity in LLMs (SLLM): Deep Dive into Mixture of Experts,
Quantization, Hardware, and Inference, 2025. URL https://openreview.net/forum?
id=GS4WXncwSF.

I-Chun Chen, Hsu-Shen Liu, Wei-Fang Sun, Chen-Hao Chao, Yen-Chang Hsu, and Chun-Yi Lee.
Retraining-free merging of sparse moe via hierarchical clustering. 2024. URL https://api.
semanticscholar.org/CorpusID:273323490.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. ArXiv, abs/1803.05457, 2018. URL https://api.semanticscholar.org/
CorpusID:3922816.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

10

https://api.semanticscholar.org/CorpusID:237142385
https://api.semanticscholar.org/CorpusID:237142385
https://api.semanticscholar.org/CorpusID:254854172
https://api.semanticscholar.org/CorpusID:254854172
https://openreview.net/forum?id=GS4WXncwSF
https://openreview.net/forum?id=GS4WXncwSF
https://api.semanticscholar.org/CorpusID:273323490
https://api.semanticscholar.org/CorpusID:273323490
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mor Geva, R. Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are key-
value memories. ArXiv, abs/2012.14913, 2020. URL https://api.semanticscholar.
org/CorpusID:229923720.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
International Conference on Artificial Intelligence and Statistics, 2011. URL https://api.
semanticscholar.org/CorpusID:2239473.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Hao Gu, Wei Li, Lujun Li, Qi Zhu, Mark Lee, Shengjie Sun, Wei Xue, and Yi-Ting Guo. Delta
decompression for moe-based llms compression. ArXiv, abs/2502.17298, 2025. URL https:
//api.semanticscholar.org/CorpusID:276575054.

En hao Liu, Junyi Zhu, Zinan Lin, Xuefei Ning, Matthew B. Blaschko, Shengen Yan, Guohao Dai,
Huazhong Yang, and Yu Wang. Efficient expert pruning for sparse mixture-of-experts language
models: Enhancing performance and reducing inference costs. ArXiv, abs/2407.00945, 2024.
URL https://api.semanticscholar.org/CorpusID:270869609.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv: Learning, 2016. URL
https://api.semanticscholar.org/CorpusID:125617073.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Xiaodong
Song, and Jacob Steinhardt. Measuring massive multitask language understanding. ArXiv,
abs/2009.03300, 2020. URL https://api.semanticscholar.org/CorpusID:
221516475.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Xi-
aodong Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math
dataset. ArXiv, abs/2103.03874, 2021. URL https://api.semanticscholar.org/
CorpusID:232134851.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego De Las Casas, Lisa Anne Hendricks, Johannes Welbl, and Aidan Clark. Train-
ing compute-optimal large language models. 2022.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng
Liu, Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu, Maosong Sun, and Junxian He. C-eval:
A multi-level multi-discipline chinese evaluation suite for foundation models. arXiv preprint
arXiv:2305.08322, 2023.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. ArXiv, abs/2403.07974, 2024. URL https:
//api.semanticscholar.org/CorpusID:268379413.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural computation, 6(2):181–214, 1994.

Jared Kaplan, Sam Mccandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\” ulu 3: Pushing
frontiers in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

11

https://api.semanticscholar.org/CorpusID:229923720
https://api.semanticscholar.org/CorpusID:229923720
https://api.semanticscholar.org/CorpusID:2239473
https://api.semanticscholar.org/CorpusID:2239473
https://api.semanticscholar.org/CorpusID:276575054
https://api.semanticscholar.org/CorpusID:276575054
https://api.semanticscholar.org/CorpusID:270869609
https://api.semanticscholar.org/CorpusID:125617073
https://api.semanticscholar.org/CorpusID:221516475
https://api.semanticscholar.org/CorpusID:221516475
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:268379413
https://api.semanticscholar.org/CorpusID:268379413


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E. Howard, Wayne E.
Hubbard, and Lawrence D. Jackel. Backpropagation applied to handwritten zip code recogni-
tion. Neural Computation, 1:541–551, 1989. URL https://api.semanticscholar.
org/CorpusID:41312633.

Jaeseong Lee, Seung won Hwang, Aurick Qiao, Daniel F. Campos, Zhewei Yao, and Yuxiong He.
Stun: Structured-then-unstructured pruning for scalable moe pruning. ArXiv, abs/2409.06211,
2024. URL https://api.semanticscholar.org/CorpusID:272550518.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timo-
thy Baldwin. Cmmlu: Measuring massive multitask language understanding in chinese. arXiv
preprint arXiv:2306.09212, 2023a.

Lujun Li, Zhu Qiyuan, Jiacheng Wang, Wei Li, Hao Gu, Sirui Han, and Yike Guo. Sub-moe:
Efficient mixture-of-expert llms compression via subspace expert merging. arXiv preprint
arXiv:2506.23266, 2025a.

Pingzhi Li, Zhenyu (Allen) Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, and
Tianlong Chen. Merge, then compress: Demystify efficient smoe with hints from its routing
policy. ArXiv, abs/2310.01334, 2023b. URL https://api.semanticscholar.org/
CorpusID:263605809.

Wei Li, Lujun Li, You-Liang Huang, Mark G. Lee, Shengjie Sun, Wei Xue, and Yike Guo. Struc-
tured mixture-of-experts LLMs compression via singular value decomposition, 2025b. URL
https://openreview.net/forum?id=ho7ZUS1z8A.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Zehua Liu, Han Wu, Ruifeng She, Xiaojin Fu, Xiongwei Han, Tao Zhong, and Mingxuan Yuan.
Molae: Mixture of latent experts for parameter-efficient language models. 2025. URL https:
//api.semanticscholar.org/CorpusID:277451683.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2017. URL https://api.semanticscholar.org/
CorpusID:53592270.

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan Huang, Bo Zhang, Junchi Yan, and Hongsheng
Li. Not all experts are equal: Efficient expert pruning and skipping for mixture-of-experts large
language models. In Annual Meeting of the Association for Computational Linguistics, 2024.
URL https://api.semanticscholar.org/CorpusID:267782440.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. In Neural Information Processing Systems, 2022. URL https://api.
semanticscholar.org/CorpusID:255825985.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions. ArXiv,
abs/1710.05941, 2018. URL https://api.semanticscholar.org/CorpusID:
10919244.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark. ArXiv, abs/2311.12022, 2023. URL https://api.semanticscholar.org/
CorpusID:265295009.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-
propagating errors. Nature, 323:533–536, 1986. URL https://api.semanticscholar.
org/CorpusID:205001834.

Zhihong Shao, Damai Dai, Daya Guo, Bo Liu (Benjamin Liu), Zihan Wang, and Hua-
jian Xin. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model. ArXiv, abs/2405.04434, 2024. URL https://api.semanticscholar.org/
CorpusID:269613809.

12

https://api.semanticscholar.org/CorpusID:41312633
https://api.semanticscholar.org/CorpusID:41312633
https://api.semanticscholar.org/CorpusID:272550518
https://api.semanticscholar.org/CorpusID:263605809
https://api.semanticscholar.org/CorpusID:263605809
https://openreview.net/forum?id=ho7ZUS1z8A
https://api.semanticscholar.org/CorpusID:277451683
https://api.semanticscholar.org/CorpusID:277451683
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:267782440
https://api.semanticscholar.org/CorpusID:255825985
https://api.semanticscholar.org/CorpusID:255825985
https://api.semanticscholar.org/CorpusID:10919244
https://api.semanticscholar.org/CorpusID:10919244
https://api.semanticscholar.org/CorpusID:265295009
https://api.semanticscholar.org/CorpusID:265295009
https://api.semanticscholar.org/CorpusID:205001834
https://api.semanticscholar.org/CorpusID:205001834
https://api.semanticscholar.org/CorpusID:269613809
https://api.semanticscholar.org/CorpusID:269613809


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Noam M. Shazeer. Glu variants improve transformer. ArXiv, abs/2002.05202, 2020. URL https:
//api.semanticscholar.org/CorpusID:211096588.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
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A ABSOLUTE PERFORMANCE COMPARISON OF MOE COMPRESSION
METHODS
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Figure 6: Absolute performance comparison of different MoE compression methods.

We present the absolute performance comparison of MoE compression methods in Figure 6.

B ANALYSIS OF THE EFFECTIVE RANK OF EXPERT WEIGHT MATRICES

We evaluate the effective rank of expert weight matrices in Qwen3-235B-A22B-2507, DeepSeek-
V3-0324, and Kimi-K2-Instruct. The effective rank re is defined as:

re = min

{
k ∈ N+

∣∣∣∣∣
∑k

j=1 σ
2
j∑r

i=1 σ
2
i

> 0.95

}
where σi is the i-th largest singular value (sorted in descending order) and r is the matrix rank.
The expert weight matrices in Qwen3-235B-A22B-2507 have dimensions 4096×1536, while those
in DeepSeek-V3-0324 and Kimi-K2-Instruct are 7168×2048. Figures 8–10 illustrate the per-layer
average effective rank re and its range for each model. Taking the expert weight matrices of Kimi-
K2-Instruct as an example, rank decomposition could realize parameter compression only if the
intermediate rank satisfies

rt ≤
7168 · 2048
7168 + 2048

≈ 1593.

However, according to Figure 10, the average effective rank re is larger than 1593 in most lay-
ers. This discrepancy implies that the pure rank-decomposition-based method can’t produce model
compression without performance loss. An interesting finding can be drawn from the analysis:
Qwen3-235B-A22B-2507 shows much broader effective rank range than the other two, which may
indicate that its experts are far from being well-balanced during the training phase.

C ADDITIONAL MSE COMPARISONS

We present a comparison of reconstruction errors on Ling-Lite-Chat, DeepSeek-V2-Lite, Qwen3-
235B-A22B-2507, DeepSeek-V3-0324 and Kimi-K2-Instruct in the Figure 11-15.

D AN EXPRESSIVE POWER ANALYSIS OF MOBE

In this section, we demonstrate that the MoBE possesses greater expressive capacity than a conven-
tional low-rank factorization derived from Singular Value Decomposition (SVD). Assume there are
n experts in one layer, each with an up/gate matrix of dimension p× d. To construct the SVD-based
baseline, we first partition these n experts into m groups, with each group containing n

m matrices
(assuming n is a multiple of m). For the j-th group, the up/gate matrices are stacked row-wise to

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

form a consolidated matrix W j
stack ∈ R

np
m ×d. We perform Singular Value Decomposition (SVD) on

this stacked matrix:
U j ,Σj , V j = SVD(W j

stack) (10)

where U j ∈ R
np
m ×np

m , Σj ∈ R
np
m ×d, and V j ∈ Rd×d. The decomposition is truncated to retain the

top r singular values, obtaining the components Ũ j ∈ R
np
m ×r, Σ̃j ∈ Rr×r, and Ṽ j ∈ Rr×d. We

then incorporate Σ̃j into Ũ j and Ṽ j by setting Ũ j = Ũ j(Σ̃j)1/2 and Ṽ j = (Σ̃j)1/2Ṽ j . For the i-th
up/gate matrix, assuming it belongs to the j-th group, its low-rank approximation is given by:

Ŵ i = AiBj (11)

where Ai corresponds to Ũ j [(k − 1)p : kp, :] with k = i − (j − 1)( n
m ), indicating that the i-th

up/gate matrix is the k-th matrix in the j-th group, and Bj is Ṽ j . Comparing this factorization with
Eq(4), we observe that the SVD-based decomposition is a special case of MoBE. Specifically, it is
equivalent to MoBE where the α are restricted to one-hot vectors (assigning each expert to a single
group) and the activation function is an identity mapping. Therefore, MoBE exhibits significantly
greater expressive power than this SVD-based approach.

E ANALYSIS OF BASIS MATRIX COUNT AND RANK

The number of parameters for the basis matrices is mrd, where m is the number of basis matri-
ces, r is the rank of the basis matrices, and d is the hidden dimension of the model. We conduct
experiments on Qwen3-30B-A3B-2507 with different values of m and r; a comparison of the re-
construction errors is presented in Figure 7.

As shown in the Figure 7, for a fixed parameter budget, the reconstruction error for the configuration
m = 32, r = 768 is significantly lower than that for m = 64, r = 384. This indicates that the rank
r of the basis matrices is a more influential factor than the number of basis matrices m. Therefore,
in our main experiments, we set r to be equal to the hidden dimension of the MoE to maximize
representational capacity.

Additionally, we conduct experiments on Qwen3-30B-A3B-2507 with r fixed at 768 while varying
m to investigate its impact on downstream task performance. The results are presented in Table 4.
These results show that when m = 16, the performance of the compressed model degrades sub-
stantially compared to when m = 32. Conversely, while performance at m = 64 is marginally
better than at m = 32, this improvement comes at the cost of a considerably lower compression
rate. Therefore, in our main experiments, we select configurations corresponding to a 25%–30%
compression rate to achieve a favorable balance between compression efficiency and model perfor-
mance.

Table 4: Performance comparison of different configuration settings on Qwen3-30B-A3B-2507.
The column Ratio refers to the proportion of compressed parameters to the total parameters in the
LLMs.

LLM m Ratio General Reasoning General Knowledge Mathematics Coding AvgARC-C IFEval GPQA BBH MMLU CEval CMMLU Math GSM8k AIME24 AIME25 MBPP HumanEval Multipl-E LCB

Qwen3-30B-A3B-2507
16 32% 93.5 80.6 48.2 78.3 82.3 79.2 78.9 88.1 93.2 40.6 37.1 83.8 86.0 55.3 27.6 70.2
32 24% 96.6 86.9 52.1 83.5 85.6 85.1 83.5 92.5 95.2 55.0 45.2 87.4 91.8 61.9 35.6 75.8
64 8% 94.5 85.5 53.8 84.8 86.6 87.0 85.3 92.2 96.4 57.1 48.3 86.0 92.7 66.2 38.4 77.0

F ADDITIONAL BASELINE COMPARISONS

We compared two additional baseline methods on Qwen3-30B-A3B-2507 and Qwen3-235B-A22B-
2507: MoNE and Sub-MoE. MoNE prunes less important experts based on their routing weights
and output variance, replacing them with their average outputs. Sub-MoE groups experts by output
cosine similarity and merges each group into one. This merge uses SVD on the expert matrices,
weighting their components by activation frequency to create a new, single expert. For both of these
methods, we use tulu-v3-sft-mixture as the calibration dataset. As shown in the Table 5, MoBE
consistently outperforms these baseline methods.
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Figure 7: Comparison of pre-layer MSE for compressing the gate (a) and up (b) matrices of Qwen3-
30B-A3B-2507 using different configuration settings.

Table 5: Performance comparison of different compression methods on various MoE-based LLMs,
where “†” indicates that this model activates fewer experts than the original model to compensate
for the increase in activation parameters. The column Ratio refers to the proportion of compressed
parameters to the total parameters in the LLMs.

LLM Method Ratio General Reasoning General Knowledge Mathematics Coding AvgARC-C IFEval GPQA BBH MMLU CEval CMMLU Math GSM8k AIME24 AIME25 MBPP HumanEval Multipl-E LCB

Qwen3-30B-A3B-2507

MoE 0% 95.6 86.6 56.8 85.4 87.6 88.2 86.6 93.3 96.4 59.4 51.3 86.4 93.1 70.6 41.5 78.6
D2-MoE 24% 93.1 83.5 45.2 69.9 83.3 71.2 68.6 86.1 93.0 38.3 29.1 79.5 84.0 44.0 26.9 66.4
MoLAE 24% 92.5 79.2 46.3 76.5 80.3 76.0 74.9 85.4 91.4 35.2 33.1 81.7 82.9 50.8 25.6 67.5
MoNE 24% 92.5 85.1 52.0 80.7 80.1 71.2 68.2 92.6 94.8 53.2 44.5 85.6 91.8 57.8 38.0 72.5

Sub-MoE 24% 92.5 82.1 46.3 82.8 80.3 70.2 68.5 92.0 96.0 51.0 45.2 82.2 87.2 50.1 34.1 70.7
MoBE 24% 96.6 86.9 52.1 83.5 85.6 85.1 83.5 92.5 95.2 55.0 45.2 87.4 91.8 61.9 35.6 75.8
MoBE† 24% 95.9 85.1 51.0 83.3 86.0 85.9 83.9 92.6 96.1 54.0 45.6 85.3 92.2 61.2 38.0 75.7

Qwen3-235B-A22B-2507

MoE 0% 97.0 90.0 60.7 89.5 90.9 90.9 90.0 94.4 96.7 61.9 51.7 93.0 96.3 70.5 48.4 81.5
MoLAE 24% 95.6 85.5 66.2 87.5 88.9 87.3 86.9 90.5 95.5 54.2 44.6 70.7 81.0 30.0 33.5 73.2
MoNE 24% 94.0 88.3 58.7 86.6 87.2 82.3 78.1 93.0 95.9 62.9 50.4 87.8 93.3 60.3 44.3 77.5

Sub-MoE 24% 93.8 85.8 50.4 87.8 87.3 81.2 80.8 92.5 95.5 61.6 50.4 83.4 89.0 58.8 42.2 76.0
MoBE 24% 96.3 89.9 58.6 89.0 90.4 90.6 89.7 94.2 96.3 64.8 54.8 89.2 93.8 71.9 43.7 80.9
MoBE† 24% 95.6 88.7 58.1 88.8 90.3 90.4 89.6 93.6 96.0 62.9 50.8 87.4 93.1 65.5 45.2 79.7
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Figure 8: Average effective rank and effective rank range of the (a) gate, (b) up, and (c) down
matrices at each layer in Qwen3-235B-A22B-2507.
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Figure 9: Average effective rank and effective rank range of the (a) gate, (b) up, and (c) down
matrices at each layer in DeepSeek-V3-0324.
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Figure 10: Average effective rank and effective rank range of the (a) gate, (b) up, and (c) down
matrices at each layer in Kimi-K2-Instruct.
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Figure 11: Comparison of pre-layer MSE for compressing the gate (a) and up (b) matrices of Ling-
Lite-Chat using MoBE, D2-MoE and MoLAE.
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Figure 12: Comparison of pre-layer MSE for compressing the gate (a) and up (b) matrices of
DeepSeek-V2-Lite-Chat using MoBE, D2-MoE and MoLAE.
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Figure 13: Comparison of pre-layer MSE for compressing the gate (a) and up (b) matrices of Qwen3-
235B-A22B-2507 using MoBE and MoLAE.
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Figure 14: Comparison of pre-layer MSE for compressing the gate (a) and up (b) matrices of
DeepSeek-V3-0324 using MoBE and MoLAE.
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Figure 15: Comparison of pre-layer MSE for compressing the gate (a) and up (b) matrices of Kimi-
K2-Instruct using MoBE and MoLAE.
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