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ABSTRACT

The Mixture-of-Experts (MoE) architecture has become a predominant paradigm
for scaling large language models (LLMs). Despite offering strong performance
and computational efficiency, large MoE-based LLMs like DeepSeek-V3-0324
and Kimi-K2-Instruct present serious challenges due to substantial memory re-
quirements in deployment. While recent works have explored MoE compression
to address this issue, existing methods often suffer from considerable accuracy
drops (e.g., 7-14% relatively) even at modest compression rates. This paper in-
troduces a novel Mixture-of-Basis-Experts (MoBE) method that achieves model
compression while incurring minimal accuracy drops. Specifically, each up/gate
matrix in an expert is decomposed via a rank decomposition as W = A B, where
matrix A is unique to each expert. The relatively larger matrix B is further re-
parameterized as a linear combination of basis matrices { B’} shared across all
experts within a given MoE layer. The factorization is learned by minimizing
the reconstruction error relative to the original weight matrices. Experiments
demonstrate that MoBE achieves notably lower accuracy drops compared to prior
works. For instance, MoBE can reduce the parameter counts of Qwen3-235B-
A22B-2507, DeepSeek-V3-0324 (671B) and Kimi-K2-Instruct (1T) by 24%-30%
with only 1%-2% accuracy drop (about 2% drops when measured relatively).
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Figure 1: Relative performance comparison of different MoE compression methods. Relative ac-
curacy is the ratio of the compressed model’s performance to that of the original model. The ac-
curacy are averaged over 15 benchmarks as shown in Table 3| Applying D?-MoE to large models
like Qwen3-235B-A22B-2507, DeepSeek-V3-0324 and Kimi-K2-Instruct is computationally pro-
hibitive on an 8x H100 GPU machine; therefore, it is excluded from these comparisons. MoBE is
evaluated at compression rates similar to or higher than the baseline methods (MoLAE, D2-MoE).
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1 INTRODUCTION

Transformer-based large language models (LLMs) (Vaswani et al., 2017) have revolutionized natural
language processing, achieving state-of-the-art performance in domains such as creative writing,
code generation, and mathematical reasoning. This progress has been largely guided by scaling
laws (Kaplan et al.|2020; |[Hoffmann et al., 2022}, which posit that model performance improves with
increases in parameter count and training data size. However, scaling dense architectures beyond a
certain threshold—typically hundreds of billions of parameters (>>100B)—has proven challenging
and prohibitive. Therefore, the Mixture-of-Experts (MoE) (Jacobs et al., [1991; Jordan & Jacobs,
1994; |Cai et al., [2024) architecture has become popular since the sparse activation makes MoEs
much easier and more efficient to scale to more than several hundreds of billions of parameters (Liu
et al.,[2024} |Yang et al., 2025; Team et al., |2025a) since last year.

Despite the computational advantages of sparse activation, the large total parameter counts of MoE-
based LLMs present a significant bottleneck for practical deployment. For instance, leading open-
source LLMs such as DeepSeek-V3-0324 (671B parameters) (Liu et al.,2024) exhibit performance
comparable to top closed-source models. However, their scale imposes prohibitive demands on GPU
memory; even high-end infrastructure, such as a machine with 8x H100 GPUs, may be insufficient
for efficient inference.

To address this challenge, much research have been proposed for MoE-based LLM compression,
which could be generally categorized into two major categories. First, pruning techniques reduce
total parameter counts by either removing entire experts (Xie et al.,[2024} Lu et al.,|2024; |Yang et al.}
2024) or merging similar ones (hao Liu et al.l 2024; [Li et al., 2023b; |Chen et al.| 2024). However,
this approach often leads to a permanent loss of specialized knowledge and significant performance
degradation (Gu et al., [2025). Second, decomposition techniques employ matrix factorization to
compress each expert’s weight matrices (Gu et al., 2025} Liu et al.| [2025} [Li et al.,[2025b). Typical
works include D2-MoE (Gu et al.| [2025), which extracts shared weights and applies singular value
decomposition (SVD) to the residual delta weights, and MoLAE (Liu et al.,|2025)), which uses SVD
to represent each expert weight as a product of its unique transformation matrix and a shared latent
matrix. Although these SVD-based methods generally outperform expert pruning, they can still in-
cur substantial information loss. This is evidenced by the high Mean Squared Error (MSE) between
the original and reconstructed matrices, as shown in our reconstruction error analysis (Figure [2).

In this paper, we introduce the Mixture-of-Basis-Experts (MoBE), a novel method for efficient,
performance-preserving parameter compression for MoE-based LLMs. MoBE factorizes weight
matrix W in an expert with rank decomposition W = A B, where A is unique for each expert and
B is re-parameterized as a linear combination of a set of basis matrices { B’} that are shared across
all experts within each MoE layer. This formulation achieves parameter reduction for two reasons.
First, the number of basis matrices m is much smaller than the number of experts n, i.e. m < n,
and basis {B'} is shared across all experts within each layer so that we could save considerable
parameters for B. Second, the unique transformation matrix A is smaller than W, so that the
whole MoBE factorization achieves parameter savings. The MoBE factorization is optimized by
minimizing the reconstruction error between the factorized representation and the original pretrained
weight matrices, typically using the gradient descent method.

We conduct comprehensive experiments on a diverse set of MoE-based LLMs, including Ling-Lite-
Chat (Team et al., |2025b), DeepSeek-V2-Lite-Chat (Shao et al., [2024), DeepSeek-V3-0324 (Liu
et al.,[2024), Qwen3-30B-A3B-2507, Qwen3-235B-A22B-2507 (Yang et al} [2025)) and Kimi-K2-
Instruct (Team et al.,2025a). A direct comparison of reconstruction error on Qwen3-30B-A3B-2507
demonstrates that MoBE achieves a consistently lower MSE than both MoLAE and D?-MoE, often
with reductions of over 50%, across all layers (Figure [2). Similar results for more models are pre-
sented in Appendix [C} To assess downstream task performance, we evaluate the compressed models
on a wide range of benchmarks. As shown in Figure |1, MoBE exhibits a superior performance
advance compared to MoLAE and D?-MoE at similar or even higher compression rates.

In summary, our contributions can be summarized as follows:
* We introduce the Mixture-of-Basis-Experts (MoBE), a parameter-efficient architecture for

MoE model compression. Our analysis shows that this design yields significantly lower
reconstruction error compared to existing decomposition techniques.
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Figure 2: Comparison of per-layer MSE loss for compressing the gate @) and up @) matrices of
Qwen3-30B-A3B-2507 using MoBE, D?-MoE and MoLAE.

* We demonstrate through extensive experiments on leading MoE models, including Qwen3-
235B-A22B-2507, DeepSeek-V3-0324 and Kimi-K2-Instruct, that MoBE can reduce total
parameter counts by 24%-30% while retaining up to 98% of the original performance,
outperforming state-of-the-art MoE counterparts by a large margin.

2 RELATED WORKS

Research on MoE compression can be categorized into expert pruning-based (Xie et al., [2024; |Lu
et al.,2024; Yang et al.,2024)) and decomposition-based (L1 et al., 2025b; |Liu et al., 2025; Gu et al.}
20235)). Below we elaborate on related works under these two categories.

2.1 EXPERT PRUNING-BASED MOE COMPRESSION METHODS

Expert pruning-based methods aim to reduce the total parameter counts of MoE-based LLMs by
either directly removing entire experts or merging them. For instance, NAEE (Lu et al.l [2024)
removes unimportant experts by evaluating expert combinations on a calibration dataset to minimize
model loss, while STUN (Lee et al., [2024) groups experts based on co-activation frequency and
routing weight similarity, retaining only one expert per group. Other approaches focus on merging
similar experts. DEK (Zhang et al.| 2024)), for example, identifies and groups similar experts in the
feature space and then merges them in the weight space to reduce redundancy. MC-SMOoE (Li et al.,
2023b) organizes experts into distinct groups according to routing strategies and merges each group
into a single expert. Because these methods remove entire expert modules, they risk a permanent
loss of specialized knowledge, often leading to notable accuracy degradation on certain tasks.

2.2  EXPERT MATRIX DECOMPOSITION-BASED MOE COMPRESSION METHODS

In contrast to expert pruning, expert matrix decomposition-based methods compress MoE-based
LLMs by factorizing each expert’s weight matrices into relatively smaller representations. D?-
MoE (Gu et al., [2025) and MoLAE (Liu et al.| 2025)) are two state-of-the-art examples of this cat-
egory. D?-MoE approximates each expert matrix with a shared matrix and a residual delta matrix,
in which the shared weight is obtained via a Fisher-weighted average of the original weights, and
the residual delta weights (the difference between original and shared weights) are decomposed into
low-rank matrices using SVD. MoLAE first groups a set of up/gate matrices in each MoE layer,
and then approximates each matrix in a group by an expert-specific transformation matrix and the
product of a group-shared latent matrix. The approximation is achieved using SVD on the stacked
up/gate matrices within the group.

Although these methods are effective in reducing parameter counts, their reliance on low-rank as-
sumptions can be a limitation. The resulting matrix factorization does not always capture the full
information of the original weights, which can introduce substantial reconstruction errors and lead
to notable performance drops in downstream tasks. In Appendix [B] we analyze the effective rank
of expert weight matrices in several leading open-source MoE models. Our results show that this
rank consistently exceeds the compression threshold of SVD—meaning that to achieve parameter
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Figure 3: The Mixture-of-Basis-Experts (MoBE) architecture. For clarity of explanation, we omit
the activation function following the gate matrix.

reduction, the number of retained singular values must fall below this threshold. Eliminating this
excess rank reduces the matrix’s expressive power, likely explaining the performance degradation
observed in these SVD-based compression methods.

3 METHODOLOGY

In this section, we first briefly review the standard Mixture-of-Experts (MoE) architecture (Sec-
tion[3.1)). Then, we elaborate our proposed Mixture-of-Basis-Experts (MoBE) architecture and detail
the algorithm for converting a pretrained MoE model to MoBE architecture (Section [3.2). Finally,
we describe the activation functions in MoBE (Section and a specific Z-score normalization
technique applied to the expert weight matrices during the conversion process (Section [3.4).

3.1 STANDARD MIXTURE-OF-EXPERTS ARCHITECTURE

A standard MoE layer replaces the dense Feed-Forward Network (FFN) in the Transformer with
a sparsely activated structure comprising a router and multiple experts. For each input token, the
router dynamically selects a small subset of these experts for processing, which yields significant
computation cost reduction. In a typical MoE layer with n experts, the i-th expert (E?) often employs
a SwiGLU formulation (Shazeer, 2020) to process an input token embedding = € R? as

Ez(aj) = Wéown : (W;ip‘r © SiLU(ngatew))7 (])

i
where V[/'up/gate

Et, p is the intermediate dimension of MoE experts, and d is the hidden dimension of the model. It
is observed in most open-source MoE models that p < %d. The router G calculates a gating score
for each expert and selects the top-K experts for the token:

G(z) = TopK(Softmax(Wyx)) 2)

where W, € R"™*? denotes the weight matrix of the router G. The final output y of the MoE layer
is a weighted sum of the outputs from the selected experts:

€ RP*4 and Wi o € R¥P denote the up, gate, and down projection matrices of

K
y= Z G'(z)E'(z), 3)

where G?(z) denotes the gating value (i.e., the router score) of the i-th expert E*. This operation is
applied independently to every token in the input sequence.

3.2 MIXTURE-OF-BASIS-EXPERTS ARCHITECTURE

While large MoE models are much more efficient in inference than dense models of a similar size,
they are also constrained by higher memory and storage requirements during deployment. To allevi-
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ate this, we introduce the Mixture-of-Basis-Experts (MoBE) archite;cture, as illustrated in FigureE}
The MoBE formulation begins by factorizing the up/gate matrix W* € RP*< of the i-th expert from
the perspective of rank decomposition (Golub & Van Loan, 2013) as

Wi _ AiBi,

where A" € RP*", B € R™*4, and r is the rank of W; with r < min{p,d} = p. MoBE further
considers re-parameterizing B* with a set of shared basis matrices as

m
B'=> a"B/,
j=1
m
with o’ >0, Zaw =1,
Jj=1

where {B7 € ]R’”Xd}\?“:l is a set of basis matrices shared in one MoE layer, and {a’7}7., are
learnable, expert-specific weighted coefficients. Combining these components and introducing a
non-linear activation function f (e.g., SILU (Ramachandran et al., [2018)) to enhance representa-
tional power, we define the final MoBE factorization as:

Wi=Af(Y a"B), @)
j=1

where W is the reconstructed version of W<,

This factorization allows the shared basis matrices { B} to capture common information across all
experts in one layer, while the expert-specific transformation matrices A? encode specialized infor-
mation. We demonstrate in the Appendix [D]that this factorization is more powerful than the simple
SVD approach. We apply this factorization to both the gate and up projection matrices. However, we
do not decompose the down projection matrices, as prior research indicates they store critical knowl-
edge (Geva et al.||2020; Meng et al.,2022) and are less amenable to effective compression (Liu et al.}
2025)).

We convert a pretrained MoE-based LLM into our proposed MoBE formulation by learning the
factorized components. This is achieved by minimizing the reconstruction error between the original

expert weight matrix W and the reconstruction matrix W as

g0 5 R Y
i=1 j=1

] L
This optimization problem can be solved using various algorithms, such as gradient-based optimiz-
ers like Adam (Kingma & Bal |2014) or the Alternating Optimization (AO) method (Wu & Lange,
2008). In our practice, we find that the Adam optimizer performs sufficiently well across layers
and various models, while AO suffers from unstable behavior during its alternating optimization
steps. Algorithm [I] details the full procedure for converting a standard MoE model to the MoBE
formulation.

We further analyze the parameter complexity of MoBE compared to standard MoE as illustrated in
Table[I] Note that this analysis considers only the total and activation parameter count for a single
MOoE layer, excluding other components such as the embedding and attention layers. The total
parameter counts for one MoBE layer is ndp + 2npr + 2mrd, where the first term is for the down
matrices Waouwn, the second term is for the transformation matrices A in the up and gate projection,
and the third term is for the basis matrices { B’ }. The parameter count ratio (-v) from MoE to MoBE
can be computed as
ndp + 2npr +2mrd 1 2r 2mr

= =s+t 5+t

3ndp 3 3d 3np
Since r < p < 3d, the second term 3% < %. For the last term, m < n, for an MoE with
n = 128 experts, even if we set m = 16, we could have the last term %ZL’; < % Therefore,

v < % + % + ﬁ < 1. When using MoBE to replace MoE, the compression ratio by MoBE is
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Algorithm 1 Converting standard MoE into MoBE

1: Require: L-layers model My with n experts per layer; target basis count m < n; activation
function f.

2: Ensure: Parameter-efficient MoBE model MyopE.
3: Initialize non-MokE parts in My,gg With parameters directly from Mok.
4: for each MoE layer [ < L in My do
5. for type t € {gate, up} do
6: Let {W/}}"_, be the expert matrices of the [/-th layer
7: Solve Eq(5) with Adam optimizer
8: Obtain the factorized components { A%}, { B/}, {a;” }
9: end for
10:  Copy the I-th layer down projection matrices { W ., }7; from Myope
11:  Assemble the [-th MoBE layer with { A;, By, a; } and {Wown }-
12: end for
13: return MyoBg

Table 1: Comparison of total and activation parameter count for one standard MoE and MoBE layer.
MoBET is a MoBE variant with further activation expert number reduction.

| Standard MoE MoBE MoBE'
#Total Parameters | 3ndp ndp + 2npr + 2mrd  ndp + 2npr + 2mrd
#Activation Parameters | 3kdp kdp + 2kpr + 2krd  k'dp + 2K'pr + 2k'rd

1—~. From the analysis, we can draw the conclusion that the MoBE architecture could substantially
compress the standard MoE models.

Notably, while MoBE reduces the total parameters quite a lot, its activation parameter count requires
closer examination. The matrices B and the down matrices W, contribute 2krd + kdp < 3kdp
(since r < p) to the activation parameter count, while the transformation matrices A introduce an
additional 2kpr. This may lead to an increase in the number of activation parameters. To compensate
for this increase, inspired by previous work (Chaudhari et al., 2025), we propose a variant MoBET,
which reduces the number of activated experts during inference from k to a smaller value k’. In
many modern MoE models, the number of activated experts k is typically set to 8. In MoBE', we
reduce this to 6 (i.e., k' = 6). [1_-]

3.3 ACTIVATION FUNCTION IN MOBE

In Eq{), we employ an activation function f to enhance representational power. However, not all
activation functions are equally suitable. For instance, we posit that the commonly used ReLU (Glo-
rot et al., [2011) activation function is suboptimal for this task. ReLU can induce excessive sparsity
in the matrix B' = f(3_7", w"/ B/), which may cause notable information loss. As the transfor-

mation matrix A* € RP*" is smaller than B? € R"*, it may struggle to compensate for this loss
with such a limited representation capacity. Therefore, a bipolar activation function (i.e., one that
outputs both positive and negative values like tanh) is highly desirable.

Consequently, activation functions such as Tanh (LeCun et al.| [1989)), SiLU (Ramachandran et al.,
2018), and GeLLU (Hendrycks & Gimpel, 2016)) are more suited for this task, while Sigmoid (Rumel-
hart et al., [1986) and ReL.U are expected to yield inferior results. Our ablation study in Section
provide evidence supporting this hypothesis.

'The method (Chaudhari et al., 2025) reduces only activation parameters, not total parameters. Therefore,
we consider it a complementary approach and did not include it in our experimental comparisons.
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Table 2: Means and stds of the gate matrices and up matrices in various MoE-based LLMs.

| | Ling-Lite-Chat  DeepSeek-V2-Lite-Chat ~ DeepSeek-V3-0324 ~ Qwen3-30B-A3B-2507 Qwen3-235B-A22B-2507  Kimi-K2-Instruct

2.2e-5 1.0e-6 -4.2e-6 -2.8e-5 -1.4e-5 -1.3e-6
2.8e-2 2.9e-2 1.2e-2 2.3e-2 1.6e-2 2.6e-2

i Mean 2.3e-7 -1.6e-7 -5.3e-9 5.3e-7 1.8e-8 4.2e-8
Up Matrices | “gig 238e2 3.0e-2 1.2¢2 23e2 1.6e-2 2,602

. Mean
Gate Matrices Std

3.4 7Z-SCORE NORMALIZATION IN MOBE

To address the impact of a wide range of weight values and obtain stable results in seeking the
basis, we consider normalizing all expert weight matrices in each MoE layer. We introduce a Z-
score normalization by subtracting the mean and dividing by the standard deviation (std) across all
experts’ weights:

pw = mean(Wh, W2, ., W), (6)
ow = std(WH W2 .., W™), (7)
Wi, = u (8)

ow

This normalization introduces additional inference overhead. After factorization, the oy term can
be folded into the transformation matrix A*, and the pyy term will require an extra bias operation
during inference compared to the original form Eq(@).

Wi =owWj + uw = (owA) (O ™ B7) + . ©)
j=1
However, we empirically study different off-the-shelf MoE models and find that py is typically
negligibly small as shown in Table[2} We can therefore omit the term zyy in Eq(9). That means, we
only require absorbing oy into A* without introducing extra parameters and computing overhead
during inference.

4 EXPERIMENTS

In this section, we evaluate the proposed MoBE approach on popular open-source MoE models
and compare to state-of-the-art MoE compression methods (Section [4.3). We then conduct a set of
ablation studies on activation functions (Section[4.4) and normalization schemes (Section [£.3).

4.1 SETUP

Models. We evaluate our method, MoBE, on a suite of popular open-source MoE-based LLMs:
Ling-Lite-Chat (Team et al.l 2025b), DeepSeek-V2-Lite-Chat (Shao et al., [2024), DeepSeek-V3-
0324 (L1u et al. |2024), Qwen3-30B-A3B-2507, Qwen3-235B-A22B-2507 (Yang et al.,|[2025) and
Kimi-K2-Instruct (Team et al., [2025al).

Baseline. We compare our approach against two state-of-the-art MoE compression baselines, D?-
MoE (Gu et al., [2025) and MoLAE (Liu et al.l 2025). Both MoBE and MoLAE are data-free
compression methods, whereas D2-MoE requires a calibration dataset, for which we use tulu-v3-sft-
mixture (Lambert et al., 2024). Due to the high computational cost of its backward pass, applying
D2-MoE to very large models like Qwen3-235B-A22B-2507, DeepSeek-V3-0324 and Kimi-K2-
Instruct is infeasible on a single 8xH100 GPU machine. Therefore, comparisons involving D?-MoE
are excluded from these three larger models. In addition, we compared two additional baseline
methods, MoNE Zhang et al.|(2025)) and Sub-MoE Li et al.| (2025a)), on Qwen3-30B-A3B-2507 and
Qwen3-235B-A22B-2507, with the results presented in the Appendix [F

Hyper-parameters. Hyper-parameters are configured per case (models or methods). We provide a
more detailed explanation in the Appendix [E|regarding the impact of the values of the number of
basis matrices m and the rank 7.

 For Ling-Lite-Chat and DeepSeek-V2-Lite-Chat, MoBE uses m = 4 basis matrices and
MOoLAE uses 8 latent matrices. To compensate extra computing cost introduced by extra
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Table 3: Performance comparison of different compression methods on various MoE-based LLMs,
where “1” indicates that this model activates fewer experts than the original model to compensate
for the increase in activation parameters. The column Ratio refers to the proportion of compressed
parameters to the total parameters in the LLMs.

LM ‘ Method | Ratio General Reasoning ‘ General Knowledge ‘ Mathematics ‘ Coding Ave
ARC-C IFEval GPQA | BBH MMLU CEval CMMLU | Math GSM8k AIME24 AIME25 | MBPP  HumanEval Multip-E  LCB
MoE | 0% | 8.2 815 330 | 587 726 654 70.6 726 88.1 83 10.0 713 81.2 650 216 | 59.7
D>-MoE | 14% | 824 783 312 | 513 645 565 56.0 649 857 83 10.0 70.3 72.6 50.2 144 | 53.1
Ling-Lite-Chat MoLAE | 12% | 854 751 297 | 519 695 619 623 663 839 10.0 42 714 82.9 60.3 150 | 553
MoBE | 16% | 871 792 294 | 615 715 666 662 | 704 880 117 9.2 715 82.9 64.0 144 | 58.6
MoBE' | 16% | 858 792 299 | 538 703 643 66.9 69.1 836 117 125 713 82.6 62.4 174 | 578
MoE | 0% | 65.1 497 259 | 360 537 554 58.6 276 614 0 0 59.0 402 346 24 | 380
D®MoE | 13% | 627 490 297 | 301 504 481 51.0 232 60.0 0 0 50.1 39.2 258 18 | 347
DeepSeck-V2-Lite-Chat | MoLAE | 11% | 658 439 269 | 340 530 479 52.8 186 592 08 0 46.6 415 26.9 18 | 346
MoBE | 15% | 675 460 303 | 339 537 530 563 | 235 586 08 0 515 433 317 36 | 369
MoBE' | 15% | 63.1 450 266 | 325 509 530 553 230 600 25 0 515 50.6 29.0 30 | 364
MoE | 0% | 956 866 568 | 854  87.6 882 86.6 933 964 59.4 513 86.4 93.1 706 415 | 786
D®-MoE | 24% | 93.1 835 452 | 699 833 712 68.6 86.1 930 383 29.1 79.5 84.0 440 269 | 66.4
Qwen3-30B-A3B-2507 | MoLAE | 24% | 925 792 463 | 765 803 760 74.9 854 914 352 331 81.7 82.9 508 256 | 67.5
MoBE | 24% | 966 869 521 | 835 856 8. 83.5 925 952 55.0 45.2 87.4 918 619 356 | 758
MoBE' | 24% | 959 851 510 | 833 860 859 83.9 926 96.1 54.0 45.6 853 922 612 380 | 757
MoE | 0% | 970 848 667 | 854 903 904 88.6 920 949 56.9 473 89.7 93.4 682 446 | 793
MoLAE | 30% | 973 832 540 | 829 873 844 832 876 955 385 29.6 874 89.5 610 344 | 731
DeepSeck-V3-0324 MoBE | 30% | 980 845 636 | 852 895 878 87.2 903 937 523 40.6 89.9 93.6 731 409 | 78.0
MoBE' | 30% | 966 843 626 | 854 872 879 89.4 91.0 9438 49.8 41.9 89.0 93.8 730 421 | 779
MoE | 0% | 970 900 607 | 895 909 909 90.0 944 967 61.9 517 93.0 96.3 705 484 | 815
MOLAE | 24% | 956 855 662 | 87.5 889 873 86.9 90.5 955 54.2 44.6 70.7 81.0 300 335 | 732
Qwen3-235B-A22B-2507 | MoBE | 24% | 963 899 586 | 89.0 904  90.6 89.7 942 963 64.3 548 89.2 93.8 719 437 | 809
MoBE' | 24% | 956 887 581 | 888 903 904 89.6 936 960 62.9 50.8 874 93.1 655 452 | 79.7
MoE | 0% | 959 908 774 | 888 908 924 89.9 957 967 64.8 50.2 90.9 95.4 667 503 | 824
Kimi-K2-Instruct MOLAE | 24% | 966 882 664 | 860 892 894 87.8 909 930 44.8 35.0 88.8 91.9 60.6 403 | 76.6
£ns MoBE | 24% | 970 914 732 | 872 903 902 89.2 949 963 62.5 444 89.9 94.0 688 472 | 811
MoBE' | 24% | 963 9.7 746 | 881 902 903 893 | 951 966 61.7 442 90.4 94.1 650 446 | 808

activation parameters in MoBE (Section [3.2), we reduce vctivated experts from k& = 6 to
k' = 4 in MoBE'.

¢ For Qwen3-30B-A3B-2507 and Qwen3-235B-A22B-2507, both MoBE and MoLAE use
32 basis/latent matrices. MoBE reduces activated experts from k = 8 to &’ = 6 in MoBE.

* For DeepSeek-V3-0324, both MoBE and MoLAE use 64 basis/latent matrices, with MoBE
reducing & from 8 to 6 in MoBE'.

¢ For Kimi-K2-Instruct, both MoBE and MoLAE use 128 basis/latent matrices, and MoBE
similarly reduces k from 8 to 6. Due to optimization challenges with 384 experts per layer,
we split them into two groups, each trained with 64 basis matrices.

* For D?-MOoE, the rank of delta weights is set to 700 for Ling-Lite-Chat and DeepSeek-V2-
Lite-Chat, and 420 for Qwen3-30B-A3B-2507.

* For simplicity, we set the rank = p in all our studies. It gets more compression ratio when
setting r < p while may increasing the accuracy drops.

Implementation Details. All experiments are conduct on H100 or H20 GPUs using the Adam
optimizer (Loshchilov & Hutter| [2017)) with a 0.07 learning rate. We set the batch size equal to the
number of experts n and train for a maximum of 50,000 epochs, employing early stopping with a
patience of 2,000 epochs based on the training loss.

4.2 EVALUATION BENCHMARK

We perform a comprehensive evaluation across a wide spectrum of benchmark. The evaluation
suite covers four primary domains: (1) General Knowledge: BBH (Srivastava et al. [2022),
MMLU (Hendrycks et al.l 2020), CEval (Huang et al., |2023), and CMMLU (Li et al., 2023a);
(2) General Reasoning: ARC-Challenge (Clark et al., 2018), IFEval (Zhou et al., 2023)), and
GPQA (Rein et al.,[2023); (3) Mathematics: Math (Hendrycks et al.,[2021), GSM8k (Cobbe et al.,
2021), AIME24, and AIME2S; and (4) Coding: MBPP (Austin et al., [2021)), HumanEval (Chen
et al., [2021), LCB (LiveCodeBench-v5) (Jain et al.| [2024), and MultiPL-E (Cassano et al., 2022]).
For AIME24 and AIME25, we run 16 inference trials per question and report average accuracy; for
IFEval, the final score is the mean of strict accuracies at both the prompt and instruction levels.

4.3 MAIN RESULTS

All the compared results of the origin model (MoE) and different compression methods (MoBE,
MoBE", D2-MoE, and MoLAE) are shown in Tables [3| It shows that our proposed MoBE method
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generally outperforms all the compared compression methods across various benchmarks. For in-
stance, for the Ling-Lite-Chat and DeepSeek-V2-Lite-Chat models, MoBE improves performance
by 2-3% accuracy over the baseline. The performance gains are even more notable for Qwen3-30B-
A3B-2507, Qwen3-235B-A22B-2507, DeepSeek-V3-0324 and Kimi-K2-Instruct, reaching 4-8%
accuracy advantages over compared compression methods.

We note that converting MoE models into MoBE architecture results in an average performance
degradation of 1.4% accuracy compared to the original MoE models. For comparison, MoBE' that
only reduces the number of activated experts from k to k', leads to a smaller degradation of 0.5%
accuracy. It suggests that it is more challenging to compress the total parameters than activation
parameters for an MoE model. As the sparsity ratio (#activated-parameters/#total-parameters) of
recent MoE models becomes larger and larger so that the total parameter counts reach trillion-level
(>1T), it is more useful and practical to compression the total parameters.

4.4  ABLATION STUDY ON ACTIVATION FUNCTIONS

In Eq(@), we apply a non-linear activation function to enhance representational capacity. We conduct
experiments on the Qwen3-30B-A3B model’s gate matrices to select the optimal activation function.
As shown in Figure [d] Sigmoid demonstrates inferior performance to the case without activation in
terms of the reconstruction MSE, while ReLU has an order-of-magnitude higher MSE loss. This
result is consistent with our analysis in Section GELU, SiLU, and Tanh achieve similar results
and outperform the case without activation, while we finally choose SiLU and Tanh as our activation
function as they offer a favorable trade-off between performance and computational efficiency.

4.5 ABLATION STUDY ON Z-SCORE NORMALIZATION

To evaluate the impact of the Z-score normalization introduced in Section we conduct an abla-
tion study using the Qwen3-30B-A3B’s gate matrices. All experiments use identical hyperparameter
and optimization settings, varying only the application of normalization. Figure [5]shows a notable
reduction in MSE loss when Z-score normalization is applied. We hypothesize that the normaliza-
tion can rescale the weight values from wide and wild ranges to a normal distribution with a mean
of 0 and a std of 1, so that the optimization becomes more stable and effective.

5 CONCLUSION

In this paper, we propose the Mixture-of-Basis-Experts (MoBE), a parameter-efficient architecture
that addresses memory challenges in deploying large-scale MoE-based LLMs. MoBE effectively
combines shared basis matrices with expert-specific transformation matrices via rank decomposition
to overcome limitations of prior work. Extensive experiments demonstrate that MoBE outperforms
existing counterpart methods like MoLAE and D?-MoE with a large margin in preserving higher
performance and a better model compression rate. MoBE can compress leading models such as
Qwen3-235B-A22B-2507, DeepSeek-V3-0324 and Kimi-K2-Instruct by up to 24%-30% while re-
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taining up to 98% of their original performance across diverse benchmarks. Such a practical and
effective method may help enable large MoE models for more scalable and efficient applications.

STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, Large Language Models were used exclusively for refining language,
grammar, and clarity. The core ideas and content remain entirely the author(s)’ own, who bear full
responsibility for all information presented herein.

LIMITATIONS

While our method performs well in compressing MoE models, it still causes a slight drop in accuracy
compared to the original model. To fix this gap, one potential direction is to employ full network
knowledge distillation (KD) between the original and our compressed models. This requires mod-
ifying existing training frameworks to support KD training for large LLMs. Another limitation is
that MoBE requires multiple times calling of current optimized kernel fused-MoE to mimic the fac-
torization, which is relatively inefficient. Hence, it requires implementing a specific mega-kernel for
the whole factorization to unleash the power of the MoBE architecture. Future work will address
these two limitations.
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A ABSOLUTE PERFORMANCE COMPARISON OF MOE COMPRESSION
METHODS
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Figure 6: Absolute performance comparison of different MoE compression methods.

We present the absolute performance comparison of MoE compression methods in Figure[6]

B ANALYSIS OF THE EFFECTIVE RANK OF EXPERT WEIGHT MATRICES

We evaluate the effective rank of expert weight matrices in Qwen3-235B-A22B-2507, DeepSeek-
V3-0324, and Kimi-K2-Instruct. The effective rank r. is defined as:

k

S e

AT
i=1"14

where o; is the i-th largest singular value (sorted in descending order) and r is the matrix rank.
The expert weight matrices in Qwen3-235B-A22B-2507 have dimensions 4096x1536, while those
in DeepSeek-V3-0324 and Kimi-K2-Instruct are 7168x2048. Figures [8HI0]illustrate the per-layer
average effective rank 7. and its range for each model. Taking the expert weight matrices of Kimi-
K2-Instruct as an example, rank decomposition could realize parameter compression only if the
intermediate rank satisfies

7168 - 2048

"= 7168 + 2048
However, according to Figure the average effective rank 7, is larger than 1593 in most lay-
ers. This discrepancy implies that the pure rank-decomposition-based method can’t produce model
compression without performance loss. An interesting finding can be drawn from the analysis:
Qwen3-235B-A22B-2507 shows much broader effective rank range than the other two, which may
indicate that its experts are far from being well-balanced during the training phase.

rezmin{k€N+

~ 1593.

C ADDITIONAL MSE COMPARISONS

We present a comparison of reconstruction errors on Ling-Lite-Chat, DeepSeek-V2-Lite, Qwen3-
235B-A22B-2507, DeepSeek-V3-0324 and Kimi-K2-Instruct in the Figure [TTHI3]

D AN EXPRESSIVE POWER ANALYSIS OF MOBE

In this section, we demonstrate that the MoBE possesses greater expressive capacity than a conven-
tional low-rank factorization derived from Singular Value Decomposition (SVD). Assume there are
n experts in one layer, each with an up/gate matrix of dimension p X d. To construct the SVD-based
baseline, we first partition these n experts into m groups, with each group containing - matrices
(assuming 7 is a multiple of m). For the j-th group, the up/gate matrices are stacked row-wise to

14
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form a consolidated matrix Wiaek € R %4, We perform Singular Value Decomposition (SVD) on
this stacked matrix:

U757, V7 = SVD(Wi,y) (10)

where U7 € R <%, 3% € R %4 and VI € R4¥4, The decomposition is truncated to retain the
top r singular values, obtaining the components U7 € R %", 37 € R™", and V7 € R"*9. We
then incorporate 7 into U7 and V7 by setting U7 = U7(%7)/2 and V7 = (%7)Y/2VJ. For the i-th
up/gate matrix, assuming it belongs to the j-th group, its low-rank approximation is given by:

W' = A'BJ (1)
where A’ corresponds to U/[(k — 1)p : kp,:] with k = i — (j — 1)(Z), indicating that the i-th
up/gate matrix is the k-th matrix in the j-th group, and B7 is Vi, Comparing this factorization with
Eq@), we observe that the SVD-based decomposition is a special case of MoBE. Specifically, it is
equivalent to MoBE where the « are restricted to one-hot vectors (assigning each expert to a single
group) and the activation function is an identity mapping. Therefore, MoBE exhibits significantly
greater expressive power than this SVD-based approach.

E ANALYSIS OF BASIS MATRIX COUNT AND RANK

The number of parameters for the basis matrices is mrd, where m is the number of basis matri-
ces, r is the rank of the basis matrices, and d is the hidden dimension of the model. We conduct
experiments on Qwen3-30B-A3B-2507 with different values of m and r; a comparison of the re-
construction errors is presented in Figure[7}

As shown in the Figure[J} for a fixed parameter budget, the reconstruction error for the configuration
m = 32,r = 768 is significantly lower than that for m = 64, = 384. This indicates that the rank
r of the basis matrices is a more influential factor than the number of basis matrices m. Therefore,
in our main experiments, we set r to be equal to the hidden dimension of the MoE to maximize
representational capacity.

Additionally, we conduct experiments on Qwen3-30B-A3B-2507 with r fixed at 768 while varying
m to investigate its impact on downstream task performance. The results are presented in Table [4]
These results show that when m = 16, the performance of the compressed model degrades sub-
stantially compared to when m = 32. Conversely, while performance at m = 64 is marginally
better than at m = 32, this improvement comes at the cost of a considerably lower compression
rate. Therefore, in our main experiments, we select configurations corresponding to a 25%-30%
compression rate to achieve a favorable balance between compression efficiency and model perfor-
mance.

Table 4: Performance comparison of different configuration settings on Qwen3-30B-A3B-2507.
The column Ratio refers to the proportion of compressed parameters to the total parameters in the
LLMs.

Mathematics Coding
Math  GSM8k  AIME24  AIME25 | MBPP  HumanEval ~Multipl-E  LCB
88.1 932 40.6 37.1 83.8 86.0 55.3 27.6

92.5 95.2 55.0 452 87.4 91.8 61.9 35.6
922 96.4 57.1 483 86.0 927 66.2 384

General Reasoning General Knowledge

ARC-C  IFEval GPQA | BBH MMLU CEval CMMLU
935 806 482 | 783 823 792 789
9.6 869 521 | 835 856  85.1 835
945 855 538 | 848 866  87.0 85.3

LLM ‘ m | Ratio

Avg

70.2
75.8
71.0

16
32
64

32%
24%
8%

Qwen3-30B-A3B-2507

F ADDITIONAL BASELINE COMPARISONS

We compared two additional baseline methods on Qwen3-30B-A3B-2507 and Qwen3-235B-A22B-
2507: MoNE and Sub-MoE. MoNE prunes less important experts based on their routing weights
and output variance, replacing them with their average outputs. Sub-MoE groups experts by output
cosine similarity and merges each group into one. This merge uses SVD on the expert matrices,
weighting their components by activation frequency to create a new, single expert. For both of these
methods, we use tulu-v3-sft-mixture as the calibration dataset. As shown in the Table E[, MoBE
consistently outperforms these baseline methods.
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Figure 7: Comparison of pre-layer MSE for compressing the gate @ and up (IE[) matrices of Qwen3-
30B-A3B-2507 using different configuration settings.

Table 5: Performance comparison of different compression methods on various MoE-based LLMs,
where “1” indicates that this model activates fewer experts than the original model to compensate
for the increase in activation parameters. The column Ratio refers to the proportion of compressed
parameters to the total parameters in the LLMs.

General Reasoning General Knowledge Mathematics Coding

LM Method ‘ Ratio | oRC.C' IFEval GPQA | BBH MMLU CEval CMMLU ‘ Math  GSM8k AIME24  AIME25 ‘ MBPP  HumanEval MultiplE  LCB ‘ Ave
MoE | 0% | 956 866 568 | 854 876 882 866 | 933 964 594 513 | 864 93.1 706 415 | 786
D2MoE | 24% | 931 835 452 | 699 833 712 686 | 861 930 383 291 79.5 84.0 440 269 | 664
MoLAE | 24% | 925 792 463 | 765 803 760 749 | 854 914 352 331 81.7 829 508 256 | 675
Qwen3-30B-A3B-2507 | MoNE | 24% | 925 851 520 | 807 801 712 682 | 926 948 532 445 | 856 91.8 578 380 | 725
Sub-MoE | 24% | 925 821 463 | 828 803 702 685 | 920 960 510 452 | 822 872 501 341|707
MoBE | 24% | 966 869 521 | 835 856 851 835 | 925 952 55.0 452 | 874 91.8 619 356 | 758
MoBE' | 24% | 959 850 510 [ 833 860 859 839 | 926 961 540 456 | 853 922 612 380 | 757
MoE | 0% | 970 900 607 | 895 909 909 900 | 944 967 61.9 517 | 930 963 705 484 | 815
MoLAE | 24% | 956 855 662 | 875 889 873 869 | 905 955 542 446 | 707 81.0 300 335 | 732
Qwen3-235B-A22B-2507 | MoNE | 24% | 940 883 587 | 866 872 823 781 | 930 959 629 504 | 878 93.3 603 443 | 715
Sub-MoE | 24% | 938 858 504 | 878 873 812 808 | 925 955 61.6 504 | 834 89.0 588 422 | 760
MoBE | 24% | 963 899 586 | 89.0 904  90.6 8.7 | 942 963 648 548 | 892 93.8 719 437 | 809
MoBE' | 24% | 956 887 581 [ 888 903 904 896 | 936 960 629 508 | 874 93.1 655 452|797
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Figure 8: Average effective rank and effective rank range of the @ gate, (EI) up, and down
matrices at each layer in Qwen3-235B-A22B-2507.
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Figure 9: Average effective rank and effective rank range of the @ gate, @) up, and down
matrices at each layer in DeepSeek-V3-0324.
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Figure 10: Average effective rank and effective rank range of the @) gate, (E[) up, and down
matrices at each layer in Kimi-K2-Instruct.
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Figure 11: Comparison of pre-layer MSE for compressing the gate @) and up (EI) matrices of Ling-
Lite-Chat using MoBE, D?2-MoE and MoLAE.
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Figure 12: Comparison of pre-layer MSE for compressing the gate @) and up (IE[) matrices of
DeepSeek-V2-Lite-Chat using MoBE, D2-MoE and MoLAE.
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Figure 13: Comparison of pre-layer MSE for compressing the gate @ and up (EI) matrices of Qwen3-
235B-A22B-2507 using MoBE and MoLAE.
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Figure 14: Comparison of pre-layer MSE for compressing the gate @) and up (IE[) matrices of
DeepSeek-V3-0324 using MoBE and MoLAE.
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Figure 15: Comparison of pre-layer MSE for compressing the gate @) and up (E[) matrices of Kimi-
K2-Instruct using MoBE and MoLAE.
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