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ABSTRACT

Denoising Diffusion Probabilistic Models (DDPMs) have shown great potential
in generating high-fidelity, diverse, natural dances consistent with given music.
However, due to the scarcity of skinned human motion data and the complexity of
mesh data, existing methods mainly focus on generating dance moves in the form
of skeletons, overlooking the domain gap between the skeletal structure and the
human body geometry. When skeletal motions are visualized with human body
mesh, anomalies such as torso interpenetration and imbalanced movements be-
come highly noticeable. This physical implausibility significantly diminishes the
aesthetic appeal of the generated dances and hinders their practicality in real-world
applications. To address this issue, we propose a physical reward to fine-tune the
diffusion model. Specifically, We first train a motion imitation policy in a physi-
cal simulator and use it to evaluate the physical plausibility (e.g., penetration, foot
sliding) of generated motions. Ideally, generated motions that are more physically
plausible will be easier to imitate, which means higher rewards. So we fine-tune
the diffusion model to generate more physically plausible motions through Rein-
forcement Learning Fine-Tuning (RLFT). Furthermore, we find that the physical
reward tends to push the model to generate freezing motions for less torso in-
tersections. To mitigate it, we proposed an anti-freezing reward to balance the
preference for freezing motions. Experiments on the human dance dataset show
that our method can significantly improve the physical plausibility of generated
motions, thereby generating dances that are aesthetically pleasing and realistic.

1 INTRODUCTION

Dance is a universal art form for humans to convey emotions, spread messages, and express their
thoughts (LaMothe, 2019; Zambrano, 2023). Therefore, many applications such as film production,
game development, and virtual reality experiences have the need for dance generation or dance
animation. However, creating new choreography from scratch or capturing human dance movements
through motion capture is not only costly but also time-consuming. Recently, deep-learning-based
generative models have shown great potential in the art generation area, shading light into the music-
conditioned dance generation. Despite the complexity of skeletal movements in human dances and
their intricate relationship with the music condition, recent methods (Li et al., 2021; Siyao et al.,
2022; Tseng et al., 2023; Sun et al., 2022) have made significant progress in generating high-quality,
natural, and diverse dances that align well with the given music.

However, due to the complexity of representing and training with body meshes, most existing meth-
ods overlook the skinned mesh when generating dance data. Instead, they typically represent actions
through bone rotations in skeleton form. However, the skeletal structure is only the intermediate re-
sult. When skeletal actions are visualized as body meshes, many physically implausible phenomena
might occur, such as body interpenetration and imbalanced movement. These issues significantly
degrade the aesthetic appeal and realism of the final visual results (Hoyet et al., 2012).

We argue that the problem lies in the domain gap between the learned skeletal structure and the
human body geometry. To tackle this problem, we aim to incorporate physical constraints imposed
by body meshes into the learning process of the generative model. Specifically, we first train an
imitation policy using imitation learning on expert datasets AMASS (Mahmood et al., 2019) and
AIST++ (Li et al., 2021), following prior works (Yuan et al., 2023; Yuan & Kitani, 2020), in a phys-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

ical simulator (IssacGYM (Makoviychuk et al., 2021)). The imitation policy learns to mimic an
input action in the physical simulator, forcing the output action to comply with the physical laws.
Then, we construct a reward, called imitation reward, as a physical-aware signal for fine-tuning the
diffusion model through reinforcement learning (RL) as proposed in Black et al. (2024). The imita-
tion reward is designed to evaluate the physical plausibility of the generated motion. Since actions
with physical implausibility (e.g. with less penetration) are impossible for the imitation policy to im-
itate because of the constraints imposed by the physical simulator. Furthermore, such implausibility
can hinder subsequent imitations or even result in the failure of the entire process. Consequently,
these issues lead to the imitation policy receiving lower rewards. In this sense, the imitation reward
can implicitly impose the skin-based physical constraints into the denoising diffusion process.

There is another way (Yuan et al., 2023) to inject physical constraint into the diffusion process, which
is using the imitation policy as a physical-guided motion projection module during the inference
process. Compared to this straightforward combination of the diffusion model and imitation policy,
our method further fine-tunes the diffusion model. The benefits are two-fold: i) Directly adopting
the imitated motion as the result may encounter issues such as jittering or even imitation failure.
However, the results generated by the diffusion model can ensure the naturalness of the movements.
ii) it is time-consuming to process the motion projection with the physical simulator, while our
method can save the projection time.

During the training of the reinforcement learning, we find that the imitation reward tends to favor
movements with small magnitude, which may encourage the diffusion model to generate freezing
motions. Therefore, we propose an anti-freezing reward for the diffusion model to balance this
preference for freezing motions. Specifically, we evaluate the magnitude of the generated motions
by computing the velocity and acceleration of the pose and translation parameters. By combining
the anti-freezing reward with the imitation reward, our method can mitigate the bias towards freezing
motions and encourage large movements.

To validate our method, we leverage the state-of-the-art (SOTA) dance diffusion model
EDGE (Tseng et al., 2023) for finetuning and evaluate the results on the AIST++ dataset (Li et al.,
2021). Experiments show that the occurrence of physical implausibility has significantly decreased,
such as body interpenetration and abnormal foot-ground contact. Several metrics are designed to
measure these physical improvements quantitatively.

• We propose an RL training methodology for fine-tuning the diffusion model, encouraging
the diffusion process to generate physically plausible dance motions. Through the careful
design of imitation reward and anti-freezing reward, our method can correct physically
implausible movements generated by a well-trained model, while preserving the original
semantics of the dance movements to the greatest extent.

• We train an imitation policy through a physical simulator on expert datasets. After train-
ing, the imitation policy can serve as a physical-aware reward that can impose physical
constraints, especially the one brought by skinned mesh, into the RL training.

• Our experimental results demonstrate a significant improvement in the physical plausibility
of the generated dances, including penetration and foot-ground contact. The visual quality
of the generated results has also been greatly enhanced in terms of realism and aesthetics.

2 RELATED WORK

2.1 HUMAN MOTION GENERATION AND MUSIC-TO-DANCE GENERATION

Generating realistic human motion has been extensively studied. Previous approaches (Lee et al.,
2002; Kovar et al., 2002; Arikan & Forsyth, 2002) primarily rely on graph-based methods. They de-
compose motions into clips and then recombine them according to predefined principles. However,
these methods struggle to generate diverse human motions, especially the dance that exhibits varia-
tions in speed, length, and tempos. This limitation arises from the reliance on fixed motion units and
rigid composition rules. In recent years, with the emergence of deep learning and large-scale human
motion datasets (Mahmood et al., 2019; Li et al., 2021), numerous works have explored the use of
various neural networks to generate diverse human motion (Tevet et al., 2023; Jiang et al., 2023;
Liang et al., 2024; Dai et al., 2024). For instance, in the domain of music-to-dance generation, re-
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cent methods utilize various network structures, including CNNs (Holden et al., 2016), RNNs (Tang
et al., 2018; Yalta et al., 2019; Alemi et al., 2017; Huang et al., 2023), GCNs (Yan et al., 2019; Ren
et al., 2020; Ferreira et al., 2021), GANs (Lee et al., 2019; Sun et al., 2020), Transformers (Li et al.,
2023; 2020; 2021; Siyao et al., 2022) and Diffusion Models (Tseng et al., 2023; Alexanderson et al.,
2023; Li et al., 2024), to better capture the intricate relationship between dance joint movements and
accompanying music. However, most existing methods focus on improving the synchronization be-
tween music and human joint movements without considering constraints from the laws of physics
(e.g. skin collision and gravity). Therefore, these methods tend to generate physically implausible
motions. On the contrary, our method employs a physical simulator to model the laws of physics
and instills physical knowledge into the diffusion model.

2.2 PHYSICS-BASED HUMAN MOTION MODELING

Physics-based human motion imitation is first utilized to generate realistic and controllable loco-
motion for characters in the physical simulator (Liu & Hodgins, 2017; Yuan & Kitani, 2020; Liu
& Hodgins, 2018; Peng et al., 2018; Wang et al., 2017; Merel et al., 2017; Won et al., 2020; Park
et al., 2019; Bergamin et al., 2019). Recent advancements have also adopted physics-based human
motion imitation for more downstream tasks such as 3D human pose estimation (Zell et al., 2017;
Rempe et al., 2020; Shimada et al., 2020; 2021; Yuan & Kitani, 2018; 2019; Isogawa et al., 2020;
Yi et al., 2022; Yuan et al., 2021; Luo et al., 2022b;a) and 3D human motion generation (Yuan et al.,
2023; Yao et al., 2023; Gillman et al., 2024). These studies leverage physics-based human motion
imitation during inference to convert the generated motion to the physically plausible motion. How-
ever, many of them heavily depend on the ability of the imitation policy. There are chances that
the imitation policy may fail to accurately imitate certain motions. Moreover, the imitation process
in the post-processing will be time-consuming. Unlike previous work, we propose to incorporate
physical laws into the motion generation model through RL fine-tuning. As a result, the generative
network can be trained to directly synthesize the physics-aware motion without post-processing,
thereby bypassing the inherent defects associated with the imitation policy.

2.3 REINFORCEMENT LEARNING FINE-TUNING OF DIFFUSION MODELS

With the success of fine-tuning large language models (LLMs) with reinforcement learning (Bai
et al., 2022b;a; Lee et al., 2023a; Ouyang et al., 2022), recent research has proposed RLFT algo-
rithms for text-to-image diffusion models. RWR (Lee et al., 2023b) firstly introduces the human
feedback reward to fine-tune diffusion models. However, RWR ignores the sequential nature of the
denoising process. Therefore, DDPO (Black et al., 2024) and DPOK (Fan et al., 2023) treat the
denoising process of the diffusion model as a multi-step Markov Decision Process (MDP). Con-
currently, Diffusion-DPO (Wallace et al., 2023) modifies the Direct Preference Optimization (DPO)
algorithm (Rafailov et al., 2023) to directly optimize diffusion models based on preference data.

In contrast to previous methods that primarily relied on data-driven learning or heuristic constraints,
our approach uniquely incorporates physics-based human motion imitation. By leveraging RLFT,
we ensure that the physical limitations of human motion are instilled into the diffusion models,
offering a more robust integration of physical constraints than previous approaches.

3 METHOD

As overviewed in Fig. 1, our method adopts the RL strategy which can instill the learned physical
constraint into the dance diffusion model. Firstly, an imitation policy that can effectively mimic the
dancing sequence in the simulator is trained on an expert dataset AIST++ (Li et al., 2021) (illus-
trated in Sec. 3.1). This well-trained imitation policy can then act as a reward evaluator, assessing
the physical plausibility of the generated motion. Secondly, for training the dance diffusion model,
we treat the denoising process as a Markov Decision Process (MDP). This allows us to employ mul-
tiple rewards to fulfill a reinforcement learning fine-tuning strategy, including the imitation reward
provided by the imitation policy. (illustrated in Sec. 3.2).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Diffusion Model
(EDGE)

t

...
...

T

t

0

Markov Decision Process

Generated Motion

Diffusion
Timestep

Music 
Condition

Physical 
Simulator

Imitation Reward

Imitation
Policy

Recursively

Simulated
Motion

Reward

Anti-freezing Reward

Temporal Difference

Reward
Policy Gradient

Backward Propagation
Forward Pass
Motion Difference
Stop Gradient

Figure 1: The overview of our method. Our method formulates the denoising process as a multi-
step Markov Decision Process, allowing the diffusion model to be fine-tuned through Reinforcement
Learning. To incorporate physical constraints into the diffusion model, we introduce an imitation
reward based on physics-driven human motion imitation, which can evaluate the physical plausibility
of the motion. Additionally, we design an anti-freezing reward to mitigate the imitation reward’s
preference for freezing motions.

3.1 IMITATION POLICY FOR IMITATION REWARD

To enable the diffusion model to learn the physical constraints of the real world, we need a metric to
evaluate whether the generated motion obeys the physical laws. Inspired by Yuan et al. (2023), we
found that an imitation policy can effectively serve this purpose. Human motion imitation policy is
commonly used in robotics to control agents in the physical simulator to replicate complex move-
ments. Since the motions replicated in the simulator inherently satisfy the various physical laws
we set for the simulator (such as gravity, object collision, friction, etc.), we argue that the more the
original motion conforms to physical laws, the more accurately it should be replicated in the physics
simulator. Therefore, to utilize this characteristic during the training of the human motion diffusion
model, we train an imitation policy to control the character with SMPL skinned mesh (Loper et al.,
2023), which inherently obeys physical constraints such as gravity and human-body collisions.

We formulate human motion imitation as an MDP (Yuan & Kitani, 2020; Peng et al., 2018). The
overall process can be defined using states (s), actions (a), transition dynamics (T ), reward functions
(r), and a discount factor (γ) as follows,

st =
(
St, x

res
t+1, ψ

)
, at = xAt+1, st+1 = T (st+1|st, at,Φ) ,

πθ (at|st) = N (µθ(st),Σ), r (st, at) =
∑
s∈S

ws exp
(
−αs ∥xst − xst∥

2
)

+wr exp
(
−αr∥Fr∥2

)
,

(1)

where St represents the state of the controlled character, including joint angles, joint velocities,
rigid bodies’ positions, rotations, and linear and angular velocities. xrest+1 is the residual between
the current state of the character and the next frame of the reference motion. ψ corresponds to the
SMPL (Loper et al., 2023) parameters of the character. In each step, the imitation policy πθ takes
action based on the given state to control the character to mimic the next pose of the given reference
motion in the physical simulator. Subsequently, the character’s state transits based on the transition
dynamics and we can extract the imitated motion from it. Finally, we calculate the reward reflecting
how well the reference motion is imitated, which can be used for reinforcement learning. Here,
we mainly illustrate the components of Actions, Transition, and Rewards, for more details on other
components, please refer to Yuan et al. (2023) for a comprehensive discussion.

Actions The policy outputs an action xAt+1, which represents the joint angles of the target pose
for the character. A PD controller is then applied to drive the character towards this target pose.
Additionally, to improve the imitation ability, we incorporate a residual force (Yuan & Kitani, 2020)
applied to the character’s pelvis. This extra force helps to stabilize the character during movement.
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Transition T is the transition dynamics of the simulator and Φ denotes the physical constraints
modeled by the physical simulator, including gravity, body collision, skeletal structure, etc. Notably,
unlike previous methods (Yuan et al., 2023; Yao et al., 2023; Gillman et al., 2024), we further
integrate body collision handling into both the training and inference stages, allowing the imitation
policy to better replicate the reference motion under collision constraints. Specifically, we treat each
part of the SMPL model’s mesh (Loper et al., 2023) as the collision volume and disable collision
checks between adjacent joints to prevent neighboring joints from being stuck and unable to move.

Rewards The reward consists of two components. The first part is designed to encourage the
imitated motion to match the ground truth. S includes components representing human motion: local
joint rotations, joint velocities, 3D world joint positions, and global joint rotations. Additionally, ws

and αs are the weighting factors of each component of the rewards. Finally, xst is the t-th frame
of the imitated motions represented in s, which is extracted from st, and xst is the t-th frame of the
ground truth in the training set.
The second part of the reward is a regularization term that limits the magnitude of the residual force,
as excessively large residual forces can harm the physical realism of the character. αr and wr are
weighting factors, and Fr is the residual force.

Training Strategy As the MDP has been defined, we can optimize the imitation policy using an
RL algorithm (Schulman et al., 2017). To enhance the imitation policy’s ability to mimic dance, we
first train the imitation policy on the AMASS dataset (Mahmood et al., 2019) which contains a wide
variety of general human motions, and then fine-tune the imitation policy on the AIST++ dataset (Li
et al., 2021) which is a commonly used dance dataset.

3.2 PHYSICS-BASED DANCE DIFFUSION MODEL

With the well-trained physics-based imitation policy, we conduct an RLFT strategy to distill the
physical constraints (body geometry, gravity, friction, etc.) of the simulator into the diffusion model.

RLFT Formulation To conduct RL fine-tuning on diffusion models, recent works (Black et al.,
2024; Fan et al., 2023) proposed to formulate the diffusion denoising process as a multi-step MDP:

st = (c, T − t, xT−t) , at = xT−(t+1), r (st, at) =

{
r (x0, c) if t = 0,

0 otherwise.
,

π (at|st) = pθ
(
xT−(t+1)|c, T − t, xT−t

)
, r (x0, c) = rimit(x0) + ranti(x0),

(2)

where t denotes the t-th decision step, while T is the total number of steps. c is the condition
signal (i.e. music sequence in our task). xT−t is the denoised motion at denoising step T − t.
pθ is the diffusion model being fine-tuned. The reward consists of two components: rimit, which
evaluates the physical plausibility of the generated motion, and ranti, which is designed to eliminate
freezing issues, as we will illustrate later. Then we can use any policy-based RL algorithm, such as
REINFORCE (Williams, 1992), to optimize the diffusion model based on the task-oriented rewards.
To ensure training stability, we further adopt a pure on-policy training strategy. Different from the
off-policy training or training with multi-step updates, which may leverage the data collected by
older policies for better sample efficiency, we only use the data collected by the newest policy to
update itself. Meanwhile, to enhance the numerical stability and convergence, we also normalize
the reward to have zero mean and unit variance as in Black et al. (2024). The reward’s mean and
standard deviation statistics are tracked for each music independently:

Ai(x0, c) =
ri(x0, c)− µ(c)

σ(c)
i ∈ {imit, anti}. (3)

After collecting enough trajectories, we can update the diffusion model using the policy gradient
function as follows:

▽θJ = E

[
T∑

t=0

▽θ log pθ
(
xT−(t+1)|c, xT−t

)
∗ (αAimit (x0, c) + βAanti (x0, c))

]
, (4)

where pθ denotes the diffusion model being updated, and Aimit(x0, c) and Aanti(x0, c) are the nor-
malized imitation and anti-freezing rewards for guiding the optimization, respectively. Additionally,
α and β are their respective weights.
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Imitation Reward As aforementioned, we leverage the learned imitation policy as an evaluator
to determine whether the generated motion is physically plausible. Specifically, the imitation policy
manages to mimic the generated motion in a physical simulator, yielding an imitated motion per
generated motion. Ideally, if the generated motion obeys the real-world physical constraints, the
imitated motion should be the exact same sequence as the generated motion. However, if the gener-
ated motion somehow violates the physical laws, such as an arm penetrating through the body, the
imitation policy will attempt to produce a result that closely approximates the input motion while
eliminating the interpenetration. In this case, there will be a difference between the generated mo-
tion and imitated motion. Therefore, the greater the difference between the two motions, the more
physically implausible the generated motion is, as it becomes harder to imitate in the physics simu-
lator. Consequently, we measure this difference and assign a larger reward to motions with smaller
differences. The reward can then be formulated as follows:

rimit (x0, c) =
∑
s∈S

ws exp (−αs ∥xs0 − x̂s0∥2) , (5)

where S is a set in which each component is a specified representation of human motion, including
local joint rotations, joint velocities, 3D world joint positions, and global joint rotations. xs0 is the
generated motions represented in s, and x̂s0 is the imitated motions. Additionally, ws and αs are
the weighting factors of each component of the rewards, and these values are kept the same as the
training process of the imitation policy to ensure consistency in evaluating the difference between
the reference and imitated motion.

Anti-freezing Reward The imitation reward is designed to rate higher rewards for physically
plausible motions, however, we find that freezing/slow-speed motions can also receive high rewards,
as they are relatively easy to imitate. This phenomenon results in a tendency for the diffusion model
to generate more freezing motions. To mitigate this bias, we propose an anti-freezing reward to
encourage generating more dynamic motions. Specifically, we compute the velocity and acceleration
of the motion from the pose sequence, and apply the mean square value as the anti-freezing reward:

ranti(x0, c) = v(x0)2 + a(x0)2. (6)

4 EXPERIMENTS

Dataset We train the imitation policy and dance diffusion model with the AIST++ (Li et al., 2021)
dataset, which is the most commonly used dataset in dance motion generation. It consists of 1,408
high-quality dance motions paired with music from a diverse set of genres. We follow the setup used
in EDGE Tseng et al. (2023), the train/test splits are kept the same as the original dataset, and all the
training examples are cut to 5 seconds, 30FPS.

Implement Details For the imitation policy, we adopt Isaac Gym (Makoviychuk et al., 2021) as
our physical simulator, in which we can detect the collision between the character’s torsos. The
weighting factors for calculating the reward (ws and αs) are set to (0.6, 0.1, 0.2, 0.1) and (60, 0.2,
100, 40) respectively. And wr and αr are 0.1 and 30. For the diffusion model, we test our RLFT
method on EDGE denoiser, and we employ denoising diffusion implicit models (DDIM) as proposed
in Song et al. (2020) with 50 diffusion steps and classifier-free guidance (Ho & Salimans, 2022). In
each fine-tuning iteration, we sample 2,048 motions from the training dataset of AIST++ (Li et al.,
2021). We accumulate gradients across 50 denoising steps of all samples and perform one gradient
update. Our optimizer adopts Adam (Kingma & Ba, 2017) optimizer, with learning rate set to 1e-6.

Evaluation Metrics For evaluating our physically plausible dance generation results, there are
two essential aspects: aesthetic quality and physical plausibility. For aesthetic quality, we conduct
a user study (“Overall” in Tab. 1), and adopt several metrics from former works like beat alignment
score (BAS) (Siyao et al., 2022) and Divk /Divg (Li et al., 2021). In terms of physical plausibility,
the evaluation metrics include a user study (”Physical” in Tab. 1), Penetration Rate, physical foot
contact score (PFC), and magnitude of motion.

In our user study, to highlight the performance of dance results on skinned mesh, we rendered all
dance animations using the SMPL model (Loper et al., 2023). The metrics “Overall” and “Physical”

6
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Table 1: Quantitative results on AIST++ (Li et al., 2021) dataset. The “Overall” and “Physical”
columns represent the win rate of our method over the others, i.e. a higher value indicates better
performance of our method. Note that FACT’s low penetration rate mainly comes from its tendency
to generate freezing motions, which is further proved by the magnitude of motion in Tab. 3.

Method Overall Physical Penetration Rate ↓ PFC ↓ BAS ↑ Divk /Divg →
Ours / / 90.14 0.9273 0.2897 2.93/2.14

EDGE 70% 75% 173.03 0.9523 0.2865 2.82/2.09

FACT 73.7% 55.3% 97.98∗ 1.2125 0.2380 5.74/5.71
Bailando 86.5% 78.4% 176.36 1.5466 0.2320 7.83/6.33

Ground Truth 48.9% 40% 135.27 1.4699 0.2292 8.27/7.51

are the statistics of two questions: (1) ”Which dance looked and felt better overall?” and (2) ”Which
dance is more physically plausible?”. We conducted the survey through Prolific, a crowdsourcing
platform, recruiting 40 participants for each pairwise comparison between methods. “BAS” aims
to assess how well the generated dances synchronize with the music’s beat. “Divk /Divg” are the
diversity of the generated dances within “kinetic” and “geometric” feature spaces. Meanwhile, we
propose “Penetration Rate” to quantify the extent of body penetration. Specifically, it is defined
as the average number of intersected faces in the body mesh per frame. Additionally, “PFC” is
defined as the products of body root acceleration and the velocity of both feet (Tseng et al., 2023),
which is used to evaluate the plausibility of foot-ground contact. Finally, the magnitude of motion is
calculated as the average temporal difference of the pose across the entire sequence, which reflects
the freezing extent of the generated motions. We argue that the magnitude of the motions should not
be too low to prevent freezing motions.

4.1 EVALUATION ON THE SKINNED DANCE GENERATION

In this section, we compare our proposed method to several SOTA dance generation methods, in-
cluding FACT (Li et al., 2021), Bailando (Siyao et al., 2022), and EDGE (Tseng et al., 2023). All
the evaluation metrics are computed on 20-second dance clips for fairness.

Human Perception Results The “Overall” and “Physical” metrics in Tab. 1 represent the overall
aesthetic quality and physical plausibility measured by human perception. Our method significantly
surpasses other approaches, indicating a noticeable improvement in physical plausibility. On the
other hand, our method also demonstrates improved results in overall aesthetic quality compared to
EDGE (Tseng et al., 2023). Given that our dance sequence shares similar motion patterns with the
pretrained model (i.e. EDGE), as shown in Fig. 2, this result shows that the physical plausibility
can greatly affect the overall aesthetics in human perception. It is noteworthy that FACT (Li et al.,
2021) also performs well in “Physical” rating, its ”Overall” rating is inferior to ours. This is because
they tend to generate motions with limited magnitude and slow speeds, which lacks aesthetic appeal.
This point can be further proved by the magnitude of the motion. The magnitude of the motion from
FACT is 0.4540, which is relatively small compared to our method (0.6877 in Tab. 3).

Penetration rate Penetration rate reflects the physical plausibility in terms of body part penetra-
tion. The results in Tab. 1 show that our proposed method achieves a significant improvement in
this metric. Compared to the baseline model EDGE, we reduce the penetration rate by 48%. Also,
FACT obtains a low penetration rate due to its tendency to generate small-magnitude motions, which
is undesirable in aesthetics. We also provide quality comparisons between EDGE and our method
in Fig. 2, where we can clearly see that after the RLFT training, our method has learned to replace
previously implausible motions with similar yet non-interpenetrating ones. For instance, in the first
and third rows of Fig. 2, our model carefully avoids interpenetration by increasing the amplitude of
arm movements; in the second row, our model learned to avoid stepping on the supporting foot, thus
preventing the body from tripping.

Physical Foot Contact Score Physical Foot Contact (PFC) score is used to evaluate the plausibil-
ity of foot-ground contact. As shown in Tab. 1, our method outperforms the other approaches in this
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EDGE EDGE+RLFT

1 109872 1 109872

1 65432 1 65432

5 1098765 109876

Figure 2: The visual comparisons of EDGE (Tseng et al., 2023) and our generated motions. Both
motion sequences are generated with the same music and seed. Some body parts are enlarged for a
better view. The red box signifies the presence of body penetration, while the green box indicates
the improvement after the RLFT. The subscript number denotes the frame number.

metric, demonstrating that our approach effectively enhances the physical realism of foot-ground
contact. We infer that the character in the physical simulator should obey Newton’s law of motion,
which is the basis of the definition of PFC.

Other Non-physical Metrics We also provide the results of other non-physical metrics in Tab. 1,
to demonstrate our method will not deteriorate in other aesthetic performance, such as beat alignment
(BAS) and diversity (Distk,Distg). Since our method is not targeted at solving the beat alignment
and diversity issue, it maintains a comparable result with EDGE. However, it can be observed that
diffusion-based methods, including EDGE and our proposed method, acquire a low score in diversity
metrics. We infer that this is because of the way the diffusion model generates long sequences. It
generates longer sequences by stitching short clips together. Then the diversity is calculated on the
average of short clips. Therefore, while the diversity across individual short clips may be high, their
composition can exhibit lower diversity.

4.2 ABLATION STUDY

Table 2: The ablation study on RL fine-tuning.

Method Penetration Rate ↓ PFC ↓

EDGE 173.03 0.9523

EDGE w/ Proj 116.16 1.8801

Ours 90.14 0.9273

Table 3: The ablation study on the AF reward.

Method Magnitude→
EDGE 0.7188
FACT 0.4540

Ours w/o AF 0.5618
Ours 0.6877

Ground Truth 0.6735

We perform ablation studies on RL fine-tuning and the anti-freezing reward to validate the effective-
ness of each component in our method.
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EDGE w/ projection w/o anti-freezing

Ours Ours
(a) (b)

Figure 3: The visual comparison for ablation studies. Each compared dance pair is generated from
the same audio track. (a) compares the results of directly projecting motion through a physical
simulator with those of our proposed method. As shown, direct motion projection can result in
falling motions due to the inability to accurately imitate the physical implausible movements. (b)
presents an example result of the model trained without an anti-freezing reward. The model tends to
generate small-amplitude movements without the anti-freezing reward.

Ablation Study on RL Fine-tuning As another approach to leverage imitation policy, we can
also apply the imitation policy as a post-processing step to the generated motions, similar to Yuan
et al. (2023). Specifically, the imitation policy is used to mimic the motions generated by EDGE and
output refined motions within the physical simulator. We refer to this method as “EDGE w/ projec-
tion”. However, we identify some significant limitations with this method. First, the diffusion model
may generate some motions that are physically impossible for the imitation policy to mimic directly,
e.g. one leg passes through the support leg, which can lead to chaotic outcomes such as slipping
or falling (As shown in Fig. 3(a)). The quantitative results in Tab. 2 also validate that although the
penetration rate of “EDGE w/ Proj” has decreased, the PFC metric has significantly deteriorated.
This may be due to abnormal foot motion, where the feet lose contact with the ground. In contrast,
our method still works by assigning a very low reward for such “failling” scenarios. Moreover, be-
sides a direct imitation that generates similar motion patterns, our method even gradually learns to
avoid such hard cases by replacing them with an easier and physically plausible motion, which is
also an advantage brought by RLFT. More video examples are provided in supplementary materials.
Second, post-processing is time-consuming during inference Yuan et al. (2023), for the projection
needs to be done in the physical simulator, and takes around 10 seconds on an NVIDIA A100 GPU.

Ablation Study on Anti-freezing Reward To validate the effectiveness of the anti-freezing re-
ward, we perform an ablation study evaluating the magnitude of motion in Tab. 3. As shown, com-
pared to EDGE and our method, the magnitude of motion reduces significantly without anti-freezing
reward (i.e. Ours w/o AF). Fig. 3(b) also shows the same conclusion that it tends to generate freezing
motions without an anti-freezing reward, which is generally undesirable in practice.

5 CONCLUSION

In this paper, we propose a method that fixes the physical implausibility issue of the current dancing
generation works through Reinforcement Learning Fine-Tuning (RLFT). Specifically, we utilize the
physics-based human motion imitation policy as a reward to evaluate the physical plausibility of
the generated motions. Through the physics-based reward, we can instill the physical law (e.g.
body collision, gravity, and foot-ground contact), which was modeled by the imitation policy in the
physical simulator, into the diffusion model through RLFT. Furthermore, to prevent the generation
of freezing motions, we propose an anti-freezing reward to enhance the dynamic of the motions.
We conduct extensive experiments to evaluate our method across multiple metrics, showing that it
significantly improves physical plausibility, especially in terms of body penetration and foot-ground
contact. We believe our approach has the potential to advance the real-world applications of motion
generation. In the future, we aim to further refine both the physical plausibility and smoothness of
the generated motions for direct use in downstream applications.
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monocular 3d human motion capture with physical awareness, 2021. URL https://arxiv.
org/abs/2105.01057.

Li Siyao, Weijiang Yu, Tianpei Gu, Chunze Lin, Quan Wang, Chen Qian, Chen Change Loy, and
Ziwei Liu. Bailando: 3d dance generation by actor-critic gpt with choreographic memory, 2022.

12

https://api.semanticscholar.org/CorpusID:5328073
https://arxiv.org/abs/2106.05969
https://arxiv.org/abs/2206.09106
https://doi.org/10.1145/3355089.3356501
https://doi.org/10.1145/3355089.3356501
https://arxiv.org/abs/2007.11678
https://arxiv.org/abs/2007.11678
https://doi.org/10.1145/3394171.3413932
https://doi.org/10.1145/3394171.3413932
https://arxiv.org/abs/2008.08880
https://arxiv.org/abs/2008.08880
https://arxiv.org/abs/2105.01057
https://arxiv.org/abs/2105.01057


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Guofei Sun, Yongkang Wong, Zhiyong Cheng, Mohan S Kankanhalli, Weidong Geng, and Xiang-
dong Li. Deepdance: music-to-dance motion choreography with adversarial learning. IEEE
Transactions on Multimedia, 23:497–509, 2020.

Jiangxin Sun, Chunyu Wang, Huang Hu, Hanjiang Lai, Zhi Jin, and Jian-Fang Hu. You never
stop dancing: Non-freezing dance generation via bank-constrained manifold projection. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 9995–10007. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/40bfe6177e8aed33c982264cf9e6e62c-Paper-Conference.pdf.

Taoran Tang, Jia Jia, and Hanyang Mao. Dance with melody: An lstm-autoencoder approach to
music-oriented dance synthesis. In Proceedings of the 26th ACM International Conference on
Multimedia, MM ’18, pp. 1598–1606, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450356657. doi: 10.1145/3240508.3240526. URL https://doi.
org/10.1145/3240508.3240526.

Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel Cohen-or, and Amit Haim Bermano.
Human motion diffusion model. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=SJ1kSyO2jwu.

Jonathan Tseng, Rodrigo Castellon, and Karen Liu. Edge: Editable dance generation from music.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
448–458, 2023.

Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
direct preference optimization, 2023.

Ziyu Wang, Josh Merel, Scott Reed, Greg Wayne, Nando de Freitas, and Nicolas Heess. Robust
imitation of diverse behaviors, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Jungdam Won, Deepak Gopinath, and Jessica Hodgins. A scalable approach to control diverse
behaviors for physically simulated characters. ACM Trans. Graph., 39(4), aug 2020. ISSN 0730-
0301. doi: 10.1145/3386569.3392381. URL https://doi.org/10.1145/3386569.
3392381.

Nelson Yalta, Shinji Watanabe, Kazuhiro Nakadai, and Tetsuya Ogata. Weakly supervised deep
recurrent neural networks for basic dance step generation, 2019.

Sijie Yan, Zhizhong Li, Yuanjun Xiong, Huahan Yan, and Dahua Lin. Convolutional sequence
generation for skeleton-based action synthesis. In 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 4393–4401, 2019. doi: 10.1109/ICCV.2019.00449.

Heyuan Yao, Zhenhua Song, Yuyang Zhou, Tenglong Ao, Baoquan Chen, and Libin Liu. Moconvq:
Unified physics-based motion control via scalable discrete representations, 2023. URL https:
//arxiv.org/abs/2310.10198.

Xinyu Yi, Yuxiao Zhou, Marc Habermann, Soshi Shimada, Vladislav Golyanik, Christian Theobalt,
and Feng Xu. Physical inertial poser (pip): Physics-aware real-time human motion tracking from
sparse inertial sensors, 2022. URL https://arxiv.org/abs/2203.08528.

Ye Yuan and Kris Kitani. 3d ego-pose estimation via imitation learning. In Proceedings of the
European Conference on Computer Vision (ECCV), pp. 735–750, 2018.

Ye Yuan and Kris Kitani. Ego-pose estimation and forecasting as real-time pd control, 2019. URL
https://arxiv.org/abs/1906.03173.

13

https://proceedings.neurips.cc/paper_files/paper/2022/file/40bfe6177e8aed33c982264cf9e6e62c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/40bfe6177e8aed33c982264cf9e6e62c-Paper-Conference.pdf
https://doi.org/10.1145/3240508.3240526
https://doi.org/10.1145/3240508.3240526
https://openreview.net/forum?id=SJ1kSyO2jwu
https://doi.org/10.1145/3386569.3392381
https://doi.org/10.1145/3386569.3392381
https://arxiv.org/abs/2310.10198
https://arxiv.org/abs/2310.10198
https://arxiv.org/abs/2203.08528
https://arxiv.org/abs/1906.03173


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ye Yuan and Kris Kitani. Residual force control for agile human behavior imitation and extended
motion synthesis. Advances in Neural Information Processing Systems, 33:21763–21774, 2020.

Ye Yuan, Shih-En Wei, Tomas Simon, Kris Kitani, and Jason Saragih. Simpoe: Simulated charac-
ter control for 3d human pose estimation, 2021. URL https://arxiv.org/abs/2104.
00683.

Ye Yuan, Jiaming Song, Umar Iqbal, Arash Vahdat, and Jan Kautz. Physdiff: Physics-guided human
motion diffusion model. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 16010–16021, 2023.

Gabriel Zambrano. Why people dance? https://corazon.dance/en/post/
why-people-dance-1685370517, 2023.

Petrissa Zell, Bastian Wandt, and Bodo Rosenhahn. Joint 3d human motion capture and physical
analysis from monocular videos. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pp. 17–26, 2017. doi: 10.1109/CVPRW.2017.9.

14

https://arxiv.org/abs/2104.00683
https://arxiv.org/abs/2104.00683
https://corazon.dance/en/post/why-people-dance-1685370517
https://corazon.dance/en/post/why-people-dance-1685370517

	Introduction
	Related Work
	Human Motion Generation and Music-to-Dance Generation
	Physics-Based Human motion modeling
	Reinforcement Learning Fine-Tuning of Diffusion Models

	Method
	Imitation policy for Imitation Reward
	Physics-based Dance Diffusion Model

	Experiments
	Evaluation on the skinned dance generation
	Ablation Study

	Conclusion

