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Abstract

We study the fundamental optimization principles of self-attention, the defining mechanism
of transformers, by analyzing the implicit bias of gradient-based optimizers in training a
self-attention layer with a linear decoder in binary classification. Building on prior studies in
linear logistic regression, recent findings demonstrate that the key-query matrix Wt from
gradient-descent (GD) converges in direction towards Wmm, which maximizes the margin
between optimal and non-optimal tokens across sequences. However, this convergence is
local, dependent on initial conditions, only holds asymptotically as the number of iterations
increases, and leaves questions about the potential benefits of adaptive step-size rules
unaddressed. To bridge this gap, we first establish scenarios for which convergence is
provably global. We then analyze two adaptive step-size strategies: normalized GD and
Polyak step-size, demonstrating finite-time convergence rates for Wt to Wmm, and quantifying
the sparsification rate of the attention map. These findings not only show that these strategies
can accelerate parameter convergence over standard GD in a non-convex setting but also
deepen the understanding of the implicit bias in self-attention, linking it more closely to the
phenomena observed in linear logistic regression despite its intricate non-convex nature.

1 Introduction

Self-attention serves as the fundamental building block of transformers, distinguishing them from traditional
neural networks (Vaswani et al., 2017) and driving their outstanding performance across various applications,
including natural language processing and generation (Devlin et al., 2019; Brown et al., 2020; Raffel et al.,
2020), as well as computer vision (Dosovitskiy et al., 2021; Radford et al., 2021; Touvron et al., 2021). With
transformers establishing themselves as the de-facto deep-learning architecture, driving advancements in
applications seamlessly integrated into society’s daily life at an unprecedented pace (OpenAI, 2022), there
has been a surge of recent interest in the mathematical study of the fundamental optimization and statistical
principles of the self-attention mechanism; see Section 6 on related work for an overview.

In pursuit of this objective, Tarzanagh et al. (2023b;a) have initiated an investigation into the implicit bias of
gradient descent (GD) in training a self-attention layer with fixed linear decoder in a binary classification
task. Concretely, the study paradigm of implicit bias seeks to characterize structural properties of the weights
learned by GD when the training objective has multiple solutions. The prototypical instance of this paradigm
is GD training of linear logistic regression on separable data: among infinitely many possible solutions to
logistic-loss minimization (each linear separator defines one such solution), GD learns weights that converge
in direction to the (unique) max-margin class separator (Soudry et al., 2018; Ji & Telgarsky, 2018). Notably,
convergence is global, holding irrespective of the initial weights’ direction, and comes with explicit rates that
characterize its speed with respect to the number of iterations. Drawing an analogy to this prototypical
instance, when training self-attention with linear decoder in a binary classification task, Tarzanagh et al.
(2023a) defines a hard-margin SVM problem (W-SVM) that separates, with maximal margin, optimal input
tokens from non-optimal ones based on their respective softmax logits. For this, they show that the key-query
weights Wt found by GD converge locally to the solution Wmm of (W-SVM) as the number of iterations t
grows to infinity.

Despite the intriguing analogy between the two settings, the findings of Tarzanagh et al. (2023a) are highly
non-trivial not only because the nature of the max-margin solution differs, but also because of the intricate
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Figure 1: Comparison of train and test dynamics of various optimizers—SGD, stochastic normalized GD
(SNGD), stochastic Polyak step (SPS), and Adam—while fine-tuning a pre-trained BERT model on the MNLI
dataset; see App. C for details. SNGD and SPS, employing adaptive step-size rules, demonstrate significantly
faster training, closely resembling the performance of Adam. Motivated in part by this observation, our work
establishes fast convergence rates for NGD and PS for single-layer self-attention.

non-convex optimization landscape introduced by the presence of self-attention. The non-convexity, induced
by the softmax operator in the self-attention layer, complicates the analysis and is the reason why the
convergence result of Tarzanagh et al. (2023a) is: (i) local, holding only for an appropriate initialization
direction, and (ii) asymptotic, applicable only as iterations t approach infinity.

Identifying these limitations, this work is motivated by the following questions:

Q1: Are there settings under which GD iterates converge globally to the solution Wmm of (W-SVM)?

Q2: Is it possible to obtain finite-time rates of convergence to Wmm?

Additionally, motivated by the practical benefit of using adaptive learning rates in transformer optimization
(see for example Fig. 1), we pose an additional open question:

Q3: Can using adaptive learning rates in self-attention optimization accelerate the convergence to Wmm?

Contributions. Our work addresses the above open questions, thus contributing fundamental insights on
the optimization properties of the self-attention mechanism.

Concretely, we study a single-layer self-attention model Φ(X, θ) = u⊺X⊺φ(XW x1), where, φ(⋅) is the
softmax nonlinearity, X = [x1,⋯, xT] is the sequence of input tokens, W is the key-query matrix, and u is
a linear decoder. Following the setup of Tarzanagh et al. (2023a), for each sequence X, we associate each
token xτ with a score γτ ∶= yu⊺xτ and let opt ∈ [T] be the index of the token with the largest score. Given a
training set of n sequences Xi, this defines a hard-margin SVM problem with solution Wmm that separates
the optimal tokens with maximum margin; see Section 2 for details.

Motivated by question Q3, we study here the optimization properties of training Φ(X; θ) with exponential
loss using normalized GD, which sets the learning rate ηt at iteration t adaptively as ηt = η

∥∇θL̂(θt)∥
, for some

constant η > 0. Our results also extend to Polyak step-size, another adaptive step-size rule.

Our first set of results (Section 3), for fixed decoder u (similar to Tarzanagh et al. (2023a)), answer questions
Q1-Q3 as follows. In response to Q1, we begin by identifying sufficient conditions on the input data under
which GD converges globally, in direction, to Wmm. Then, simultaneously addressing Q2 and Q3, we establish
fast finite-time rates of convergence for normalized GD by proving that the iterates Wt, at any time t, satisfy
∥ Wt

∥Wt∥ −
Wmm
∥Wmm∥∥ ≤ O (t

−1/2). We identify two key ingredients towards establishing these results. First, we
show that the Euclidean norm ∥Wt∥ of the iterates grows at a rate Θ(t). Second, and more intricate, we
demonstrate that even if the iterate at any time t violates the constraints of (W-SVM) corresponding to any
training sample, the softmax score of the optimal token for that sample must be non-decreasing. In turn, this
establishes that the iterates, initialized in any direction, remain inside a cone around Wmm. Our convergence
results also imply an explicit rate at which softmax-attention gets sparsified as softmax scores of optimal
tokens converge to 1 at an exponential rate O(exp(−ηt)).
Our second set of results (Section 4), raises the limitation of fixed linear decoder of prior work and applies to
joint training of u and of the attention weights W . In response to Q1, we construct a representative data
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model with Gaussian-distributed tokens and prove that GD converges globally, in direction, to Wmm. To
address Q2, we show that for normalized GD with an aggressive step-size, the iterates Wt, at any time t,
satisfy ∥ Wt

∥Wt∥ −
Wmm
∥Wmm∥∥ ≤ O (1/ log t).∗ Further, we prove that the linear decoder u converges, in direction, to

umm, the solution of the hard-margin SVM problem (u-SVM) that separates the examples with maximal
margin, using only the optimal input tokens at a O(t−η) rate. Finally, to completely characterize the training
dynamics, we show fast train loss convergence at a O(exp(−t1/3)) rate. We highlight three key technical
contributions towards proving these results: (i) a growing token score gap γopt,t − γτ,t > 0, between optimal
opt and non-optimal τ ≠ opt tokens, for any time t > 0; (ii) non-decreasing softmax scores of the optimal
tokens with time; and (iii) a constant loss ratio across all training sequences valid for any time. These
properties pave way for a PL-like inequality which is crucial to show the loss convergence rates.

Throughout, we validate our findings on both synthetic and real datasets (see Section 5). We end with
Section 7 discussing the implications of our results and the open questions they raise.

2 Preliminaries

Lowercase and uppercase bold letters represent vectors and matrices, respectively. ∥a∥ and ∥A∥ denote
Euclidean norms. [a1, a2] = {a ∶ a = βa1 + (1 − β)a2, β ∈ [0, 1]} denotes the line segment between a1 and
a2, and concat(⋅, ⋅) denotes the concatenation operation. a ∧ b denotes the minimum of numbers a and b.
a ∨ b denotes their maximum. We use standard notation O, Ω to hide absolute constants, and Õ, Ω̃ to hide
poly-logarithmic factors. All logarithms are natural logarithms.

The output of a single-head self-attention layer, parameterized by key, query and value matrices WQ, WK ∈
Rd×d1 , WV ∈ Rd×d2 , is given by φ(XWQW ⊺

KX⊺)XWV , where X ∈ RT×d is the input sequence, and the
softmax map φ(⋅) ∶ RT → RT is applied row-wise. We can compose the output of the attention layer with a
linear projection head to obtain the final prediction as

Φ(X; θ) ∶= u⊺X⊺φ(XW x1), (1)

where θ ∶= concat(u, W ) denotes the set of trainable parameters. Here, similar to Tarzanagh et al. (2023a);
Deora et al. (2023); Tian et al. (2023a); Oymak et al. (2023) we reparameterize the key-query matrix as
W ∶= WQW ⊺

K ∈ Rd×d, use the first token for prediction† and subsume the value weights WV within the
prediction head u ∈ Rd. Let a(W ) ∶=XW x1 denote the vector of softmax logits, then φ′(a(W )) ∈ RT×T

denotes the Jacobian at a(W ).
Given training data {(Xi, yi)}n

i=1 with labels yi ∈ {±1} and Xi ∶= [xi,1, xi,2, . . . , xi,T]⊺, and decreasing loss
ℓ ∶ R→ R+, the empirical risk is L̂(θ) ∶= 1

n ∑i∈[n] ℓ(yiΦ(Xi; θ)). We focus on GD optimization with adaptive
time-dependent step-size ηt. Concretely, we study two variants: normalized gradient descent (NGD) (Hazan
et al., 2015; Nacson et al., 2019), and Polyak step-size (PS) (Loizou et al., 2021), which set

ηt ∝ 1/∥∇θL̂(θt)∥, and ηt=(L̂(θt) − L̂∗)/(2∥∇θL̂(θt)∥2) with L̂∗=min
θ

L̂(θ),

respectively. Our results are applicable to both update rules. For specificity, we present them for NGD and
include remarks for PS.

We follow Tarzanagh et al. (2023b;a) in defining token scores as follows.
Definition 1 (Token scores and Optimality). Given a fixed prediction head u∗ ∈ Rd, the token score vector for
a sample (y, X) is given by γ = yXu∗. The optimal token index‡ is opt = argmaxτ∈[T] γτ , where γτ = yx⊺τ u∗
denotes the token score for the token xτ .

Similarly, opti denotes the optimal token index for a sample (yi, Xi), i∈[n]. Intuitively, these are the tokens
that minimize the training loss upon selection (Lemma 2 in Tarzanagh et al. (2023a)). Given a set of optimal
∗Note the rate here is slower compared to the fixed-decoder case. As detailed in Section 4, this is due to the additional (t + 1)−1

factor in the step-size, which results in a slow down of the rate of growth of ∥Wt∥. Our proof requires this additional factor to
account for the non-smooth objective.

†This is without loss of generality as our results hold for any token τ ∈ [T].
‡Similar to Tarzanagh et al. (2023a), we assume unique optimal token which holds for almost all datasets.

3



Under review as submission to TMLR

token indices OPT ∶={opti}n
i=1, define the following hard-margin SVM problem, which separates, with maximal

margin, optimal tokens from the other tokens for every input sequence:

Wmm = argmin
W

∥W ∥ s.t. (xi,opti
−xi,τ)⊺W xi,1 ≥ 1 ∀i ∈ [n], τ ∈ [T] ∖ {opti}. (W-SVM)

Throughout, we assume that (W-SVM) is feasible, i.e. softmax logits x⊺i,opti
W xi,1 of optimal tokens can be

separated from logits x⊺i,τ W xi,1 of the other tokens τ ≠ opti.

3 Training Dynamics of W

Here, let fixed prediction head u = u∗. This allows focusing first on the dynamics of token selection induced
by training key-query weight matrix W , which is the only trainable parameter:

Wt+1 =Wt − η
∇W L̂(Wt)
∥∇W L̂(Wt)∥

, t > 0. (2)

We start by setting up (mild) assumptions on the data and initialization, and then present our main results.

3.1 Setup

For convenience, first define Λ ∶=∥Wmm∥, B ∶=max
i,τ
∥xi,τ∥, κ+ ∶=max

i
exp(γi,opti

−γi), κ− ∶=min
i

exp(γi,opti
−γi),

and Υ = κ+ ⋅ log(κ+)
log(κ−) . Note 1/Λ is the margin achieved by Wmm separating optimal tokens from the rest, and

B is a uniform bound on the tokens’ magnitudes. The parameters κ± represent the largest and smallest
degradation factors across sequences for each sequence’s individual loss term when suboptimal tokens are
selected. Respectively, Υ can be interpreted as a conditioning parameter for the problem, measuring the
variability in token gaps across different sequences.

Our first technical assumption towards ensuring global convergence requires that tokens are nearly orthogonal.§
This is often the case in high-dimensional settings; see Example 1 and the references below.
Assumption 1 (Nearly-orthogonal Tokens). For any i, j, k ∈ [n], and for any τ, τ ′ ∈ [T],

∥xi,τ∥2 ≥ 4nΥT∣⟨xi,τ , xj,τ ′⟩∣, j ≠ i, τ ′ ≠ optj ,

⟨xi,opti
, xj,optj

⟩ ≥ 4nΥT∣⟨xi,τ , xk,τ ′⟩∣, yi = yj ≠ yk.

We will use Ass. 1 to prove that softmax scores of optimal tokens are lower bounded by a constant throughout
the optimization trajectory. Note that Ass. 1 itself makes no further guarantees on softmax scores of optimal
tokens approaching 1 or even increasing during training, which is essential for global convergence and we
prove separately. Furthermore, we impose no assumptions on the direction of initialization W0. In particular,
our main results hold even when W0 is aligned with “bad” stationary directions W that could asymptotically
saturate non-optimal tokens, i.e. ∇W L̂(αW ) → 0 and φi,opti

(αW ) → 0 as α → ∞. Thus, the only mild
requirement on the initialization W0 regards its scale, rather than its direction, and is formalized in Lem. 2
in the App. See Fig. 8 in the App. for numerical validation of global convergence despite initializing in a
“bad” stationary direction. The following example illustrates the above assumption.
Example 1. Let µ± ∈ Rd, µ+ ⊥ µ−, ∥µ+∥ = ∥µ−∥ = U , and data generated as follows:

y ∼ Unif({±1}), opt ∼ Unif([T]), ν ∼ N(0, σ2Σ),

xopt = ν +
⎧⎪⎪⎨⎪⎪⎩

µ+ , y = 1
µ− , y = −1

, xτ ∼ N(0, ρ2Σ), ∀τ ∈ [T] ∖ opt,

where Σ ∶= Id − U−2µ+µ
⊺
+ − U−2µ−µ

⊺
−. It is easy to show that when d = Ω̃(n2T2), the tokens are nearly

orthogonal with high probability. Further let high enough signal-to-noise ratio U2 ≥ Ω̃((σ ∨ ρ)2nT
√

d) and
§Our results also extend to cases where OPT tokens are antipodal and the remaining tokens are nearly orthogonal.
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appropriate u∗ such that the token scores satisfy Υ = O(1), then, the data model satisfies Ass. 1 (see Lem. 6
in the App. for details). We remark that similar data models have been considered in prior works on the
analysis of linear overparameterized models (Muthukumar et al., 2019; Chatterji & Long, 2021; Wang &
Thrampoulidis, 2022; Cao & Gu, 2019; Wang et al., 2021), NNs with Leaky ReLU activation (Frei et al.,
2022a; 2023), CNNs (Cao et al., 2022; Kou et al., 2023a), and self-attention models (Deora et al., 2023; Li
et al., 2023a).

Our second technical assumption is similar to Tarzanagh et al. (2023a) with two key distinctions: Firstly, it
applies to self-attention rather than their simplified attention model. Secondly, and most importantly, under
this same assumption, we will prove a stronger results for global convergence and finite-time rates.
Assumption 2. For any i ∈ [n], and any τ ≠ opti ∈ [T], the token scores satisfy γi,τ = γi.

Note that in Ex. 1, Ass. 2 is satisfied by choosing an appropriate u∗ (see Lem. 6 in the App. for details). It
has been recently shown that the optimization landscape of self-attention can lead GD to converge to local
directions that are different from Wmm (Tarzanagh et al., 2023a). Thus, global convergence necessitates
additional conditions. Assumptions 1 and 2, as outlined above, serve this purpose. While being only sufficient
conditions, they lead to the first-known global convergence result with finite-time guarantees, contrasting
with the local and asymptotic convergence in Tarzanagh et al. (2023a).

3.2 Main Results

We now present our main results. For ease of exposition, we use exponential loss, but our results directly
extend to continuously differentiable decreasing loss functions. First, we establish the rate of NGD’s directional
convergence to W mm. A proof sketch is given in Sec. 3.4.
Theorem 1 (IB rate). Under small initialization scale (Lem. 2 in the App.) and Ass. 1-2, using the NGD
updates in Eq. (2) with η=Õ(B−2), it holds for any t≥t0=poly (η, B, Λ, T, nΥ),

⟨W t, W mm⟩ ≥ 1 −C
(log t)2

t
,

where C ∶= C(η, B, Λ, t0)=poly (η, B, Λ, t0). In particular, assuming B=O(1), T =O(1) and Υ=O(1), we have
Λ=O(1). Thus, for any t ≥ t0 = Ω(n), it holds ∥W t −W mm∥ ≤ Õ (t−1/2) .

Thm. 1 establishes that normalized iterates W t of NGD converge globally to W mm, starting from any
initialization direction. It also provides a lower bound on the rate of W t approaching W mm. In Sec. 3.3, we
establish an upper bound for the rate of convergence of GD, demonstrating that NGD’s adaptive step-size
provably accelerates convergence. This is the first global convergence result and finite-time convergence rate
for self-attention using either GD or NGD. To the best of our knowledge, this is also the first demonstration of
directional convergence of NGD and its superiority over GD in a non-convex setting (Sec. 3.3 for comparisons
with existing results in convex linear settings).

We now discuss an implication of Thm. 1 concerning the evolution of the attention map during NGD training.
Specifically, we demonstrate that as training progresses, the attention map increasingly becomes sparse,
selecting optimal tokens at an exponential rate.
Lemma 1 (Softmax score rate). Under the setting of Thm. 1, it holds for any i ∈ [n] and any t ≥
poly (η, B, Λ, t0) that φt

i,opti
≥ (1 + (T − 1)e−η(8B2Λ2)−1t)−1.

To understand why the attention map becomes sparser during NGD training, recall from Thm. 1 that for
sufficiently large iterations, Wt ≈ ∥Wt∥

∥Wmm∥Wmm, and that Wmm separates optimal tokens from others. In
proving Thm. 1, we also show a norm-growth rate ∥Wt∥=Θ(t). Combining these yields that softmax scores
of optimal tokens φt

i,opti
approach 1, while the rest approach 0. Concretely, given Wt≈ ∥Wt∥

∥Wmm∥Wmm, the opt
softmax score φt

i,opti
≥ 1

1+ ∑
τ≠opti

exp(− ∥Wt∥
∥Wmm∥ )

approaches 1 as ∥Wt∥ grows. Lem. 1 formalizes this intuition and

pairs it with an explicit sparsification rate.
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Figure 2: Training dynamics of a single-head self-attention model (Eq. (1)) when optimizing only W on
synthetic data with nearly orthogonal tokens (Example 1 with σ = 0). The observed softmax score saturation,
norm growth of W and directional alignment with Wmm closely match with our theoretical results (Lemma 1,
Eq. (9) and Theorem 1, respectively).

Finally, we validate the predictions of the above results using synthetic data generated as per Ex. 1 with σ = 0
(see App. C for details). In Fig. 2, we plot the train loss, the norm growth of Wt, the softmax score φi,opti

for the opt token (averaged over i ∈ [n]), and the alignment of Wt with Wmm. Note that since u∗ is fixed,
the train loss does not converge to 0. Observe that the directional alignment for NGD is closely predicted by
Thm. 1. Similarly, the softmax-score saturation rate in Lem. 1 closely aligns with the empirical rate in Fig. 2.
Moreover, note that NGD is significantly faster than standard GD, which we formally prove below.

3.3 Remarks

NGD is faster than GD. We demonstrate that there exists a dataset, satisfying the assumptions of
Thm. 1, for which the correlation of vanilla GD parameters to Wmm, ⟨W t, W mm⟩, is upper bounded by
≤ 1 − Ω((log t)−2). In contrast, according to Thm. 1, the rate for NGD is ≥ 1 − O((log t)2/t), thereby
highlighting a significant gap between the two.

To construct the dataset, let n = 1, T = 2, y = 1, x1 = [1, 0]⊺, x2 = [0, 0]⊺ and u∗ = [1, 0]⊺. Clearly, Ass. 2
holds since there is only two tokens; specifically, opt = 1, γopt − γ = 1. Also, Ass. 1 holds trivially since n = 1.
For this dataset, the max-margin classifier can be easily expressed in closed form as Wmm = (x1 − x2)x⊺1.
Using this, we observe that ∇W L̂(Wt) = −L̂(Wt)φt

opt(1 − φt
opt)Wmm, which implies

Wt+1 =W0 + ηGtWmm , where we set Gt ∶=
t

∑
t′=0
∥∇W L̂(Wt′)∥ .

Leveraging this, we now show that ∥Wt∥ ≤ O(log t): Note that ∥Wt∥ → ∞ as t→∞ which leads to softmax
saturation φt

opt → 1 and hence, loss minimization. This implies that Gt grows with t, and there exists
some t0 > 0, such that for any t ≥ t0, it holds that ∥Wt+1∥ ≈ ηGt +W 11

0 , where W 11
0 is the (1,1) entry

of the initialization matrix. Using this, we can show for t ≥ t0 that 1 − φt+1
opt = 1

1+exp((x1−x2)⊺Wt+1x1) ≤
exp(−(x1 −x2)⊺Wt+1x1) = exp(−ηGt −W 11

0 ) ≈ exp (−∥Wt+1∥) . Thus,

∥Wt+1∥ ≤ ∥W0∥ + η
t

∑
t′=0

L̂(Wt′) exp (−∥Wt′∥) ≤ O(
t

∑
t′=0

exp (−∥Wt′∥)),

where we use L̂(Wt) ≤ O(1), since the decoder is fixed. This proves that ∥Wt∥ ≤ O(log t), which we use to
upper bound the correlation as follows:

⟨W t, W mm⟩=
ηGt +W 11

0√
(ηGt +W 11

0 )2 + ∥W0∥2 − (W 11
0 )2

≈1 − ∥W0∥2 − (W 11
0 )2

2(ηGt +W 11
0 )2

≈1 − ∥W0∥2 − (W 11
0 )2

2∥Wt∥2
. (3)

Thus, ⟨W t, W mm⟩ ≤ 1 −Ω((log t)−2), or equivalently ∥W t −W mm∥ ≥ Ω((log t)−1). This shows that using an
adaptive step-size accelerates convergence to Wmm, compared to standard GD.

Extension to Polyak step-size. In Thm. 7 in the App., we establish an analogue of Thm. 1 specifically for
the Polyak step-size rule. This extension required us to further establish a lower bound on the gradient norm.
This is because PS has an additional ∥∇θL̂(θt)∥−1 factor compared to NGD. To accomplish this, we used the
variational form of the Euclidean norm for a “good” direction Wmm, yielding ∥∇θL̂(θt)∥ ≥ poly (Λ−1) L̂(θt).
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As seen in Fig. 2, PS leads to even faster convergence than NGD across all metrics, including the train loss.
In our implementation, we use a hyperparameter ηmax as a threshold on the step-size value, which has been
shown to stabilize training (Loizou et al., 2021). Further, since the selection of opt tokens minimizes the loss,
L̂∗ is calculated by setting φi,opti

=1 for all i∈[n]. Note that after some time, when ηt≥ηmax, the PS updates
used in practice are identical to standard GD with step-size ηmax. Hence, the rates are much faster in the
beginning, but slow down as training progresses.

3.4 Proof Sketch of Theorem 1

The first key intermediate result we need to show is that after sufficient iterations, the negative gradient of
the loss at Wt is more correlated with Wmm compared to Wt itself. Formally, we show that for all ϵ > 0,
there exists Rϵ ∶=2Λϵ−1 log(Cϵ−1) with C =poly (T, B2Λ, nΥ), such that for every t for which ∥Wt∥≥Rϵ, it
holds that

⟨−∇W L̂(Wt), W mm⟩ ≥ (1−ϵ) ⟨−∇W L̂(Wt), W t⟩ . (4)

A proof sketch of this follows; see Lem. 7 in the App. for details. First, under Ass. 2, for any W :

⟨−∇W L̂(Wt), W ⟩ = 1
n

n

∑
i=1

ℓt,i(γi,opti
− γi)φt

i,opti
(1 − φt

i,opti
)ht,i, (5)

where ht,i=ai,opti
−∑τ≠opti

φt
i,τ ai,τ

∑τ≠opti
φt

i,τ
, ai=XiW xi,1. Analogously, define h̃, h∗, using ã=ΛXW tx1, a∗=XWmmx1,

respectively. Then, to prove Eq. (4), it suffices that

h̃t,i ≤ (1 + ν)h∗t,i, where ν = ϵ(1 − ϵ)−1. (6)

Suppose that ∥W t −W mm∥ > ν
2B2Λ , since otherwise the claim follows easily. We categorize the training

samples into three subsets based on the satisfaction of the constraints in (W-SVM). Concretely, define the
“minimum SVM-gap per sample” i∈[n] as δmin

i ∶=minτ∉{opti} ãi,opti
− ãi,τ− 1 and based on this consider three

sets of samples as follows:

• I1 ∶={i∈[n] ∣ δmin
i ≤0.3ν}, for samples where the constraints are violated or weakly satisfied,

• I2 ∶={i∈[n] ∣ 0.3ν<δmin
i ≤ 0.8ν}, for samples where constraints are satisfied with small gap,

• I3 ∶= {i∈[n] ∣ δmin
i ≥ 0.8ν}, for samples where the constraints are well-satisfied.

Since ∥W t−W mm∥ is large, there is at least one point i ∈ [n] that violates the constraints, i.e. I1 is non-empty.
We first show the following for examples in I1 and I2

h̃t,i ≤ (1 + 0.5ν)h∗t,i, i ∈ I1, and h̃t,i ≤ (1 + ν)h∗t,i, i ∈ I2 . (7)

Note that we prove a tighter inequality for I1 than required by (6) in order to use this residual to get the
desired inequality for examples in I3. Specifically, when Rϵ is large enough, we wish to show (following
Eq. (5)) that

∑
i∈I3

ℓt,i(γi,opti
− γi)φt

i,opti
(1 − φt

i,opti
) ≤ 0.5ν

2B2Λ ∑i∈I1

ℓt,i(γi,opti
− γi)φt

i,opti
(1 − φt

i,opti
). (8)

Intuitively, for the LHS, any sample i∈I3 satisfies (W-SVM) constraints with large gap giving φi,opti
close to

1 and growing with ∥Wt∥. Similarly, for the RHS, we expect φi,opti
to be smaller. Thus, for a sufficiently

large ∥Wt∥ and controlling φi,opti
for any i∈I1 and t>0 would allow us to show the above inequality. This is

achieved by establishing a non-trivial lower bound on the softmax scores for i ∈ I1 that holds throughout
training (Lem. 3 in the App.). Finally, since h∗ ≥1 and h̃≤2B2Λ, we combine Eqs. (7) and (8) using the
formulation in (5) and complete the proof of Eq. (4).

7
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The next key ingredient in the proof of Thm. 1 is showing that the iterate norm grows at rate Θ(t).
Specifically, we prove in Lem. 5 in the App. that

2ηt ≥ ∥Wt∥ ≥ η(4B2Λ)−1t. (9)

The upper bound follows by applying Cauchy-Schwarz. For the lower bound, we write the iterate Wt using
its gradient updates, use the dual norm characterization of the ℓ2-norm, and select the Wmm direction to get

∥Wt∥ ≥ ⟨W0, W mm⟩ +
t−1
∑
t′=0

η ⟨− ∇W L̂(Wt)
∥∇W L̂(Wt)∥

, Wmm
∥Wmm∥⟩ ,

where we use the key property that for any W the gradient correlates positively with Wmm (formalized in
Lem. 4 in the App.), i.e. ⟨− ∇W L̂(W )

∥∇W L̂(W )∥ ,
Wmm
∥Wmm∥⟩ ≥ (2B2Λ)−1 > 0.

Next, using Eq. (2) to substitute the gradient update in Eq. (4), we can show that

⟨Wt+1 −Wt,
Wmm
∥Wmm∥⟩ ≥ (1 − ϵt) ⟨Wt+1 −Wt,

Wt

∥Wt∥⟩ =
∥Wt+1∥2 − ∥Wt∥2 − ∥Wt+1 −Wt∥2

2∥Wt∥
− ϵt ⟨Wt+1 −Wt,

Wt

∥Wt∥⟩

≥ ∥Wt+1∥ − ∥Wt∥ −
η2

2∥Wt∥
− ϵtη.

We then select ϵt = (80B2Λ2 log t)(ηt)−1, and use Eq. (9) and Lem. 7 to obtain a O((log t)2∥Wt∥−1) rate.
Using Eq. (9) then finishes the proof.

4 Training Dynamics for Joint Optimization

We now study training dynamics when jointly optimizing prediction head u and attention weights W .
Compared to Sec. 3, the key challenge is that the token scores γt evolve with time, driven by the changing
nature of ut. Additionally, the objective function becomes non-smooth in this context, given the dynamic
changes in ut. Addressing these challenges necessitates additional technical considerations compared to Sec. 3,
which we also discuss in this section.

4.1 Setup

We consider the following updates for ut and Wt.

ut+1=ut−ηu
t ∇uL̂(θt), ηu

t =
η(t + 1)−2/3

∥∇uL̂(θt)∥
, Wt+1=Wt−ηW

t ∇W L̂(θt), ηW
t =

η(t + 1)−1

∥∇W L̂(θt)∥
. (10)

Here, we focus on exponential loss. Note that in ηu
t , the factor (t + 1)−2/3 can be replaced with (t + 1)−p,

where p ∈ [2/3, 1). In our results, we present findings using p = 2/3, as it yields the fastest rate. We also
remark that common adaptive learning rates like Adam (Kingma & Ba, 2014), AdaGrad (Duchi et al., 2011),
etc. similarly set per-parameter learning rates that vary dynamically.

Similar to Def. 1, given a trainable prediction head ut at any iteration t > 0, the token score vector for a
sample (y, X) is given by γt=yXut.

Data Model. We study the following data model. Within each example X, a single opt ∼ Unif([T]) token
and an additional T − 1 tokens are sampled i.i.d. Gaussian as follows:

xopt ∼ N(0, α2ρ2Id), xτ ∼ N(0, ρ2Id), ∀ τ ∈ S, y = sign(u⊺∗xopt), (DM)

where S∶=[T]∖{opt}, u∗∈Rd is a fixed vector that generates the label y ∈{±1}. Here, ρ controls the token
norms, and α>1 separates the opt token from the other tokens. We consider the following mild conditions on
the initialization, token norms, overparameterization and step-size.
Condition 1. Let B = αρ

√
1.5d ≥ 1, and C0 > 1, C1, C2 > 0 be some absolute constants. We consider

the following conditions for any δ ∈ (0, 1): i) Zero initialization: ∥u0∥ = 0, ∥W0∥ = 0; ii) opt token has
larger norm: α ≥ C0; iii) Sufficient overparameterization: d ≥C1α4n4 log ( 10n2

δ
); iv) Small step-size: η ≤

(C2
√

nB4(B ∨ d))−1.

8
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The condition on the initialization is for ease of exposition; our analysis and results extend to random
initialization with small scale (similar to the conditions of Lem. 2 in Sec. 3). We also remark that under
Cond. 1 and data model DM, the tokens are nearly orthogonal, similar to Ass. 1 in Sec. 3. We formalize this
in Lem. 9 in the Appendix.

4.2 Main Results

We now present our main results for joint training. For ease of exposition, we consider T=2, but our results
directly extend to T>2 assuming token scores γt satisfy Ass. 2 at every iteration t. It is also possible to
extend our results to the case where Ass. 2 is not exactly satisfied, but the non-opt token scores show small
deviation.

Our first result shows that train loss goes to 0 at O(exp(−t1/3)) rate; see Sec. 4.3 for a proof sketch.
Theorem 2 (Train loss convergence). Under Cond. 1, data model DM, using the updates in Eq. (10), it
holds for any t>0 that L̂(θt+1)≤O (exp (−ηBC0√

n
(t + 1)1/3)).

The next theorem illustrates that Wt converges to Wmm in direction at an O(1/ log t) rate.
Theorem 3 (IB rate of W ). Under Cond. 1 and the data model DM, using the updates in Eq. (10), for any
t ≥ tϵ = exp(poly (η, B, Λ, n, d, log δ−1, ϵ−1)),

⟨W t, W mm⟩ ≥ 1 − ϵ − poly (η, B, Λ, ϵ) 1
log t

.

In particular, assuming ρ=O (η1/2d−3/4(nΛ)−1), for any t≥tϵ=Ω(exp(ϵ−4/3)), ∥W t−W mm∥≤O (ϵ ∨ (log t)−1).
Intuitively, since the updates for Wt have an additional (t + 1)−1 factor due to the smaller step-size ηt, the
iterate norm ∥Wt∥ grows as Θ(log t) in contrast to the Θ(t) rate in Sec. 3, where we were only optimizing
Wt. Consequently, the convergence to implicit bias is slower — O(1/ log t) instead of Õ(t−1). The additional
(t + 1)−1 factor in the updates for Wt helps to account for the non-smoothness of the objective, which will
become apparent in Sec. 4.3.

We now discuss the implicit bias and convergence of ut. From prior work (Soudry et al., 2018; Ji &
Telgarsky, 2019), one could guess that ut converges to the max-margin predictor separating the set of samples
{(φt

i,optt
xi,opti

+ (1 − φt
i,opti

)xi,τ , yi)ni=1}. But as shown above, when t → ∞, φopt → 1. This motivates the
following hard-margin SVM problem,

umm=argmin
u
∥u∥ s.t. yiu

⊺xi,opti
≥1 ∀i ∈[n]. (u-SVM)

The following result confirms that the learned model attains margin that is asymptotically a constant factor
(1/4) of the maximum margin γ ∶=maxu∶∥u∥≤1 mini yiu

⊺xi,opti
.

Theorem 4 (IB rate of u). Under Cond. 1 and the data model DM, using the updates in Eq. (10), for any
t≥tϵ ∨ exp(C(η, B, Λ, ϵ)(ϵ−1 ∨ (8B2Λ)4)), it holds that

min
i

yiut
⊺xi,opti

≥ γ

4
− 1

1 + exp(η(8B2Λ2)−1 log t) .

4.3 Proof Sketch of Theorem 2

The main challenge in establishing the loss convergence rate in Thm. 2 is the non-smoothness of the objective
function. To overcome this, we show three key properties that hold throughout training: i) constant loss ratio
for any two samples, ii) growing token score gap between opt and non-opt tokens for every sample, and iii) a
non-decreasing opt-token softmax score. We formalize these in Lem. 11 in the App. Property (ii) is crucial
in proving the implicit bias rate in Thm. 3. Property (iii) is crucial in obtaining a PL-like inequality which is
the key challenging step in proving Thm. 2. Specifically, using properties (i) and (iii) we demonstrate that
the training loss satisfies the following (see Lem. 13 and Rem. 3 in the App. for details):

1. PL-inequality-like result: ∥∇uL̂(θt)∥ ≥ Ω(Bn−1/2)L̂(θt),

9
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2. controlled loss between current and next iterate: maxθ′∈[θt,θt+1] L̂(θ′) ≤ 8L̂(θt),

3. second-order self-boundedness: max
θ′∈[θt,θt+1]

∥∇2
θL̂(θ′)∥ ≤ 8(ω(θt)∨ω(θt+1))L̂(θt),

where ω(θt)∶=13B5(B∨d)(∥ut∥∨1)2.

To prove the first point, we use the dual norm characterization of the ℓ2-norm,

∥∇uL̂(θt)∥ = sup
v∶∥v∥=1

⟨ 1
n

n

∑
i=1
∣ℓ′i,t∣yi∇uΦ(ut, Xi), v⟩ ≥ L̂(θt) sup

v∶∥v∥=1
min

i
yi(φt

i,opti
xi,opti

+ (1 − φt
i,opti

)xi,τ)⊺v.

To proceed, we lower bound the softmax scores for the opt tokens for every i ∈ [n] and t > 0 as

φt
i,opti

≥ 1
2

. (11)

Using this, we show that the set of samples {(0.5(xi,opti
+xi,τ), yi)}n

i=1, where τ ≠ opti, are separable using
ũ = ∑i∈[n] yixi,opti

(formalized in Lem. 12 in the App.). Then, selecting v = ũ proves the first point.

We now briefly discuss the process to prove Eq. (11). We can show this by induction. Since W0 = 0, then for
any i ∈ [n], φ0

i,opti
= 1/2 at initialization. To show the inductive step, note that for any i ∈ [n], if

(xi,opti
−xi,τ)⊺(−∇W L̂(θt))xi,1 > 0, (12)

Ô⇒
φt+1

j,optj
/φt+1

j,τ

φt
j,optj

/φt
j,τ

= exp ((xj,optj
−xj,τ)⊺(Wt+1 −Wt)xj,1) ≥ 1.

We consider two cases. If φt
i,opti

≥ 3/4, Eq. (12) follows as η is small. Specifically, for any j ∈ [n], τ ≠ optj ,

φt
j,optj

= 1
1 + exp((xi,τ −xj,optj

)⊺Wtxj,1)
> 3/4 Ô⇒ (xj,τ −xj,optj

)⊺Wt−1xj,1 ≤ − log(3).

After the gradient step, since η ≤ (2B2)−1 log(3), we have

(xj,τ −xj,optj
)⊺Wt+1xj,1 = (xj,τ −xj,optj

)⊺Wtxj,1 − ηt−1(xj,optj
−xj,τ)⊺(−∇W L̂(Wt))xj,1 ≤ 2ηB2 − log(3) ≤ 0.

If φt
i,opti

≤ 3/4, we proceed as follows. Consider the expansion of the LHS of Eq. (12),

(xi,opti
−xi,τ)⊺( − ∇W L̂(θt))xi,1 =

ℓt,i

n
(γt

i,opti
− γt

i)φt
i,opti

(1 − φt
i,opti

)∥xi,1∥2∥xi,opti
−xi,τ∥2

− 1
n
∑
j≠i

ℓt,j(γt
j,optj

− γt
j)φt

j,optj
(1 − φt

j,optj
)x⊺i,1xj,1(xj,optj

−xj,τ)⊺(xi,opti
−xi,τ ′).

To use this to prove Eq. (12), we first show that the token scores γt satisfy Defn. 1 (γt
opti
> γt

i for any i ∈ [n]),
and that the loss ratio maxi,j∈[n]

ℓt,i

ℓt,j
is bounded by a constant throughout training, i.e., for any i ∈ [n],

γt
i,opti

− γt
i ≥ Ω(t1/3) and max

i,j∈[n]

ℓt,i

ℓt,j
≤ C, (13)

where C > 0 is a universal constant. This is formalized in Lem. 11 in the App. We then prove Eqs. (11) and
(13) jointly by induction.

For the second point, we first show that for any θ, θ′,

∣yΦ(θ, X) − yΦ(θ′, X)∣ = ∣u⊺X⊺φ(XW ⊺x1) −u′⊺X⊺φ(XW ′⊺x1)∣
≤ ∥X∥2,∞∥u −u′∥ + 2∥X∥32,∞∥u′∥∥W −W ′∥.

10
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Since we are using exponential loss, we use this to get,

max
λ∈[0,1]

ℓ(yΦ(θt + λ(θt+1 − θt), X))
ℓ(yΦ(θt, X)) ≤ max

λ∈[0,1]
exp (2λ∥X∥32,∞∥ut∥∥Wt+1 −Wt∥ + λ∥X∥2,∞∥ut+1 −ut∥) .

Further, we show that the iterate norm ∥ut∥ grows as O(t1/3) (formalized in Lem. 10 in the App.). Then,
using the updates in Eq. (10), we get

max
i∈[n]

max
λ∈[0,1]

ℓ(yiΦ(θt + λ(θt+1 − θt), Xi))
ℓ(yiΦ(θt, Xi))

≤ exp (6η2B3 + ηB) .

Then, using Cond. 1 for η finishes the proof for the second point. For the third point, we first upper bound
∥∇2

θΦ∥ as ∥∇2
θΦ(θ, X)∥ ≤ 6dB5∥u∥ + 2

√
dB3. Using this and the upper bound on ∥∇θΦ∥, we show that for

any θ′ ∈ [θt, θt+1],

∥∇2
θL̂(θ′)∥ ≤max

i∈[n]
(∥∇θΦ(θt, Xi)∥2 + ∥∇2

θΦ(θt, Xi)∥)L̂(θ′) ≤ ω(θ′)L̂(θ′).

Then, we leverage the second point to finish proving the third point.

With these ingredients, we prove Thm. 2 by working with the second-order Taylor expansion of L̂(θt+1).
Specifically, using the updates in Eq. (10) and the three key properties of the training loss established above,
we show that

L̂(θt+1) ≤ L̂(θt) −
ηB

10
√

n(t + 1)2/3 L̂(θt) +
8η2

(t + 1)4/3 (ω(θt) ∨ ω(θt+1))L̂(θt).

Further, since ∥ut∥ ≤ O(t1/3), we show that ω(θt) ≤ O(t2/3). Using a small enough η, and telescoping, gives
the advertised result.

5 Experimental Results

To complement our theory, we present experiments on synthetic/ real-world data demonstrating that (S)NGD-
based training leads to faster convergence for various metrics compared to vanilla (S)GD.

Synthetic Data. We first consider the self-attention model in Eq. (1) and data generated as per data
model DM. Fig. 3 shows the train loss, iterate norms ∥ut∥ and ∥Wt∥, average softmax score for the opt
tokens, and alignment of iterates ut and Wt to the respective max-margin solutions Wmm and umm. We
compare standard GD, NGD updates in Eq. (10) (without the additional t−2/3, t−1 factors in the step-size),
PS updates, and joint NGD updates. We observe that all other algorithms are faster than GD, with PS being
the fastest. We also see that the train loss converges at a similar rate for NGD and joint-NGD, while for the
other metrics, NGD is slightly faster than joint-NGD.

Language and Vision Datasets. Fig. 1 compares the train and test dynamics of various optimizers
while fine-tuning a pre-trained BERT model on the MNLI (Williams et al., 2018) dataset. As evident, both
gradient normalized step-sizes SNGD and SPS train significantly faster than SGD. Fig. 4 in the App. shows
similar results for the CivilComments dataset (Borkan et al., 2019). In App. C we present additional results
on vision datasets. Interestingly, in this setting, while SPS still outperforms SGD, SNGD trains slower, which

Figure 3: Training dynamics of a self-attention model (Eq. (1)) with data generated using model DM.
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could be explored further in future work. It is also worth noting that in this setting we see no significant gap
between Adam and SGD; this is consistent with the observations reported in Xie et al. (2023); Kunstner et al.
(2023).

6 Related Work

Implicit bias of NNs. There has been extensive work on the implicit bias of GD for both linear predictors
(see Sec. 1) and NNs. Despite non-convexity, our results are more closely related to those for linear predictors
since we give an explicit formulation of the solution in the convergence limit (compare to implicit formulations
in terms of KKT points for nonlinear NNs; see App. D for a review).

Thm. 1 provides a non-trivial extension to self-attention of corresponding results for linear logistic regression.
Specifically, Ji & Telgarsky (2021) demonstrate that NGD on logistic loss under separable data converges
globally, in direction, at rate Õ(1/t) to the max-margin separator of data points belonging to distinct classes.
While the convergence rate of Thm. 1 for self-attention is slower, it holds under a more intricate non-convex
landscape induced by the softmax nonlinearity; see App. A.4 for a discussion on the tightness of our results.
As we have seen, in addition to NGD, our convergence results also apply to Polyak step-size, which empirically
outperforms NGD (see Fig. 2). We also present results for NGD with momentum in Fig. 2, which results
in a performance boost. In the simpler setting of linear logistic regression, this method is proven to have
a faster implicit bias rate of Õ(1/t2) (Ji et al., 2021). Extending our theory to incorporate momentum in
the self-attention setting is an interesting direction for future work. The loss convergence rate in Thm. 2
is analogous to the O(exp(−t)) loss rate for linear predictors on separable data with ηt = η/∥∇L̂(θt)∥ (Ji &
Telgarsky, 2019). The difference O(exp(−t1/3)) vs. O(exp(−t)) shows up as we use smaller step-size. Nacson
et al. (2019) similarly show a slower rate of O(exp(−t1/2)) for linear predictors with ηt = η(t+1)−1/2/∥∇L̂(θt)∥.
Contrary to all these works, to the best of our knowledge, we are the first to prove parameter convergence of
NGD and PS in non-convex settings.

Transformers theory. To understand the optimization and generalization dynamics, (Jelassi et al., 2022)
shows that Vision Transformers (ViTs) learn spatially localized patterns in a binary classification task using
gradient-based methods, while Li et al. (2023b) shows that attention maps sparsify as SGD training progresses.
Oymak et al. (2023) studies the initial trajectory of GD for the closely related prompt-attention. Additionally,
Tian et al. (2023a) studies SGD-dynamics for the next-token prediction task in a one-layer transformer
with a linear decoder. More recently, Tian et al. (2023b) extends this analysis to the joint training of
multi-layer transformer with an MLP. As detailed in Sec. 1, our work is most closely related and improves
upon Tarzanagh et al. (2023b;a), which adopt an implicit-bias view to attention training. After completion of
this work, we became aware of contemporaneous work (Sheen et al., 2024) that also studies implicit bias in
the same problem setting (single-layer self-attention, fixed decoder, Ass. 2). Unlike ours, their results hold
only for gradient flow (i.e. GD with infinitesimal step-size), and are asymptotic. On the other hand, they
study separate optimization of key-query matrices, albeit with appropriate initialization assumptions. See
App. D for a full review.

7 Conclusion and Future Work

We studied implicit optimization bias of GD for self-attention in binary classification. For both fixed
and trainable decoder settings, we identified data conditions under which global convergence holds and
characterized, for the first time, the convergence rates. Our convergence rates hold for NGD and PS,
which are shown both theoretically and empirically to outperform vanilla GD. In future work, we aim to
further relax Ass. 2 and identify and investigate other sufficient conditions for global convergence, such
as overparameterization. Additionally, extending our theory to incorporate momentum and explain its
fast convergence is also an interesting future direction. Finally, motivated by our experiments, we want
to further investigate why NGD trains faster on language datasets, yet appears to be slower on vision
datasets. This may involve extending our findings to the next-token prediction setting, which is also of interest.
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A Training only W

A.1 Preliminaries

∥A∥2 denotes the spectral norm and λmin(A) denotes the minimum eigenvalue. Also, ∥A∥2,∞ = max
i
∥ai∥,

where ai is the ith row of A. We list the useful notations used in the Appendix in Table 1 for convenience.
Further, let φ′(v) ∶= ∇φ(v) = diag(φ(v)) −φ(v)φ(v)⊺ denote the Jacobian of the softmax vector φ(v) at

xi,τ τ th token in the ith sample
a(W ) XW x1

γ yXu∗
φ(⋅) softmax vector
φt

i,τ φ(⋅)∣τ , τ ∈ [T] for sample i at time t
Λ ∥Wmm∥
B maxi∥Xi∥2,∞

κ
max

i
(γi,opti

−γi)

min
i
(γi,opti

−γi)

Υ κ
min

i
exp(γi,opti

)

max
i

exp(γi)

ζ
max

i
(γi,opti

−γi)

max
i

exp(γi)

Table 1: Useful Notation.
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v ∈ RT. We note that under Assumption 2, for any W , we have

⟨−∇W L̂(Wt), W ⟩ = − 1
n

n

∑
i=1

ℓ′t,i ⟨yi∇W Φ(Wt, Xi), W ⟩

= 1
n

n

∑
i=1

ℓt,i(γi,opti
− γi)φt

i,opti
(1 − φt

i,opti
) [ai,opti

−
∑τ≠opti

φt
i,τ ai,τ

∑τ≠opti
φt

i,τ

] , (14)

where ai =XiW xi,1.

A.2 Key Lemmas

We first prove some key Lemmas that are useful in the proof of Theorem 1.
Lemma 2. Let w0

u,v ∼ N(0, σ2
0) for all u, v ∈ [d], with the initialization scale

σ0 ≤ B−2d−1/2 (C ′−1 log (kT − 1
T − 1

) ∧ ηd−1/2(8Λ)−1) ,

for some k > 1, and absolute constant C ′ > 0. Further, if d ≥ log(2/δ) for any δ ∈ (0, 1), then with probability
at least 1 − δ, we have φ0

i,opti
≥ 1

kT for every i ∈ [n].

Proof. Let w0
u,v ∼ N(0, σ2

0), for any u, v ∈ [d]. Then for any i ∈ [n] and τ ∈ [T ], for any δ ∈ (0, 1), with
probability at least 1 − δ we have

(xi,τ −xi,opti
)⊺W0xi,1 ≤ ∣(xi,τ −xi,opti

)⊺W xi,1∣
≤ ∥xi,τ −xi,opti

∥∥W0∥2∥xi,1∥
≤ 2B2(σ0C(2

√
d +
√

log(2/δ)))
≤ 6CB2σ0

√
d =∶ B2σ0

√
dC ′.

Using this, we have

φ0
i,opti

= 1
1 + ∑

τ≠opti

exp((xi,τ −xi,opti
)⊺W0xi,1)

≥ 1
1 + (T − 1) exp(B2σ0

√
dC ′)

≥ 1
kT

(using σ0 ≤ C ′−1B−2d−1/2 log (kT − 1
T − 1

))

Also, ∥W0∥ ≤ 2σ0d ≤ η(4B2Λ)−1.

Lemma 3. Under the conditions of Lemma 2, Assumptions 1 and 2, using the updates in Eq. (2) with
η ≤ (2B2)−1 log(2T − 1), at any time t ≥ 0, for any sample j ∈ [n], the softmax weight for the optj token
satisfies

φt
j,optj

≥ φ0
j,optj

∧ 1
T

. (15)

Proof. We prove this by induction. Clearly, Eq. (15) is true for t = 0. Next, we assume that it is true at time
t − 1. Combining this with the conditions of Lemma 2, we have φt−1

j,optj
≥ 1

2T .

Further, for any j ∈ [n] we can have one of the following two scenarios:
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Scenario 1: At time t − 1, φt−1
j,optj

> 1 − 1
2T . This implies

φt−1
j,optj

= 1
1 +∑τ≠opti

exp((xi,τ −xj,optj
)⊺Wt−1xj,1)

> 1 − 1
2T

Ô⇒ ∑
τ≠optj

exp((xj,τ −xj,optj
)⊺Wt−1xj,1) <

1
2T − 1

Ô⇒ (xj,τ −xj,optj
)⊺Wt−1xj,1 ≤ − log(2T − 1), ∀τ ≠ optj .

After the gradient step at time t − 1, for any τ ≠ optj , we have,

(xj,τ −xj,optj
)⊺Wtxj,1 = (xj,τ −xj,optj

)⊺Wt−1xj,1 − ηt−1(xj,optj
−xj,τ)⊺(−∇W L̂(Wt−1))xj,1

≤ − log(2T − 1) + η∥xj,τ −xj,optj
∥∥xj,1∥

≤ − log(2T − 1) + 2ηB2

≤ 0,

where the last step follows since η ≤ (2B2)−1 log(2T − 1). This gives

∑
τ≠optj

exp((xj,τ −xj,optj
)⊺Wtxj,1) ≤ T − 1

Ô⇒ φt
j,optj

≥ 1
T

.

Scenario 2: At time t − 1, φt−1
j,optj

≤ 1 − 1
2T . This gives

φt−1
j,optj

(1 − φt−1
j,optj

) ≥ 2T − 1
4T2 ≥ 1

4T
. (16)

We will use this to show that

(xj,optj
−xj,τ)⊺(−∇W L̂(Wt))xj,1 ≥ 0. (17)

Let a′ = a((xj,optj
−xj,τ)x⊺j,1) =X(xj,optj

−xj,τ)x⊺j,1x1. Using similar calculations as Eq. (14), we get

(xj,optj
−xj,τ)⊺(−∇W L̂(Wt−1))xj,1

= 1
n

n

∑
i=1

ℓt−1,i(γi,opti
− γi)φt−1

i,opti
(1 − φt−1

i,opti
)
⎡⎢⎢⎢⎣
a′i,opti

−
∑τ≠opti

φt−1
i,τ a′i,τ

∑τ≠opti
φt−1

i,τ

⎤⎥⎥⎥⎦
. (18)

There are two cases:

Case 1: optj ≠ 1. In this case, by splitting the sum over i ∈ [n] in Eq. (18) into i = j and i ≠ j,
and using non-negativity of the softmax weights, we get

(xj,optj
−xj,τ)⊺(−∇W L̂(Wt−1))xj,1

≥ ℓt−1,j

n
(γj,optj

− γj)φt−1
j,optj

(1 − φt−1
j,optj

)∥xj,1∥2 min
τ ′≠optj

(xj,optj
−xj,τ)⊺(xj,optj

−xj,τ ′)

−max
i≠j

ℓt−1,i(γi,opti
− γi)φt−1

i,opti
(1 − φt−1

i,opti
)∣x⊺i,1xj,1∣ max

τ ′≠opti

∣(xj,optj
−xj,τ)⊺(xi,opti

−xi,τ ′)∣. (19)

Next, we use Assumption 1 and that nΥT ≥ 1 to get

max
i≠j

max
τ ′≠opti

(xj,optj
−xj,τ)⊺(xi,opti

−xi,τ ′) ≤max
i≠j
∣x⊺j,optj

xi,opti
∣ + 3 max

i,j∶i≠j,τ∈[T],
τ ′∈[T]∖{optj}

∣x⊺i,τ xj,τ ′ ∣

≤ 4
∥xj,optj

∥2

4
= ∥xj,optj

∥2. (20)
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Similarly,

min
τ ′≠optj

(xj,optj
−xj,τ)⊺(xj,optj

−xj,τ ′) ≥ ∥xj,optj
∥2 − 3 max

τ∈[T],
τ ′∈[T]∖{optj}

∣x⊺j,τ xj,τ ′ ∣

≥ ∥xj,optj
∥2 − 3

∥xj,optj
∥2

4
= 1

4
∥xj,optj

∥2. (21)

Combining Eqs. (16), (20) and (21), we have

ζ ∶=
n maxi≠j ℓt,i(γi,opti

− γi)φt−1
i,opti

(1 − φt−1
i,opti

)
ℓt,j(γj,optj

− γj)φt−1
j,optj

(1 − φt−1
j,optj

)
maxi,τ ′≠opti

(xj,optj
−xj,τ)⊺(xi,opti

−xi,τ ′)
minτ ′≠optj

(xj,optj
−xj,τ)⊺(xj,optj

−xj,τ ′)

≤ n
maxi ℓt−1,i(γi,opti

− γi)
mini ℓt−1,i(γi,opti

− γi)
1/4

1/(4T)
∥xj,optj

∥2

∥xj,optj
∥2/4

≤ 4nTκ
maxi ℓt−1,i

mini ℓt−1,i

≤ 4nTκ
maxi exp(−(φt−1

i,opti
γi,opti

+ (1 − φt−1
i,opti

)γi))
mini exp(−(φt−1

i,opti
γi,opti

+ (1 − φt−1
i,opti

)γi))

≤ 4nTκ
maxi exp(−γi)

mini exp(−γi,opti
) = 4nΥT. (22)

Using Assumption 1 and Eq. (22), we have

∥xj,1∥2 ≥ ζ max
i≠j
∣⟨xi,1, xj,1⟩∣ ,

which implies that Eq. (19) is non-negative.

Case 2: optj = 1. In this case, let I ∶= {i ∈ [n] ∶ yi = yj ∧ opti = 1}. Using Eq. (18), we
get

(xj,optj
−xj,τ)⊺(−∇W L̂(Wt−1))xj,1

≥ ℓt−1,j

n
(γj,optj

− γj)φt−1
j,optj

(1 − φt−1
j,optj

)∥xj,1∥2 min
τ ′≠optj

(xj,optj
−xj,τ)⊺(xj,optj

−xj,τ ′)

+ min
i≠j,i∈I

ℓt−1,i(γi,opti
− γi)φt−1

i,opti
(1 − φt−1

i,opti
)x⊺i,1xj,1 min

τ ′≠opti

(xj,optj
−xj,τ)⊺(xi,opti

−xi,τ ′)

− max
i≠j,i∉I

ℓt−1,i(γi,opti
− γi)φt−1

i,opti
(1 − φt−1

i,opti
)∣x⊺i,1xj,1∣ max

τ ′≠opti

∣(xj,optj
−xj,τ)⊺(xi,opti

−xi,τ ′)∣. (23)

Using Assumption 1, the second term is non-negative. For the remaining two terms, we can proceed in a
similar way as the previous case to show that using Assumption 1, these terms are also non-negative.

Using Eq. (17), we get

(xj,optj
−xj,τ)⊺(Wt −Wt−1)xj,1 = η

(xj,optj
−xj,τ)⊺(−∇W L̂(Wt−1))xj,1

∥∇W L̂(Wt−1)∥
≥ 0.

Then, for any τ ≠ optj , we have

φt
j,optj

/φt
j,τ

φt−1
j,optj

/φt−1
j,τ

= exp ((xj,optj
−xj,τ)⊺(Wt −Wt−1)xj,1) ≥ 1.

By telescoping, we get
φt

j,optj

φt
j,τ
≥

φ0
j,optj

φ0
j,τ

, which implies that φt
j,optj

≥ φ0
j,optj

.
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Lemma 4. Under Assumption 2, for Wmm as defined in (W-SVM) and any W ,

⟨− ∇W L̂(W )
∥∇W L̂(W )∥F

,
Wmm

∥Wmm∥
⟩ ≥ (2B2Λ)−1 > 0.

Proof. First, using Eq. (14) for Wmm, we have

⟨−∇W L̂(W ), Wmm⟩ ≥min
i
(a∗i,opti

− max
τ≠opti

a∗i,τ)
1
n

n

∑
i=1

ℓi(γi,opti
− γi)φi,opti

(1 − φi,opti
)

≥ 1
n

n

∑
i=1

ℓi(γi,opti
− γi)φi,opti

(1 − φi,opti
), (24)

where a∗i =XiWmmxi,1, and the second inequality follows by the definition of Wmm.

Let Ŵ ∶= − ∇W L̂(W )
∥∇W L̂(W )∥F

, and âi =XiŴ xi,1, then by similar calculations as Eq. (14), we have

∥∇W L̂(W )∥F = ⟨−∇W L̂(W ), Ŵ ⟩

= 1
n

n

∑
i=1

ℓi(γi,opti
− γi)φi,opti

(1 − φi,opti
) [âi,opti

−
∑τ≠opti

φi,τ âi,τ

∑τ≠opti
φi,τ

]

≤max
i
(âi,opti

− min
τ≠opti

âi,τ)
1
n

n

∑
i=1

ℓi(γi,opti
− γi)φi,opti

(1 − φi,opti
)

≤ 2B2 1
n

n

∑
i=1

ℓi(γi,opti
− γi)φi,opti

(1 − φi,opti
), (25)

where for the last step we use

max
i
(âi,opti

− min
τ≠opti

âi,τ) ≤ 2 max
i,τ
∣âi,τ ∣ = 2 max

i,τ
∣x⊺i,τ Ŵ xi,1∣

≤ 2 max
i
∥Xi∥2,∞∥xi,1∥∥Ŵ ∥ ≤ 2B2.

Using Eqs. (24) and (25), we get

⟨− ∇W L̂(W )
∥∇W L̂(W )∥F

,
Wmm
∥Wmm∥

⟩ ≥ (2B2Λ)−1.

Lemma 5 (Iterate Norm). Using the updates in Eq. (2), under the conditions of Lemma 2 and Assumption 2,
at any time t > 0, we have

2η((4B2Λ)−1 ∨ 1)t ≥ ∥Wt∥F ≥ η(4B2Λ)−1t. (26)

Proof. Using Eq. (2) and Lemma 4 with W =Wt, we have

∥Wt∥ = ∥W0 −
t−1
∑
t′=0

ηt′∇W L̂(Wt)∥

≥ ⟨W0, W mm⟩ +
t−1
∑
t′=0

η ⟨− ∇W L̂(Wt)
∥∇W L̂(Wt)∥F

,
Wmm
∥Wmm∥

⟩

≥ η(2B2Λ)−1t − ∣⟨W0, W mm⟩∣ .

Under the conditions of Lemma 2,

∣⟨W0, W mm⟩∣ ≤ ∥W0∥F ≤ η(4B2Λ)−1,
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which gives the required result for t > 0.

Similarly, for the upper bound we have

∥Wt∥F = ∥W0 −
t−1
∑
t′=0

ηt′∇W L̂(Wt)∥
F

≤ ∥W0∥ +
t−1
∑
t′=0

η

≤ η(4B2Λ)−1 + ηt.

Lemma 6 (Data Example 1). Using u∗ = 1
U2 (µ+ − µ−) and d ≳ Ω(n2T2 log ( 4n

δ
)), data generated as per

Example 1 satisfies Ass. 1 and 2 with probability at least 1 − δ, for any δ ∈ (0, 1).

Proof. Using u∗ = 1
U2 (µ+ −µ−), for all i ∈ [n] and τ ≠ opti, we have

γi,opti
= yu⊺∗xi,opti

= 1, γi,τ = yu⊺∗xi,τ = 0.

Using this, we have

Υ =
max

i
(γi,opti

− γi)

min
i
(γi,opti

− γi)

min
i

exp(γi,opti
)

max
i

exp(γi)
= e.

Next, by using Bernstein inequality, we know with probability at least 1 − δ
2n

, for every i ∈ [n] and τ ≠ opti

we have

∣∥xi,opti
∥2 − σ2d −U2∣ ≤ cσ2

√
d log (4n

δ
) ≤ σ2d

2
,

∣∥xi,τ∥2 − ρ2d∣ ≤ cρ2
√

d log (4n

δ
) ≤ ρ2d

2
.

where c > 0 is an absolute constant and we use d ≥ 4c2 log ( 4n
δ
).

Further, for any i, j ∈ [n], i ≠ j and any τ, τ ′ ∈ [T]. By applying Bernstein’s inequality, each of the following is
true with probability at least 1 − δ

2n2 ,

∣⟨xi,opti
, xj,optj

⟩ − ⟨µyi , µyj ⟩∣ ≤ 2σ2
√

d log (4n

δ
), ∣⟨xi,τ ′ , xj,τ ⟩∣ ≤ 2ρ2

√
d log (4n

δ
),

∣⟨xi,opti
, xj,τ ⟩∣ ≤ 2σρ

√
d log (4n

δ
),

where τ ′ ≠ opti, τ ≠ optj .

In order to satisfy Assumption 1, ignoring the log factors, we require

(U2 + σ2d) ∧ ρ2d ≳ nT (ρ2√d ∨ σρ
√

d)
U2 + σ2√d ≳ nT (σ2√d ∨ ρ2√d ∨ σρ

√
d)

The above inequalities hold if we have d = Ω̃(n2T2) and U2 ≥ Ω̃((σ ∨ ρ)2nT
√

d). The proof finishes by the
application of a union bound.

We now state the key Lemma used in the proof of Thm. 1 below, with the expression for Rϵ.
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Lemma 7. Under the conditions of Lemma 2 and Assumptions 1 and 2, for any ϵ ∈ (0, 1), there exists

Rϵ ∶= 2Λϵ−1(log(4n(B2Λ)−1ΥT3ϵ−1) ∨ 5 log(20TB2Λϵ−1)),

such that for every t where ∥Wt∥ ≥ Rϵ,

⟨−∇W L̂(Wt),
Wmm

∥Wmm∥
⟩ ≥ (1 − ϵ) ⟨−∇W L̂(Wt),

Wt

∥Wt∥
⟩ . (27)

Remark 1. Lem. 7 improves Lem. 10 of (Tarzanagh et al., 2023a), which only holds for n=1, i.e., for a
single training sample (same restriction as (Tarzanagh et al., 2023b)). Our key idea to extend the result to
n≥1 is to divide the samples into three sets, based on whether the constraints in (W-SVM) are violated (I1),
satisfied with a small margin (I2) or well satisfied (I3). We prove a tighter version for samples in I1 and the
residual allows us to prove the result for the sum over all samples.

Proof. Let ãi ∶=XiW̃txi,1, a∗i ∶=XiWmmxi,1. We consider two scenarios based on whether ∥W̃t −Wmm∥ ≤
ν

2B2 (Scenario 1) or not (Scenario 2), where

W̃t ∶=
Wt

∥Wt∥
∥Wmm∥, ν ∶= ϵ

(1 − ϵ) . (28)

Scenario 1 of the proof is the same as (Tarzanagh et al., 2023a). Below, we consider Scenario 2.

Using the definition of ν and similar calculations to Eq. (14), Eq. (27) translates to

1
n

n

∑
i=1

ℓt,i(γi,opti
− γi)φt

i,opti
(1 − φt

i,opti
)h̃t,i ≤ (1 + ν) 1

n

n

∑
i=1

ℓt,i(γi,opti
− γi)φt

i,opti
(1 − φt

i,opti
)h∗t,i, (29)

where h̃t,i ∶= ãi,opti
− ∑τ≠opti

φt
i,τ ãi,τ

∑τ≠opti
φt

i,τ
and h∗t,i is defined similarly.

For any sample i ∈ [n], let

δmax
i (ϵ, ω) ∶= max

τ∉{opti}
ãi,opti

− ãi,τ − 1,

δmin
i (ϵ, ω) ∶= min

τ∉{opti}
ãi,opti

− ãi,τ − 1.

Define the following sets

I1 ∶= {i ∈ [n] ∣ δmin
i ≤ 0.3ν},

I2 ∶= {i ∈ [n] ∣ 0.3ν < δmin
i ≤ 0.8ν},

I3 ∶= {i ∈ [n] ∣ δmin
i ≥ 0.8ν}.

Intuitively, I1 is the set of samples for which some (W-SVM) constraints are either violated or all constraints
are barely satisfied. Similarly, I3 contains samples where all the (W-SVM) constraints are satisfied. Finally,
I2 makes up the rest of the samples.

First, we will show that for any i ∈ I1,

[ãi,opti
−
∑τ≠opti

φt
i,τ ãi,τ

∑τ≠opti
φt

i,τ

] ≤ (1 + 0.5ν) [a∗i,opti
−
∑τ≠opti

φt
i,τ a∗i,τ

∑τ≠opti
φt

i,τ

] . (30)

Next, we will show that for any i ∈ I2, we have h̃t,i ≤ (1 + ν)h∗t,i, i.e.

[ãi,opti
−
∑τ≠opti

φt
i,τ ãi,τ

∑τ≠opti
φt

i,τ

] ≤ (1 + ν) [a∗i,opti
−
∑τ≠opti

φt
i,τ a∗i,τ

∑τ≠opti
φt

i,τ

] . (31)
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Finally, notice that in order to complete the proof for Eq. (29), using Eqs. (30) and (31) it suffices to show
that

∑
i∈I3

ℓt,i(γi,opti
− γi)φt

i,opti
(1 − φt

i,opti
)(h̃t,i − (1 + ν)h∗t,i)

≤ 0.5ν ∑
i∈I1

ℓt,i(γi,opti
− γi)φt

i,opti
(1 − φt

i,opti
)h∗t,i. (32)

Using h∗t,i ≥ 1, Eq. (32) follows when

∑
i∈I3

ℓt,i(γi,opti
− γi)φt

i,opti
(1 − φt

i,opti
)(h̃t,i − 1 − ν) ≤ 0.5ν ∑

i∈I1

ℓt,i(γi,opti
− γi)φt

i,opti
(1 − φt

i,opti
). (33)

Case 1: Sample i ∈ I1, i.e. δmin
i ≤ 0.3ν.

If δmax
i < 0.5ν, (30) follows directly. For the rest of the samples i where δmax

i ≥ 0.5ν, let

N ∶= {τ ∈ [T] ∶ ai,opti
− ai,τ ≤ 1 + 0.4ν}.

Let R′ ∶= ∥Wt∥
∥Wmm∥ , then by definition of N , δmin, we have

∑
τ≠opti,τ∉N

φt
i,τ

∑
τ≠opti

φt
i,τ

≤
T maxτ≠opti,τ∉N φt

i,τ

φt
i,τ

≤ T exp(−R′(1 + 0.4ν))
exp(−R′(1 + δmin

i ))

≤ T exp(−0.1R′ν).

Combining these, we have

∑
τ≠opti

(ãi,opti
− ãi,τ)φt

i,τ

∑
τ≠opti

φt
i,τ

≤ (1 + 0.4ν)
∑

τ∈N
φt

i,τ

∑
τ≠opti

φt
i,τ

+ (1 + δmax
i )

∑
τ≠opti,τ∉N

φt
i,τ

∑
τ≠opti

φt
i,τ

≤ (1 + 0.4ν)
∑

τ≠opti

φt
i,τ − ∑

τ≠opti∉N
φt

i,τ

∑
τ≠opti

φt
i,τ

+ (1 + δmax
i )

∑
τ≠opti,τ∉N

φt
i,τ

∑
τ≠opti

φt
i,τ

≤ 1 + 0.4ν + (δmax
i − 0.4ν)T exp(−0.1R′ν).

To satisfy (30), we need (δmax
i − 0.4ν)T exp(−0.1R′ν) ≤ 0.1ν, which is true when

R′ ≥ (0.1ν)−1 log(T(δmax
i /(0.1ν) − 4)).

This is true since R′ ≥ 10ϵ−1 log(10T maxi∈[n] δ
max
i /ϵ), where we use the definition of ν from Eq. (28).

Case 2: Sample i ∈ I2, i.e. 0.3ν < δmin ≤ 0.8ν.

If δmax
i < ν, (31) follows directly. For the rest of the samples where δmax

i ≥ ν, we can proceed in a
similar way as Case 1. We use a threshold of 0.9ν to split the tokens, and obtain

∑
τ≠opti

(ai,opti
− ai,τ)φt,i,τ

∑
τ≠opti

φt,i,τ
≤ 1 + ν,

when R′ ≥ 10ϵ−1 log(10T maxi∈[n] δ
max
i /ϵ).
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Case 3: Sample i ∈ I3, i.e. δmin
i ≥ 0.8ν.

As ∥W̃t −Wmm∥ ≥ ν
2B2 , at least one sample i ∈ [n] violates the (W-SVM) constraints, i.e. ∣I1∣ ≥ 1. We have

∑
i∈I1

ℓt,i(γi,opti
− γi)φt

i,opti
(1 − φt

i,opti
) ≥min

i∈I1
ℓt,i(γi,opti

− γi)min
t
(φt

i,opti
)2 ∑

τ≠opti

φt
i,τ /φt

i,opti

≥min
i∈I1

ℓt,i(γi,opti
− γi)(4T)−2 exp(−(1 + 0.3ν)R′), (34)

where the last inequality follows by using Lemmas 2 and 3, and that δmin
i ≤ 0.3ν for any i ∈ I1. Also,

∑
i∈I3

ℓt,i(γi,opti
− γi)φt

i,opti
(1 − φt

i,opti
) ≤ (n − 1)max

i∈I3
ℓt,i(γi,opti

− γi)max
i∈I3

∑
τ≠opti

φt
i,τ /φt

i,opti

≤ (n − 1)max
i∈I3

ℓt,i(γi,opti
− γi)(T − 1) exp(−(1 + 0.8ν)R′), (35)

where the last inequality follows because 0.8ν ≤ mini∈I3 δmin
i . Combining Eqs. (34) and (35) gives us (33)

when

exp(0.5νR′) ≥ 0.5ν(2B2Λ)−1(n − 1)(T − 1)(4T)2
maxi∈I3 ℓt,i(γi,opti

− γi)
mini∈I1 ℓt,i(γi,opti

− γi)
, (36)

which is true when

exp(0.5νR′) ≥ 4n(B2Λ)−1ΥT3ϵ−1,

which is true when R′ ≥ 2ϵ−1 log(4n(B2Λ)−1ΥT3ϵ−1).

Combining all conditions on R′, and using δmax
i ≤ 2B2Λ for all i ∈ [n], we get the desired result

since

Rϵ ≥ Λ−1 = 2Λϵ−1(log(4n(B2Λ)−1ΥT3ϵ−1) ∨ 5 log(20TB2Λϵ−1)).

A.3 Proof of Theorem 1

We first restate Theorem 1, this time with the exact constants.
Theorem 5 (IB Rate). Under the conditions of Lemma 2 and Assumptions 1 and 2, using the updates in Eq.
(2) with η ≤ (2B2)−1 log(2T − 1), for any t ≥ t0 ∶= ( 10BΛ√

η
)

3
∨ log (ηT(nΥ(B2Λ)−2T2∨5)

20Λ ),

⟨ Wt

∥Wt∥
,

Wmm

∥Wmm∥
⟩ ≥ 1 − C(η, B, Λ, t0)(log t)2

t
,

where C(η, B, Λ, t0) = 4η−1B2Λ (∥Wt0∥ − ⟨Wt0 , W mm⟩ + 2B2Λ(40Λ + η)).
Remark 2 (Comparison to (Tarzanagh et al., 2023a).). Thm. 1 establishes finite-time convergence of
NGD to Wmm starting from any initialization direction. This marks a clear improvement over prior work
(Tarzanagh et al., 2023a), which demonstrates that GD converges asymptotically (t→∞) to Wmm only under
an appropriate local initialization direction. The only previously known global convergence result in Tarzanagh
et al. (2023b;a) requires Ass. 2 and n = 1, limiting its applicability to training with a single sample. Thm.
1 addresses this limitation and additionally provides convergence rates. For completeness, we demonstrate
in Thm. 6 in the Appendix that GD (with constant step size) also converges globally to Wmm under the
conditions specified in Thm. 1, without requiring n = 1.
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Proof. First, we use Lemma 5 to show that Lemma 7 is true for any t ≥ t0, by selecting ϵ = ϵt ∶=
(80B2Λ2 log t)(ηt)−1. Since log t < 1.25t1/3 for t > 0, ϵt ≤ 1 for t ≥ (10BΛη−1/2)3. We also have

2Λϵ−1(log(4nΥ(B2Λ)−1T3ϵ−1) ∨ 5 log(20TB2Λϵ−1)) ≤ 10Λϵ−1 log((4nΥ(B2Λ)−1T3 ∨ 20TB2Λ)ϵ−1)

= 10Λ ηt

80B2Λ2 log t
log ((4nΥ(B2Λ)−1T3 ∨ 20TB2Λ) ηt

80B2Λ2 log t
)

≤ η(4B2Λ)−1t

log t
(log t ∨ log(ηT(nΥ(B2Λ)−2T2 ∨ 5)

20Λ
))

≤ η(4B2Λ)−1t.

Thus, ∥Wt∥ ≥ R for t ≥ t0 and we can use Lemma 7 with ϵ = ϵt, i.e.,

⟨−∇W L̂(Wt),
Wmm
∥Wmm∥

⟩ ≥ (1 − ϵt) ⟨−∇W L̂(Wt),
Wt

∥Wt∥
⟩ .

Using the update Eq. (2), we have

⟨Wt+1 −Wt,
Wmm
∥Wmm∥

⟩ ≥ (1 − ϵt) ⟨Wt+1 −Wt,
Wt

∥Wt∥
⟩

= 1
2∥Wt∥

(∥Wt+1∥2 − ∥Wt∥2 − ∥Wt+1 −Wt∥2) − ϵt ⟨Wt+1 −Wt,
Wt

∥Wt∥
⟩

= 1
2∥Wt∥

(∥Wt+1∥2 − ∥Wt∥2) −
η2

2∥Wt∥
+ ϵtη ⟨∇W L̂(Wt), Wt⟩ (using Eq. (2))

≥ ∥Wt+1∥ − ∥Wt∥ −
η2

2∥Wt∥
− ϵtη (since a2 − b2

2b
≥ a − b ∀ a, b > 0)

≥ ∥Wt+1∥ − ∥Wt∥ −
80B2Λ2 log t

t
− 2ηB2Λ(t + 1)−1 (substituting ϵt, using Lemma 5).

Summing over t ≥ t0, we get

⟨Wt, W mm⟩ ≥ ∥Wt∥ − ∥Wt0∥ + ⟨Wt0 , W mm⟩ − 80B2Λ2
t

∑
t′=t0

(log t′)(t′)−1 − 2ηB2Λ
t

∑
t′=t0

(t′ + 1)−1. (37)

We bound the last two terms as follows
t

∑
t′=t0

(log t′)(t′)−1 ≤ log t
t

∑
t′=t0

(t′)−1 ≤ (log t)2,

t

∑
t′=t0

(t′ + 1)−1 ≤ log t.

Using these in Eq. (37) and dividing by ∥Wt∥ throughout, we get

⟨ Wt

∥Wt∥
,

Wmm
∥Wmm∥

⟩ ≥ 1 − 1
∥Wt∥

(∥Wt0∥ − ⟨Wt0 , W mm⟩ + 2B2Λ(40Λ + η)(log t)2)

≥ 1 − C(η, B, Λ, t0)(log t)2
t

,

where the last step follows by Lemma 5.

A.4 Optimal Rate for NGD

In Th. 1, we showed an upper bound on the correlation ⟨W t, W mm⟩ ≤ 1 − Ω̃(t−1) for NGD. In this section,
we consider the example used in Sec. 3.3 to derive a lower bound on the correlation.
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We restate the example here for convenience. Let n = 1, T = 2, y = 1, x1 = [1, 0]⊺, x2 = [0, 0]⊺ and u∗ = [1, 0]⊺.
As we saw in Sec. 3.3, opt = 1, γopt − γ = 1, Wmm = (x1 −x2)x⊺1 =X and Λ = 1. Using this, we can write

∇W L̂(Wt) = −L̂(Wt)φt
opt(1 − φt

opt)Wmm, and Wt+1 =W0 + ηGtWmm,

where GtWmm ∶= ∑t
t′=0

∇W L̂(Wt′)
∥∇W L̂(Wt′)∥

= (t + 1)Wmm.

Clearly, ∥Wt∥ ≤ ηt + ∥W0∥ ≤ O(t). Using Eq. (3), we have

⟨W t, W mm⟩ ≈ 1 − ∥W0∥2 − (W 11
0 )2

2∥Wt∥2
≤ 1 −Ω(t−2).

Comparing this with the upper bound, we see that the rate in Th. 1 may not be the optimal rate for NGD.
However, it is the first finite-time convergence rate for self-attention. Improving this rate is an interesting
direction for future work.

A.5 Proofs for Additional Results in Section 3.2

Lemma 8 (Softmax score rate). Under the conditions of Lemma 2 and Assumptions 1 and 2, using
the updates in Eq. (2), for any i ∈ [n] and any t ≥ 211(B2Λ)2C(η, B, Λ, t0) ∨ t0, where C(η, B, Λ, t0) ∶=
4η−1B2Λ (∥Wt0∥ − ⟨Wt0 , W mm⟩ + 2B2Λ(40Λ + η)), t0 ∶= ( 10BΛ√

η
)

3
∨ log (ηT(nΥ(B2Λ)−2T2∨5)

20Λ ),

φt
i,opti

≥ 1
1 + (T − 1) exp(−η(8B2Λ2)−1t) .

Proof. Using Theorem 1 and Lemma 5, we have

(xi,τ −xi,opti
)⊺(Wt −W mm∥Wt∥ +W mm∥Wt∥)xi,1 ≤ 2B2∥Wt∥∥Wt −W mm∥ −

1
∥Wmm∥

∥Wt∥

≤ 2
√

2B2
√

C(η, B, Λ, t0)
t1/2 (2ηt) − η(4B2Λ2)−1t

= 4ηB2
√

2C(η, B, Λ, t0)
√

t − η(4B2Λ2)−1t

≤ −η(8B2Λ2)−1t, (38)

since t ≥ 211(B2Λ)2C(η, B, Λ, t0).
We use this to find the softmax rate as follows

φt
i,opti

= 1
1 +∑τ≠opti

exp((xi,τ −xi,opti
)⊺Wtxi,1)

= 1
1 +∑τ≠opti

exp((xi,τ −xi,opti
)⊺(Wt −W mm∥Wt∥ +W mm∥Wt∥)xi,1)

≥ 1
1 + (T − 1) exp(−η(8B2Λ2)−1t) .

Theorem 6 (Asymptotic Convergence of GD). Under the conditions of Lemma 2 and Assumptions 1 and 2,
using the standard GD updates with η ≤ log(2T−1)

B4ζ
, for any t ≥ tϵ such that ∥Wt∥ ≥ Rϵ ∨ 1/2,

⟨ Wt

∥Wt∥
,

Wmm

∥Wmm∥
⟩ ≥ 1 − ϵ − C(η, B, Λ, ϵ)

∥Wt∥
,

where C(η, B, Λ, ϵ) = 2B2Λ
η
(1 − ϵ)∥Wtϵ∥ (1 − (1 − ϵ)−1 ⟨W tϵ , W mm⟩ − 2η∥Wtϵ∥−1L̂(θtϵ)).
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Proof. First, we show that Lemma 3 holds for standard GD updates, i.e., for any t ≥ 0 and any j ∈ [n],

φt
j,optj

≥ φ0
j,optj

∧ 1
T

.

Following similar steps as the proof of Lemma 3, we consider two scenarios,
Scenario 1: At time t − 1, φt−1

j,optj
> 1 − 1

2T . This implies

φt−1
j,optj

≤ − log(2T − 1), ∀τ ≠ optj .

After the gradient step at time t − 1, for any τ ≠ optj , we have,

(xj,τ −xj,optj
)⊺Wtxj,1 = (xj,τ −xj,optj

)⊺Wt−1xj,1 − η(xj,optj
−xj,τ)⊺(−∇W L̂(Wt−1))xj,1

≤ − log(2T − 1) + η∥xj,τ −xj,optj
∥∥xj,1∥∥∇W L̂(Wt−1)∥

≤ − log(2T − 1) + η(2B2)(B2L̂(Wt−1)max
i
(γi,opti

− γi)φt
i,opti

(1 − φt
i,opti

))

≤ − log(2T − 1) + ηB4 max
i

exp(−γi)max
i
(γi,opti

− γi)

≤ 0,

where the last step follows since η ≤ log(2T−1)
B4ζ

. This gives φt
j,optj

≥ 1
T .

Scenario 2: At time t − 1, φt−1
j,optj

≤ 1 − 1
2T . The proof for this part is the same as Lemma 3.

Using this, we can easily show that Lemma 7 is true for GD updates, i.e., for any ϵ ∈ (0, 1), there exists

Rϵ ∶= 2Λϵ−1(log(4n(B2Λ)−1ΥT3ϵ−1) ∨ 5 log(20TB2Λϵ−1)),

such that for every t where ∥Wt∥ ≥ Rϵ,

⟨−∇W L̂(Wt),
Wmm
∥Wmm∥

⟩ ≥ (1 − ϵ) ⟨−∇W L̂(Wt),
Wt

∥Wt∥
⟩ .

Once we have this, the remaining proof is the same as Theorem 4 in (Tarzanagh et al., 2023a).

Theorem 7 (IB rate for Polyak-step). Under the conditions of Lemma 2 and Assumptions 1 and 2, using
GD updates with Polyak-step, with η ≤ (2B2)−1ω1 log(2T − 1), where ω1 = β(1 − β)Λ−1 mini(γi,opti

− γi), for

any T0 ≥ t ≥ t0 ∶= ω2ν (( 10BΛ√
η
)

3
∨ log (ηT(nΥ(B2Λ)−2T2∨5)

20Λ )), where ω2 = 0.5B2 maxi(γi,opti
−γi), such that for

any i ∈ [n], φt
i,opti

≤ β,

⟨ Wt

∥Wt∥
,

Wmm

∥Wmm∥
⟩ ≥ 1 − C(η, B, Λ, t0)(log t)2

t
,

where C(η, B, Λ, t0) = 4η−1B2Λω2ν (∥Wt0∥ − ⟨Wt0 , W mm⟩ + 2B2Λω−1
1 (40Λ + ηυω−1

1 ω2)).

Proof. To extend our analysis and results for NGD updates to the Polyak-step, we mainly use the following
lower bound on the gradient norm,

∥∇W L̂(Wt)∥ ≥ L̂(Wt)min
i
⟨yi∇W Φ(θt, Xi),

Wmm
∥Wmm∥

⟩

= Λ−1L̂(Wt)min
i
(γi,opti

− γi)φt
i,opti

(1 − φt
i,opti

) [a∗i,opti
−
∑τ≠opti

φt
i,τ a∗i,τ

∑τ≠opti
φt

i,τ

]

≥ Λ−1L̂(Wt)min
i
(γi,opti

− γi)min
i,t′≤t

φt′
i,opti

(1 − φt′
i,opti

)

≥ β(1 − β)Λ−1 min
i
(γi,opti

− γi)L̂(Wt) = ω1L̂(Wt).
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Note that similar lower bounds have appeared when deriving loss convergence rates of linear predictors
trained with NGD on separable data (Nacson et al., 2019).

We also have the following upper bound,

∥∇W L̂(Wt)∥ ≤ L̂(Wt)(1/4)max
i
(γi,opti

− γi)(2B2) = ω2L̂(Wt).

First, we show that Lemma 3 holds for Polyak-step updates, i.e., for any t ≥ 0 and any j ∈ [n],

φt
j,optj

≥ φ0
j,optj

∧ 1
T

.

Following similar steps as the proof of Lemma 3, we consider two scenarios,
Scenario 1: At time t − 1, φt−1

j,optj
> 1 − 1

2T . This implies

φt−1
j,optj

≤ − log(2T − 1), ∀τ ≠ optj .

After the gradient step at time t − 1, for any τ ≠ optj , we have,

(xj,τ −xj,optj
)⊺Wtxj,1 = (xj,τ −xj,optj

)⊺Wt−1xj,1 − ηt−1(xj,optj
−xj,τ)⊺(−∇W L̂(Wt−1))xj,1

≤ − log(2T − 1) + η
L̂(Wt−1) − L̂∗

∥∇W L̂(Wt−1)∥2
∥xj,τ −xj,optj

∥∥xj,1∥∥∇W L̂(Wt−1)∥

≤ − log(2T − 1) + η
L̂(Wt−1)

ω1L̂(Wt−1)
(2B2)

= − log(2T − 1) + η
2B2

ω1

≤ 0,

where the last step follows since η ≤ ω1 log(2T−1)
2B2 . This gives φt

j,optj
≥ 1

T .

Scenario 2: At time t − 1, φt−1
j,optj

≤ 1 − 1
2T . The proof for this part is the same as Lemma 3.

Using this, we can easily show that Lemma 7 is true for Polyak-step updates, i.e., for any ϵ ∈ (0, 1), there
exists

Rϵ ∶= 2Λϵ−1(log(4n(B2Λ)−1ΥT3ϵ−1) ∨ 5 log(20TB2Λϵ−1)),

such that for every t where ∥Wt∥ ≥ Rϵ,

⟨−∇W L̂(Wt),
Wmm
∥Wmm∥

⟩ ≥ (1 − ϵ) ⟨−∇W L̂(Wt),
Wt

∥Wt∥
⟩ . (39)

Next, following similar steps as the proof of Lemma 5, the iterate norm growth can be characterized as
follows. Using Lemma 4 with W =Wt, for any t ≤ T0,

∥Wt∥ = ∥W0 −
t−1
∑
t′=0

ηt′∇W L̂(Wt)∥

≥ ⟨W0, W mm⟩ +
t−1
∑
t′=0

η
L̂(Wt) − L̂∗

∥∇W L̂(Wt)∥
⟨− ∇W L̂(Wt)
∥∇W L̂(Wt)∥

,
Wmm
∥Wmm∥

⟩

≥ η(2B2Λω2υ)−1t − ∣⟨W0, W mm⟩∣
≥ η(4B2Λω2υ)−1t,
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since ω2 > 1. Using this, and following similar steps as the proof of Theorem 1, we can show that Eq. (39) is
true for any t ≥ t0. Using ϵt = ϵt ∶= (80B2Λ2 log t)(ηt)−1, we have,

⟨Wt+1 −Wt,
Wmm
∥Wmm∥

⟩ ≥ (1 − ϵt) ⟨Wt+1 −Wt,
Wt

∥Wt∥
⟩

= 1
2∥Wt∥

(∥Wt+1∥2 − ∥Wt∥2) −
η2

2∥Wt∥
(L̂(Wt) − L̂∗)2

∥∇W L̂(Wt)∥2
+ ϵtη

L̂(Wt) − L̂∗

∥∇W L̂(Wt)∥
⟨∇W L̂(Wt), Wt⟩

≥ ∥Wt+1∥ − ∥Wt∥ −
η2

2ω2
1∥Wt∥

− ϵtη

ω1

≥ ∥Wt+1∥ − ∥Wt∥ − 80B2Λ2ω−1
1 (log t)t−1 − 2ηυB2Λω−2

1 ω2(t + 1)−1.

Then, telescoping over t ≥ t0, we get

⟨ Wt

∥Wt∥
,

Wmm
∥Wmm∥

⟩ ≥ 1 − 1
∥Wt∥

(∥Wt0∥ − ⟨Wt0 , W mm⟩ + 2B2Λω−1
1 (40Λ + ηυω−1

1 ω2)(log t)2)

≥ 1 − C(η, B, Λ, t0)(log t)2
t

.

B Joint Optimization

B.1 Preliminaries

We first state the complete version of Condition 1 below.
Condition 2 (Complete version of Condition 1). Let B = αρ

√
1.5d. We consider the following conditions for

any δ ∈ (0, 1),

• Zero initialization: ∥u0∥ = 0, ∥W0∥ = 0,

• opt token has larger norm: α ≥ 6,

• Sufficient overparameterization: d ≥ C0α4n4 log ( 10n2

δ
), where C0 is an absolute constant,

• Small step-size: η ≤ 1
18α2ρ2d

∧ αρ
160n

∧ log(2)
3B

∧ B

128ω0
√

1.5n
, where ω0 = 13(B ∨ 1)5(B ∨ d).

Lemma 9. Under the data model DM and Condition 1, the following events are true with probability at least
1 − δ,

• E1 ∶= {α2ρ2d
2 ≤ ∥xi,opti

∥2 ≤ 3α2ρ2d
2 , ∀i ∈ [n]},

• E2 ∶= {ρ2d
2 ≤ ∥xi,τ∥2 ≤ 3ρ2d

2 , ∀i ∈ [n], τ ≠ opti},

• E3 ∶= {∣⟨xi,opti
, xj,optj

⟩∣ ≤ 2α2ρ2
√

d log ( 10n2

δ
), ∀i ≠ j ∈ [n]},

• E4 ∶= {∣⟨xi,τ ′ , xj,τ ⟩∣ ≤ 2ρ2
√

d log ( 10n2

δ
), ∀i ≠ j ∈ [n], τ ′ ≠ opti, τ ≠ optj},

• E5 ∶= {∣⟨xi,opti
, xj,τ ⟩∣ ≤ 2αρ2

√
d log ( 10n2

δ
), ∀i ≠ j ∈ [n], τ ≠ optj},

Proof. First, by applying Bernstein’s inequality, with probability at least 1 − δ
5n

, for every i ∈ [n],

∣∥xi,opti
∥2 − α2ρ2d∣ ≤ cα2ρ2

√
d log (10n

δ
) ≤ α2ρ2d

2
,
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where c > 0 is an absolute constant and we use d ≥ (2c)2 log ( 10n
δ
) in the second inequality.

Similarly, since d ≥ (2c)2 log ( 10n
δ
), we also have that with probability at least 1 − δ

5n
, for every i ∈ [n],

τ ≠ opti,

∣∥xi,τ∥2 − ρ2d∣ ≤ cρ2
√

d log (10n

δ
) ≤ ρ2d

2
.

Further, for any i, j ∈ [n], i ≠ j and any τ, τ ′ ∈ [T] since ⟨xi,τ , xj,τ ′⟩ is zero-mean. By applying Bernstein’s
inequality, each of the following is true with probability at least 1 − δ

5n2 ,

∣⟨xi,opti
, xj,optj

⟩∣ ≤ 2α2ρ2
√

d log (10n2

δ
), ∣⟨xi,τ ′ , xj,τ ⟩∣ ≤ 2ρ2

√
d log (10n2

δ
),

∣⟨xi,opti
, xj,τ ⟩∣ ≤ 2αρ2

√
d log (10n2

δ
),

where τ ′ ≠ opti, τ ≠ optj .

Applying a union bound over all these finishes the proof.

B.2 Key Lemmas

We first state some intermediate Lemmas that are useful in the proofs of Theorem 2 and 3.

Lemma 10 (Iterate Norm). Using the updates in Eq. (10), at any time t > 0,

∥ut∥ ≤ 3ηt1/3.

Proof. Using Eq. (10) and triangle inequality, we get

∥ut∥ ≤ ∥ut−1∥ +
η

t2/3
∥∇uL̂(θt)∥
∥∇uL̂(θt)∥

≤ η
t−1
∑
t′=0
(1 + t′)−2/3 ≤ 3ηt1/3.

Lemma 11. Under Condition 1 and the data model DM, for any j ∈ [n], at any t > 0,

γt
j,optj

− γt
j ≥ ηω2

t−1
∑
t′=0
(t + 1)−2/3, φt

j,optj
≥ 1

2
and max

i,j∈[n]

ℓt,i

ℓt,j
≤ C,

where ω2 = ω2(α, ρ, n) ∶= αρ
n

√
log ( 10n2

δ
) and C ≥ 24 is a universal constant.

Proof. We will prove this by induction. First, we prove the three parts at t = 1 as follows.
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Since u0 = 0, for any j ∈ [n], ℓ0,j = 1. Using this, We have

(γ1
j,optj

− γ1
j ) = −ηu

0 (−∇uL̂(θ0))⊺(xj,optj
−xj,τ)

= ηu
0
n

n

∑
i=1
(yiX

⊺
i φ(ai(Wt)))⊺(xj,optj

−xj,τ)

≥ ηu
0
n
(φt

j,optj
xj,optj

+ (1 − φt
j,optj

)xj,τ)⊺(xj,optj
−xj,τ)

+ ηu
0
n
∑
i≠j

ℓt,iyiyj(φt
i,opti

xi,opti
+ (1 − φt

i,opti
)xi,τ)⊺(xj,optj

−xj,τ)

≥ ηu
0
n

⎛
⎝

1
2

α2ρ2d

2
− 3ρ2d

2
− αρ2

√
d log (10n2

δ
) − 2(n − 1)Mtρ

2α2
√

d log (10n2

δ
)
⎞
⎠

≥ ηu
0
n

α2ρ2d

16
,

since α ≥ 5, d ≥ (16n)2 log ( 10n2

δ
). Also, ∥∇uL̂(θ0)∥ ≤maxi∈[n]∥Xi∥2,∞ ≤ αρ

√
1.5d. Using these, we get

(γ1
j,optj

− γ1
j ) ≥

η
16n

α2ρ2√d16n
√

log ( 10n2

δ
)

αρ
√

1.5d

= ηαρ√
1.5

√
log (10n2

δ
) ≥ ηω2,

when n > 1. Next, we have

φ1
j,optj

/φ1
j,τ

φ0
j,optj

/φ0
j,τ

= exp ((xj,optj
−xj,τ)⊺(W1 −W0)xj,1)

= exp ((xj,optj
−xj,τ)⊺(−∇W L̂(θ0))xj,1) = 1,

since u0 = 0. Therefore, φ1
j,optj

= φ0
j,optj

≥ 1
2 .

Further, since η ≤ log(2)
3αρ
√

1.5d
, we have

max
i,j∈[n]

ℓ1,i

ℓ1,j
≤max

i
exp(2∣u⊺1Xi⊺φ1

i ∣) ≤ exp(2∥u1∥αρ
√

1.5d)

≤ exp(6ηαρ
√

1.5d) ≤ exp(2 log(2)) = 4 ≤ C.

Next, we assume that these are true at iteration t. Let Mt ∶=maxi ℓt,i and mt ∶=mini ℓt,i. We will first show
that for any j ∈ [n],

∆γt+1
j ∶= (γt+1

j,optj
− γt+1

j ) − (γt
j,optj

− γt
j)

= −ηu
t (−∇uL̂(θt))⊺(xj,optj

−xj,τ) ≥ η(t + 1)−1/3ω2. (40)
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We have

n(−∇uL̂(θt))⊺(xj,optj
−xj,τ) =

n

∑
i=1
(ℓt,iyiX

⊺
i φ(ai(Wt)))⊺(xj,optj

−xj,τ)

= ℓt,j(φt
j,optj

xj,optj
+ (1 − φt

j,optj
)xj,τ)⊺(xj,optj

−xj,τ)
+∑

i≠j

ℓt,iyiyj(φt
i,opti

xi,opti
+ (1 − φt

i,opti
)xi,τ)⊺(xj,optj

−xj,τ)

≥mt

⎛
⎝

1
2

α2ρ2d

2
− 3ρ2d

2
− αρ2

√
d log (10n2

δ
)
⎞
⎠
− 2(n − 1)Mtρ

2α2
√

d log (10n2

δ
)

= 2ρ2α2Mt

√
d log (10n2

δ
) − 2nρ2α2mt

√
d log (10n2

δ
)
⎛
⎜
⎝

Mt

mt
−

α2ρ2d
4 − 3ρ2d

2 − αρ2
√

d log ( 10n2

δ
)

2nρ2α2
√

d log ( 10n2

δ
)

⎞
⎟
⎠

≥ 2ρ2α2L̂(θt)
√

d log (10n2

δ
) − 2nρ2α2mt

√
d log (10n2

δ
)
⎛
⎝

Mt

mt
− 1

16n

¿
ÁÁÀ d

log ( 10n2

δ
)
⎞
⎠

≥ 2ρ2α2L̂(θt)
√

d log (10n2

δ
), (41)

where we use the definitions of Mt, mt, and the first inequality follows by using Lemma 9 and the second part
of the IH, the second inequality follows since Mt ≥ L̂(θt), α ≥ 6 and d ≥ 4 log ( 10n2

δ
), and the final inequality

follows by using the third part of the IH and that d ≥ (16Cn)2 log ( 10n2

δ
).

Next, we have ∥∇uL̂(θt)∥ ≤maxi∈[n]∥Xi∥2,∞L̂(θt) ≤ αρ
√

1.5dL̂(θt). Combining this with Eq. (41), we get

−∇uL̂(θt)⊺(xj,optj
−xj,τ)

∥∇uL̂(θt)∥
≥ 2ρα√

1.5n

√
log (10n2

δ
) ≥ ω1,

which implies Eq. (40). Using Eq. (40) and the first part of the IH, it follows that

γt+1
j,optj

− γt+1
j ≥ γt

j,optj
− γt

j + ηu
t ω1 ≥ ηω2

t

∑
t′=0
(t′ + 1)−2/3.

Next, we will show that for any j ∈ [n], φt+1
j,optj

≥ 1
2 . We consider two cases:

Case 1: φt
j,optj

≥ 3
4 . In this case, we can directly use the steps in Scenario 1 of the proof of Lemma 3, and

get that φt+1
j,optj

≥ 1
2 since η ≤ log(3)

3α2ρ2d
.

Case 2: φt
j,optj

≤ 3
4 . Using Lemma 10, we have

γt
i,opti

− γt
i ≤ 2∥ut∥max

i
∥Xi∥2,∞ ≤ 6η

t−1
∑
t′=0
(1 + t′)−2/3αρ

√
1.5d. (42)
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Next, using similar calculations as Eqs. (18) and (19), for any j ∈ [n], we have
(xj,optj

−xj,τ)⊺(−∇W L̂(θt))xj,1

≥ ℓt,j

n
(γt

j,optj
− γt

j)φt
j,optj

(1 − φt
j,optj

)∥xj,1∥2∥xj,optj
−xj,τ∥2

− (n − 1)
n

max
i≠j

ℓt,i(γt
i,opti

− γt
i)φt

i,opti
(1 − φt

i,opti
)∣x⊺i,1xj,1∣∣(xj,optj

−xj,τ)⊺(xi,opti
−xi,τ ′)∣

≥ mt

n
(ηω2

t−1
∑
t′=0
(t′ + 1)−2/3) 3

16
ρ2d

2
⎛
⎝

α2ρ2d

2
+ ρ2d

2
− 2αρ2

√
d log (10n2

δ
)
⎞
⎠

− (n − 1)
n

Mt(7.5ηαρ
√

d
t−1
∑
t′=0
(t′ + 1)−2/3)α2ρ2

√
d log (10n2

δ
)(α2 + 2α + 1)ρ2

√
d log (10n2

δ
)

≥ α3ρ5d3/2

n
(η

t−1
∑
t′=0
(t′ + 1)−2/3)

⎛
⎝

3
26n

√
d log (10n2

δ
)mt − 32α2(n − 1)Mt log(10n2

δ
)
⎞
⎠

≥ 32α5ρ5d3/2

n
(η

t−1
∑
t′=0
(t′ + 1)−2/3) log(10n2

δ
)
⎛
⎝

L̂(θt) + nmt

⎛
⎝

1
210α2n2

¿
ÁÁÀ d

log ( 10n2

δ
)
− Mt

mt

⎞
⎠
⎞
⎠

≥ 32α5ρ5d3/2

n
(η

t−1
∑
t′=0
(t′ + 1)−2/3) log(10n2

δ
) L̂(θt), (43)

where we use the definitions of Mt and mt, and the second inequality follows by using Lemma 9, the
first two parts of the IH, and the final inequality uses the third part of the IH and follows when d ≥
(210Cα2n2)2 log ( 10n2

δ
). This implies that

φt+1
j,optj

/φt+1
j,τ

φt
j,optj

/φt
j,τ

= exp ((xj,optj
−xj,τ)⊺(Wt+1 −Wt)xj,1) ≥ 1.

Therefore, φt+1
j,optj

≥ φt
j,optj

≥ 1
2 .

Finally, we will show that Amax
t+1 ∶=maxi,j∈[n]

ℓt+1,i

ℓt+1,j
≤ C. Let φt

i ∶= φ(ai(Wt)). For any i ∈ [n], we have

ℓt+1,i = exp(−yiu
⊺
t+1X⊺

i φt+1
i )

= exp(−yiu
⊺
t+1X⊺

i (φt+1
i −φt

i)) exp(−yiu
⊺
t X⊺

i φt
i) exp(yi(ηu

t ∇uL̂(θt))⊺X⊺
i φt

i)

= ℓt,i exp(−yiu
⊺
t+1X⊺

i (φt+1
i −φt

i)) exp
⎛
⎝
−ηu

t

n

n

∑
j=1

ℓt,j(yjX⊺
j φt

j)⊺yiX
⊺
i φt

i

⎞
⎠

, (44)

where St,i ∶=
n

∑
j=1

ℓt,j(yjX⊺
j φt

j)⊺yiX
⊺
i φt

i can be expanded as

St,i = ℓt,i∥φt
i,opti

xi,opti
+ (1 − φt

i,opti
)xi,τ∥2

+∑
j≠i

ℓt,jyiyj(φt
j,optj

xj,optj
+ (1 − φt

j,optj
)xj,τ ′)⊺(φt

i,opti
xi,opti

+ (1 − φt
i,opti

)xi,τ). (45)

Using Lemma 9 and the second part of the IH, we have

∥φt
i,opti

xi,opti
+ (1 − φt

i,opti
)xi,τ∥2 ≤

3α2ρ2d

2

∥φt
i,opti

xi,opti
+ (1 − φt

i,opti
)xi,τ∥2 ≥

1
22

α2ρ2d

2
+ 12

22
ρ2d

2
− 21

4
αρ2
√

d log (10n2

δ
) ≥ α2ρ2d

8
,

∣(φt
j,optj

xj,optj
+ (1 − φt

j,optj
)xj,τ ′)⊺(φt

i,opti
xi,opti

+ (1 − φt
i,opti

)xi,τ)∣ ≤ α2ρ2
√

d log (10n2

δ
).
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Using these in Eq. (45), we get

St,i ≤
3α2ρ2d

2
ℓt,i + nα2ρ2

√
d log (10n2

δ
)Mt, St,i ≥

α2ρ2d

8
ℓt,i − nα2ρ2

√
d log (10n2

δ
)Mt. (46)

Next, for the second term, using similar calculations as Eq. (53) and Lemma 10, we have

Rt+1,i ∶= −yiu
⊺
t+1X⊺

i (φt+1
i −φt

i) ≤ ∣u⊺t+1X⊺
i (φt+1

i −φt
i)∣

≤ 2∥ut+1∥max
i
∥Xi∥32,∞∥Wt+1 −Wt∥

≤ 6η(αρ
√

1.5d)3(t + 1)1/3η(t + 1)−1 = 2η2(αρ
√

1.5d)3(t + 1)−2/3. (47)

Consider the loss ratio for any two samples i, j ∈ [n], At ∶= ℓt,i

ℓt,j
. Using Eqs. (44) and (47), we have

At+1 = At
exp(Rt+1,i)
exp(Rt+1,j)

exp(−ηu
t

n
St,i)

exp(−ηu
t

n
St,j)

≤ At exp(12η2(αρ
√

1.5d)3(t + 1)−2/3)
exp(−ηu

t

n
St,i)

exp(−ηu
t

n
St,j)

(48)

We consider two cases:

Case 1: At < C/2. In this case, we have

ηu
t

n
St,i ≤ η(t + 1)−2/3 max

i
∥Xi∥2,∞ ≤ ηαρ

√
1.5d(t + 1)−2/3.

Using this in Eq. (48), and that η ≤ log(2)
3αρ
√

1.5d
, η ≤ 1

18α2ρ2d
, we get

At+1 ≤ At exp(12η2(αρ
√

1.5d)3) exp(2ηαρ
√

1.5d)

≤ At exp( log(2)
3αρ
√

1.5d

1
18α2ρ2d

(18α3ρ3d
√

1.5d)) exp(2 log(2)/3)

= 2At ≤ C.

Case 2: At ≥ C/2.

In this case, using Eq. (46), we have

exp(−ηu
t

n
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exp(−ηu
t
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⎛
⎝
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⎛
⎝
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⎛
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⎠
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Further,
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32n
(t + 1)−2/3 L̂(θt)

αρ
√

1.5dL̂(θt)
= ηαρ

40n
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as C ≥ 24, d ≥ (32n)2 log ( 10n2

δ
) and ∥∇uL̂(θt)∥ ≤ αρ

√
1.5dL̂(θt). Further, since η ≤ αρ

160n
, we have

exp(4η2(t + 1)−2/3) exp(−ηαρ

40n
(t + 1)−2/3) ≤ 1,

which gives At+1 ≤ At ≤ C.

Lemma 12. Let ũ ∶= ∑
i∈[n]

yixi,opti
. Under Condition 1 and the data model DM, for any j ∈ [n], τ ≠ optj,

⟨yj(xj,optj
+xj,τ),

ũ

∥ũ∥⟩ ≥
αρ

4

√
d

n
.

Proof. Using Lemma 9, we have

yj(xj,optj
+xj,τ)⊺

⎛
⎝ ∑i∈[n]

yixi,opti

⎞
⎠
= ∥xj,optj
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≥ 0.5α2ρ2d − 2(n − 1)α2ρ2
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δ
) − 2nαρ2
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d log (10n2

δ
)

≥ 0.5α2ρ2d − 4α2ρ2
√

d log (10n2

δ
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≥ α2ρ2d

3
,

since d ≥ (12n)2 log ( 10n2

δ
) Similarly, we also have

∥ũ∥ ≤
√

n max
i
∥xi,opti

∥2 + n2 max
i≠j
∣ ⟨xi,opti

, xj,optj
⟩ ∣

≤

¿
ÁÁÀ

n(1.5α2ρ2d) + 2n2α2ρ2

√
d log (10n2

δ
)

≤ αρ
√

1.75nd,

since d ≥ (8n)2 log ( 10n2

δ
). Combining these and using 3

√
1.75 ≤ 4 finishes the proof.

Lemma 13. Under Condition 1 and the data model DM, using the updates in Eq. (10), exponential loss has
the following properties:

• ∥∇θL̂(θt)∥ ≥ ∥∇uL̂(θt)∥ ≥ ω1L̂(θt),

• max
θ′∈[θt,θt+1]

L̂(θ′) ≤ 8L̂(θt),

• max
θ′∈[θt,θt+1]

∥∇2
θL̂(θ′)∥ ≤ 8(ω(θt) ∨ ω(θt+1))L̂(θt),

where ω1 = ω1(α, ρ, n, d) = B

8
√

1.5n
, ω(θt) ∶= 13(B ∨ 1)5(B ∨ d)(∥ut∥ ∨ 1)2, B = αρ

√
1.5d.

Remark 3. We note that the first property is the most challenging to show in the analysis and it yields a
PL-inequality-like form, e.g. for neural networks (Frei & Gu, 2021; Nguyen & Mondelli, 2020; Liu et al.,
2022). Analogous properties but for simpler settings, e.g. to obtain loss convergence results for linear predictors
using NGD on separable data have been shown in (Nacson et al., 2019). The second point is an analog of the
log-Lipschitzness property shown in (Taheri & Thrampoulidis, 2023a) for the analysis of two-layer neural
networks trained with NGD and controls the loss on a line between current iterate θt and the next one θt+1.
The third property of second-order self-boundedness has been seen previously in the convergence analysis of
multi-head self-attention (Deora et al., 2023) and MLPs (Taheri & Thrampoulidis, 2023b) trained with GD.
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Proof. We first obtain the lower bound on the gradient norm as follows.

∥∇θL̂(θt)∥ = sup
v∶∥v∥=1

⟨ 1
n

n

∑
i=1
∣ℓ′i,t∣yi∇θΦ(θt, Xi), v⟩

≥ ∥∇uL̂(θt)∥ = sup
v∶∥v∥=1

⟨ 1
n

n

∑
i=1
∣ℓ′i,t∣yi∇uΦ(θt, Xi), v⟩

≥ L̂(θt) sup
v∶∥v∥=1

min
i

yi∇uΦ(θt, Xi)⊺v

≥ L̂(θt) min
i
⟨yi∇uΦ(θt, Xi),

ũ

∥ũ∥⟩ , (49)

where ũ = ∑
i∈[n]

yixi,opti
. Using Lemma 11 and 12,

min
i
⟨yi∇uΦ(θt, Xi),

ũ

∥ũ∥⟩ =min
i

yi(φt
i,opti

xi,opti
+ (1 − φt

i,opti
)xi,τ)⊺ũ

≥ 0.5 min
i

yi(xi,opti
+xi,τ)⊺ũ ≥

αρ

8

√
d

n
= ω1. (50)

Using Eq. (50) in Eq. (49), we get the first bullet point.

We show the second bullet point as follows. For any θ, θ′, we have

∣yΦ(θ, X) − yΦ(θ′, X)∣ = ∣u⊺X⊺φ(XW ⊺x1) −u′⊺X⊺φ(XW ′⊺x1)∣
≤ ∣(u −u′)⊺X⊺φ(XW ⊺x1)∣ + ∣u′⊺X⊺(φ(XW ⊺x1) −φ(XW ′⊺x1))∣. (51)

These two terms can be bounded as follows.

∣(u −u′)⊺X⊺φ(XW ⊺x1)∣ ≤ ∥u −u′∥∥X⊺∥1,2 = ∥X∥2,∞∥u −u′∥, (52)
∥X⊺(φ(XW ⊺x1) −φ(XW ′⊺x1))∥ ≤ ∥X⊺∥1,2∥φ(XW ⊺x1) −φ(XW ′⊺x1)∥1

≤ 2∥X∥2,∞∥XW ⊺x1 −XW ′⊺x1∥∞
≤ 2∥X∥22,∞∥(W −W ′)⊺x1∥
≤ 2∥X∥22,∞∥x1∥∥W −W ′∥
≤ 2∥X∥32,∞∥W −W ′∥. (53)

Using Eqs. (52) and (53) in Eq. (51) for θt and θt + λ(θt+1 − θt), we get

max
λ∈[0,1]

ℓ(yΦ(θt + λ(θt+1 − θt), X))
ℓ(yΦ(θt, X))

≤ max
λ∈[0,1]

exp(∣yΦ(θt + λ(θt+1 − θt), X) − yΦ(θt, X)∣)

≤ max
λ∈[0,1]

exp (2λ∥X∥32,∞∥ut∥∥Wt+1 −Wt∥ + λ∥X∥2,∞∥ut+1 −ut∥)

≤ exp (2ηW
t ∥∇W L̂(θt)∥∥X∥32,∞∥ut∥ + ηu

t ∥∇uL̂(θt)∥∥X∥2,∞) (using Eq. (2))

≤ exp(6η∥X∥32,∞
ηt1/3

(1 + t) + η∥X∥2,∞) (using Lemma 10)

≤ exp (6η2∥X∥32,∞ + η∥X∥2,∞) .
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Since this is true for every Xi, and η ≤ log(2)
3αρ
√

1.5d
∧ log(3)

3α2ρ2d
, we get

max
θ′∈[θt,θt+1]

L̂(θ′) ≤max
i∈[n]

exp (6η2∥Xi∥32,∞ + η∥Xi∥2,∞) L̂(θt)

= exp (6η2B3 + ηB) L̂(θt) ≤ exp(6 log(2)
3

log(3)
2
+ log(2)

3
) L̂(θt)

≤ 8L̂(θt).

Next, we obtain the upper bound on the Hessian norm as follows. Using Prop. 3 from (Deora et al., 2023),
we have

∥∇θΦ(θt, X)∥ ≤ ∥X∥2,∞ + 2∥X∥22,∞∥Xut∥∞,

∥∇2
θΦ(θt, X)∥ ≤ 6d∥X∥22,∞∥X∥21,∞∥Xut∥∞ + 2

√
d∥X∥22,∞∥X∥1,∞.

Using these, we get

∥∇θΦ(θt, Xi)∥ ≤ ∥Xi∥2,∞ + 2∥Xi∥32,∞∥ut∥,
∥∇2

θΦ(θt, Xi)∥ ≤ 6d∥Xi∥52,∞∥ut∥ + 2
√

d∥Xi∥32,∞,

Ô⇒ ∥∇θΦ(θt, Xi)∥2 + ∥∇2
θΦ(θt, Xi)∥ ≤max

i∈[n]
4∥Xi∥62,∞∥ut∥2 + 6d∥Xi∥52,∞∥ut∥ + 2

√
d∥Xi∥32,∞ + ∥Xi∥22,∞

= 4B6∥ut∥2 + 6dB5∥ut∥ + 2
√

dB3 +B2

≤ 13(B ∨ 1)5(B ∨ d)(∥ut∥ ∨ 1)2 =∶ ω(θt).

Using this, we get

max
θ′∈[θt,θt+1]

∥∇2
θL̂(θ′)∥ ≤ max

θ′∈[θt,θt+1]
ω(θ′)L̂(θ′)

≤ 8(ω(θt) ∨ ω(θt+1))L̂(θt).

B.3 Proof of Theorem 2

We first restate Theorem 2, this time with the exact constants.
Theorem 8 (Train loss convergence). Under Condition 1 and the data model DM, using the updates in Eq.
(10), for any t > 0,

L̂(θt+1) ≤ O (exp(−ηω1
2
(t + 1)1/3)) ,

where ω1 = αρ
8

√
d
n

.

Proof. First, using Lemma 10, we have

ω(θt) ∨ ω(θt+1) ≤ 13(B ∨ 1)5(B ∨ d)(∥ut∥ ∨ ∥ut+1∥ ∨ 1)2

≤ 13(B ∨ 1)5(B ∨ d)(3η(t + 1)1/3 ∨ 1)2

= 13(B ∨ 1)5(B ∨ d)(3η ∨ (t + 1)−1/3)2(t + 1)2/3

≤ ω0(t + 1)2/3, (54)

where ω0 = 13(B ∨ 1)5(B ∨ d), since η ≤ 1/3.
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Next, for some θ′ ∈ [θt, θt+1], using the second order Taylor expansion of L̂(θt+1), we have

L̂(θt+1) = L̂(θt) + ⟨∇θL̂(θt), θt+1 − θt⟩ +
1
2
(θt+1 − θt)⊺∇2

θL̂(θ′)(θt+1 − θt)

≤ L̂(θt) + ⟨∇θL̂(θt), θt+1 − θt⟩ +
1
2
∥θt+1 − θt∥2 max

θ′∈[θt,θt+1]
∥∇2

θL̂(θ′)∥

≤ L̂(θt) − ηu
t ∥∇uL̂(θt)∥2 − ηW

t ∥∇W L̂(θt)∥2

+ 1
2
((ηu

t )2∥∇uL̂(θt)∥2 + (ηW
t )2∥∇W L̂(θt)∥2) max

θ′∈[θt,θt+1]
∥∇2

θL̂(θ′)∥

≤ L̂(θt) −
η

(t + 1)2/3 ∥∇uL̂(θt)∥ +
1
2
( η2

(t + 1)4/3 +
η2

(t + 1)2 ) max
θ′∈[θt,θt+1]

∥∇2
θL̂(θ′)∥ (using Eq. (10))

≤ L̂(θt) −
ηω1

(t + 1)2/3 L̂(θt) +
8η2

(t + 1)4/3 (ω(θt) ∨ ω(θt+1))L̂(θt) (using Lemma 13)

≤ (1 − ηω1

(t + 1)2/3 +
8η2ω0(t + 1)2/3)
(t + 1)4/3) ) L̂(θt) (using Eq. (54))

≤ (1 − ηω1

2(t + 1)2/3 ) L̂(θt) ≤ exp(−ηω1
2
(t + 1)−2/3) L̂(θt) (using Condition 1)

≤ exp(−
t

∑
t′=0

ηω1
2
(t + 1)−2/3) L̂(θ0) (by telescoping)

≤ exp(−ηω1
2
(t + 1)1/3) L̂(θ0).

B.4 Proofs of Theorems 3 and 4

We first restate Theorem 3, this time with the exact constants.
Theorem 9 (IB Rate under Joint Training). Under Condition 1 and the data model DM, using the updates

in Eq. (10), for any t ≥ tϵ ∶= exp
⎛
⎝
(10BΛ)2

η
( Cn2√2d

250 log( 10n2
δ )
∨ 10B2Λ)

1/3

ϵ−4/3⎞
⎠
∨ exp (B2Λ

η
),

⟨ Wt

∥Wt∥
,

Wmm

∥Wmm∥
⟩ ≥ 1 − ϵ − C(η, B, Λ, ϵ)

log t
,

where B = αρ
√

1.5d, C ≥ 24 is an absolute constant, and

C(η, B, Λ, ϵ) = 2B2Λ
η
(1 − ϵ)∥Wtϵ∥ (1 − (1 − ϵ)−1 ⟨W tϵ , W mm⟩ − 2η∥Wtϵ∥−1L̂(θtϵ)) .

Proof. In this case, Lemma 4 follows directly, using Lemma 11. Since ∥W0∥ = 0, using Eq. 10 and similar
calculations as the proof of Lemma 5, for any t > 0,

∥Wt∥ ≥ η(2B2Λ)−1 log t. (55)

Next, using Lemma 11, we will show that for any ϵ ∈ (0, 1), there exists

Rϵ ∶= 2Λϵ−1 ⎛
⎝

log
⎛
⎝

4Cn2√2d

log ( 10n2

δ
)

ϵ−1⎞
⎠
∨ 5 log (40B2Λϵ−1)

⎞
⎠

, (56)

such that for every t where ∥Wt∥ ≥ Rϵ,

⟨−∇W L̂(θt),
Wmm
∥Wmm∥

⟩ ≥ (1 − ϵ) ⟨−∇W L̂(θt),
Wt

∥Wt∥
⟩ . (57)
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Using similar calculations as the proof of Lemma 7, in the first two cases, since R′ = R∥Wmm∥−1 ≥
10 log(40B2Λϵ−1), Eqs. (30) and (31) follow, respectively. Using Eq. (36), we can show that when

exp(0.5ϵ(1 − ϵ)−1R′) ≥ 0.5ν(n − 1)(2)2
maxi∈I3 ℓt,i(γi,opti

− γi)
mini∈I1 ℓt,i(γi,opti

− γi)
, (58)

Eq. (29) is satisfied. Using Lemma 11, Eq. (58) is true when

exp(0.5ϵ(1 − ϵ)−1R′) ≥ 4Cn2√2d

log ( 10n2

δ
)

ϵ−1,

which is satisfied by Eq. (56).

Next, using Eqs. (55) and (58), we can show that for any t ≥ tϵ, ∥Wt∥ ≥ Rϵ ∨ 1/2. We have

Rϵ = 2Λϵ−1 ⎛
⎝

log
⎛
⎝

4Cn2√2d

log ( 10n2

δ
)

ϵ−1⎞
⎠
∨ 5 log (40B2Λϵ−1)

⎞
⎠

≤ 25Λ
⎛
⎝

Cn2√2d

250 log ( 10n2

δ
)
∨ 10B2Λ

⎞
⎠

1/3

ϵ−4/3

≤ η(4B2Λ)−1 log t ≤ ∥Wt∥.

In addition, ∥Wt∥ ≥ 1/2 for t ≥ exp (B2Λ
η
). Combining these and using similar steps as the proof of Theorem

4 in (Tarzanagh et al., 2023a), we get

⟨ Wt

∥Wt∥
,

Wmm
∥Wmm∥

⟩ ≥ 1 − ϵ − η(2B2Λ)−1C(η, B, ϵ)
∥Wt∥

≥ 1 − ϵ − C(η, B, ϵ)
log t

,

where the last step follows by using Eq. (55).

Next, we restate Theorem 4 for convenience.
Theorem 10 (IB Rate of u). Let γ ∶=maxu∶∥u∥≤1 mini yiu

⊺xi,opti
. Under Condition 1 and the data model

DM, using the updates in Eq. (10), for any t ≥ tϵ ∨ exp(C(η, B, Λ, ϵ)(ϵ−1 ∨ (8B2Λ)4)),

min
i

yiut
⊺xi,opti

≥ γ

4
− 1

1 + exp(η(8B2Λ2)−1 log t) .

Proof. First, by definition of γ, we have

∥∇θL̂(θt)∥ ≥
γ

3
L̂(θt).

Then, following similar steps as the proof of Theorem 2, we have

L̂(θt) ≤ exp(−ηγ

4
(t + 1)1/3) L̂(θ0).

Using this, we have

min
i

exp(−yi(φi,opti
xi,opti

+ (1 − φi,opti
)xi,τ)⊺ut) ≤ exp(−ηγ

4
(t + 1)1/3) ,

Ô⇒ min
i

yi(φi,opti
xi,opti

+ (1 − φi,opti
)xi,τ)⊺ut ≥

ηγ

4
(t + 1)1/3.
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Then, using the proof of Lemma 10, we get

min
i

yi(φi,opti
xi,opti

+ (1 − φi,opti
)xi,τ)⊺ut ≥

γ

4
Ô⇒ min

i
yiφi,opti

x⊺i,opti
ut ≥

γ

4
−max

i
(1 − φi,opti

)∥xi,τ∥

≥ γ

4
− ρ

√
1.5d

1 + exp(−η(8B2Λ2)−1 log t) ,

where for the last inequality, we use the following lower bound on the softmax scores,

φt
i,opti

≥ 1 − 1
1 + exp(η(8B2Λ2)−1 log t)

which is obtained by using Theorem 3 and following similar steps as the proof of Lemma 1, as

(xi,τ −xi,opti
)⊺(Wt −W mm∥Wt∥ +W mm∥Wt∥)xi,1 ≤ 2B2∥Wt∥∥Wt −W mm∥ −

1
∥Wmm∥

∥Wt∥

≤ 4B2
√

ϵ ∨ C(η, B, Λ, ϵ)
log t

(2η log t) − η(4B2Λ2)−1 log t

≤ −η(8B2Λ2)−1 log t,

since t ≥ exp(C(η, B, Λ, ϵ)(ϵ−1 ∨ (8B2Λ)4)).
Using φi,opti

≤ 1 then finishes the proof.

C Additional Experiments and Settings

This section includes some additional experiments and details about the settings for the results included
in this work. We use the PyTorch (Paszke et al., 2019) library for our code, which is licensed under the
Modified BSD license.

Fig. 1 In this case, we use the MultiNLI (Williams et al., 2018) dataset, which contains sentence pairs
belonging to one of three classes: entailment, neutral, contradiction. The task is to predict whether the second
sentence entails, is neutral with, or contradicts the first sentence. It is released under the ODC-By license.
We use the Hugging Face pytorch-transformers implementation of the BERT bert-base-uncased
model, with pretrained weights (Devlin et al., 2019), released under Apache License 2.0. We use batch-size 32
to train all models. Learning rates are—Adam: 2e − 5, SGD: 1e − 3, SNGD: 0.01. The ηmax for SPS and
SNGD is set to 0.1.

Fig. 2 In this case, the samples are generated following Example 1, with U = 1 and ρ = 0.05. We set n = 20,
d = 100 and T = 6. We use a cap on the adaptive step-size, ηmax = 100 for NGD and NGD-mom, and ηmax = 10
for Polyak-step. The learning rate η is set as 0.025 for NGD and NGD-mom, whereas for GD, it is set as
0.25. For NGD-mom, the momentum parameter is set to 0.9.

Fig. 3 In this case, the samples are generated based on the data model DM with ρ = 0.1 and α = 3. We set
n = 10, d = 100 and T = 2. The learning rate η is set as 0.002 for NGD and NGD-joint, whereas for GD, it is
set as 0.02.

Fig. 4 We use the CivilComments dataset (Borkan et al., 2019), which consists of online comments and
the task is to classify if the comment is toxic or non-toxic. It is released under the CC BY-NC 4.0 license.
We use the BERT bert-base-uncased model, with pretrained weights (Devlin et al., 2019) using the
WILDS package (Koh et al., 2021). The learning rate for SGD is 10−3, 10−2 for NGD and 10−5 for Adam.
The parameter ηmax is set to 10−2 for both SNGD and SPS. All models are trained with batch-size 32.
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Figure 4: Comparison of train and test dynamics of various optimizers—SGD, SNGD, SPS, and Adam—while
fine-tuning a pre-trained BERT model on the CivilComments dataset.

Figure 5: Training dynamics when optimizing only W on synthetic data with antipodal opt tokens.

Figure 6: Comparison of train and test dynamics of various optimizers—SGD, SNGD, SPS, and Adam—for a
ViT model on the MNIST dataset.

Figure 7: Comparison of train and test dynamics (top row) and parameter norm growth (bottom row) of
various optimizers—SGD, SNGD, SPS, and Adam—for a ViT model on the CIFAR-10 dataset.

Fig. 5 Training dynamics of a single-head self-attention model (Eq. (1)) when optimizing only W on
synthetic data (Example 1 with σ = 0). In this case, the opt tokens are antipodal instead of orthogonal. The
remaining settings are the same as those for Fig. 2, except we set ηmax = 5 for Polyak-step.

Fig. 6 We use the MNIST dataset (LeCun & Cortes, 2005), which contains gray-scale images of handwritten
digit 0 − 9. It is released under the CC BY-SA 3.0 license. We use the ViT for small-scale datasets
proposed in (Lee et al., 2021), referred to as ViT-small hereon. The implementation is available at https:
//github.com/lucidrains/vit-pytorch under the MIT license. We use patch-size 4, and set depth as 2,
number of heads as 8 and MLP width as 128. All models are trained with a batch-size of 100. Learning
rates are set as follows. SGD: 0.1, SNGD: 0.001, Adam: 0.001. ηmax for SPS and SNGD is set to 0.01. We
observe that unlike language datasets SNGD trains slower than SGD, and Adam achieves no significant gain
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in terms of training speed over SGD (also reported in (Xie et al., 2023)), showcasing behaviour similar to
CNNs (Kunstner et al., 2023).

Fig. 7 We consider the CIFAR-10 dataset (Krizhevsky, 2009) which is a benchmark dataset for object
recongnition tasks and contains colored images from 10 classes. It is released under the MIT license. We use
the ViT-small model with patch-size 4, and set depth as 8, number of heads as 32 and MLP width as 512.
All models are trained with batch-size 100. Learning rates are set as follows. SGD: 0.1, SNGD: 0.001, Adam:
0.001. The parameter ηmax is set to 10 for SPS and 0.1 for SNGD. As evident, SNGD portrays a slower
training speed similar to the observations for MNIST. Additionally, we plot the norm growth for various
layers of the ViT and see growth in parameters similar to our observations on synthetic datasets.

Compute and Runtimes. The experiments using synthetic data were run on Google Colab. The
experiments on vision and language datasets were run on an internal cluster with two NVIDIA V100 GPUs
with 32 GB memory each. We train for 40 epochs on MNIST and 80 epochs on CIFAR-10. The runtime for
the latter is about 2 hours for each setting. We fine-tune the models on language datasets for 10 epochs,
which takes about 32 hours for each run. In Figures 1 and 4, we plot the dynamics for every 200 iterations.

C.1 Initializing in a Bad Stationary Direction

Fig. 8 shows a synthetic setting where we initialize in a bad stationary direction Winit—one that gives a
higher softmax score to the non-opt token. To be precise,

X1 = [
1 0.2
−1 −0.2] , X2 = [

−2.5 0.5
2.5 −0.5] ,

with labels y1 = −1, y2 = 1, respectively. We set u∗ = [0, 1]⊺. Using token optimality (Definition 1), this gives
opt1 = 2, opt2 = 1; see Fig. 8 (left) for illustration. The chosen initialization Winit violates the (W-SVM)
constraints for i = 2, that is

(x2,opt2
−x2,τ≠opt2

)⊺Winitx2,1 < 0.

This can be seen in Fig. 8 (left), where the — line correlates more with the non-opt token than the opt one.
This consequently forces the softmax score

φ0
2,opt2

= 1
1 + exp((x2,τ≠opt2

−x2,opt2
)⊺Winitx2,1)

< 1
2

,

which can be seen in Fig. 8 (plot 2). We call Winit a "bad" stationary direction as starting with αWinit

and α →∞ would result in φ2,opt2
(αWinit) → 0, and ∇W L̂(αWinit) → 0. On the other hand, for X1, Winit

behaves the opposite way (see plots 1-2 in Fig. 8).

Figure 8: The training dynamics for a synthetic setting with n = 2, d = 2, T = 2. Attn-score denotes the
opt-token softmax score φt

i,opti
, and alignment shows ⟨W t, W mm⟩. Plot 1 shows the initialization Winit, and

the (W-SVM) solution Wmm projected onto the first token, respectively. For sample 2, the Winit is more
correlated to the non-opt token which consequently gives a small softmax score (plot 2). Plots 2-4 show that
despite this "bad" initialization direction GD converges to Wmm and achieves the loss minima L̂∗.

Despite this “bad” starting direction, plots 3-4 in Fig. 8 show that GD still globally convergences to Wmm,
and minimizes the train loss. This behaviour aligns with our theoretical results (Thm. 1) showing global
parametric convergence starting in any direction Winit, with a small enough norm to avoid the bad stationary
directions in the limit as ∥Winit∥ → ∞.
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D Related Work

Implicit bias of NNs. Since the first few works characterizing the implicit bias of linear predictors on
separable data (see Introduction), there has been an abundance of work studying the implicit bias of gradient
based methods for both linear predictors and NNs. Nacson et al. (2019); Ji & Telgarsky (2021); Ji et al.
(2021) show fast convergence of GD-based methods to the max-margin predictor. For MLPs, early works
study the implicit bias of GD/gradient flow using exponentially-tailed classification losses towards the KKT
points of the corresponding max-margin problem in finite (Ji & Telgarsky, 2020; Lyu & Li, 2020) and infinite
width (Chizat & Bach, 2020). Additionally, works by Phuong & Lampert (2021); Frei et al. (2022b); Kou
et al. (2023b) study the implicit bias of GD trained ReLU/Leaky-ReLU networks on orthogonal data. Other
works also study the implicit bias towards rank minimization with square loss in regression settings (Vardi &
Shamir, 2021; Arora et al., 2019; Li et al., 2021). We encourage the reader to go through these works and a
recent survey (Vardi, 2022) for a thorough understanding.

Transformers theory. Several studies, such as those by Baldi & Vershynin (2022); Dong et al. (2021);
Yun et al. (2020a;b); Sanford et al. (2023); Bietti et al. (2023) have delved into exploring the expressivity of
attention, while Baldi & Vershynin (2022); Dong et al. (2021); Yun et al. (2020a;b); Mahdavi et al. (2023)
have initiated an investigation of its memory capacity. To gain insights into the optimization aspects of
training attention models, Sahiner et al. (2022); Ergen et al. (2022) have explored convex relaxations of
attention. Furthermore, a subdomain experiencing growing attention involves the theoretical exploration of
in-context learning, as evidenced by recent studies (von Oswald et al., 2022; Akyürek et al., 2023; Zhang
et al., 2023; Li et al., 2023c).

In this context, we discuss studies that seek to understand the optimization and generalization dynamics of
transformers. Jelassi et al. (2022) show that Vision Transformers (ViTs) learn spatially localized patterns in a
binary classification task using gradient-based methods. For a three-layer ViT starting from some structured
initialization to mimic a pre-trained network, Li et al. (2023b) show sample complexity bounds to achieve zero
generalization and show attention maps sparsify as SGD training proceeds. As a step towards understanding
the training dynamics of the closely related prompt-attention, Oymak et al. (2023) study the initial trajectory
of GD for one-layer attention. Further, there has also been work to obtain optimization and generalization
guarantees of GD in multi-head attention models (Deora et al., 2023). Additionally, recent work by Tian
et al. (2023a) attempts to understand SGD-dynamics for the task of next-token prediction for one-layer
transformer with a linear decoder showing a similar sparsifying effect in the attention map. More recently,
Tian et al. (2023b) extend this by analyzing the joint training dynamics of multi-layer transformer with an
MLP. Other than this, there has been recent progress towards a theoretical understanding of next-token
prediction dyanmics under GD training (Li et al., 2024; Thrampoulidis, 2024). Furthermore, Makkuva et al.
(2024) discussed the impact of the transformer architecture and distributional properties on the loss landscape
when modeling the data as a Markov source, and Ildiz et al. (2024) linked the dynamics of self-attention to
context-conditioned Markov chains.
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