This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

StyleSRN: Scene Text Image Super-Resolution with Text Style Embedding

Shengrong Yuan!, Runmin Wang!; Ke Hao!, Xuqi Ma!, Changxin Gao?, Li Liu?, Nong Sang?
School of Information Science and Engineering, Hunan Normal University
2School of Artificial Intelligence and Automation, Huazhong University of Science and Technology
3School of Electronic Science, National University of Defense Technology

{shengrongyuan, runminwang, ke, xgma}@hunnu.edu.cn, {cgao, nsang}@hust.edu.cn, liliuQoulu.fi

Abstract

Scene text image super-resolution (STISR) focuses on en-
hancing the clarity and readability of low-resolution text
images. Existing methods often rely on text probability dis-
tribution priors derived from text recognizers to guide the
super-resolution process. While effective in capturing gen-
eral structural information of text, these priors lack the abil-
ity to preserve specific text style details, such as font, stereo-
scopic effect and spatial transformation, leading to a loss
of visual quality and stylistic consistency. To address these
limitations, we propose a Style embedding-based scene text
image Super-Resolution Network (StyleSRN), which intro-
duces a text style embedding mechanism to preserve and
enhance text style features during the super-resolution pro-
cess. The proposed architecture includes Style Enhance-
ment Blocks for capturing multi-scale cross-channel depen-
dencies, and Style Content Fusion Blocks that effectively in-
tegrates text content with style information, ensuring that
the structure and style of the restored text are not dis-
torted. Furthermore, we introduce a Text Style Loss based
on the Gram matrix to supervise the reconstruction process
at the style level, thereby maintaining the stylistic consis-
tency of the restored text images. Extensive experiments on
the TextZoom dataset and five scene text recognition bench-
marks demonstrate the superiority of our method. Code is
available at: hitps://github.com/Yuanssr/StyleSRN.

1. Introduction

Scene text images contain both visual and linguistic modal-
ities, which can be extracted and analyzed to enhance var-
ious applications, including autonomous driving [32], vi-
sual question answering [1], and card recognition [13], etc.
However, due to the limitations of imaging conditions of
sensing devices, such as shooting jitter and low-focus cam-
eras, scene text images often suffer from varying degrada-
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Figure 1. Comparison of super-resolution results between pre-
vious methods and ours. Methods without text priors such as
TSRN [30] retains less style information, while text priors-guided
methods such as TATT [17] and LEMMA [7] almost completely
lose the style information.

tion, including blur, distortion, etc. Unlike general object
images, scene text images possess more complex charac-
ter structures and fine-grained stroke-level details, making
even slight degradation challenging to recognize. Such low-
resolution scene text images significantly hinder the perfor-
mance of downstream tasks such as scene text detection,
optical character recognition, and scene text recognition.
Thus, restoring both the visual style quality and character
structures of these degraded images is crucial.

In recent years, many super-resolution methods specifi-
cally designed for scene text images have used the unique
properties of text to improve restoration. Early approaches
primarily focused on extracting sequential information from
text images. Wang et al. [30] proposed a sequential residual
block to capture the inherent sequential nature of text im-
ages. Chen et al. [2] introduced a text-focus loss function
that emphasizes character positions and content, thereby
improving recognition accuracy. More recently, methods
that incorporate deep character classification information
obtained from text recognizers have become the norm.
Ma et al. [18] highlighted the benefits of integrating text
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priors into the super-resolution process. Moreover, Ma et
al. [17] developed an attention-based text priors interpreter
to interactively fuse text probability distributions with im-
age features. Guo et al. [7] demonstrated the effectiveness
of using a bidirectional alignment strategy for text and im-
ages to obtain high-level guidance information. Most of
these methods rely on text recognizers to generate text prob-
ability distribution priors, which are then encoded into the
super-resolution network to guide the recovery of character
structures.

However, the text probability distribution priors derived
from text recognizers mainly capture the general character
structures but are less sensitive to the variations in text styles
across different images, which hampers the super-resolution
process. This loss of style details not only affects subse-
quent scene text recognition tasks but also disrupts the vi-
sual consistency of the images. The problem is particularly
pronounced in scene text images with distinctive text styles,
such as artistic characters or logos, where the loss of stylis-
tic features can lead to more severe distortion in the restored
images. As shown in Figure [, text priors-guided meth-
ods such as TATT [17] and LEMMA [7] almost completely
lose the style information of the degraded text image, while
methods without text priors such as TSRN [30] retain less
style information. To address these challenges, we draw
inspiration from Style Transfer [6, 8, 12] to explore the po-
tential of preserving image style information to enhance the
restoration of low-resolution text images. Unlike content in-
formation, which is sensitive to position, style information
in an image can be viewed as the correlation between differ-
ent feature channels and is largely position-insensitive. By
effectively encoding and embedding this style information
during the super-resolution process, our proposed method
aims to preserve both the structural integrity and the stylis-
tic consistency of the restored text images.

In this paper, we propose a Style embedding-based
scene text image Super-Resolution Network (StyleSRN) for
STISR, which not only restores the character structure but
also preserves the stylistic consistency of the text. Unlike
conventional methods that rely solely on text probability
priors to guide the super-resolution process, our approach
introduces a Text Style Embedding Branch that extracts and
enhances style features. Additionally, we design a Style En-
hancement Block (SEB), which captures multi-scale cross-
channel dependencies, thereby enhancing the representation
of style information. To further ensure the integration of
style and content, we introduce a Style Content Fuse Block
(SCFB) that effectively combines style embeddings with
text priors. Finally, we propose a Text Style Loss based
on the Gram matrix to supervise the reconstructed images
at the style level. As illustrated in Figure 1, our method
achieves superior visual quality and stylistic consistency in
the restored images. Overall, our contributions can be sum-

marized as follows:

* We, for the first time to our best knowledge, successfully
embed text style information to guide super-resolution
process for STISR task, and validate its effectiveness to
ensure both structural integrity and stylistic consistency
of the super-resolution process.

* We propose a Text Style Loss based on the Gram Ma-
trix which leverages a text recognizer to extract features
to offer robust supervision at style level for scene text im-
ages, which effectively improve both image quality and
text recognition accuracy.

» Extensive experiment results demonstrate that the pro-
posed method not only achieves state-of-the-art perfor-
mance on the TextZoom dataset but also validates ex-
ceptional generalization across five scene text recognition
datasets.

2. Related Work

2.1. Scene Text Image Super-resolution

Scene text image super-resolution aims to enhance the vi-
sual quality and readability of scene text images. Early stud-
ies in this field usually adopt general image super-resolution
methods [4, 5, 14, 21, 28] to reconstruct scene text im-
ages. However, due to the complex character structure
of text images, these methods often fail to produce suffi-
ciently recognizable text images. Therefore, some unique
attributes of scene text have been exploited to improve
super-resolution performance([2, 3, 7, 17, 18, 30]. For ex-
ample, some methods focus on the sequential information
of scene text. Wang et al. [30] introduced sequential resid-
ual block to capture the sequential information in text im-
ages. Chen et al. [2] proposed a Transformer-Based Super-
Resolution Network containing a Self-Attention Module to
extract sequential information. Recently, the method of us-
ing text recognizers to obtain text probability distribution
priors has become mainstream. For example, Ma et al. [18]
incorporates categorical text priors into the STISR model
training process, while Ma et al. [17] proposed a text prior
interpreter to better transform text priors. Guo et al. [7] pro-
posed a bimodal alignment mechanism to better utilize text
priors. Additionally, some works use text priors to guide
diffusion models to restore low-resolution images [20, 35].
Most of these methods use a pre-trained text recognizer to
obtain deep character classification information to guide the
super-resolution network. While this approach enables the
model to effectively learn the general character structure, it
results in the loss of specific style information in each im-
age.

2.2. Style Transfer

Style transfer is a technique that involves altering the stylis-
tic attributes of an image while maintaining its core con-
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Figure 2. Overview architecture of the proposed StyleSRN. GAP denotes the Global Average Pooling. G(-) denotes the Gram matrix,
®;(-) represents the feature map obtained from the [-th layer of the text recognizer. Irg, Isg and Igr represent low-resolution images,

super-resolution images and high-resolution images, respectively.

tent. This concept was pioneered by Gatys et al. [6], who
utilized convolutional neural networks (CNNs) to transfer
artistic styles between images by matching the Gram ma-
trices of feature maps. Subsequent work has expanded on
this foundation, exploring various methods to improve both
the quality and efficiency of style transfer. One significant
advancement is the introduction of adaptive instance nor-
malization (AdalN) [8], which allows for real-time arbitrary
style transfer by aligning the mean and variance of content
features to those of style features. Some works employ style
transfer technology specifically for scene text style transfer
[23, 27]. In our work, we draw inspiration from these style
transfer methods, particularly in how they encode and em-
bed style features. By adopting these principles, we aim to
restore text style information, which is crucial for maintain-
ing the visual consistency of the super-resolved text images.

3. Methodology
3.1. Overall Architecture

The overall architecture of the proposed StyleSRN is illus-
trated in Figure 2. Our method consists of a text style em-
bedding branch for extracting and enhancing style features
and a super-resolution branch for restoring low-resolution
images Iy r. For the text style embedding branch, the low-
resolution image will first pass through ResNet18 to obtain
the feature map X; € RE*W*H where C represents the
number of channels, and H and W represent the height
and width of the feature map, respectively. Then several
stacked Style Enhancement Blocks will extract the correla-

tion information between the feature map channels. After
the style enhancement, we perform global average pooling
on it to obtain the latent vector z. Given a latent vector z
in the input latent space Z, a non-linear mapping network
f 2 — W first produces w € W. Learned affine trans-
formations then specialize w to styles y = (ys,ys), where
ys and y;, denote the learned normalization scaling and bias
coefficients, respectively. For the Super-Resolution Branch,
the low-resolution image will first be processed by the Spa-
tial Transformer Network (STN) [9] to align the spatially
deformed texts. The convolution layer will extract features
from the image processed by STN to obtain shallow im-
age features. Then the shallow image features, text priors,
and style information will be sent to several stacked style-
content fusion blocks for style and content fusion. Each
block contains a Style Enhancement Block, an adaptive in-
stance normalization (AdalN) [8], and a content embedding
block. Finally, PixelShuffle is applied as an upsampling op-
erator to generate Igg.

3.2. Style Enhancement Block

The style of an image has been traditionally viewed as the
correlation between different features, as demonstrated in
the advancements of style transfer [0, 8, 12]. While pre-
vious approaches, such as [12], directly utilized ResNet
features to obtain style vectors, our approach introduces a
novel enhancement by applying channel-wise attention to
these feature maps, thereby better capturing and preserving
the stylistic characteristics in scene text images.

Inspired by the Efficient Channel Attention (ECA)
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mechanism [29], we designed a Style Enhancement Block
(SEB) to improve the model’s capacity for capturing the
correlation between different channel features. Let the input
feature map be denoted as X; € RE*H*W_ We begin by
applying Global Average Pooling (GAP) to the input fea-
ture map to obtain channel-wise statistics m € R®. To fur-
ther improve the model’s capacity for capturing local cross-
channel interactions at multiple scales, we employ multiple
1D convolution kernels of varying sizes, in contrast to the
fixed-size kernels used in [29]. Specifically, let n denote
the number of different kernel sizes, each represented by
ki, where [ € 1,2,...,n. The convolutional operation at
each scale can be expressed as:

Ky
2

m') = bim,y;, (1)

=%

where b! € R¥ represents the weight vector for the con-
volution kernel of size k;. This multi-scale approach al-
lows the model to capture a more nuanced set of cross-
channel dependencies, enhancing the representation of style
information. The outputs from the multiple convolutional
scales are aggregated by computing the final channel atten-

tion weight m’,. as a weighted sum:
n ( )
1
m'. =Y am'.’, 2)
=1

where «; denotes the weighting coefficient for the output of
the [-th convolutional scale. These weights are normalized
using a Sigmoid function:

X/;,Z,J _ O‘(mlc) . }(?i,j7 (3)
where o(-) represents the Sigmoid activation function, and
X' is the final output feature map with the applied channel-
wise attention.

The enhanced feature map is passed through several
SEBs, which refines the correlation between different fea-
ture channels, ensuring that the model pays more attention
to the features of important channels. This process effec-
tively enhances the model’s capability to capture and pre-
serve the intricate stylistic details in scene text images. Sub-
sequently, global average pooling (GAP) is applied to the
final enhanced feature map to obtain a latent vector z in
the latent space Z. The latent vector is then processed by
a non-linear style mapping network f : Z — W, which
produces a vector w € WV that decouples the latent space.
The style mapping network consists of an 8-layer MLP with
LeakyReLU activation functions. Finally, learned affine
transformations are applied to transform w into style pa-
rameters y = (s, ¥s)-

3.3. Style Content Fuse Block

In the field of scene text image super-resolution, existing
approaches primarily focus on embedding content informa-
tion, including deep character category information derived
from text probability priors. While this approach effectively
guides the super-resolution network in restoring character
structure, it often results in the loss of crucial stylistic fea-
tures. To address this limitation, we propose a novel Style
Content Fuse Block (SCFB) that allows the super-resolution
network to restore character structures while preserving the
stylistic consistency of the characters.

Our innovation lies in embedding style information di-
rectly into the super-resolution network alongside content
information. This dual embedding approach ensures that
both character structure and style are preserved during the
super-resolution process. Specifically, for the shallow im-
age features X, € R *H'*W’ gbtained through a Spatial
Transformer Network (STN) and a convolutional layer, we
use Adaptive Instance Normalization (AdaIN) [8] to mod-
ulate their style. AdaIN has been shown to be effective
in transferring style information across different domains.
Given a feature map X, and a style vector y, the AdaIN
operation can be defined as follows:

) 3, (R

) +ye, 4
where p(-) and o(-) represent the mean and variance of
X. Each AdalN layer within the SCFB normalizes fea-
ture maps independently, with the dimensionality of y being
twice the number of feature map channels C’ in that layer.
This embedding ensures that style information is seamlessly
integrated into the spatial features of the image, thus pre-
serving the character’s stylistic attributes.

In addition to embedding style information, content
information, such as text probability distribution priors,
should also be embedded into the super-resolution network
to guide the learning of character structures. To bridge
the domain gap between text priors and image features, we
adopt the TP Interpreter architecture from [17] to extract
the content embedding features. These interpreted features
are then concatenated with the style-embedded features and
subsequently passed through a Sequential Residual Block
[30] for further refinement.

3.4. Text Style Loss

Although the proposed StyleSRN network effectively em-
beds the text’s style features, these features are derived from
the low-resolution image itself. When the style information
in the low-resolution image is degraded, even if the network
extracts these style features, it cannot fully reconstruct the
style of the corresponding high-resolution image. There-
fore, the reconstructed text image requires supervision at
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the style level to effectively learn the degradation of style
information in the low-resolution image.

To supervise the style in the reconstructed image, we in-
troduce a Text Style Loss based on the Gram matrix. Unlike
traditional methods [6] that use VGG networks to capture
style information, our approach leverages a text recognizer
to extract feature maps for Gram matrix computation. This
enables better capture of text-specific style features, which
are crucial for scene text images.

The Gram matrix G; for a given feature map ®,;(I) at
the [-th layer is computed as follows. First, we reshape the
feature map ®; (I) of dimensions C; x H; x W} into a matrix
F, of size C; x (H; x W), where each row corresponds
to a channel and each column corresponds to a pixel. The
Gram matrix Gy is the inner product between the different
channels in layer [:

HLXWZ
G, = Z F,F; 5)
k=1

The Gram matrix captures the correlations between dif-
ferent channels in the feature map, thereby encoding the
style information of the image.

The Text Style Loss Ly is defined as the Mean
Squared Error (MSE) between the Gram matrix of the high-
resolution (HR) ground truth and the super-resolved (SR)
output:

L
1
Estyle = § 4Cl2Hl2W2 ”G((I)Z(IHR)) - G((I)l(ISR))H;
=1

l

(6)
where G(-) denotes the Gram matrix, ®,(-) represents the
feature map obtained from the [-th layer of the text recog-
nizer, and C;, H;, W, are the dimensions of the feature map
at layer [.

3.5. Overall Loss Function

In training, the overall loss function includes a Mean Square
Error (MSE) loss L5, a Text-Focus Loss L7 p [30], and the
proposed Text Style Loss Lgyi.. The Lo measures the dif-
ference between the super-resolution (SR) output and the
ground-truth high-resolution (HR) image. The overall loss
function is described as follows:

L= »CZ + Oé['TP + 5£style @)
where the « and (3 are the balancing parameters.

4. Experiments
4.1. Datasets

TextZoom TextZoom [30] is a scene text super-resolution
dataset designed for real-world scenarios, containing

21,740 pairs of low-resolution and high-resolution images
captured by cameras with various focal lengths in natural
environments, with 17,367 samples used for training. The
test set is divided into easy, medium, and hard subsets, com-
prising 1,619, 1,411, and 1,343 LR-HR pairs, respectively,
based on the camera focal lengths.

Scene Text Recognition Datasets To assess the robust-
ness and generalization capability of StyleSRN, we con-
ducted comprehensive evaluations on five benchmark scene
text recognition datasets: IC13 [10], IC15 [11], CUTESO
[24], TMIT5K [19], and SVTP [22]. These datasets were
manually degraded to create low-resolution counterparts.
Detailed descriptions of the datasets and degradation pro-
cedures are provided in the supplementary materials.

4.2. Metric

Following previous works, we adopt two types of metrics:
super-resolution image text recognition accuracy and image
quality. Specifically, to evaluate the generalization capa-
bility of StyleSRN, we employed three scene text recog-
nizers: CRNN [25], MORAN [16], and ASTER [26]. For
the image quality metric, we adopt the widely used Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity In-
dex Measure (SSIM)[31].

4.3. Implementation Details

We implement our model using PyTorch. All experiments
are conducted on a single RTX 3090 GPU. We train our
model with a batch size of 64 for 500 epochs using AdamW
[15] for optimization. The learning rate is set to le-3 and
decayed by a factor of 0.5 after 400 epochs. The number
of SEBs and SCFBs are set to 3 and 5, respectively. In the
SEBs, the sizes of the convolution kernels are 3x3, 5x5,
and 7x7, respectively. We use CRNN to generate the fea-
tures for computing the text style loss and empirically set
the number of feature maps L used to calculate the style
loss to 5. We set the parameters « and (8 to 0.5 and 1.0,
respectively.

4.4. Ablation Study

In this section, we conduct ablation studies to investigate the
effectiveness of SEBs and SCFBs, the effectiveness of train-
ing with Text Style Loss, the impact of numbers of SEBs
and SCFBs. For STISR methods that do not use text priors,
such as TSRN [30] and TBSRN [2], using SCFB means
that image features are not used for text prior fusion, but are
directly concatenated with style-embedded features.

Effectiveness of SEBs and SCFBs. We compared the
performance of different STISR methods using three strate-
gies: No Style Embedding (NSE), only SCFB , and SCFB

18697



Method NSE SCFB SEB ;;?\‘;ﬁe Q‘;aSIR’I Accuracy(%)
v - 2142 0769 414
TSRN[30] | - v - | 2154 07699 435
; v v | 215 07695 444
v - ~ [ 2091 07603 48.1
TBSRN[2] | - v - | 21.04 07623 503
; v v | 2122 07614 51.1
v - 12097 07719 518
TPGSR [18] | - v - 2104 07723 524
; v v | 2117 07723 527
v - 2152 0.7930 526
TATT [17] ; v - | 2166 07790 54.1
; v v | 2187 07785 54.9
v - - 2088 0.7760 563
LEMMA[7] | - v - 12094 07711 56.7
; v v | 2105 07765 57.0

Table 1. Effectiveness of the Style Content Fuse Block (SCFB)
and the Style Enhancement Block (SEB). NSE refer to No Style

Embedding. Accuracy represents the average accuracy with
CRNN [25].
Method Lyl PSNR SSIM Accuracy(%)
TSRN [30] v ii::ﬁ 8;;3?‘1) j:;,:;t
TGRS, o oy s
WO, s opw s
T S v S

Table 2. Ablation of the Text Style Loss. Accuracy represents the
average accuracy with CRNN [25].

combined with the SEB in Table 2. NSE means remov-
ing both SEB and SCFB. SCFB can be used independently
of SEB, but when using SEB, SCFB must be used to em-
bed style information. Removing SEB means that the fea-
tures extracted by Resnetl8 are directly fed into the style
mapping network through global pooling. Removing SCFB
means that the features directly passed through the text in-
terpreter do not need to be cascaded with the style features.
As presented in Table 1, using only SCFB generally im-
proves image quality and recognition accuracy over NSE.
In addition, SCFB has a greater improvement over methods
without text priors such as TSRN [30] and TBSRN [2]. For
instance, with TSRN, the introduction of SCFB increases
accuracy by 2.1%, along with notable gains in PSNR and
SSIM. We speculate that this may be because these meth-
ods do not have any prior guidance, while SCFB introduces
the guidance of style information. Using SCFB and SEB at
the same time can effectively improve PSNR and text recog-
nition accuracy, but slightly reduce SSIM. This shows that
SEB can effectively enhance style information, but slightly
reduce structural consistency.

Discriminator PSNR SSIM Accuracy (%)
VGG 21.31 0.7761 56.3
CRNN 21.82 0.7778 574

Table 3. Ablation of the discriminator used in text style loss.

N Quality Metric Accuracy(%)
PSNR SSIM | CRNN [25] MORAN[16] ASTER [26]

0 | 20.76 0.7618 54.6 61.8 65.0
1] 2182 0.7778 56.3 63.3 66.2
2 | 2177 0.7764 56.9 64.0 66.7
4 | 21.77  0.7770 57.1 64.0 67.0
5| 2173 0.7768 55.9 63.2 66.7
3| 21.82 0.7778 57.4 64.1 67.3

Table 4. Ablation of the number of Style Enhancement Blocks.

N Quality Metric Accuracy(%)
PSNR SSIM | CRNN [25] MORAN [16] ASTER [26]

0 | 20.67 0.7431 53.2 61.0 64.7
3| 2145 07722 553 62.3 66.2
4 | 2143 0.7751 56.7 63.9 66.9
6 | 21.74  0.7769 56.9 64.0 67.0
7 | 21.55 0.7756 56.0 62.8 66.2
5| 21.82 0.7778 57.4 64.1 67.3

Table 5. Ablation of the number of Style Content Fuse Blocks.

Effectiveness of training with Text Style Loss. We show
the effectiveness of the Text Style Loss in Table 2. Incorpo-
rating the Text Style Loss results in improvements across
all metrics. For instance, the PSNR of TSRN increases
from 21.42 to 21.56, and its SSIM improves from 0.7690
to 0.7711. In terms of text recognition accuracy, models in-
corporating the Text Style Loss demonstrate enhanced per-
formance. The accuracy of TSRN improves from 41.4% to
43.7%. These results highlight that the Text Style Loss ef-
fectively enhances both image quality and text recognition
accuracy. Besides, we also compared the impact of using
different discriminators in Table 3. It can be seen that using
CRNN performs better than VGG.

Numbers of SEBs. We show the effect of the number of
SEBs in Table 4. As the number of SEBs increases, there is
a noticeable improvement in both the PSNR and SSIM met-
rics. Specifically, using 3 SEBs achieves the highest PSNR
of 21.82 and an SSIM of 0.7778, indicating the optimal en-
hancement of image quality. In terms of text recognition
accuracy, models incorporating 3 SEBs also demonstrate
superior performance across all recognition models. These
findings suggest that SEBs significantly enhance both im-
age quality and text recognition performance, with 3 SEBs
being the optimal configuration.

18698



Method Accuracy of CRNN [25] (%) Accuracy of MORAN [16] (%) Accuracy of ASTER [26] (%)
Easy Medium Hard Avg Easy Medium Hard Avg Easy Medium hard Avg
BICUBIC 36.4 21.1 21.1 26.8 60.6 37.9 30.8 44.1 67.4 424 31.2 48.2
HR 76.4 75.1 64.6 724 91.2 85.3 74.2 84.1 94.2 87.7 76.2 86.6
TSRN [30] 52.5 38.2 314 414 70.1 55.3 37.9 554 75.1 56.3 40.1 58.3
TBSRN [2] 59.6 47.1 353 48.1 74.1 57.0 40.8 58.4 75.7 59.9 41.6 60.1
TG [3] 61.2 47.6 35.5 48.9 75.8 57.8 414 59.4 77.9 60.2 424 61.3
TPGSR [18] 63.1 52.0 38.6 51.8 74.9 60.5 44.1 60.5 78.9 62.7 44.5 62.8
TATT [17] 62.6 534 39.8 52.6 72.6 60.2 43.1 59.5 78.9 63.4 45.4 63.6
C3-STISR [34] 65.2 53.6 39.8 53.7 742 61.0 432 59.5 79.1 63.3 46.8 64.1
TSAN [37] 64.6 53.3 38.8 53.0 78.4 61.3 45.1 62.7 79.6 64.1 453 64.1
LEMMA [7] 67.1 58.8 40.6 56.3 71.7 64.4 44.6 63.2 81.1 66.3 47.4 66.0
DPMN [36] 64.4 54.2 39.2 534 73.3 61.5 439 60.4 79.3 64.1 452 63.9
TCDM [20] 67.3 57.3 4?2.7 55.7 77.6 62.9 459 62.2 81.3 65.1 50.1 65.5
RTSRN [33] 67.0 59.2 42.6 57.0 77.1 63.3 46.5 63.2 80.4 66.1 49.1 66.2
StyleSRN 68.1 594 424 574 78.6 65.1 45.7 64.1 82.7 67.4 48.7 67.3

Table 6. Comparison with the existing methods in terms of the recognition accuracy on TextZoom[30]. BICUBIC means LR images are
directly upsampled by the bicubic interpolation, and the same definition applies to BICUBIC in subsequent tables.

Method Loss PSNR SSIM
Easy Medium Hard Avg Easy Medium Hard Avg

BICUBIC - 22.35 18.98 19.39 20.35 0.7884 0.6254 0.6592 0.6961
TSRN [30] Lo+ Lep 25.07 18.86 19.71 21.42 0.8897 0.6676 0.7302 0.7690
TBSRN [2] Lpos+ Lcon 23.46 19.17 19.68 20.91 0.8729 0.6455 0.7452 0.7603
TPGSR [18] Lo+ Lrp 23.73 18.68 20.06 20.97 0.8805 0.6738 0.7440 0.7719
TATT [17] Lo+ Lrp + Lrsc 24.72 19.02 20.31 21.52 0.9006 0.6911 0.7703 0.7930
LEMMA [7] Lo+ Lrp 4 Linetune 23.70 19.37 19.84 20.88 0.8753 0.6905 0.7491 0.7760
StyleSRN Lo+ Lrp + Latyie 24.69 19.70 20.58 21.82 0.8844 0.6791 0.7531 0.7778

Table 7. Comparison of the image quality on TextZoom [30]. Avg represents the average value of three subsets.

Numbers of SCFBs. We further examined the impact of
the numbers of SCFBs , as detailed in Table 5. While in-
creasing the number of SCFBs improves recognition ac-
curacy metrics, diminishing returns are observed beyond
a certain point. The optimal performance, consistent with
the SEB ablation study, is achieved with 5 SCFBs, yield-
ing a PSNR of 21.82 and an SSIM of 0.7778. More-
over, text recognition accuracy peaks with CRNN (57.40%),
MORAN (64.14%), and ASTER (67.31%) when 5 SCFBs
are utilized. This suggests that while the SCFB is essential
for balancing style and content, its optimal configuration
involves a moderate number of blocks, beyond which per-
formance gains begin to plateau.

4.5. Comparison with State-of-the-Arts

Results on TextZoom. We evaluate the recognition ac-
curacy of text images generated by various STISR meth-
ods using three text recognizers: CRNN [25], MORAN
[16], and ASTER [26]. As shown in Table 7, our pro-
posed StyleSRN consistently outperforms state-of-the-art
methods across all recognizers, achieving average accu-
racy rates of 57.4% with CRNN, 64.1% with MORAN, and
67.3% with ASTER. On the hard subset, StyleSRN per-
forms slightly lower than some methods, such as TCDM
and DPMN, likely due to challenges in balancing struc-
ture and style preservation in extremely blurred or occluded

Accuracy(%)
Method ICI3 ICI5 CT80 SVIP 15K
BICUBIC 7616 3821 5521 3550  59.70

TSRN [30] 75.67 41.52 54.86 35.97 62.60
TBSRN [2] 76.95 43.07 54.86 37.36 63.60
TPGSR [18] 77.64 42.85 53.47 38.29 62.07

TATT [17] 76.06 48.48 51.04 42.02 62.67
LEMMA [7] 79.80 49.70 51.04 43.72 65.07
StyleSRN 80.99 50.47 55.56 46.51 65.63

Table 8. Comparison of the accuracy on manually degrade scene
text recognition datasets. Accuracy represents the average accu-
racy with CRNN [25].

cases. In terms of image quality, as shown in Table 7,
our method achieves the highest average PSNR of 21.82,
surpassing other methods like TATT (21.52) and LEMMA
(20.93). Our method achieves an SSIM of 0.7778, which
is comparable to TATT (0.7930). The visual comparison is
presented in Figure 3, which demonstrates that our method
achieves superior visual quality. Our method not only re-
stores the structure of the characters but also preserves their
style information. For instance, for certain stereoscopic
scene texts shown in Figure 3, our method more effectively
restores their stereoscopic effect and shadows details.
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Figure 3. Visualization of SR images and their recognition result. Each text image below uses CRNN [25] for recognition. Characters

marked in red indicate incorrect recognition results.
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Figure 4. Visualization of the STISR results on scene text with
uneven illumination and scene text with severe blur.

Generalization to recognition datasets. To further eval-
uate the generalization capability and robustness of the pro-
posed StyleSRN, we also conduct experiments on five scene
text recognition datasets. These datasets cover a broad spec-
trum of image styles and label distributions, presenting sub-
stantial challenges for the generalization performance of
super-resolution networks. Due to the absence of paired
low-resolution and high-resolution images in these datasets,
we manually degrad the original images before applying
StyleSRN for preprocessing. As illustrated in Table 2, our
method consistently surpasses previous approaches across
these datasets, confirming its strong generalization ability.

5. Discussion

While StyleSRN effectively improves the structural in-
tegrity and style consistency of STISR ,as shown in Fig-
ure 4, it struggles to recover character structures in images
with uneven illumination or severe blur, highlighting the
need for further refinement to address degraded visual con-
ditions. Another limitation is the absence of a standard-
ized quantitative metric for evaluating style degradation in
STISR methods. While our method restores the style of
low-resolution scene text images, no existing metric specif-
ically measures style preservation or degradation. This lack
of objective criteria makes it difficult to rigorously assess
style restoration performance, as current evaluations are
largely subjective and based on visual inspection. Future
research should focus on developing standardized, quanti-
tative metrics to objectively evaluate style preservation in
STISR, enabling more precise assessments and meaningful
comparisons across methods.

6. Conclusions

In this work, we propose StyleSRN to address the limita-
tions of current STISR methods that neglect the stylistic de-
tails of scene text images. StyleSRN incorporates Style En-
hancement Blocks and Style Content Fuse Blocks to effec-
tively capture and integrate text style with content, ensuring
both structural integrity and stylistic consistency. Addition-
ally, the proposed Text Style Loss supervises reconstruction
at the style level, which effectively enhances both image
quality and text recognition accuracy. Results on TextZoom
and five STR benchmarks demonstrate that StyleSRN con-
sistently enhances downstream recognition accuracy and
image quality.
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