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Abstract

Empirical risk minimization (ERM) is a founda-
tional framework for the estimation of solutions to
statistical and machine learning problems. Char-
acterizing the distributional properties of the min-
imum empirical risk (MER) provides valuable
tools for conducting inference and assessing the
goodness of model fit. We provide a comprehen-
sive account of the asymptotic distribution for
the order-

√
n blowup of the MER under generic

and abstract assumptions, and present practical
conditions under which our theorems hold. Our
results improve upon and relax the assumptions
made in previous works. Specifically, we pro-
vide asymptotic distributions for MERs for non-
independent and identically distributed data, and
when the loss functions may be discontinuous
or indexed by non-Euclidean spaces. We further
present results that enable the application of these
asymptotics for statistical inference. Specifically,
the construction of consistent confidence sets us-
ing the bootstrap and consistent hypothesis tests
using penalized model selection. We illustrate the
utility of our approach by applying our results to
neural network problems.

1. Introduction
Empirical risk minimization (ERM) is among the most foun-
dational paradigms of machine learning (ML). ERM consid-
ers approximating

inf
x∈X

E(l(x, Z)),
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by instead computing

inf
x∈X

1

n

n∑
i=1

l(x, Zi),

where the data Zi has the same distribution as Z, and the
loss function l (·, Z) is indexed by parameter x ∈ X .

ERM appears as a fundamental topic in texts such as Vap-
nik (1998), Vidyasagar (2003), and Shalev-Shwartz & Ben-
David (2014). A great variety of ML methods, from lin-
ear and logistic regression to maximum likelihood estima-
tion, support vector machines, and even deep neural net-
works, can be characterized as ERM problems. The study of
ERM problems is also fundamental in statistics and econo-
metric theory, taking on guises such as extremum estima-
tion (Amemiya, 1985; Gourieroux & Monfort, 1995), M-
estimation (Serfling, 1980; van der Vaart & Wellner, 2023),
and minimum contrasts estimation (Dacunha-Castelle &
Duflo, 1986; Bickel & Doksum, 2015), among other names.

The primary objects of interest when studying ERM prob-
lems are the empirical risk minimizer (ERM) and the mini-
mum of the empirical risk (MER). Typical problems are the
convergence of the ERM and MER to their target values, of-
ten referred to as consistency (e.g., Vapnik 1998, Ch. 3 and
van der Vaart & Wellner 2023, Sec. 3.3); the finite-sample
concentration of mass and in expectation around their tar-
gets, often studied as oracle inequalities (e.g., Koltchinskii
2011, Ch. 4 and Cucker & Zhou 2007, Ch. 3); and the
asymptotic convergence of blowup sequences of ERMs and
their functions to limiting distributions (e.g., van der Vaart
& Wellner 2023, Sec. 3.3).

Of relatively less interest has been the study of the limiting
distribution of the MER, which dates back to the original
work of Wilks (1938), who provided conditions under which
the order-n blowup (or simply, n-blowup; defined in Sec-
tion 3) of the maximum likelihood (ML) converges to a
χ2 random variable. This forms the basis for likelihood
ratio tests, for comparing the difference between the log-
likelihoods of two competing models. Generalizations of
such results are frequently sought and studied to provide
hypothesis tests and uncertainty quantification in general
statistical settings. Examples of developments in this vein
include the works of Vuong (1989), who demonstrates the
distributional convergence of the n-blowup to a weighted
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sum of χ2 variables. Asymptotic distributions of n-blowups
of non-likelihood MERs were further considered in Shapiro
(1989) and Gourieroux & Monfort (1995, Ch. 18).

A shortcoming of the n-blowup asymptotics for MERs is
the requirement for strong regularity conditions. Typically,
such results require, for example, that the hypothesis space
is indexed by a Euclidean space, that the empirical risk be
differentiable, and that the limiting or expected risk function
be uniquely minimized with a non-singular Hessian at the
minimizer (see, e.g., Vuong, 1989 and Shapiro et al., 2021,
Sec. 5.1.3). Such assumptions are undesirable in the modern
setting where risks may be non-differentiable, have multiple
possibly connected minima, and whose parameters may be
defined on functional spaces. It is notable that n-blowup
asymptotic distributions can be obtained in some special
cases in such settings, but the analyses are typically bespoke
and laborious, as per the works of Fan et al. (2001), Azaı̈s
et al. (2009), and Dalalyan & Collier (2012).

Although
√
n-blowup asymptotics had been of some in-

terest, the study of such limiting distributions had previ-
ously been conducted under the same restrictive assump-
tions as above (cf. Vuong, 1989). In Shapiro (1991) and
following works, including Shapiro (2000) and Shapiro et al.
(2021, Ch. 5), a general method for deriving the

√
n-blowup

asymptotic distribution of MERs is developed for risks of
hypotheses indexed by Euclidean parameters. Although,
originally intended for providing guarantees for sample
average approximation (SAA) methods in the stochastic
programming setting, the results are widely applicable and
make minimal assumptions on the risks, requiring only that
the empirical risks are computed using independent and
identically distributed (IID) data, that risks are Lipschitz
continuous on a compact parameter space and the existence
of certain moments. Compared to the n-blowup theory,
these assumptions are milder and easier to verify.

The proof technique used in Shapiro (1991) and subsequent
works relies primarily on a central limit theorem for continu-
ous functions that guarantees the limit of the

√
n-blowup of

the empirical risk converges to a bounded continuous Gaus-
sian process (e.g., Dudley, 1999, Thm. 6.3.3). Then, the
application of a Danskin-type theorem is used to obtain the
directional derivative of the infimum function on the class of
continuous functions on a compact set (e.g., Bonnans, 2019,
Prop. 5.42), together with an appropriate delta method.

Via recent developments in Danskin-type theorems for in-
fima functions on classes of bounded (and not necessarily
continuous) functions by Römisch (2014), Carcamo et al.
(2020), and Firpo et al. (2023), we can now provide broad
generalizations of the available theory that allow us to ob-
tain

√
n-blowup asymptotic distributions of the MER in

situations including when the empirical risks are computed
from dependent data, when the risks are discontinuous, and

when hypothesis classes are indexed by functional spaces.
These generalizations provide new tools for hypothesis test-
ing and uncertainty quantification for broad classes of ML
and statistical problems along with novel techniques for
model selection.

Aside from our contributions, we note that the results of
Shapiro (1991) have progressed in other directions. For
instance, Royset & Szechtman (2013) has considered the
asymptotic distribution and convergence rates of the MER
when computed using an iterative algorithm whose number
of iterations increases with sample size. Other results in this
direction are summarized by Kim et al. (2015). In recent
works, Banholzer et al. (2022) has explored the rates of
almost sure and in mean convergence under various assump-
tions to complement the results of Shapiro (1991). Similar
almost sure results, along with moderate deviation princi-
ples, are also obtained by Gao & Yiu (2023).

To summarize, our contributions are as follows:

1. We combine the recent developments in Danskin-type
theorems of Carcamo et al. (2020) to derive asymp-
totic distributions of

√
n-blowups of MERs and related

quantities under a uniform central limit theorem (cf.
van der Vaart & Wellner, 2023) and boundedness as-
sumptions.

2. We demonstrate the use of the modified bootstraps of
Fang & Santos (2019) and Hong & Li (2020) to con-
sistently sample from the limiting distributions of the
MERs and illustrate how to use such bootstrap sam-
ples for conducting hypothesis testing and uncertainty
quantification.

3. We propose novel model selection and hypothesis test-
ing routines for drawing inference in general ML and
statistical settings, and elaborate on the implementa-
tion of these methods in mixture of experts models,
and neural network problems.

2. Formal problem setup
Let (Ω,F,P) denote our underlying probability space and E
the expectation operator on this space. Let Zi be data taking
values in a metric space Z; i.e., Zi : Ω → Z is measurable
with respect to (w.r.t.) the Borel σ-algebra on Z . We assume
that (Zi)i∈N is identically distributed and let Z denote any
random variable with the same distribution as each Zi. We
can allow each Zi to be defined on its own probability space
but this offers no increased generality by van der Vaart &
Wellner (2023, Ch. 1.3; Ex. 4).

Let X denote a (non-empty) parameter or hypothesis space
(not necessarily Euclidean) and let l : X ×Z → R denote a
loss function. Typically X indexes some function class that
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is being fit to the data. We denote the empirical or sample
risk associated to a finite sample of size n (Zi)i∈[n] by

f̂n (x, ω) =
1

n

n∑
i=1

l (x, Zi (ω)) .

We denote its expectation, which we call the expected risk,
by f (x) = E [l (x, Z)].

The primary object of interest in our study is the
√
n-blowup

of sequence of minimum empirical risks (MERs)

ψ̂n (ω) = inf
x∈X

f̂n (x, ω) ,

around the minimum expected risk

ψ∗ = inf
x∈X

f (x) .

We denote the sets of expected risk minimizers and ϵ-
minimizers, respectively, by

S = argmin
x∈X

f (x) , and Sϵ = {x ∈ X : f (x) ≤ ψ∗ + ϵ} .

We similarly denote the corresponding quantities for the
empirical risk:

Sn(ω) = argmin
x∈X

f̂n(x, ω), and

Sϵ
n(ω) =

{
x ∈ X : f̂n (x, ω) ≤ ψ̂n(ω) + ϵ

}
.

Note that in general S and Sn may be empty. Lastly, let

H = {z 7→ l(x, z) : ∀x ∈ X} . (1)

3. Technical preliminaries
Notation We denote the normal distribution with mean
µ ∈ R and variance σ2 ∈ R+ (or random variable with such
distribution) by N(µ, σ2).

For each p ∈ [1,∞), we denote the Lp (P) norm of Z by
∥Z∥p = {E |Z|p}1/p and say that Z ∈ Lp (P) if ∥Z∥p <
∞. We say that Z is tight if for every ϵ > 0 there exists a
compact set K ⊆ Z so that PZ (K) ≥ 1− ϵ. For any n ∈ N
we write [n] = {1, 2, . . . , n}.

Outer expectation Define the outer expectation of a (po-
tentially non-measurable) function U : Ω → R̄ as

E∗U = inf {EV : V ≥ U , V is measurable, EV exists} ,

where R̄ = R ∪ {−∞,∞}. Further, we define the outer
probability of an arbitrary set A ⊆ Ω by P∗ (A) = E∗ (1A),
were 1A (ω) = 1 if ω ∈ A and 1A (ω) = 0, otherwise.
Similarly, we define P∗(A) = −E∗(−1A). We say that
a sequence of real functions (Un)n∈N is oP∗ (1) or write

Un
P∗−→ 0 if for every ϵ > 0, P∗ (|Un| > ϵ) → 0 (cf. van

der Vaart & Wellner, 2023, Sec. 1.2).

Dependence concepts We say (Zn)n∈N is stationary if
for any indices i1, . . . , im, and integer n ≥ 1, the random
vector (Zi1 , . . . , Zim) has the same joint distribution as
(Zn+i1 , . . . , Zn+im). Further, write Zn

1 = σ (Zi : i ≤ n),
as the σ-algebra generated by random variables {Zi, i ∈
[n]}, and Z∞

n+k = σ (Zi : i ≥ n+ k). As per Bradley
(2005), we define the kth β-mixing coefficient as β (k) =
supn∈N β

(
Zn
1 ,Z

∞
n+k

)
, where

β
(
Zn
1 ,Z

∞
n+k

)
= sup

I∑
i=1

J∑
j=1

|P (Ai ∩ Bj)− P (Ai)P (Bj)|
2

with the supremum taken over all pairs of finite partitions,
(Ai)i∈[I] and (Bj)j∈[J], of Ω, such that Ai ∈ Zn

1 and Bj ∈
Z∞
n+k, for each i ∈ [I] and j ∈ [J ]. The sequence (Zn)n∈N

is said to be β-mixing if limk→∞ β (k) = 0.

Convergence concepts The weak convergence of ran-
dom elements (Fn)n∈N to F is defined in the Hoffmann-
Jørgensen sense (see van der Vaart & Wellner, 2023, Section
1.3) and is denoted by Fn ⇝ F . In particular we allow weak
convergence of non-measurable objects. For τn → ∞, we
say that τnFn is the τn-blowup of the sequence (Fn)n∈N.

For any set A, ℓ∞(A) = {h : A → R : supx∈A |h(x)| <
∞} is the space of bounded functions on A. Note that
functions h ∈ ℓ∞(A) are not equivalent classes and may
not be measurable if A has a measure. Note that this differes
from the space L∞ of essentially bounded functions.

We say that H has a finite envelope if there exists H̄ : Z →
R, such that |h (z)| ≤ H̄ (z), for each z ∈ Z and h ∈ H.
Let Fn : Ω → ℓ∞(H) be given by

(Fn(ω)) (h) =
√
n

{
1

n

n∑
i=1

h (Zi(ω))− Eh (Z)

}
.

We say that H is P-Donsker (or just Donsker when there is
no ambiguity) if (Zi)i∈N are IID, suph∈H |h (z)− EZh| <
∞, for each z ∈ Z , and Fn ⇝ F for F : Ω → ℓ∞ (H), a
tight zero-mean Gaussian process with covariance

E [F (h)F (g)] = E {[h (Z)− Eh (Z)] [g (Z)− Eg (Z)]} .

Donsker classes can be thought of as sets of functions that
admit a uniform central limit and are the primary subject of
Dudley (1999) and van der Vaart & Wellner (2023, Ch. 2).

Delta method and derivatives Let U and V be normed
vector spaces and g : U → V . We say that g is Hadamard
directionally differentiable at x in direction η ∈ U if for
any sequences (tn)n∈N ⊂ (0,∞) and (ηn)n∈N ⊂ U with
tn → 0 and ηn → η,

g′x(η) = lim
n→∞

g(x+ tnηn)− g(x)

tn
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is well defined. When g′x(η) exists for every η ∈ X , we say
that g is Hadamard directionally differentiable at x. When
g′x(η) exists for every η in some A ⊆ X , then we say g
is Hadamard directionally differentiable at x tangentially
to A. If η 7→ g′x(η) is linear, we further say that g is
Hadamard differentiable at x. See Schirotzek (2007) for a
comprehensive treatment of differentiation concepts.

The following Danskin-type result is instrumental in our
analyses. It is a minor extension of the results of Römisch
(2014, Prop. 1) and Carcamo et al. (2020, Thm. 2.1).

Theorem 3.1. Let A be an arbitrary set and B ⊆ A. Define
ι : ℓ∞ (A) → R by ι (g) = infB g. Then ι is Hadamard
directionally differentiable at any g ∈ ℓ∞(A), and for each
direction η ∈ ℓ∞ (A),

ι′g (η) = lim
ϵ↘0

inf
x∈S(g,ϵ,B)

η (x) ,

where S(g, ϵ,B) = {x ∈ B : g (x) ≤ ι (g) + ϵ} .

Some refinements of Theorem 3.1 under topological assump-
tions on X are considered by Carcamo et al. (2020), along
with conditions for the (full) Hadamard differentiability of ι.
We combine the result above with the following directionally
differentiable form of the delta method by Römisch (2014).
For a generic set A and generic F : Ω → ℓ∞(A), we write
infA F : Ω → R to mean infA F (ω) = infx∈A F (x, ω).

Fact 3.2. Let U ,V be normed vector spaces and µ ∈ U . Let
g : U → V be Hadamard directionally differentiable at µ.

For each n ∈ N, let Xn : Ω → U be maps and X : Ω → U
be measurable w.r.t. the Borel σ-algebra on U . Assume that
τn → ∞ and

τn(Xn − µ)⇝ X.

Then,
τn(g(Xn)− g(µ))⇝ g′µ(X), and

τn (g (Xn)− g (µ))− g′µ (τn (Xn − µ)) = oP∗ (1) .

4. Main results
For comparison, we begin with the

√
n-blowup theorem of

Shapiro et al. (2021, Thm 5.7), which we generalize. Let
d ∈ N and make the following assumptions:

A1 X ⊂ Rd is compact, and there exists an x̄ ∈ X , such
that E

[
l (x̄, Z)

2
]
<∞.

A2 There exists a measurable L : Ω → [0,∞), such that
E
[
L2
]
<∞, and a.s. in ω, for every x, x′ ∈ X ,

|l (x, Z (ω))− l (x′, Z (ω))| ≤ L (ω) ∥x− x′∥ .

Fact 4.1. If (Zi)i∈N are IID, and A1 and A2 hold, then

√
n
(
ψ̂n − ψ∗

)
⇝ infSF , and

ψ̂n = inf
x∈S

f̂n (x) + oP

(
n−1/2

)
,

where F is a zero-mean Gaussian process indexed by X with
covariance between F (x) and F (x′):

E {[l (x, Z)− f (x)] [l (x′, Z)− f (x′)]} , (2)

for each x, x′ ∈ X . In particular, if S = {x∗}, then

√
n
(
ψ̂n − ψ∗

)
⇝ N

(
0, σ2

∗
)

,

for σ2
∗ = E

[
F (x∗)

2
]
.

Note the undesirable requirements that the hypothesis be
indexed by a compact Euclidean space and data being IID,
along with the smoothness assumption A2, are present to
to invoke a central limit theorem for continuous functions
(cf. Dudley, 1999, Thm. 6.3.3). To relax the requirements
of Fact 4.1, we present the following abstract result by com-
bining Theorem 3.1 and Fact 3.2. Make the assumptions:

B1 Assume f ∈ ℓ∞(X ), and there is a P-a.s. set Ω0 ⊆ Ω

such that for n sufficiently large f̂n(·, ω) ∈ ℓ∞(X ),
∀ω ∈ Ω0.

B2 There exists τn → ∞ such that

τn(f̂n − f)⇝ F,

for Borel measurable F : Ω → ℓ∞(X ).

Theorem 4.2. If B1 and B2 hold, then

τn

(
ψ̂n − ψ∗

)
⇝ lim

ϵ↘0
inf
x∈Sϵ

F (x) , and (3)

ψ̂n = lim
ϵ↘0

inf
x∈Sϵ

{
f̂n (x)− f (x) + ψ∗

}
+oP∗

(
τ−1
n

)
. (4)

Remark 4.3. If additionally X is compact, f is lower semi-
continuous, and the sample paths of F are lower semi-
continuous, then the weak limit reduces to infS F See Ap-
pendix E for details.

The abstraction of B1 and B2 allows for extensive flexibility
in obtaining conclusions (3) and (4). We give sufficient
conditions in the sequel.

Because of the possibility of pathological sample paths of
F it is very hard for τn(ψ̂n − ψ∗) converge to a Gaussian
limit. The following result gives one sufficient condition.

Corollary 4.4. Assume B1 and B2 hold. If Sϵ = S for ϵ > 0
small enough, and the function x 7→ l(x, ·) is constant on
S, then

τn(ψ̂n − ψ∗)⇝ F (x∗)

for some x∗ ∈ S. If F is Gaussian then so is F (x∗).
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Sufficient conditions for B2 The following result pro-
vides our most anticipated use case, facilitated by many
sufficient conditions; see e.g. van der Vaart & Wellner
(2023, Sec. 2.5).

Corollary 4.5. If B1 is true, and H is Donsker, then (3) and
(4) hold with τn =

√
n, where F is a zero-mean Gaussian

process indexed by X with covariance (2).

Donsker classes have many known sufficient conditions.
Here we present one condition. For others see (Dudley,
1999; van der Vaart & Wellner, 2023). The idea is that if
a class of functions is not very ‘complicated’ then it will
be Donsker. One way to measure complexity is to use
bracketing numbers.

When H is a subset of a vector space with norm ∥·∥
and l, u ∈ H, we say that [l, u] = {h : l ≤ h ≤ u} is
an ϵ-bracket if ∥u− l∥ < ϵ. The bracketing number
N[] (ϵ,H, ∥·∥) is the minimum number of ϵ-brackets re-
quired to cover H. The following result is found in Dudley
(1999, Thm. 7.2.1).

Fact 4.6. The class H ⊂ L2 (PZ) is Donsker if∫ 1

0

√
logN[] (ϵ,H, ∥·∥2)dϵ <∞. (5)

Interestingly, our results enable analysis of classes of func-
tions that admit Donsker properties under limited depen-
dence assumptions. The following result from Dedecker
& Louhichi (2002, Thm 5.2) provides conditions when
(Zi)i∈N are β-mixing. Let p ∈ (2,∞) and assume:

C1 The set X is Polish, H ⊆ L2(PZ) is such that∫ 1

0

√
logN[]

(
ϵ,H, ∥·∥p

)
dϵ <∞,

and suph∈H |h (z)− EZh| <∞, for each z ∈ Z .

C2
∑∞

k=1 k
2/(p−2)β (k) <∞.

Fact 4.7. Let (Zi)i∈[n] be a stationary sequence and sup-

pose that C1 and C2 are satisfied. Then
√
n
(
f̂n − f

)
⇝ F ,

where F is a tight zero-mean Gaussian process.

Note that there exists numerous examples where C2 is satis-
fied, such as when (Zi)i∈N is m-dependent in the sense that
Zn+m+1, is independent (Zi)i∈[n] for every n ∈ N. In such
case, β (k) = 0, for all k > m. Other processes, including
autoregressive sequences, can also be proved to satisfy C2
(cf. Doukhan, 1995, Sec. 2.4).

Computing the bracketing number of any function class
is difficult, however there are many known upper bounds.
For example, upper bounds are known for convex function

classes (van der Vaart & Wellner, 2023, Thm 2.7.14), mono-
tone function classes (van der Vaart & Wellner, 2023, Thm
2.7.9), or function classes with Holder-derivatives (van der
Vaart & Wellner, 2023, Cor 2.7.2, Cor 2.7.3).

There are similar results for parametric classes. When (X , d)
is a metric space and |l (x, z)− l (x′, z)| ≤ H̄ (z) d (x, x′)
is satisfied ∀x, x′ ∈ X , for some fixed H̄ : Z → R,
then for any norm ∥·∥, we have N[]

(
2ϵ
∥∥H̄∥∥ ,H, ∥·∥) ≤

N (ϵ,X , d), where N (ϵ,X , d) is the minimum number of
balls of radius ϵ required to cover X (cf. Kosorok, 2008,
Thm. 9.23).

5. Statistical inference
In order for limits of the form τn(ψ̂n − ψ∗) ⇝ F ∗ to be
of practical utility, we need a method to approximate F ∗.
When F ∗ is Gaussian, under reasonable conditions, it is
possible obtain the convergence result:

τn

(
ψ̂n − ψ∗

)
/σ̂n ⇝ N(0, 1),

for sample variance σ̂2
n of f̂n(x), for some x ∈ Sn; see

Theorems C.3 and C.4. Given some restrictions, Corollaries
4.4 and E.2 can be used to obtain the Gaussianity of F ∗.
However, in general it is not possible to directly approximate
the limiting process using sample means and variances (cf.
Kosorok, 2008, p. 19).

Standard bootstrapping procedures only work under very
restrictive conditions. In our context, Fang & Santos (2019,
Thm. 3.1) states that when H is Donsker, many boot-
strapping procedures (including the non-parametric boot-
strap) are consistent precisely when the inf map is (fully)
Hadamard differentiable on the support tangentially to the
image measure of F (the Donsker limit). Theorem 3.1 only
gives directional differentiability and conditions for ι to
be Hadamard differentiable are very restrictive. Our cur-
rent best results for conditions under which the bootstrap is
consistent are:

• If F has lower semi-continuous sample paths, X is
compact, and f lower semi-continuous and bounded
then we require x 7→ l(x, ·) to be constant on S. See
Theorem B.2.

• If F and f are bounded then we require that for ϵ small
enough, Sϵ = S, and on S, x 7→ l(x, ·) is constant.
See Theorem B.4.

Fang & Santos (2019) have given a framework that slightly
modifies the bootstrap and allows for consistent approxima-
tion of F ∗.

Most bootstrapping procedures can be equivalently consid-
ering as drawing weights (Wi)i∈[n] from some distribution,
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giving a bootstrapped empirical risk of

f b
n (x) =

(
n∑

i=1

Wi

)−1 n∑
i=1

Wil (x, Zi) (6)

For Y a metric space we let BL1(Y) =
{g : Y → [0, 1] : Lip(g) ≤ 1}, where Lip(g) refers
to the (smallest) Lipschitz constant of g. We write M(Ω,Y)
to denote the set of Borel measurable functions from Ω to
Y . We write BA to denote all functions from A to B.

For any σ-subalgebra A ⊆ F the outer conditional expecta-
tion E∗(·|A) : RΩ → L1(Ω) is defined via

E∗(f |A) = inf
{
E(g|A)

∣∣ g ≥ f, and E(g) exists
}
,

where the infimum is defined using standard partial ordering
of random variables (f ≤ g if and only if f(ω) ≤ g(ω) for
almost all ω). Similarly define E∗(f |A) = −E∗(−f |A).

We then define dnBL : YΩ ×M(Ω,Y) → RΩ
via

dnBL(U, V ) = sup
g∈BL1(Y)

|E∗(g(U)|(Zi)i∈[n])− E(g(V ))|.

where the supremum depends on (Zi) and is again taken
w.r.t. the standard ordering on random variables.

Following the notation of Kosorok (2008) we say that

τn(f
b
n − f̂n)|(Zi)i∈[n]

P∗
⇝ F,

if and only if

dnBL(τn(f
b
n − f̂n), F )

P∗−→ 0, and

E∗(g(τn(f
b
n − f̂n))− E∗(g(τn(f

b
n − f̂n)) → 0,

for all g ∈ BL1(X ). Convergence in dnBL is sufficient
to generate asymptotically correct quantiles when F has
continuous distribution function (cf. Bücher & Kojadinovic,
2019, Lem. 4.2).

In order to then approximate F ∗ we use functions in :
ℓ∞(X )× Ω → R such that

in(τn(f
b
n − f̂n), ·)|(Zi)i∈[n]

P∗
⇝ F ∗.

We consider two possible forms of in:

1. From Fang & Santos (2019) and Hong & Li (2018),

ι̂sn,n(η, ω) = s−1
n (inf

X
(f̂n(ω) + snη)− ψ̂n(ω)).

2. Modified from Firpo et al. (2023),

ι̃tn,n(η, ω) = inf
x∈Stn

n (ω)
(η).

Make the following assumptions:

D1 τn(f̂n − f) ⇝ F for some tight, Gaussian F : Ω →
ℓ∞(X ).

D2 τn(f
b
n− f̂n)|(Zi)i∈[n]

P∗
⇝ F and τn(f bn− f̂n) is asymp-

totically measurable (c.f. van der Vaart & Wellner,
2023, def 1.3.7).

D3 τn(f
b
n − f̂n) is a measurable function of the weights

(Wi)i∈[n] for fixed (Zi)i∈[n].

D4 The weights are chosen independent of the data.

Theorem 5.1. Assume that B1 and D1–D4 are satisfied.

• If sn → 0 and τnsn → ∞, then

dnBL

(
ι̂sn,n(τn(f

b
n − f̂n)), lim

ϵ↓0
inf
Sϵ
F

)
P∗→ 0.

• If tn → 0 with τntn → ∞, then

dnBL

(
ι̃tn,n(τn(f

b
n − f̂n)), lim

ϵ↓0
inf
Sϵ
F )

)
P∗→ 0.

The following result provides our most anticipated use case

Corollary 5.2. If B1 is satisfied with H Donsker and
(Wi)i∈N corresponding to the nonparametric bootstrap,
then the conclusion of Theorem 5.1 holds with τn =

√
n.

It is well known that for non-IID data that the standard
bootstrap tends to fail, see for example Singh (1981, Rem.
2.1) or Liu & Singh (1992). To handle the non-IID case we
consider the moving block booststrap (MBB). Rather than
resampling the data with replacement, we draw n/l blocks
of l contiguous data points out of the possible n − l + 1
blocks of data. Such a procedure preserves the dependency
structure much more than the standard bootstrap.

The MBB satisfies D4, satisfies D3 by Lemma A.5 and
using Bühlmann (1995, Thm. 1), D1–D2 are satisfied under
the assumptions:

E1 The β-mixing coefficients of the data satisfy β (k) ≤
exp (−c1k), for some c1 > 0.

E2 The block length l satisfies l (n) = O
(
n1/2−ϵ

)
, for

some ϵ ∈ (0, 1/2).

E3 H has envelope H̄ ∈ Lp(PZ), for some p > 4, whereby
for some constants c2, c3 > 0, N[]

(
ϵ,H, ∥·∥p

)
≤

c2ϵ
−c3 .

E4 X is Souslin in the sense that it is an analytic subset of
a compact metric space, with Borel σ-algebra B(X )
(cf. Dellacherie & Meyer, 1975, Def. 16), and l (·, Z) :
X × Ω → R is jointly measurable on B (X )⊗ F.
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We note that E1–E3 are much stronger than the non-
bootstrap counterpart C1 and C2 for Theorem 4.7, especially
the higher moment requirement and fast mixing rate. We
know of no alternatives that make bracketing assumptions,
however the Vapnik–Chervonenkis (VC) result of Radulović
(2002, thrm 2.5) provides an alternative under stronger en-
tropy, but weaker mixing rates and moments assumptions.

Model selection We can use the asymptotic limits of The-
orem 4.2 to conduct model selection by approximating the
quantiles of the limiting distribution. This requires a minor
modification of Theorem 4.2.

Let (Xk)k∈[m] be a sequence of m parameter spaces
defining corresponding model spaces (Hk)k∈[m], where
Hk is defined as per (1) with X replaced by Xk. Let
ψ∗
k = infxk∈Xk

f (xk) be the minimum expected risk ob-
tained by models in Hk. Similarly we define ψ̂k,n(·) =

infxk∈Xk
f̂n (xk, ·).

Theorem 5.3. Let X0,X1 be arbitrary sets. Assume B1 and
B2 are satisfied with X = X0 ∪ X1 and further assume
ψ∗
0 = ψ∗

1 . Then

τn(ψ̂1,n − ψ̂0,n)⇝ F ∗, where

F ∗ = lim
ϵ↘0

inf
x∈S(f,ϵ,X1)

F (x)− lim
ϵ↘0

inf
x∈S(f,ϵ,X0)

F (x),

and S(·, ·, ·) is as defined in Theorem 3.1.

The following result is useful for model selection.
Corollary 5.4. Let X0,X1 be sets. Assume B1, B2 are
satisfied with X = X0 ∪ X1. If ψ∗

1 = ψ∗
0 , we have for any

α ∈ [0, 1],

lim sup
n→∞

P∗
(
ψ̂n,1 ≤ ψ̂n,0 +

cα
τn

)
≤ α, where

cα = sup
{
c ∈ R : P(F ∗ ≤ c) ≤ α

}
,

and F ∗ is as defined in Theorem 5.3.

This then provides a method for testing the null hypothesis
H0 : ψ∗

0 = ψ∗
1 against the alternative H1 : ψ∗

1 > ψ∗
0 at any

size α ∈ [0, 1] by rejecting H0 if ψ̂n,1 > ψ̂n,0 + cα/τn.

Such results cannot be used to choose favourably between
any 2 models with the same minimum expected risk. How-
ever, using our results, we can infer the optimal hypothesis,
with the minimum complexity, within a set of competing
hypotheses. With this goal in mind, we let k ∈ [m] index
the model classes in order of complexity with larger k cor-
responding to higher complexity. For example, k could be
the order of polynomials that form the hypothesis space.

The aim is to estimate the least complex model within the
class of models with optimal performance:

k∗ = min

{
argmin
k∈[m]

ψ∗
k

}
.

Towards this end, we construct a penalized empirical risk-
based estimator as per the information criteria of Akaike
(1974) and Schwarz (1978). Namely, we estimate k∗ by

K̂n = min

{
argmin
k∈[m]

(
ψ̂k,n + Pk,n

)}
,

where (Pk,n)k∈[m] is a sequence of penalty functions, pos-
sibly depending on (Zi)i∈[n]. Following the usual approach,
as espoused in Claeskens & Hjort (2008, Ch. 4) and Baudry
(2015), we propose conditions under which K̂n is a con-
sistent estimator of k∗, in the sense that, as n → ∞,
P∗

(
K̂n = k∗

)
→ 1.

Assume that τn → ∞ and make the following assumptions
for each k ∈ [m]:

F1 τn

(
ψ̂k,n − ψ∗

k

)
is asymptotically bounded in probabil-

ity in the sense that ∀δ > 0 ∃M ∈ R such that

lim inf
n→∞

P∗

(
τn

(
ψ̂k,n − ψ∗

k

)
< M

)
≥ 1− δ

F2 Pk,n > 0, Pk,n = oP∗ (1), and τn {Pl,n − Pk,n}
P∗−→

∞, for every l > k.

Here, for any sequence of maps hn : Ω → R we say that
hn

P∗−→ ∞ if ∀M ∈ R, P∗(hn > M) → 1.

Proposition 5.5. If F1 and F2 hold for each k ∈ [m], then
Kn is a consistent estimator for k∗.

To make our result concrete, we note that by Lemma A.4
F1 is satisfied whenever τn

(
ψ̂k,n − ψ∗

k

)
converge in dis-

tribution for each k ∈ [m]. Namely, if the hypotheses of
Theorem 4.2 are satisfied for each k ∈ [m], then F1 holds.
One then selects an appropriate sequence (Pk,n)k∈[m] that
satisfies F2 to enable the conclusion of Proposition 5.5.

Conditions F1 and F2 broadly generalises the consistency
theory of Sin & White (1996) and Baudry (2015) who con-
sider only models indexed by Euclidean spaces with unique
minimizers and strong differentiability properties.

6. Incremental hypothesis spaces
We have previously assumed that the parameter space is
independent of the sample size. This is often not true in high
dimensional problems and so we now relax this assumption.
Let Xn denote the (non-random) parameter space indexed
by the sample size n.

Make the following assumption:

G1 ∅ ≠ X1 ⊆ X2 ⊆ · · · and X =
⋃∞

n=1 Xn.
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We have the following extension of the delta method.
Theorem 6.1. Let U ,V be normed vector spaces and µ ∈ U .
∀n ∈ N let gn, hn : U → V and let (τn) ⊆ R+ be such that
τn → ∞. For each n ∈ N let Xn : Ω → U be maps and
let X : Ω → U be Borel measurable. Assume ∀η ∈ U and
∀(ηn)n∈N ⊂ U with ηn → η,

Dµ(η) = lim
n→∞

τn[gn(µ+ ηn/τn)− hn(µ)] (7)

is well defined. Then if τn(Xn − µ)⇝ X , we have

τn(gn(Xn)− hn(µ))⇝ Dµ(X), and

τn(gn(Xn)− hn(µ))−Dµ(τn(Xn − µ)) = oP∗(1).

Equation (7) is an extension of the idea of Hadamard differ-
entiability to a sequence of functions. The next two results
show when this is true for the infima maps. When X has
a topology we let lsc(X ) to be the space of lower semi-
continuous functions g : X → R and equip it with the
topology of uniform convergence (c.f. Willard, 2012, Def.
42.8).
Theorem 6.2. Assume G1 and that X is a compact topo-
logical space. Let f ∈ lsc(X ) and let (tn)n∈N ⊆ R+ with
tn → 0. Then for any gn, g ∈ lsc(X ) with ||gn − g||X → 0,

lim
n→∞

infXn
(f + tngn)− infX f

tn
= inf

S
g, (8)

lim
n→∞

infXn
(f + tngn)− infXn

f

tn
= inf

S
g. (9)

Theorem 6.3. Assume G1. Let f ∈ ℓ∞(X ) and let
(tn)n∈N ⊆ R+ with tn → 0. If ∃N ∈ N such that

inf
X c

N

f > inf
X
f,

then for any gn, g ∈ ℓ∞(X ) with ||gn − g||X → 0,

lim
n→∞

infXn(f + tngn)− infX f

tn
= lim

ϵ↘0
inf
Sϵ
g, (10)

lim
n→∞

infXn
(f + tngn)− infXn

f

tn
= lim

ϵ↘0
inf
Sϵ
g. (11)

These results above can be combined upon defining

ϕ̂n = inf
Xn

f̂n, and ϕ∗n = inf
Xn

f ,

and making the following assumptions:

H1 X is a compact metric space, f ∈ lsc(X )∩ℓ∞(X ), and
there is a P-a.s. set Ω0 ⊆ Ω such that for n sufficiently
large f̂n(·, ω) ∈ lsc(X ) ∩ ℓ∞(X ), ∀ω ∈ Ω0.

H2 There exists τn → ∞ such that

τn(f̂n − f)⇝ F,

for F : Ω → lsc(X ) ∩ ℓ∞(X ) Borel measurable.

Theorem 6.4. Assume G1, B1 and B2 are satisfied and
additionally ∃N ∈ N such that infX c

N
f > infX f . Then

τn

(
ϕ̂n − ψ∗

)
⇝ lim

ϵ↘0
inf
x∈Sϵ

F (x) ,

τn

(
ϕ̂n − ϕ∗n

)
⇝ lim

ϵ↘0
inf
x∈Sϵ

F (x) ,

and

ϕ̂n = lim
ϵ↘0

inf
x∈Sϵ

{
f̂n (x)− f (x) + ψ∗

}
+ oP∗

(
τ−1
n

)
,

ϕ̂n = lim
ϵ↘0

inf
x∈Sϵ

{
f̂n (x)− f (x) + ϕ∗n

}
+ oP∗

(
τ−1
n

)
.

If instead G1, H1 and H2 are true, then

τn

(
ϕ̂n − ψ∗

)
⇝ inf

x∈S
F (x) ,

τn

(
ϕ̂n − ϕ∗n

)
⇝ inf

x∈S
F (x) ,

and

ϕ̂n = inf
x∈S

f̂n (x) + oP∗
(
τ−1
n

)
,

ϕ̂n = inf
x∈S

{
f̂n (x)− ψ∗ + ϕ∗n

}
+ oP∗

(
τ−1
n

)
.

7. Numerical experiments
7.1. Model selection in Gaussian mixture of experts

We firstly provide empirical evidence towards the guarantees
of Proposition 5.5.

Data generating process. We generate an 8-dependent
stationary sequence (Zi)i∈[n+8], Zi = (Xi, Yi) for each
i ∈ [n + 8], from a Gaussian mixture of experts (GMoE;
Jacobs et al., 1991) model, with k∗ = 2 components. Let
(Ei)i∈[n] be IID, where Ei ∼ N (0, 1) for each i ∈ [n],
and Xi ∼ Unif (0, 1), for each i ∈ [8]. Then, for i ∈
[n] \ [8], Xi| (Ei)i∈[n] ∼ 1{∑8

j=1 Ei−j≤0}Unif (0, 1/3) +
2 × 1{∑8

j=1 Ei−j>0}Unif (1/3, 1). Next, we simulate la-
tent labels Li|Xi ∼ 1 + Ber (π (Xi)), where π (x) =
1/ {1 + exp (15x− 7)}. Finally, we generate responses
Yi|(Xi, Li) ∼ N

(
µLi

(Xi) , σ
2
Li

)
, where µ1 (x) = −15x+

8, µ2 (x) = 0.4x+ 0.6, σ2
1 = 0.32 and σ2

2 = 0.42. See Ho
et al. (2022), Nguyen et al. (2022; 2023), and references
within, for recent developments regarding the estimation
and model selection of GMoE models.

Model selection criteria. For each GMoE with k experts,
k ∈ [5], denote its parameter space by Xk. Following the
suggestion of Sin & White (1996), when τn =

√
n, we pro-

pose penalties of the form P SWIC
k,n = [dim(Xk) log(n)]/

√
n,

defining what we designate the Sin and White informa-
tion criterion (SWIC), where dim(·) is the number of pa-
rameters for each model. It is easy to verify that P SWIC

k,n

8
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satisfies F2. The usual BIC and AIC, with penalties
PBIC
k,n = [dim(Xk) log(n)]/(2n) and PAIC

k,n = dim(Xk)/n,
do not satisfy F2. To compute the MERs, we implement
the usual Expectation–Maximization algorithm for GMoE
models (see, e.g., Chamroukhi et al., 2009). Figure 1 dis-
plays the relative performance of the SWIC versus the BIC
and AIC, over 50 simulations of size n = 2000. We ob-
serve that SWIC correctly estimates k∗ in all replications,
whereas AIC always underestimates the complexity. BIC
estimates correctly with high probability (0.72) but often
overestimates the complexity.
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Figure 1. Histogram of computed K̂n over 50 simulations.

7.2. Neural Network

Here we seek to numerically verify the ability of the boot-
strap procedures to generate asymptotically correct quan-
tiles. We do this by using a model for which ψ∗ is analyt-
ically computable and test if the bootstrap procedures can
generate confidence interval (CI) with the correct coverage.

To generate the model we consider a binary classification
feedforward neural network (NN) with 1 input node and 1
hidden layer, consisting of 3 nodes with ReLU activation.
We first fix a NN and generate n IID replicates (Zi)i∈N of
Z = (X,Y ), where X ∼ Unif(0, 1) and Y is the output of
the NN, with input X , flipped 30% of the time.

We fit a NN with the same configuration to the data. Via the
data generating process, we know that the minimum classi-
fication loss is ψ∗ = 0.3, by Lemma D.1. These networks
were fit by minimising the classification loss using the ‘par-
ticleswarm’ global optimizer in MATLAB. Full details are
given in Appendix D.

We seek to compute 90% CIs for the classification loss,
using the standard nonparametric bootstrap and the two
consistent procedures of Theorem 5.1. Figure 2 shows the
coverage of these procedures. Note that for moderately large
samples, all methods provide conservative coverage.

Our choice of NN configuration characterizes a class, F ,
of binary output functions, which is Donsker if F is a mea-
surable VC subgraph class (cf. Dudley, 1999, Cor. 10.1.5).
Since the classification loss of the NN can be evaluated with
only a finite number of logical comparison and elementary
arithmetic operations, the fact that F is a VC subgraph class
then follows via Anthony & Bartlett (1999, Thm. 8.14).
Theorem 5.1 implies that our methods should correctly pro-

vide 90% coverage if the limiting distribution of the MER is
continuous, while there is minimal support for the standard
nonparametric bootstrap in this setting.

Figure 3 shows that the widths of the CIs are of reason-
able sizes for moderate amount of data. For this numerical
experiment, all bootstrap procedures achieved the nominal
coverage. All methods do not take the same amount of
computation resources, however (see Figure 4). The method
based on Firpo et al. (2023) was considerably faster than
the others due to the amortisation property of not requiring
refits of the NN for each bootstrap resample.
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Figure 2. Coverage of nominally 90% bootstrap CIs for various
sample sizes.
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Figure 3. Mean widths of the 90% bootstrap CIs for various sample
sizes.

8. Conclusion
We have reported on a comprehensive set of tools for char-
acterizing the asymptotic distribution of MERs along with
protocols for model selection and statistical inference, based
on these theoretical results. Practical regularity conditions
for implementing our methods and example applications
are provided to illustrate the utility of our results. Further
directions of study will involve better understanding the
properties of the limiting distributions of MERs and how
these properties interact with various bootstrap methods.
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A. Proofs
A.1. Theorem 3.1

We have that for any g ∈ ℓ∞(A), g|B ∈ ℓ∞(B), and if hn converges to h in ℓ∞(A), then hn|B converges to h|B in ℓ∞(B).
The result is then immediate by Römisch (2014, Prop. 1) with universe B.

A.2. Theorem 4.2

Let ι be as in Theorem 3.1 with A = X . This theorem gives that ι is Hadamard directionally differentiable on ℓ∞(X ). By
assumption F (Ω) ⊂ ℓ∞(X ), and we can modify τn(f̂n − f) on Ω \ Ω0 (where P(Ω0) = 1) so that it is also takes values in
ℓ∞(X ). The conditions on the delta method (Fact 3.2) are then satisfied from which we get

τn(ι(f̂n)− ι(f))⇝ ι′f (F ), and (12)

τn(ι(f̂n)− ι(f))− ι′f (τn(f̂n − f)) = oP∗(1). (13)

By definition, ι(f̂n) = ψ̂n and ι(f) = ψ∗. Substituting in the expression for ι′f (F ), given in Theorem 3.1, into Equation
(12) gives Equation (3). Rearranging Equation (13) gives

τn(ψ̂n − ψ∗) = lim
ϵ↘0

inf
x∈Sϵ

(τn(f̂n(x)− f(x))) + oP∗(1)

=⇒ ψ̂n = lim
ϵ↘0

inf
x∈Sϵ

(f̂n(x)− f(x)) + ψ∗ + oP∗(τ
−1
n )

= lim
ϵ↘0

inf
x∈Sϵ

(f̂n(x)− f(x) + ψ∗) + oP∗(τ
−1
n ).

This is precisely Equation (4).

A.3. Corollary 4.4

Theorem 4.2 implies that
τn(ψ̂n − ψ∗)⇝ lim

ϵ↘0
inf
x∈Sϵ

F (x).

If Sϵ is constant and equal to S, for ϵ sufficiently small, then

lim
ϵ↘0

inf
x∈Sϵ

F (x) = inf
x∈S

F (x).

Because l is constant on S, f̂n and f is as well. Because τn(f̂n − f) ⇝ F , Lemma A.1 gives that F is constant on X .
Hence, for any x∗ ∈ S

inf
x∈S

F (x) = F (x∗).

Lemma A.1. Let X be a set and let A ⊆ X . Let

CA = {f ∈ ℓ∞(X ) : |f(A)| = 1}

where | · | denotes set cardinality. Let (Ω,F,P) be a probability space, Xn : Ω → CA be maps, and X : Ω → ℓ∞(X ) be
Borel measurable. If Xn ⇝ X then, X : Ω → CA.

Proof. We first claim that CA is closed. To show this take (fn) ⊂ CA with fn → f in ℓ∞(X ). We aim to show that f ∈ CA.
For the sake of contradiction assume f /∈ CA. This means ∃a, b ∈ A such that f(a) ̸= f(b). Without loss of generality
assume f(a) > f(b) (else relabel). Let ϵ = (f(a)− f(b))/2. Then for n sufficiently large,

|fn(a)− f(a)| < ϵ and |fn(b)− f(b)| < ϵ

which implies
−ϵ < fn(a)− f(a) and fn(b)− f(b) < ϵ.

12
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By definition of ϵ,
f(b)− f(a)

2
< fn(a)− f(a) and fn(b)− f(b) <

f(a)− f(b)

2

and so
f(b) + f(a)

2
< fn(a) and fn(b) <

f(a) + f(b)

2
.

That is, for n large enough fn(a) > fn(b). However, fn is constant on A by assumption so we have a contradiction. It must
then be true that f ∈ CA and so CA is closed.

By the Portmanteau theorem, ∀F ⊆ ℓ∞(X ) closed,

lim sup
n→∞

P∗(Xn ∈ F) ≤ P(X ∈ F).

Taking F = CA gives
1 = lim sup

n→∞
P∗(Xn ∈ CA) ≤ P(X ∈ CA)

and so P(X ∈ CA) = 1. This is the required result (up to a possible modification on a null set).

A.4. Theorem 5.1

Let in generically denote one of ι̂′sn,n or ι̃′tn,n. Our proof strategy is to verify the following assumptions:

(a)
√
n(f̂n − f)⇝ G, for some tight, Gaunssian G.

(b)
√
n(f bn − f̂n)|(Zi)i∈[n]

P∗
⇝ G.

(c)
√
n(f bn − f̂n) is asymptotically measurable.

(d)
√
n(f bn − f̂n) is a measurable function of the weights (Wi)i∈[n] for fixed (Zi)i∈[n].

(e) The weights are chosen independent of the data

(f) ∀h1, h2 ∈ ℓ∞(X )

|in(h1)− in(h2)| ≤ Cn∥h1 − h2∥X ,

where Cn = OP∗(1).

(g) ∀h ∈ ℓ∞(X )

in(h)
P∗−→ lim

ϵ↘0
inf
Sϵ
h.

With all these assumptions along with the Hadamard directionally differentiability of ι given in Theorem 3.1, the result
follows from Fang & Santos (2019, Thm. 3.2).

Properties (a)–(e) are precisely D1-D4.

Properties (f) and (g) need to be verified for each estimator ι̂′sn,n and ι̃′tn,n, separately.

For ι̂sn,n, (g) is given by Theorem 3.3 of Hong & Li (2018) and (f) follows by theorem 3.2 of Hong & Li (2018) if the inf
map is Lipschitz continuous. This is indeed true as for h1, h2 ∈ ℓ∞(X ),

| inf
X
h1 − inf

X
h2| ≤ sup

X
|h1 − h2| = ||h1 − h2||X .

For ι̃tn,n, (f) follows by a similar argument to the one above, as for any A ⊆ X and h1, h2 ∈ ℓ∞(X ),

| inf
A
h1 − inf

A
h2| ≤ sup

A
|h1 − h2| ≤ ||h1 − h2||X .

13
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In particular, the inequality above holds for A = Stn
n . Because τn(f̂n − f)⇝ F , Lemma A.4 implies that τn(f̂n − f) is

asymptotically bounded in probability in the sense that ∀δ > 0, ∃B ⊆ X bounded s.t.

lim inf
n→∞

P∗(Xn ∈ B) ≥ 1− δ

(g) then follows by Theorem A.2.

Theorem A.2. Let (Ω,F,P) be a probability space, X a non-empty set, and f̂n, f : Ω → ℓ∞(X ). If there is τn → ∞ such
that τn(f̂n − f) is asymptotically bounded in probability, then for any ϵn ↘ 0 such that ϵnτn → ∞ and any h ∈ ℓ∞(X ),

inf
Sϵn
n

h
P∗−→ lim

ϵ↘0
inf
Sϵ
h.

Proof. We shall write S(f, ϵ) to mean Sϵ and S(f̂n, ϵ) to mean Sϵ
n. Fix δ > 0. We are required to show

lim
n→∞

P∗

(∣∣∣∣∣ inf
S(f̂n,ϵn)

h− lim
ϵ↘0

inf
S(f,ϵ)

h

∣∣∣∣∣ > δ

)
= 0.

We firstly have

P∗

(∣∣∣∣∣ inf
S(f̂n,ϵn)

h− lim
ϵ↘0

inf
S(f,ϵ)

h

∣∣∣∣∣ > δ

)
= P∗

({
inf

S(f̂n,ϵn)
h− lim

ϵ↘0
inf

S(f,ϵ)
h > δ

}
∪

{
inf

S(f̂n,ϵn)
h− lim

ϵ↘0
inf

S(f,ϵ)
h < −δ

})

≤ P∗

(
inf

S(f̂n,ϵn)
h− lim

ϵ↘0
inf

S(f,ϵ)
h > δ

)
+ P∗

(
inf

S(f̂n,ϵn)
h− lim

ϵ↘0
inf

S(f,ϵ)
h < −δ

)
.

It then suffices to show that each of these outer probabilities tend to 0. We have

S(f̂n, ϵn) = {x ∈ X : f̂n(x) ≤ inf
X
f̂n + ϵn}

= {x ∈ X : f̂n(x) + f(x)− f(x) ≤ inf
X
(f̂n − f + f) + ϵn}

⊆ {x ∈ X : f(x)− ∥f̂n − f∥X ≤ inf
X
f + ∥f̂n − f∥X + ϵn}

= S(f, ϵn + 2∥f̂n − f∥X )

We hence get
inf

S(f̂n,ϵn)
h ≥ inf

S(f,ϵn+∥f̂n−f∥X )
h

and so

P∗

(
inf

S(f̂n,ϵn)
h− lim

ϵ↘0
inf

S(f,ϵ)
h < −δ

)
≤ P∗

(
inf

S(f,ϵn+∥f̂n−f∥X )
h− lim

ϵ↘0
inf

S(f,ϵ)
h < −δ

)
.

Then, observe that when η ↘ 0, we have
inf

S(f,η)
h↗ lim

ϵ↘0
inf

S(f,ϵ)
h,

and hence, there is some ηδ > 0 such that ∀η < ηδ

inf
S(f,η)

h− lim
ϵ↘0

inf
S(f,ϵ)

h ≥ −δ.

By Lemma A.3, ||f̂n − f ||X = oP∗(1) and because ϵn ↘ 0,

P∗(ϵn + 2∥fn − f∥X < ηδ) → 1

By definition of ηδ this gives

P∗

(
inf

S(f+ϵn+2∥f̂n−f∥X )
h− lim

ϵ↘0
inf

S(f,ϵ)
h < −δ

)
→ 0.
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and so

P∗

(
inf

S(f̂n,ϵn)
h− lim

ϵ↘0
inf

S(f,ϵ)
h < −δ

)
→ 0.

Hence, we are done if we can show that

P∗

(
inf

S(f̂n,ϵn)
h− lim

ϵ↘0
inf

S(f,ϵ)
h > δ

)
→ 0.

Via a similar argument to above we get

S(f̂n, ϵn) ⊇ S(f, ϵn − 2∥f̂n − f∥X )

and therefore
inf

S(f̂n,ϵn)
h ≤ inf

S(f,ϵn−2∥f̂n−f∥X )
h.

We then have

P∗

(
inf

S(f̂n,ϵn)
h− lim

ϵ↘0
inf

S(f,ϵ)
h > δ

)
≤ P∗

(
inf

S(f,ϵn−2||f̂n−f ||X )
h− lim

ϵ↘0
inf

S(f,ϵ)
h > δ

)
.

Because for any η > 0,
inf

S(f,η)
h ≤ lim

ϵ↘0
inf

S(f,ϵ)
h

the result follows if
P∗(ϵn − 2||f̂n − f ||X > 0) → 1.

Because τn(f̂n − f) is asymptotically bounded in probability, ∀η > 0, ∃M ∈ R such that for n large enough

P∗

(
||f̂n − f ||X <

M

τn

)
> 1− η

which is equivalent to

P∗

(
ϵn − 2∥f̂n − f∥X > ϵn − 2M

τn

)
> 1− η.

It then suffices to show that for n large enough,

ϵn − 2M

τn
> 0

as this would give for n large enough

P∗

(
ϵn − 2∥f̂n − f∥X > ϵn − 2M

τn

)
≤ P∗

(
ϵn − 2∥f̂n − f∥X > 0

)
and hence give

lim inf
n→∞

P∗

(
ϵn − 2∥f̂n − f∥X > 0

)
≥ 1− η

The result then follows by sending η to 0. Rearrangement of this expression yields

ϵnτn > 2M ,

which is true for n large enough as ϵnτn → ∞.

Lemma A.3. Let (Ω,F,P) be a probability space, X a normed space, and ∀n ∈ N let Xn : Ω → X maps. If there is a

sequence (τn)n∈N with τn → ∞ such that τnXn is asymptotically bounded in probability, then Xn
P∗−→ 0

15
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Proof. We aim to show that ∀ϵ > 0

lim
n→∞

P∗(||Xn|| < ϵ) = 1

Fix an ϵ > 0. Then because τnXn is asymptotically bounded in probability ∀δ > 0, ∃M > 0 such that

lim inf
n→∞

P∗(||τnXn|| < M) = lim inf
n→∞

P∗(||Xn|| < M/τn) ≥ 1− δ

For n large enough

P∗(||Xn|| < M/τn) ≤ P∗(||Xn|| < ϵ)

and so ∀δ > 0

lim inf
n→∞

P∗(||Xn|| < ϵ) ≥ 1− δ

Sending δ → 0 gives

lim inf
n→∞

P∗(||Xn|| < ϵ) ≥ 1

which is equivalent to

lim
n→∞

P∗(||Xn|| < ϵ) = 1

This is exactly what we wanted to show.

Lemma A.4. Let (Ω,F,P) be a probability space, X a metric space, X : Ω → X Borel measurable and ∀n ∈ N let
Xn : Ω → X be maps. If Xn ⇝ X then (Xn)n∈N is asymptotically bounded in probability.

Proof. Fix δ > 0. We have

P

(
X ∈

∞⋃
m=1

B(0,m)

)
= 1

and so by continuity from below ∃m ∈ N such that

P(X ∈ B(0,m)) ≥ 1− δ

By the Portmanteau theorem we have

lim inf
n→∞

P∗(Xn ∈ B(0,m)) ≥ P(X ∈ B(0,m))

Combining these 2 inequalities gives the result.

A.5. Corollary 5.2

D1 is satisfied by definition of Donsker. D2 follows by H being Donsker by Theorem 3.7.1 of (van der Vaart & Wellner,
2023). For D3,

√
n(f bn−f̂n) as a function of the weights is simply a linear combination of elements of ℓ∞(X ). Measurability

follows by Lemma A.5. D4 is clear.

Lemma A.5. Let X be a set. For any n ∈ N and fixed f1, . . . , fn ∈ ℓ∞(X ), let s : Rn → ℓ∞(X ) be given by

s(a1, . . . , an) =

n∑
i=1

aifi.

The s is Borel measurable.
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Proof. Because Rn and ℓ∞(X ) are equipped with their Borel σ-algebras it suffices to show that s is continuous. We will
actually show that s is Lipschitz continuous.

||s(a)− s(b)||X =

∥∥∥∥∥
n∑

i=1

(ai − bi)fi

∥∥∥∥∥
X

≤
∞∑
i=1

||(ai − bi)fi||X

≤
∞∑
i=1

|ai − bi| ∥fi∥X

≤ max
i∈[n]

∥fi∥X ∥a− b∥1

≤ nmax
i∈[n]

∥fi∥X ∥a− b∥2

Hence, s is Lipschitz continuous with Lipschitz constant at most nmaxi∈[n] ∥fi∥X .

A.6. Theorem 5.3

Let ι0, ι1 : ℓ∞(X ) → R given by
ιi(f) = inf

x∈Xi

f(x)

By Theorem 3.1, ιi is Hadamard directionally differentiable with derivative

ι′i,f (g) = lim
ϵ↘0

inf
x∈S(f,ϵ,Xi)

g(x).

In particular we have for any gn → g in ℓ∞(X ),

τn

(
ι1(f + gn/τn)− ι1(f)
ι0(f + gn/τn)− ι0(f)

)
→
(
ι′1,f (g)

ι′0,f (g).

)
That is, (ι1, ι0)⊤ is Hadamard directionally differentiable. Modify f̂n on Ω \ Ω0 so that f̂n is bounded. All the conditions
on the delta method (Fact 3.2) are satisfied. We then get.

τn

(
ψ̂1,n − ψ∗

1

ψ̂0,n − ψ∗
0

)
⇝

(
limϵ↘0 infx∈S(f,ϵ,X1) F (x)
limϵ↘0 infx∈S(f,ϵ,X0) F (x)

)
Apply continuous mapping with the map e : R× R → R, e(x, y) = x− y gives

τn(ψ̂1,n − ψ∗
1 − ψ̂0,n + ψ∗

0)⇝ lim
ϵ↘0

inf
x∈S(f,ϵ,X1)

F (x)− lim
ϵ↘0

inf
x∈S(f,ϵ,X0)

F (x).

Because ψ∗
1 = ψ∗

0 , this is the required result.

A.7. Corollary 5.4

Theorem 5.3 implies that
τn(ψ̂1,n − ψ̂0,n)⇝ F ∗.

The Portmanteau theorem (see van der Vaart & Wellner, 2023, Thm. 1.3.4) gives this is equivalent to

lim sup
n→∞

P∗(τn(ψ̂1,n − ψ̂0,n) ∈ C) ≤ P(F ∗ ∈ C)

for all closed C ⊆ R. In particular, if we take C = (−∞, c], for c ∈ R, we get

lim sup
n→∞

P∗(τn(ψ̂1,n − ψ̂0,n) ≤ c) ≤ P(F ∗ ≤ c)
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We then have for any c for which P(F ∗ ≤ c) ≤ α,

lim sup
n→∞

P∗(τn(ψ̂1,n − ψ̂0,n) ≤ c) ≤ α.

In particular, it holds for the largest c with this property:

cα = sup
{
c ∈ R : P(F ∗ ≤ c) ≤ α

}
.

We have therefore shown that
lim sup
n→∞

P∗(τn(ψ̂1,n − ψ̂0,n) ≤ cα) ≤ α.

The LHS rearranges to give the required result.

A.8. Proposition 5.5

Let
K = argmin

k∈[m]

ψ∗
k.

Because [m] is finite this, as well as k∗ and K̂n, are well defined.

Note that by Lemma A.3, F1 implies that ψ̂k,n
P∗−→ ψ∗

k, for each k ∈ [m]. Together with F2, we get ∀ϵ > 0 and ∀k ∈ [m],
the sets {

ω : |ψ̂k,n − ψ∗
k| <

ϵ

2

}
, and

{
ω : Pk,n <

ϵ

2

}
have inner probability tending to 1. On the intersection of these events

ψ̂k,n + Pk,n > ψ̂k,n − Pk,n

> ψ̂k,n − ϵ

2
> ψ∗

k − ϵ

For k /∈ K we can take ϵ = (ψ∗
k − ψ∗

k∗)/2 (note ϵ > 0) to get

= ψ∗
k − ψ∗

k − ψ∗
k∗

2

=
ψ∗
k + ψ∗

k∗

2

= ψ∗
k∗ +

ψ∗
k − ψ∗

k∗

2
= ψ∗

k∗ + ϵ

> ψ̂k∗,n +
ϵ

2

> ψ̂k∗,n + Pk∗,n

Because [m] is finite, on
Ω̃n :=

⋂
k/∈K

{
ω : |ψ̂k,n − ψ∗

k| <
ϵ

2

}
∩
{
ω : Pk,n <

ϵ

2

}
,

we have
inf
k/∈K

(ψ̂k,n + Pk,n) > ψ̂k∗,n + Pk∗,n.

Because Ω̃n is the finite intersection of sets whose inner probability tends to 1, P∗(Ω̃n) → 1.

Fix k ∈ K and ϵ > 0. By definition of asymptotically bounded in probability, ∃M1,M2 ∈ R such that for n large enough,

P∗(τn|ψ̂k,n − ψ∗
k| < M1) ≥ 1− ϵ

2
,

P∗(τn|ψ̂k∗,n − ψ∗
k∗ | < M2) ≥ 1− ϵ

2
.
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which are of course equivalent to

P∗(−M1 < τn(ψ̂k,n − ψ∗
k) < M1) ≥ 1− ϵ

2
,

P∗(−M2 < τn(ψ
∗
k∗ − ψ̂k∗,n) < M2) ≥ 1− ϵ

2
.

We hence obtain
P∗(−M1 −M2 < τn(ψ̂k,n − ψ∗

k)− τn(ψ̂k∗,n − ψ∗
k∗) < M2 +M1) ≥ 1− ϵ.

By definition of K, ψ∗
k = ψ∗

k∗ and so the above expression simplifies to

P∗(−M1 −M2 < τn(ψ̂k,n − ψ̂k∗,n) < M2 +M1) ≥ 1− ϵ

⇐⇒ P∗(τn|(ψ̂k,n − ψ̂k∗,n)| < M2 +M1) ≥ 1− ϵ.

If k ̸= k∗, then k > k∗ and by F2 τn(Pk,n − Pk∗,n)
P∗−→ ∞. By definition for n large enough

P∗(Pk,n − Pk∗,n > (M1 +M2)/τn) ≥ 1− ϵ.

Combining the above results we get for n large enough

P∗

(
|ψ̂k,n − ψ̂k∗,n| <

M1 +M2

τn

)
≥ 1− ϵ,

P∗

(
Pk,n − Pk∗,n >

M1 +M2

τn

)
≥ 1− ϵ.

Let

Ωk,n =

{
ω : |ψ̂k,n − ψ̂k∗,n| <

M1 +M2

τn

}
∩
{
ω : Pk,n − Pk∗,n >

M1 +M2

τn

}
.

Then on Ωk,n we have

ψ̂k∗,n − ψ̂k,n <
M1 +M2

τn
< Pk,n − Pk∗,n

=⇒ ψ̂k∗,n + Pk∗,n < ψ̂k,n + Pk,n

Let
Ωn =

⋂
k∈K

Ωk,n

Then P∗(Ωn) ≥ 1− 2|K|ϵ and on this set

ψ̂k∗,n + Pk∗,n < inf
k∈K\{k∗}

(ψ̂k,n + Pk,n).

Hence, P∗(Ω̃n ∩ Ωn) → 1 and on Ω̃n ∩ Ωn

ψ̂k∗,n + Pk∗,n < inf
k∈[m]\{k∗}

(ψ̂k,n + Pk,n).

That is on Ω̃n ∩ Ωn

{k∗} = argmink∈[m](ψ̂k,n + Pk,n)

and so in particular
k∗ = min

[
argmink∈K(ψ̂k,n + Pk,n)

]
.

I.e.
P∗(K̂n = k∗) → 1

as required.
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A.9. Theorem 6.1

First proving
τn(gn(Xn)− hn(µ))⇝ Dµ(X) (14)

Define dn : U → V via
dn(x) = τn(gn(µ+ x/τn)− hn(µ))

By assumption, for any ηn → η, gn(ηn) → Dµ(η). Generalized continuous mapping then gives

dn(τn(Xn − µ))⇝ Dµ(X)

The expanded form of the LHS is
τn(gn(Xn)− hn(µ))

This is exactly Equation (14).

Now showing
τn(gn(Xn)− hn(µ))−Dµ(τn(Xn − µ)) = oP∗(1) (15)

Next define d̃n : U → V × V via

d̃n(x) =

(
dn(x)
Dµ(x)

)
Because Dµ(x) is converged to continuously, it must be continuous (Papanastassiou, 2020, Prop. 2.5). By assumption and
the continuity of Dµ, for any xn → x

d̃n(xn) → (Dµ(x), Dµ(x)).

Generalized continuous mapping then gives

d̃n(τn(Xn − µ))⇝

(
Dµ(X)
Dµ(X)

)
The expanded form of the LHS is (

τn(gn(Xn)− hn(µ))
Dµ(τn(Xn − µ)).

)
Applying continuous mapping (see (van der Vaart & Wellner, 2023, thrm 1.3.6)) with the map s : V × V → V , s(y1, y2) =
y1 − y2 gives

τn(g(Xn)− g(µ))−Dµ(τn(Xn − µ))⇝ 0

Because weak convergence to a constant implies convergence in outer probability to that constant (see van der Vaart &
Wellner, 2023, Lem. 1.10.2) we get

τn(g(Xn)− g(µ))−Dµ(τn(Xn − µ))
P∗−→ 0

This is exactly Equation (15).

A.10. Theorem 6.2

In this section, for a general function h : X → R we write

S(h, ϵ) =
{
x ∈ X : h(x) ≤ inf

X
h+ ϵ

}
.

First some helpful lemmas.

Lemma A.6. Let X be a set and ∀n ∈ N let Xn ⊆ X . ∀n ∈ N let f, g, gn : X → R be bounded below with ||gn−g||X → 0
and let (tn) ⊆ R+ with tn → 0. Then

lim
n→∞

infXn
(f + tngn)− infX (f)

tn
= lim

n→∞

infXn
(f + tng)− infX (f)

tn

provided either limit exists.
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Proof. If

lim
n→∞

infXn(f + tngn)− infX (f)

tn

exists then

infXn(f + tngn)− infX (f)

tn
− ||gn − g||X ≤ infXn(f + tng)− infX (f)

tn

≤ infXn(f + tngn)− infX (f)

tn
+ ||gn − g||X

and so so the result follows by squeeze theorem. If

lim
n→∞

infXn
(f + tng)− infX (f)

tn

exists then

infXn(f + tng)− infX (f)

tn
− ||gn − g||X ≤ infXn(f + tngn)− infX (f)

tn

≤ infXn(f + tng)− infX (f)

tn
+ ||gn − g||X

and so the result again follows by squeeze theorem.

Lemma A.7. Let X be a set, ∀n ∈ N let Xn ⊆ X with Xn ̸= ∅, (tn) ⊆ R+ with tn → 0, let f, g : X → R be bounded
below and let

lim
n→∞

infXn
f − infX f

tn
= 0

Then

lim
n→∞

infXn
(f + tng)− infX f

tn
= lim

n→∞

infXn
(f + tng)− infXn

f

tn

provided either limit exists.

Proof. If

lim
n→∞

infXn
(f + tng)− infX f

tn

exists then we have

lim
n→∞

infXn
(f + tng)− infX f

tn
= lim

n→∞

infXn
(f + tng)− infX f

tn
− lim

n→∞

infXn
f − infX f

tn

= lim
n→∞

infXn
(f + tng)− infXn

f

tn
.

Similarly if

lim
n→∞

infXn
(f + tng)− infXn

f

tn

exists we have

lim
n→∞

infXn(f + tng)− infXn f

tn
= lim

n→∞

infXn(f + tng)− infXn f

tn
+ lim

n→∞

infXn f − infX f

tn

= lim
n→∞

infXn(f + tng)− infX f

tn
.
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Lemma A.8. Let X be a non-empty, compact, metric space and ∀n ∈ N let Xn ⊆ X be such that X1 ⊆ X2 ⊆ · · · and
X =

⋃∞
n=1 Xn. Let f ∈ lsc(X ) and let (tn) ⊆ R+ with tn → 0.

Then
lim

n→∞

infXn f − infX f

tn
= 0

Proof. Because f is lsc and X is compact, by EVT f attains it’s minima. Let x0 be such a minimizer. Then ∃N ∈ N s.t.
∀n > N , x0 ∈ Xn. Hence ∀n > N infXn

f = infX f . The result is then immediate.

Lemma A.9. Let X be a compact metric space, and f, g : X → R be lower semi-continuous. Then

lim
ϵ↘0

inf
Sϵ
g = inf

S
g.

Proof. Recall the fact that a lower semi-continuous function achieves its minimum on a compact set and hence S ̸= ∅.
Observe that for any ϵ > 0, Sϵ ⊇ S and hence

lim
ϵ↘0

inf
Sϵ
g ≤ inf

S
g. (16)

Because f is lsc, for any ϵ > 0, Sϵ is closed. Because X is compact we then have Sϵ is compact. For any integer n ≥ 1,
since S1/n is compact and g is lower semi-continuous, there exists a minimizer xn,

g(xn) = inf
S1/n

g ≤ lim
ϵ↘0

inf
Sϵ
g.

Since X is compact, (xn) has a converging subsequence, which we assume is just (xn) itself, without loss of generality.
Write x0 = limxn. Since, xn ∈ S1/n

f(xn) ≤ inf
X
f +

1

n

and so
f(x0) ≤ lim inf

n→∞
f(xn) ≤ inf

X
f

This implies x0 ∈ S. Note that (g(xn))n∈N is a non-decreasing sequence and

inf
x∈S(f,0)

g(x) ≤ g(x0) ≤ lim
n→∞

g(xn) ≤ lim
ϵ↘0

inf
x∈S(f,ϵ)

g(x).

This, together with (16), completes the proof.

Theorem A.10. Let X be a non-empty, compact, metric space and ∀n ∈ N let Xn ⊆ X be such that X1 ⊆ X2 ⊆ · · · and
X =

⋃∞
n=1 Xn. Let f ∈ lsc(X ) and let (tn) ⊆ R+ with tn → 0.

For any g ∈ lsc(X )

inf
S(f,0)

g = lim
n→∞

infXn(f + tng)− infXn f

tn

Proof. We will show

inf
S(f,0)

g ≤ lim inf
n→∞

infXn
(f + tng)− infXn

f

tn
and (17)

inf
S(f,0)

g ≥ lim sup
n→∞

infXn(f + tng)− infXn f

tn
. (18)

The combination of both will show the result.

First showing Equation (17). Take any jn > 0 s.t. jn/tn → 0 and take x ∈ Sn(f + tng, jn) where

Sn(f, ϵ) =

{
x ∈ Xn : f(x) ≤ inf

Xn

f + ϵ

}
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Then
infXn

(f + tng)− infXn
f

tn
≥ f(x) + tng(x)− jn − f(x)

tn

=
tng(x)− jn

tn

= gn(x)−
jn
tn

≥ inf
Sn(f+tng,jn)

g − jn
tn

=⇒ lim inf
n→∞

infXn
(f + tng)− infXn

f

tn
≥ lim inf

n→∞
inf

Sn(f+tng,jn)
g

We have

Sn(f + tng, jn) =

{
x ∈ Xn : f(x) + tng(x) ≤ inf

Xn

(f + tng) + jn

}
⊆
{
x ∈ Xn : f(x)− tn||g||X ≤ inf

Xn

f + tn||g||X + jn

}
=

{
x ∈ Xn : f(x) ≤ inf

Xn

f + 2tn||g||X + jn

}
=

{
x ∈ Xn : f(x) ≤ inf

X
f + 2tn||g||X + jn + inf

Xn

f − inf
X
f

}
= S(f, 2tn||g||X + jn + inf

Xn

f − inf
X
f) ∩ Xn

⊆ S(f, 2tn||g||X + jn + inf
Xn

f − inf
X
f)

Hence,

lim inf
n→∞

infXn
(f + tng)− infXn

f

tn
≥ lim inf

n→∞
inf

S(f,2tn||g||X+jn+infXn f−infX f)
g.

Because 2tn||g||X + jn + infXn
f − infX f ↘ 0

lim inf
n→∞

inf
S(f,2tn||g||X+jn+infXn f−infX f)

g = lim
ϵ↘0

inf
S(f,ϵ)

g

and so

lim inf
n→∞

infXn
(f + tng)− infXn

f

tn
≥ lim

ϵ↘0
inf

S(f,ϵ)
g.

By Lemma A.9

lim
ϵ↘0

inf
S(f,ϵ)

g = inf
S(f,0)

g.

Finally, we have

lim inf
n→∞

infXn(f + tng)− infXn f

tn
≥ inf

S(f,0)
g.

This is precisely Equation (17).

Now proving Equation (18). Fix sn > 0, such that sn/tn → 0 and take x ∈ Sn(f, sn). Then

infXn
(f + tng)− infXn

f

tn
≤ f(x) + tng(x)− f(x) + sn

tn

=
tng(x) + sn

tn

= g(x) +
sn
tn
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This is true for any x so

infXn
(f + tng)− infXn

f

tn
≤ inf

Sn(f,sn)
g +

sn
tn

=⇒ lim sup
n→∞

infXn
(f + tng)− infXn

f

tn
≤ lim sup

n→∞
inf

Sn(f,sn)
g

We are then done if we can show that
lim sup
n→∞

inf
Sn(f,sn)

g ≤ lim
ϵ↘0

inf
S(f,0)

g

Because f is lsc, S(f, 0) is closed. Because X is compact, S(f, 0) is then also compact. Then by EVT we have infS(f,0) g
is attained. Let the point of attainment be x∗. We have ∃N ∈ N s.t. ∀n > N x∗ ∈ Xn. Then ∀n > N

inf
S(f,0)

g = g(x∗) = inf
S(f,0)∩Xn

g ≥ inf
S(f,sn)∩Xn

g

Hence
lim sup
n→∞

inf
Sn(f,sn)∩Xn

≤ inf
S(f,0)

g

which is the required result.

Combining all this together we get the following result. This is precisely what we want to show.

Theorem A.11. Let X be a non-empty, compact, metric space and ∀n ∈ N let Xn ⊆ X be such that X1 ⊆ X2 ⊆ · · · and
X =

⋃∞
n=1 Xn. Let f ∈ lsc(X ) and let (tn) ⊆ R+ with tn → 0.

For any gn, g ∈ lsc(X ) with ||gn − g||X → 0

inf
S(f,0)

g = lim
n→∞

infXn(f + tngn)− infX f

tn
, and (19)

inf
S(f,0)

g = lim
n→∞

infXn
(f + tngn)− infXn

f

tn
. (20)

Proof. Lemma A.6 gives that it suffices to show Gateaux differentiability. Lemma A.8 gives that the conditions on
Lemma A.7 are satisfied and hence the Gateaux differentiable forms of Equation (8) and Equation (9) are equivalent.
Theorem A.10 gives the Gateaux differentiable form of Equation (9).

A.11. Theorem 6.3

Again, in this section, for a general function h : X → R we write

S(h, ϵ) =
{
x ∈ X : h(x) ≤ inf

X
h+ ϵ

}
.

First some helpful results

Theorem A.12. Let X be a set, and ∀n ∈ N let Xn ⊆ X . Let (tn) ⊆ R+ with tn → 0, (jn) ⊆ R+ with jn/tn → 0, and let
f ∈ ℓ∞(X ). If

lim
n→∞

infX c
n
f − infX f

tn
= ∞, (21)

then ∀(gn)n∈N ⊂ ℓ∞(X ) uniformly bounded, ∃N ∈ N s.t. ∀n > N

S(f + tngn, jn) ∩ Xn ̸= ∅.

Proof. Take any (gn)n∈N ⊂ ℓ∞(X ) uniformly bounded and let the uniform bound be C. That is, ∀n ∈ N, ||gn||∞ ≤ C.

Because jn/tn → 0, ∃N1 ∈ N such that ∀n > N1, jn ≤ tnC. Similarly, Equation (21) gives that ∃N2 ∈ N such that
∀n > N2

inf
X c

n

f > inf
X
f + 3tnC
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Take any x ∈ S(f + tng, jn). By definition

f(x) + tng(x) ≤ inf
X
(f + tngn) + jn

≤ inf
X
f + tn sup

X
gn + jn

=⇒ f(x) ≤ inf
X
f + tn(sup

X
gn − gn(x)) + jn

≤ inf
X
f + 2tnC + jn

If n > N1 then

≤ inf
X
f + 3tnC

If additionally n > N2 then

< inf
X c

n

f

That is ∀n > max {N1, N2}, f(x) < infX c
n
f and so x ∈ Xn. Hence, ∀n > max {N1, N2} x ∈ S(f + tngn, jn)∩Xn and

so in particular ∀n > max {N1, N2}
S(f + tngn, jn) ∩ Xn ̸= ∅

as required.

Corollary A.13. Let X be a set, ∀n ∈ N let Xn ⊆ X , f ∈ ℓ∞(X ), (tn) ⊆ R+ with tn → 0, (jn) ⊆ R+ with jn/tn → 0.
If X1 ⊆ X2 ⊆ · · · and ∃N ∈ N such that

inf
X c

N

f > inf
X
f.

Then ∃N ∈ N s.t. ∀n > N
S(f + tngn, jn) ∩ Xn ̸= ∅.

Proof. By monotonicity of Xn we have
inf
X c

1

f ≤ inf
X c

2

f ≤ · · ·

and so ∃ϵ > 0 s.t. ∀n > N
inf
X c

N

f > inf
X
f + ϵ.

Hence,

lim
n→∞

infX c
n
f − infX f

tn
≥ lim

n→∞

ϵ

tn
= ∞

The result is then immediate by Theorem A.12.

The following result means that conclusion of Corollary A.13 gives us Equation (10).

Theorem A.14. Let X be a set, ∀n ∈ N let Xn ⊆ X with Xn ̸= ∅, f ∈ ℓ∞(X ), (tn) ⊆ R+ with tn → 0. Then for any
g ∈ ℓ∞(X ) and (gn)n∈N ⊂ ℓ∞(X ) with ||gn − g||X → 0 the following are equivalent

1.

lim
n→∞

infXn
(f + tngn)− infX f

tn
= lim

ϵ↘0
inf

S(f,ϵ)
g

2.

lim
n→∞

infXn
(f + tngn)− infX (f + tngn)

tn
= 0

3. ∃(sn) ⊆ R+ with sn/tn → 0 such that ∃N ∈ N s.t. ∀n > N

S(f + tngn, sn) ∩ Xn ̸= ∅
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Proof. (1) ⇐⇒ (2)
Theorem 3.1 gives

lim
n→∞

infX (f + tngn)− infX f

tn
= lim

ϵ↘0
inf

S(f,ϵ)
g

So (1) happens if and only if

0 = lim
n→∞

∣∣∣∣ infXn
(f + tngn)− infX f

tn
− infX (f + tngn)− infX f

tn

∣∣∣∣
= lim

n→∞

infXn
(f + tngn)− infX (f + tngn)

tn
.

This is precisely (2).

(2) =⇒ (3)
Take

sn = inf
Xn

(f + tngn)− inf
X
(f + tngn) + t2n.

We always have
inf
Xn

(f + tngn)− inf
X
(f + tngn) ≥ 0

so sn > 0. Additionally by assumption sn/tn → 0. Finally,

S(f + tngn, sn) ∩ Xn =
{
x ∈ Xn : f(x) + tngn(x) ≤ inf

X
(f + tngn) + sn

}
(22)

=

{
x ∈ Xn : f(x) + tngn(x) ≤ inf

Xn

(f + tngn) + t2n

}
(23)

and this is non-empty as ϵ-minimizers are always non-empty.

(3) =⇒ (2)
By assumption ∃sn > 0 with sn/tn → 0 and S(f + tngn, sn) ∩ Xn ̸= ∅. Hence take x ∈ S(f + tngn, sn) ∩ Xn. Then

0 ≤ infXn
(f + tngn)− infX (f + tngn)

tn
(24)

≤ f(x) + tngn(x)− infX (f + tngn)

tn
(25)

≤ f(x) + tngn(x)− f(x)− tngn(x) + sn
tn

(26)

=
sn
tn
. (27)

The result then follows by squeeze theorem.

To show Equation (11) we note that if ∀n > N

inf
X c

n

f > inf
X
f

then ∀n > N ,
inf
Xn

f = inf
X
f

Equation (11) then follows by Lemma A.7.
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B. Directional differentiable results
Theorem 3.1 gives that the infimum map is Hadamard directionally differentiable. Here we investigate conditions for which
the infimum is (fully) Hadamard differentiable. Carcamo et al. (2020, Corr 2.4) provides the following result.

Theorem B.1. Let X be a compact metric and ι : C(X ) → R be given by

ι(f) = inf
x∈X

f(x)

Then ι is Hadamard differentiable at any f ∈ C(X ) tangentially to C(X ) iff |S| = 1 where | · | denotes cardinality.

It is possible to extend this result for our applications because we do not need Hadamard differentiability tangentially to all
of C(X ). We can use knowledge of the loss function to give information about the support of the image measure of F and
hence reduce the space where we are required to show differentiability. The results presented are in no sense complete but
are adequate in our context.

B.1. The continuous case

Theorem B.2. Let X be a non-empty compact metric space, f lower semi-continuous and bounded, and ι : ℓ∞(X ) → R
given by

ι(g) = inf
x∈X

g(x).

Let
Af = {g ∈ lsc(X ) ∩ ℓ∞(X ) : |g(S)| = 1} .

Then ι is Hadamard differentiable tangentially to Af .

Proof. Theorem 3.1 implies that ι is Hadamard directionally differentiable at f with derivative

ι′f (g) = lim
ϵ↘0

inf
Sϵ
g

Because we are only considering the case of differentiability tangentially to Af , we consider g ∈ Af ⊆ lsc(X ). Lemma
A.9 gives that this expression reduces to

ι′f (g) = inf
S
g

Because |g(S)| = 1, this expression further reduces to

ι′f (g) = g(x∗),

for any x∗ ∈ S. This equation is clearly linear in g.

B.2. The bounded case

We first provide an extension of the result in Carcamo et al. (2020, Cor. 2.4) to the case of bounded of functions. This is
presented to show the difficulty of getting full differentiability in this case.

Theorem B.3. For X be a non-empty set and ι : ℓ∞(X ) → R given by

ι(g) = inf
x∈X

g(x)

ι is Hadamard differentiable at f ∈ ℓ∞(X ) if and only if ∃ϵ̃ > 0 such that ∀ϵ ∈ (0, ϵ̃)

Sϵ = {x̃}

for some x̃ depending only on f .

Proof. By Theorem 3.1, ι is Hadamard directionally differentiable at f with derivative

ι′f (g) = lim
ϵ↘0

inf
Sϵ
g.
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We then have to show that this expression is linear iff Sϵ is eventually a singleton.

Sufficiency is clear as if Sϵ is eventually equal to {x̃}

ι′f (g) = g(x̃),

which is clearly linear.

To show necessity, observe that linearity is really two conditions:

1. ∀λ ∈ R, ∀g ∈ L∞(X ), ι′f (λg) = λι′f (g).

2. ∀g, h ∈ L∞(X ), ι′f (g + h) = ι′f (g) + ι′f (h).

It is sufficient to show that one of these conditions imply Sϵ is eventually a singleton as then both conditions together will
imply this. Doing this for the first condition.

When λ < 0 this condition reduces to: ∀g ∈ ℓ∞(X )

λ lim
ϵ↘0

sup
Sϵ

g = λ lim
ϵ↘0

inf
Sϵ
g.

It then suffices to show that if ∀g ∈ ℓ∞(X )
lim
ϵ↘0

sup
Sϵ

g = lim
ϵ↘0

inf
Sϵ
g

then Sϵ is eventually a singleton. There are 3 possible cases (as Sϵ is never empty):

1. Sϵ is eventually a singleton.

2. Sϵ is eventually a set containing 2 or more elements.

3. Sϵ is not eventually constant.

Showing that 2 and 3 are not possible.

2 Denote the eventually constant value of Sϵ as S. Take any y, z ∈ S with y ̸= z and define

g(x) =


1 x ̸= y, x ̸= z

2 x = y

0 x = z

g is clearly bounded and
2 = sup

S
g = lim

ϵ↘0
sup
Sϵ

g(x) ̸= lim
ϵ↘0

inf
Sϵ
g(x) = inf

S
g = 0.

Hence 2 is not possible.

3 Sϵ not being eventually constant means that ∀ϵ > 0, ∃δ ∈ (0, ϵ), such that

Sδ ⊂ Sϵ.

where “⊂” denotes proper subset (⊆ trivially holds always). Let (ϵn) ⊂ R+ be a strictly decreasing sequence converging to
0 such that

Sϵn+1 ⊂ Sϵn .

On Sϵ2n \ Sϵ2n+1 define g as 2. On Sϵ2n+1 \ Sϵ2n+2 define g as 0. At any other point define g as 1. Then we again have

2 = lim
ϵ↘0

sup
Sϵ

g ̸= lim
ϵ↘0

inf
Sϵ
g = 0.
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The following theorem is of primary interest.

Theorem B.4. Let X be a set and ι : ℓ∞(X ) → R be given by

ι(g) = inf
x∈X

g(x).

Assume that f ∈ ℓ∞(X ) and that for ϵ sufficiently small, Sϵ is constant equal to S . Define

Bf = {g ∈ ℓ∞(X ) : |g(S)| = 1} .

Then, ι is Hadamard differentiable tangentially to Bf .

Proof. Theorem 3.1 gives that ι is Hadamard directionally differentiable at f with derivative

ι′f (g) = lim
ϵ↘0

inf
Sϵ
g.

Because Sϵ is eventually constant and equal to S, this reduces to

ι′f (g) = inf
S
g

Because we are only interested in the derivative tangentially to Bf , and any g ∈ Bf is constant on S , this formula reduces to

ι′f (g) = g(x̃),

for any x̃ ∈ S. This is clearly linear.

C. Normal confidence intervals
Here we for A,B subsets of a metric space (X , d) we define

D(A,B) = sup
a∈A

inf
b∈B

d(a, b).

Note that D is not a metric, and indeed we have D(A,B) = 0 if and only if A ⊂ cl(B). Under very reasonable conditions it
is possible for D(Ŝn,S)

a.s.∗−−−→ 0, see Shapiro et al. (2021, Thm 5.4) for some basic results.

The main result of this section depends on the following pair of lemmas.

Lemma C.1. Let X be a metric space, for each n ∈ N0 take Xn ⊆ X with D(Xn,X0) → 0. For each n ∈ N, let
σn, σ : X → R with σn converging uniformly to σ. Assume σ is uniformly continuous and constant on X0 with value σ̃.
Then for any xn ∈ Xn

σn(xn) → σ̃.

Proof. The uniform convergence of σn to σ implies

lim
n→∞

(σn(xn)− σ(xn)) = 0.

For any n, let x̃n ∈ X0 be chosen such that d(xn, x̃n) ≤ 1
n + d(xn,X0). We have

d(xn, x̃n) ≤
1

n
+ sup

x∈Xn

d(x,X0) =
1

n
+ D(Xn,X0) → 0, as n→ ∞.

By the uniform continuity of σ we have

lim
n→∞

(σ(xn)− σ(x̃n)) = 0.

and hence
lim
n→∞

(σn(xn)− σ(x̃n)) = 0

The proof is complete by noting that σ(x̃n) ≡ σ̃.
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Lemma C.2. Let X be a metric space, and for each n ∈ N0 take Xn ⊆ X with D(Xn,X0) → 0. For each n ∈ N let
σn, σ : X → R with σn converging uniformly to σ. Assume σ is continuous and constant on X0 with value σ̃, and X0

compact. Then for any xn ∈ Xn

σn(xn) → σ̃.

Proof. We conduct the proof by contradiction. Suppose there is a sequence (xn ∈ Xn) such that σn(xn) does not converge
to σ̃. Then there is a subsequence of (σn(xn)) that stays away from σ̃. Without loss of generality, assume that for some
ϵ > 0, σn(xn) ̸∈ (σ̃ − 2ϵ, σ̃ + 2ϵ) for all n. From the uniform convergence of σn to σ, there exists some N > 0 such that

σ(xn) ̸∈ (σ̃ − ϵ, σ̃ + ϵ), for all n ≥ N. (28)

For each n, choose x̃n ∈ X0 such that

d(xn, x̃n) ≤
1

n
+ inf

x∈X0

d(xn, x) ≤
1

n
+ D(Xn,X0) → 0, as n→ ∞.

Since X0 is compact, the sequence (x̃n) has at least one limit point x̃0 ∈ X0 which is also a limit point of (xn). Without
loss of generality assume xn → x̃0, which implies σ(xn) → σ(x̃0) = σ̃, and contradicts (28). The proof is completed.

We can now give results which allow for the use of standard normal quantiles to generate asymptotically correct CIs. We
define the variance process of a random variable G : Ω → ℓ∞(X ) as σ2 : ℓ∞(X ) → R via

σ2(x) = Var(G(x)).

Theorem C.3. Make the following assumptions:

• H1 and H2 are satisfied with F Gaussian and has mean 0.

• x 7→ l(x, ·) is constant on S.

• The variance process of F is continuous.

• D(Sn,S)
a.s.∗−−−→ 0.

• The variance process of f̂n (i.e., σ̂2
n) converges uniformly outer almost surely to the variance process of F .

Then for any xn ∈ Sn,

τn

(
ψ̂n − ψ∗

σ̂n(xn)

)
⇝ N(0, 1).

Proof. Because f is lower semi-continuous S is closed. Because X is compact S must then be as well. Because l is constant
on S, by Lemma A.1, F is as well and so addition σ2 is as well.

The conditions on Lemma C.2 are satisfied so σ̂n(xn)
a.s∗.−−−→ σ∗, where σ∗ is the standard deviation of F (x) for some x ∈ S.

By Corollary E.2, because F has mean 0
τn(ψ̂n − ψ∗)⇝ N(0, σ2

∗).

Hence, by Slutsky’s theorem,

τn

(
ψ̂n − ψ∗

σ̂n(xn)

)
⇝ N(0, 1)

as required.

Theorem C.4. Make the following assumptions:

• X is a metric space.
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• B1 and B2 hold with F Gaussian and has mean 0.

• For sufficiently small ϵ, Sϵ = S and x 7→ l(x, ·) is constant on S.

• The variance process of F is uniformly continuous.

• There is some (ϵn) ⊂ R+ for which D(Sϵn
n ,S) a.s.∗−−−→ 0.

• The variance process of f̂n (i.e., σ̂2
n) converges uniformly outer almost surely to the variance process of f .

Then for any xn ∈ Sϵn
n ,

τn

(
ψ̂n − ψ∗

σ̂n(xn)

)
⇝ N(0, 1).

Proof. By Lemma A.1, F is constant on S and so σ2 is as well. The conditions on Lemma C.1 are then satisfied so
σ̂n(xn)

a.s∗.−−−→ σ∗, where σ∗ is the standard deviation of F (x) for some x ∈ S. By Corollary 4.4, because F has mean 0

τn(ψ̂n − ψ∗)⇝ N(0, σ2
∗).

Hence, by Slutsky’s theorem,

τn

(
ψ̂n − ψ∗

σ̂n(xn)

)
⇝ N(0, 1)

as required.

Theorem C.5. Make the following assumptions:

• X a metric space

• B1 and B2 hold with F Gaussian and has mean 0.

• For sufficiently small ϵ, Sϵ = S and x 7→ l(x, ·) is constant on S.

• The variance process of F is continuous and S is compact.

• There is some (ϵn) ⊂ R+ for which D(Sϵn
n ,S) a.s.∗−−−→ 0.

• The variance process of f̂n (i.e., σ̂2
n) converges uniformly outer almost surely to the variance process of f .

Then for any xn ∈ Sϵn
n ,

τn

(
ψ̂n − ψ∗

σ̂n(xn)

)
⇝ N(0, 1).

Proof. By Lemma A.1 F is constant on S and so σ2 is as well. The conditions on lemma C.2 are then satisfied so
σ̂n(xn)

a.s∗.−−−→ σ∗, where σ∗ is the standard deviation of F (x) for some x ∈ S. By Corollary 4.4, because F has mean 0

τn(ψ̂n − ψ∗)⇝ N(0, σ2
∗).

Hence, by Slutsky’s theorem,

τn

(
ψ̂n − ψ∗

σ̂n(xn)

)
⇝ N(0, 1)

as required.
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D. Neural network numerical experiment
In this section, we describe the procedure for generating data for the neural network experiment described in Section 7.2.
Firstly, we note that generating a neural network with random weights typically resulted in a network which would label all
data the same. Instead of weight randomization, we fit a neural network (by minimising cross entropy loss) to the function
⌈sin(2πx)/2⌉, with 500 replicates of X , sampled from Unif(0, 1). We then flipped the label of 30% of the output. This then
became the label.

Write fkn to denote the kth sample of f bn. For m bootstrap samples we constructed (1− α)100% CIs by first computing the
smallest b for which

1

m

∣∣∣{k ∈ [m] : |in(
√
n(f̃kn − f̂))| ≤ b

}∣∣∣ ≥ 1− α,

and then defining the CI for ψ∗ by (
ψ̂n − b√

n
, ψ̂n +

b√
n

)
.

Throughout our experiment, the number of bootstrap resamples was taken to be m = max{5, ⌊n/5⌋}, where m = 5 is only
relevant for small sample sizes n.

The bootstrap procedure was replicated multiple times to generate a sample of these CIs. The percentage of the replications
for which these CIs included the true value of ψ∗ is then referred to as the coverage.

When considering more than 200 data points (i.e., n ≥ 200) the total number of CIs constructed was 20. For n < 200 the
bootstrap procedure was fast enough for the methods to run until convergence, in the sense that we continually produced
additional CIs, in increments of 20, until the change in coverage was less than 0.01. For this reason, the trend in Figure 4 is
stable after after = 200 samples. Based on our testing, for n > 100 the coverage converged after a very small number of
iterations.
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Figure 4. Time taken to estimate coverage probabilities for samples of size n.

D.1. Neural network accuracy

Consider a binary classification problem with the unknown classifier f∗ : X → {±1}. Define the classification model via
ρ, a joint probability distribution on X × {±1} with marginal distribution ρX on X . We write (X,Y ) ∼ ρ to mean that ρ
characterizes the data generating process of (X,Y ). Define the conditional distribution ρ(y|x) via the relationship

Y = εf∗(X),
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where ε is independent of X , P(ε = 1) = p, and P(ε = −1) = 1− p for some 0 ≤ p ≤ 1. We assume that f∗ is a function
in some family F . The following lemma is known in the literature (see, e.g., Bartlett et al., 2006) and we include its proof
for completeness.

Lemma D.1. If p ≥ 1/2, we have

f∗ ∈ argmin
f∈F

P(Y ̸= f(X)).

Proof. For any f ∈ F , write

α = αf (x) = P(f∗(X) ̸= f(X)|X = x).

Then 0 ≤ α ≤ 1. Note that since ε and X are independent, for a.e. x ∈ X ,

P(εf∗(X) ̸= f(X)|X = x)

=P(f∗(X) ̸= f(X)|X = x)P(ε = 1) + P(f∗(X) = f(X)|X = x)P(ε = −1)

=αp+ (1− α)(1− p) = (2p− 1)α+ 1− p.

When p ≥ 1
2 , this implies

P(Y ̸= f(X)) =

∫
X
P(εf∗(X) ̸= f(X)|X = x)dρX (x)

≥
∫
X
(1− p)dρX (x) = 1− p,

where the equality is achieved at

α = αf∗(x) = 0.

This completes the proof.

E. Continuous limit
It is possible to obtain the outcomes of Fact 4.1 under a more general hypothesis.

Corollary E.1. Assume f is lower semi-continuous and H2 holds with the sample paths of F additionally lower semi-
continuous. Then

τn(ψ̂n − ψ∗)⇝ inf
x∈S

F (x). (29)

If additional f is continuous and f̂n is almost surely continuous, then

ψ̂n = inf
x∈S

f̂n(x) + oP∗(τ
−1
n ). (30)

Proof. The conditions on theorem 4.2 are satisfied and so

τn(ψ̂n − ψ∗)⇝ lim
ϵ↘0

inf
x∈Sϵ

F (x) (31)

ψ̂n = lim
ϵ↘0

inf
x∈Sϵ

[f̂n(x)− f(x) + ψ∗] + oP∗(τ
−1
n ) (32)

Because F and f are lower semi-continuous, by Lemma A.9, Equation (31) becomes

τn(ψ̂n − ψ∗)⇝ inf
x∈S

F (x).

This is exactly Equation (29).
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Now assume f is continuous and f̂n is continuous almost surely. We can modify f̂n on a null so that it is continuous. We
then have f̂n− f +ψ∗ is continuous and so in particular it is lower semi-continuous. By Lemma A.9 Equation (32) becomes

ψ̂n = inf
x∈S

[f̂n(x)− f(x) + ψ∗] + oP∗(τ−1
n )

= inf
x∈S

[f̂n(x)− ψ∗ + ψ∗] + oP∗(τ−1
n )

= inf
x∈S

f̂n(x) + oP∗(τ−1
n ).

This is exactly Equation (30).

When we have the additional information that the limiting process is lower semi-continuous it is easier to generate conditions
that imply the limiting distribution is Gaussian.

Corollary E.2. Assume H1 and H2. If x 7→ l(x, ·) is constant on S then

τn(ψ̂n − ψ∗)⇝ F (x∗),

for any x∗ ∈ S. If F is a Gaussian process then F (x∗) is Gaussian.

Proof. Corollary E.1 gives that
τn(ψ̂n − ψ∗)⇝ inf

x∈S
F (x).

Because l is constant on S, f̂n and f is as well. Because τn(f̂n − f)⇝ F , by Lemma A.1 F is constant on S. Hence for
any x∗ ∈ S

inf
x∈S

F (x) = F (x∗).
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